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Abstract
The notion of multi-granularity has been introduced into various mathematical models in granular computing. For example,
neighborhood rough sets can derive a good multi-granularity structure by gradually changing the size of neighborhood
radius. Attribute reduction is an important topic in neighborhood rough sets. However, in the case of multi-granularity, the
challenge of high computational complexity and difficulty in synthesizing multi-granularity information when performing
reduction algorithms always exists. To address such limitations, an accelerated algorithm for multi-granularity reduction is
designed. Firstly, we construct a multi-granularity reduction structure with multiple different neighborhood radii to reduce
the elapsed time of computing reducts. In this way, the consumed time of calculating the distance is similar to the one of
single granularity reduction, and the elapsed time of computing multi-granularity reducts can be reduced. Secondly, multiple
granularity information is integrated in each attribute evaluation. Finally, we evaluated the proposed method from multiple
perspectives on 12 UCI datasets. Compared with other multi-granularity reduction algorithms, the proposed method not only
generates reducts with relatively high quality, but also improves the time efficiency of multi-granularity reduction algorithm.

Keywords Neighborhood rough sets · Multi-granularity reduction · Attribute reduction

1 Introduction

A large number of high-dimensional, diverse and complex
data have become a severe challenge to intelligent
data processing [23]. Feature selection [6, 18, 23, 32,
35] is an important preorder step in machine learning
and data mining. It focuses on dealing with the ever-
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increasing dimensions of data with limited computing
power and extracting effective information from the
complex high-dimensional data [25]. Specifically, feature
selection methods need to be efficient and the selected
features need to have a strong discrimination ability.

Feature selection based on granular computing is an
emerging research field. Granular computing is a theory
to process complex information and extracts knowledge
from the data [11, 39]. It spans multiple disciplines and
has multiple branch models [4, 45]. Information granulation
adheres to the process of cognition and reasoning in
which people observe and describe problems from different
perspectives [41]. It divides complex data into some
basic units. The multilevel granulation method can form
multilevel information granules. Granules in the same layer
can overlap and cooperate with each other. Granules in
different layers form a hierarchical structure. This repetitive
partitioning of data simplifies a complex problem [7, 16, 28,
38, 40, 44].

How to construct a granular structure is an essential
problem in granular computing. According to the existing
researches, there are usually two ways to construct granular-
ity: data-based and model-based construction methods [21].
Data-based constructors usually include two aspects: feature
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variation and sample variation. By increasing or decreas-
ing the size of features or samples, different information
granules can be formed [5, 29]. Model-based construction
methods include model combination and model parameter
variation. The latter is also a special case of model com-
bination. The finer parameters often lead to more accurate
models and can also represent finer granularity decision
making methods. The difference of information granulation
results can be reflected by the difference of parameter values
[8, 24, 26].

Naturally, the neighborhood system uses the neighbor-
hood radius to construct information granules. The smaller
the neighborhood radius, the finer the granularity. Hu
et al. [12] proposed neighborhood rough sets model based
on neighborhood relations, which can deal with informa-
tion systems with real values. Lin et al. [19] proposed a
multi-granularity rough sets based on neighborhood rough
sets. Then different measurements were applied to attribute
reduction based on neighborhood rough sets [2, 10, 33,
42, 47], which can better deal with the data of differ-
ent distributions. With the increasing size of data sets and
increasing data dimensions, some acceleration strategies are
also found in this context [25, 32, 35]. But for dynamically
changing data, the traditional attribute reduction algorithms
cannot dynamically update the reducts. In order to meet the
challenges brought by constantly updated data sets, many
scholars proposed dynamic reduction algorithms based on
neighborhood rough sets [1, 15, 30, 43].

Previous studies have expanded neighborhood rough sets
attribute reduction to other extent, but single-granularity
reduction algorithms in the traditional neighborhood rough
sets all have their inherent limitations [9, 21]. (1) The single-
granularity attribute reduction of neighborhood rough sets
cannot be used for neighborhood radius selection. (2)
By using the single granularity based attribute reduction,
only one reduct is obtained when giving a radius. There
is no comparison among the performances derived from
multiple reducts in terms of multiple radii. Multi-granularity
reduction can generate multiple reducts according to
multiple radii, which can reflect the variation tendency
of discrimination performance [14]. (3) The reduction
algorithms based on single granularity are not suitable
for the reduction with multiple granularity levels. In
neighborhood system, the multi-level granular structures
can be constructed according to different neighborhood
radii. Under the granularity structure constituted by
different neighborhood radii, reducts that are suitable for
different neighborhood radii can be generated.

In recent years, there are many studies on multi-
granularity attribute reduction. Jiang [13] first proposed
a multi-granularity reduction algorithm applicable to a
variety of models, and carried out numerical experiments
using neighborhood rough set model. Then he [14] added

supervised neighborhood rough set model on the basis of
reference [13]. However, this multi-granularity reduction
algorithm does not fully consider the multi-level structure
of neighborhood rough sets, that is, the reduction at the
current granularity is only related to the reduction at the
upper or lower granularity. So it cannot integrate the multi-
granularity information effectively. Liu [21] uses a new
multi-granularity reduction algorithm, which uses the The
finest and coarsest grained information to carry out multi-
granularity feature selection. The above studies all have the
same shortcoming: it can not get multi-granularity reduction
results quickly and effectively without losing all granularity
information. In order to quickly obtain multi-granularity
reducts, they all choose to ignore the information provided
by most granularities.

To address the above problems, a novel multi-granularity
reduction algorithm is designed in the context of neigh-
borhood rough sets. It presents an accelerated strategy to
conduct multi-granularity reduction while all granularity
of information is calculated and well applied. Firstly, we
designed the horizontal granulation structure. By observing
the characteristics of the horizontal granulation structure,
we found that it can reduce the number of sample distance
calculation when adding attributes in multi-granularity
reduction. Then, a comprehensive attribute evaluation strat-
egy is designed by a voting method, and attributes suit-
able for multiple granularity are selected preferentially.
Finally, the proposed algorithm is compared with the exist-
ing multi-granularity reduction algorithms. Experimental
results demonstrate the superiority of the proposed algo-
rithm in terms of the time consumption and classification
accuracy.

The rest of study is organized as follows. In Section 2,
the basic notions of neighborhood rough sets are introduced
and the structure of neighborhood rough sets under
multiple neighborhood radii is given. In this context, a
novel multi-granularity reduction algorithm is proposed in
Section 3. Section 4 demonstrates the effectiveness of the
multi-granularity reduction algorithm through experimental
results. Some conclusions are drawn in Section 5.

2 Single granularity reduction
in neighborhood rough sets

2.1 Single granularity neighborhood rough sets

Formally, a decision system is denoted as a tuple DS =
〈U, AT, d〉, where U is a finite non-empty set U =
{x1, x2, ..., xn}, called the universe; AT is the set of all
conditional attributes; for any xi ∈ U , ∀a ∈ AT , a(xi)

represents the value of sample xi under attribute a; d is the
decision attribute (this article mainly studies the problem
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with a single decision attribute and d is an attribute whose
value is nominal). For any xi ∈ U , d(xi) describes the label
of the sample xi at the decision attribute. An equivalence
relation with respect to d is denoted as INDd = {(x, y) ∈
U × U : d(x) = d(y)}. Through the equivalence relation
INDd , a partition of U can be obtained as U/INDd =
{X1, X2, ..., Xp}. Furthermore, ∀Xi ∈ U/INDd and ∀xj ∈
Xi , we denote Xi = [xj ]d .

Hu [12] has defined neighborhood rough set which was
applied to attribute reduction.

Definition 2.1 Given a decision system S = 〈U, AT, d〉.
For any B ⊆ AT , the distance matrix DB = (disB

ij )|U |×|U |
in terms of B is defined as,

disB
ij = m

√∑
a∈B

‖a(xi) − a(xj )‖m, (1)

where |U | is the cardinal number of U and xi , xj ∈ U .

A neghborhood similarity relation Nδ
B can be derived

from the distance matrix DB and a given radius δ. The
neghborhood simimarity relation Nδ

B could be writen as,

Nδ
B = {(xi, xj ) ∈ U × U : disB

ij ≤ δ}.
It is easy to notice that Nδ

B satisfy reflexivity and
symmetry. By constructing the neighborhood relationship,
points with high similarity can form a granule, δB(xi) =
{xj | xj ∈ U, (xi, xj ) ∈ Nδ

B}. All the granules cover the
whole universe.

Definition 2.2 Giving universe U , Nδ
B is a neighborhood

relation where B is the set of attributes and δ is the radius
of the neighborhood. Neighborhood relation Nδ

B provides
a feasible strategy to construct a family of neighborhood
granules on U . Then we call GSδ

B = 〈U, Nδ
B〉 a granular

structure.

Definition 2.3 Given a decicion system 〈U, AT, d〉, U

can be divided into p blocks by the decision attribute d ,
U/INDd = {X1, X2, ..., Xp}. For any B ⊆ AT , the upper
and lower approximations of d with respect to attributes B

are defined as,

NB(d) =
p⋃

i=1

{xj | δB(xj ) ⊆ Xi, xj ∈ U}, (2)

NB(d) =
p⋃

i=1

{xj | δB(xj ) ∩ Xi 
= ∅, xj ∈ U}. (3)

After obtaining the upper and lower approximations of d ,
we call POSδ

B(d) positive region of B with repect to d if it
satisfies that ∀x ∈ POSδ

B(d), δB(xi) are consistent belong
to one decision class. It is obvious that POSδ

B(d) = NB(d).

Definition 2.4 Given a decicion system 〈U, AT, d〉, the
neghborhood approximation quality γ δ

B(d) of d associated
with B is formulated as,

γ δ
B(d) = |POSδ

B(d)|/|U |. (4)

Obviously, the range of γ δ
B(d) is between 0 and 1. It is the

proportion of samples that can be correctly classified with
respect to B. Therefore, the neghborhood approximation
quality can be used to measure the discriminative power of
attribute subsets.

Definition 2.5 [46] Given DS = 〈U, AT, d〉, δ ∈ [0, 1],
B ⊆ AT , the conditional entropy of d in terms of B is
formulated as:

CEδ(B, d)=− 1

|U |
∑
xi∈U

|δB(xi)∩[xi]d | log
|δB(xi) ∩ [xi]d |

δB(xi)

(5)

2.2 Single granularity reduction

Attribute reduction not only reduces the cost of storing
and processing data, but also improves the interpretability
and generalization of the decision model. Up to now, a
large number of attribute reduction algorithms have been
proposed [3, 17, 22, 31]. From the perspective of granular
computing, Yao proposed a generalized form of attribute
reduction [14, 21].

Definition 2.6 Given a decision system 〈U, AT, d〉 and
δ ≥ 0, ρ be a constraint function, ∀B ⊆ AT , we call B is a
ρδ−reduct if and only if
1. B meets ρδ constraint;
2. ∀a ∈ B, B − {a} does not meet the ρδ constraint.

The constraint ρδ may have various forms. Approxima-
tion quality γ δ

B(d) is an important index to measure the
consistency of an attribute set. γ δ

B(d) can be used as a mea-
sure of the importance of the attributes B in terms of d . The
greater the approximate quality, the higher the consistency
between attribute subset and decision attribute. Therefore,
the increase of approximation quality after the addition of
attributes can be used as an index to measure the impor-
tance of attributes. Some scholars also proposed many other
functions to measure the importance of attributes [34, 36].
They can all be considered as different realization of ρδ

constraints.

Definition 2.7 Given a decision system 〈U, AT, d〉 and
δ > 0. We have B ∈ AT , ∀a /∈ B. The importance of
attribute a with respect to B under radius δ is

Sigδ(a, B, d) = ρδ(B ∪ {a}, d) − ρδ(B, d). (6)
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Algorithm 1 uses the greedy search strategy to obtain a
reduct. It starts from the empty set B = ∅, and adds the
most significant attribute into B each time until a subset of
attributes satisfying the constraint is achieved.

Obviously, It’s trivial to figure out that the time
complexity of Algorithm 1 is O(|U |2 · |AT |2). This can be
summed up in the following two aspects: (1) Calculate the
distance matrix DB time complexity is O(|U |2), because
any two samples in U should be applied for computing
distance; calculate the ρδ(B ∪ {ai}, d) time complexity is
O(|U |)(The measurement should be approximation quality
or conditional entropy). The overall time complexity of
steps 6-7 is O(|U |2). (2) In the worst case, the reduct
we find is AT , the original condition attribute. Then the
program will execute the iteration |AT | times in step 4 and
execute the step 5 |AT |− i times in the ith iteration. Finally,
the time complexity of Algorithm 1 is O(|U |2 · |AT |2).

3 Accelerator for multi-granularity reduction
in neghborhood rough sets

In this section, we introduce neighborhood rough sets with
multi-radii, and then a fast and effective multi-granularity
reduction algorithm in neighborhood rough sets is proposed.

3.1 Neighborhood rough sets withmulti-radii

Neighborhood is an effective tool to implement information
granules in rough sets theory. It not only provides a simple
way to interpret information granules, but also presents a
natural idea for building multi-granularity concepts [13, 14,
20, 21, 37].

Variation of data and parameters are two factors
associated with multi-granularity. On the one hand, the

change of the number of attributes will affect the size
of granularity. This implements a top-down or bottom-
up granulation process as we gradually add or remove
attributes to the data. We can consider it as a vertical
grain structure. On the other hand, the granulation of the
universe is related to parameters. Taking neighborhood
rough set as an example, different radii form different
relations and form different granule systems. With the
increase of neighborhood radius, the size of granule will
increase correspondingly. From this point of view, these
different scales of the radii imply a structure of horizontal
multilevel granularity [41].

Definition 3.1 Giving information system 〈U, AT 〉 and
� = {δ1, δ1, ..., δs}, {Nδi

B }i=1...s is a set of neighborhood

relation where B ∈ AT . GS
δi

B = 〈U, N
δi

B 〉. Then
the horizontal neighborhood multi-granularity structure is
defined as,

GS
�
B = {GS

δi

B }i=1...s . (7)

We will use the following conventions throughout this
section when we study neighborhood rough sets under
horizontal multi-granularity.

• N�
B denotes a set of neighborhood similarity relation,

that is N�
B = {Nδi

B }i=1...s ;

• N�
B (d) and N�

B (d) denotes the multiple upper and
lower approximations of d with respect to attributes

B, that is N�
B (d) = {Nδi

B (d)}i=1...s , N�
B (d) =

{Nδi

B (d)}i=1...s ;

• γ �
B (d) denotes the multiple approximation quality of d

associated with B, that is γ �
B (d) = {γ δi

B (d)}i=1...s ;
• CE�(B, d) denotes the multiple conditional entropy

of d associated with B, that is CE�(B, d) =
{CEδi (B, d)}i=1...s .

Where B ∈ AT and � = {δ1, δ1, ..., δs}, {Nδi

B }i=1...s is a
set of neighborhood relation.

After simple derivation, it can be found that given a single
distance matrix DB and a set of neighborhood set �, a set
of neighborhood relation N�

B can be obtained. Under this
set of neighborhood relations, we can derive a set of upper
and lower approximations and calculate a set of constraints
ρ� = {γ δi

B (d)}i=1...s .

Proposition 3.2 In decision information system
〈U, AT, d〉, we have B ∈ AT . Given a single dis-
tance matrix DB with a set of neighborhood radii
� = {δ1, δ2, ..., δs} and U/INDd = {X1, X2, ..., Xp}, a
set of constraints ρ� = {γ δi

B (d)}i=1...s can be obtained.
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In order to effectively utilize this property to reduce the
repeated operation of DB in the multi-granularity reduction
algorithm, an appropriate algorithm structure needs to be
designed.

3.2 Synthesize multi-granularity reduction

The available neighborhood related attribute reduction
methods are almost based on a single granularity situation.
However, attribute reduction of a single granularity may
involve several limitations: (1) It may result in poor
adaptability of the generated reduction under different
granularity environments; (2) If the results of attribute
reduction under different radii needs to be calculated, the
time consumption may be greatly increasing [13, 14].
Jiang et al. [14] formalizes the multi-granularity attribute
reduction from the perspective of neighborhood granularity.

Definition 3.3 Given a decision system 〈U, AT, d〉, � =
{δ1, δ2, ..., δs} is a monotonically increasing neighborhood
radius set such that ∀i ∈ {1, 2, ..., s − 1}, δi < δi+1. We call
B = {B1, B2, ..., Bs} multi-granularity reducts if and only if
each Bi is the ρδi -reduct under granularity GS

δi

AT .

To get a multi-granularity reduction B, Algorithm 1 can
be exploited repeatedly with different δ to get a set of
reducts. This intuitive idea is shown in Fig. 1a. However,
this process will take a considerable amount of time.
Jiang et al. proposed a forward (reverse) accelerated search
algorithm, which greatly reduced the time to obtain multi-
granulariy reducts under different neighborhood radii [14].
For convenience, the forward accelerated search algorithm
proposed by Jiang et al. is called FABS and the reverse
accelerated search algorithm is called RABS. The general
idea of FABS is shown in Fig. 1b. B ′

1 and B ′
2 in Fig. 1

respectively represent the reduction under neighborhood
radius δ1, δ2.

As shown in Fig. 1b, B ′
1 obtained for the current

neighborhood radius δ1 serve as the initial attribute subset
under the next neighborhood δ2; the B ′

2 obtained under
the current neighborhood radius δ2 is used as the initial
attribute subset for the next neighborhood δ3; the rest can
be done in the same manner. As for RABS, it execute
like FABS. The difference is that RABS chooses δs as the
first neighborhood radius for feature selection, and then
the reduct that was found under δs radius is the initial
candidate reduct under δs−1 neighborhood radius. And
so on until the reduct under δ1 neighborhood is found.
This mechanism does not effectively synthesize information
from multiple granularities, because the reduction under the
current granularity is mainly affected by the reduction under
the previous granularity. In addition, the multi-granularity
reduction of neighborhood rough sets may lead to some
redundant computations.

To overcome the drawbacks of FABS, we will use the
special properties of neighborhood rough sets to propose
an accelerated method. The general idea of the algorithm
is shown in Fig. 2. As it depicted in Fig. 2, � =
{δ1, δ2, δ3, δ4}, AT = {a1, a2, ..., am} is an attribute set,
B = {B ′′

1 , B ′′
2 , B ′′

3 , B ′′
4 } is a multi-granularity reducts and

B ⊆ AT is a pre-selected subset of attributes under all
radii, whose initial value is shown in Fig. 2a as ∅. Then,
suppose a1 is selected and added to B through multi-
granularity attribute evaluation criteria (Specific attribute
evaluation criteria will be discussed in Section 3.2.2.), and
then a2 is selected and added to B for the second time.
As shown in Fig. 2d, when adding the kth attribute, B

exactly satisfies the ρδ1constraint, so the reduction under
the neighborhood radius of δ1 is B ′′

1 = {a1, a2, ..., ak}. The
multigranularity reduction for the remaining radii continues.
When ak+1 is added to B, B = {a1, ..., ak, ak+1} satisfies
ρδ2 and ρδ4 constraints respectively, so δ2 and δ4 also stop
and B ′′

2 = B ′′
4 = {a1, ..., ak, ak+1}, as shown in Fig. 2e.

When ak+2 is added to B, B satisfies ρδ3 constraint, so

Fig. 1 Algorithm diagram

17640



Accelerated multi-granularity reduction based on neighborhood rough sets

Fig. 2 Algorithm diagram

B ′′
3 = {a1, ..., ak+2}. Then all the reducts have been found,

B = {B ′′
1 , B ′′

2 , B ′′
3 , B ′′

4 }. It is worth noting that Algorithm 2
degenerates into Algorithm 1 when � = {δ}.

3.2.1 Acceleration of multi-granularity attribute evaluation

The feature selection algorithm based on rough sets can
be divided into two parts: attribute evaluation and attribute
searching [27]. In particular, the attribute evaluation can be
divided into two steps in the neighborhood rough sets: (1)
Let B be the attribute subset, calculating the distance matrix
DB in terms of B; (2) The attribute evaluation function
ρδ(B, d) is calculated according to the distance matrix DB .
The first step often consumes the most of the computing
time. Then how to calculate the distance matrix DB without
repeating in the context of multi-granularity reduction is the
essential problem.

Reviewing the feature evaluation on single granularity
reduction, suppose the candidate attributes be a1, a2, a3, a4

and the neighborhood radius be δ, while B ⊆ AT is pre-
selected reduction set. In order to select the best candidate
attributes from AT −B, we need to calculate ρδ(B∪{a1}, d),
ρδ(B ∪ {a2}, d), ρδ(B ∪ {a3}, d), and ρδ(B ∪ {a4}, d)

respectively. Thus, it is necessary to calculate DB∪{a1},
DB∪{a2}, DB∪{a3} and DB∪{a4} respectively. The distance
matrix DB is calculated 4 times in total.

Suppose there are 4 candidate attributes {a1, a2, a3, a4}
and 10 neighborhood radii � = {δ1, ..., δ10}, in order
to select one optimal candidate attribute to add into the

candidate reduct, it has to calculate the attribute evaluation
function ρδi (B∪{aj }, d) 4×10 times. According to Section
2.1, we need to calculate the distance matrix DB∪{aj }
4 × 10 times when calculating the evaluation function
ρδi (B ∪ {aj }, d). However, according to Proposition 3.2,
DB∪{aj } only needs to be calculated once when 10 attribute
evaluation functions ρ�(B ∪ {aj }) are calculated. So when
you want to calculate the evaluation function 4 × 10 times,
you only need to calculate DB 4 times which is the same
as the single granularity attribute reduction. In this way, the
number of times Algorithm 2 calculating the distance matrix
DB in multi-granularity reduction is almost the same as
Algorithm 1 calculates DB in single-granularity reduction.
This can effectively reduce the consumption of time.

3.2.2 Feature selection based on voting strategy

In single-granularity reduction process, the greedy strategy
selects an attribute each time to add into the reduct. Then in
the multi-granularity situation, how to select one optimum
attribute to join the attribute subset? Generally, in some
multi-granularity algorithms [27], they simply considered
the finest and coarsest granularity in attribute selection.
However, only the finest and coarser granularity does
not fully capture the characteristics of multi-granularity
structure. Therefore, the majority voting strategy is adopted
to implement the comprehensive evaluation under the multi-
granularity. Given 〈U, AT, d〉 and B ⊆ AT , we need to
construct an evaluation matrix E�

AT −B = (eij )s×|AT −B| for
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attribute selection. s represents the number of neighborhood
radii, and B represents the candidate attributes.

eij = ρδi (aj , B, d), aj ∈ AT − B. (8)

One row of the evaluation matrix E�
AT −B represents the

importance of different candidate attributes in a certain
neighborhood radius. One column of the evaluation matrix
represents how important a candidate attribute is at different
neighborhood radii. After obtaining the evaluation matrix
E�

AT −B , the optimal attributes in different rows can be
found. The optimal attribute in each row represents the
best candidate in the current neighborhood radius. The best
attribute in each row gets one vote (if two attributes tie
for first place within a neighborhood radius, both attribute
get one vote each). The attribute with the most votes
becomes the one selected in the round (if multiple attributes
tie for first place, a random attribute for first place will
be selected). Then the optimal attribute with the highest
occurrence frequency is selected as the candidate attribute.

Example 1 For a decision system 〈U, AT, d〉,
AT = {a1, a2, a3, a4, a5, a6, a7}, B is a subset of
AT , B = {a5, a6, a7}, and the neighborhood radii
� = {δ1, δ2, δ3, δ4}. In order to select the best attribute
and add it to the candidate subset B, we calculate the
attribute evaluation matrix E�

AT −B . Assume that the values
in Table 1 correspond to the values of the evaluation matrix
E�

AT −B , and that the larger the value in the matrix, the
higher the importance of the attribute under this radius. Dif-
ferent rows represent the importance of attributes measured
under different neighborhood radii. As shown in Table 1,
the optimum attribute under different δ is then found. The
best attribute with respect to δ1 is a2; the best attribute with
respect to δ2 is a3; the best attribute with respect to δ3 is a2;
the best attribute with respect to δ4 is a1. Summing up all
the votes, we know that a1 gets one vote, a2 gets two votes,
a3 gets one vote, and a4 gets none. Through the voting
rules, a2 is added to B. B will be updated to {a2, a5, a6, a7}.

Based on the above two optimization schemes, we
improve the attribute reduction of multi-granularity neigh-
borhood rough sets based on greedy policy search. By
quickly calculating the constraint ρ�(B, d), the times of
computing the distance matrix DB can be reduced to the

Table 1 E�
AT −B

a1 a2 a3 a4

δ1 0.90 0.91 0.90 0.89

δ2 0.89 0.89 0.9 0.89

δ3 0.85 0.86 0.85 0.85

δ4 0.83 0.82 0.82 0.80

same level as the attribute reduction of single-granularity
rough sets. Feature selection based on voting strategy
enables us to find a better attribute subset under multi-
granularity. The proposed algorithm details are shown in
Algorithm 2.

The iteration of the algorithm is mainly composed of
three parts. The first part is the 5th to 9th steps of the
algorithm, which construct the attribute evaluation matrix
E�

AT −B . The second part is the 10th to the 12th step of
the algorithm. It selects the optimal attributes and adds
them to the attribute subset by voting strategy according
to the evaluation matrix E�

AT −B . The third part is the 13-
18 steps of the algorithm. For all δ belonging to �, we
need to determine whether the attribute subset B satisfies
the ρδ-constraint. If δt is satisfied, the reduction of Bt is
determined: Bt = B, then the current δt is removed from
�, and the algorithm no longer traverses the δt radius.
When all δ in � are deleted, it means that all neighborhood
radius reducts have been found. Then the algorithm is
over. The following experiments will be used to prove the
effectiveness of the algorithm.

Referring to Algorithm 1, it is not difficult to find that
the time complexity of Algorithm 2 is also O(|U |2 · |AT |2).
Similar to Algorithm 1, the time complexity of Algorithm 2
can also be divided into two parts: (1) calculate the distance
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Table 2 Introduction to datasets

Data #Samples #Attributes #Decision classes

wine 178 13 3

ionosphere 350 35 2

glass 214 10 6

data-banknote 1371 4 2

sonar 208 60 2

fertility-Diagnosis 100 10 2

accent 329 12 6

waveform 5000 21 3

plrx 182 13 2

wdbc 569 32 2

movement 360 91 10

BreastTissue 106 10 5

matrix DB time complexity is O(|U |2), because any two
samples in U should be applied for computing distance;
calculate the ρδ(B ∪ {ai}, d) time complexity is O(|�| ·
|U |)(The measurement should be approximation quality or
conditional entropy). The overall time complexity of steps
6-8 is O(|U |2)+O(|�| · |U |) = O(|U | · (|U |+|�|)). (2) In
the worst case, step 4 will run |AT | times, the last iteration
B = AT . In each iteration of step 4, we need to calculate
distance matrix |AT − B| time. This result is not affected
even when the neighborhood radius increases. Finally, the
time required for all calculations is accumulated, and the
time complexity of Algorithm 1 is O(|U | · (|U | + |�|) ·
|AT |2).

4 Experimental results

In order to verify that Algorithm 2 can effectively obtain
multi-granularity reducts, this section compares Algorithm
2 with other multi-granularity reduction on 12 data sets.
Details of the used datasets are shown in Table 2 below.

In our experiments, to simplify our discussions, FABS D,
RABS D, PABS D, Brute D implies the following, respec-
tively,

(1)FABS using approximation quality as constraint;
(2)RABS using approximation quality as constraint;
(3)PABS using approximation quality as constraint;
(4)Algorithm 1 using approximation quality as con-

straint.
FABS CE, RABS CE, PABS CE, Brute CE indicates

the following, respectively,
(1)FABS using conditional entropy as constraint;
(2)RABS using conditional entropy as constraint;
(3)PABS using conditional entropy as constraint;
(4)Algorithm 1 using conditional entropy as constraint.

4.1 Experiments settings

All the multi-granularity reduction algorithms were imple-
mented in Python 3.8 and were conducted on a dual pro-
cessor, 24 core, 48 logic processor server with 64GB of
memory.

We use the 5-fold cross validation to conduct the
experiment, so as to reduce the deviation caused by the
data and obtain more reliable and stable results. The data

Table 3 Comparisons among elapsed time of obtaining the multi-granularity reducts

Approximation quality conditional entropy

Brute D FABS D RABS D PABS D Brute CE FABS CE RABS CE PABS CE

wine 3.3743 1.0082 0.8980 0.5674 3.3020 0.9707 0.9748 0.5671

ionosphere 63.2968 15.0055 14.0691 7.4364 58.3753 14.2442 13.3211 9.9344

glass 2.6545 1.0234 1.0508 0.3700 2.5987 0.8320 0.9679 0.3636

data banknote 8.9316 5.4687 5.7693 1.9743 9.0597 5.4463 5.7171 1.9721

sonar 37.7869 6.4985 7.2477 6.1832 32.3376 6.6177 6.3815 5.9979

fertility 0.9872 0.3680 0.3398 0.1336 0.9793 0.3461 0.3453 0.1362

accent 7.7219 2.3442 2.5105 1.1144 7.8092 2.2097 2.6954 1.2072

waveform 2256.8171 463.8463 486.2884 506.9659 2237.7814 520.9583 593.0367 518.1255

plrx 3.5947 1.0123 1.0194 0.4411 3.3576 0.9089 1.0774 0.5350

wdbc 113.0216 24.8895 25.5221 15.7413 107.9260 23.3899 24.3187 17.4738

movement 456.8637 131.3087 105.1430 70.2847 443.9714 128.4817 113.5914 85.9019

BreastTissue 1.1292 0.4412 0.4713 0.1746 1.1492 0.3872 0.4451 0.1450

Average rank 4.0000 2.1667 2.6667 1.1667 4.0000 2.3333 2.6667 1.0000
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Fig. 3 Comparisons among different lengths w.r.t. different reducts

is divided into five sub-samples of the same size and
disjoint. One single sub-sample is retained as the data of
the validation model, and the other 5-1 subsamples are
used to carry out training of the multi-granularity reduction
algorithm. Cross validation is repeated five times, once for
each subsample, averaging five results or using some other

combination, resulting in a single estimate for the variable
we want.

Twenty increasing neighborhood radius sets � =
{0.025, 0.05, ..., 0.5} are used as the input variable � of
FABS, PABS. Each neighborhood radius increases at a rate
of 0.025, and different radius represent different granularity.
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Table 4 Comparison of average length of multi-granularity reduction

Approximation quality conditional entropy

FABS D RABS D PABS D FABS CE RABS CE PABS CE

wine 8.59 7.34 7.97 8.71 7.36 7.94

ionosphere 17.70 15.55 20.08 19.64 16.19 19.52

glass 8.43 8.22 8.38 8.92 8.59 7.90

data banknote 3.84 3.82 3.83 4.00 3.90 3.05

sonar 12.22 10.20 11.84 12.04 9.03 10.44

fertility 7.50 7.06 7.28 7.46 7.06 7.08

accent 10.84 10.31 10.69 10.99 10.35 10.04

waveform 17.15 15.83 16.60 17.26 15.70 16.22

plrx 10.06 9.18 9.65 10.12 9.19 9.21

wdbc 21.65 19.26 20.71 22.3 19.55 21.12

movement 38.96 28.96 45.49 38.83 29.49 45.04

BreastTissue 7.22 6.85 7.11 8.53 7.92 7.42

Average rank 2.83 1.00 2.16 2.91 1.33 1.75

Finally, reducts under 20 different granularity can be
obtained. These reducts can be collectively referred to as
multi-granularity reducts.

4.2 Comparison of running time

Table 3 records the time consumption of attribute reduction
of Algorithm 1, FABS and PABS in multi-granularity
neighborhood rough sets under � = {0.025, 0.05, ..., 0.5}.
It should be noted that Algorithm 1 needs to be

called several times with different neighborhood radius to
obtain multi-granularity reducts. We underline the fastest
algorithm to obtain multi-granularity reducts under the same
constraint. According to the results shown in Table 3, it is
not difficult to find that (Fig. 3):

(1). No matter what constraint is used, FABS, RABS and
PABS are far better than Algorithm 1 in time efficiency.
It shows that the fast multi-granularity reduction algorithm
proposed in this paper can greatly save the time of multi-
granularity reduction.

Table 5 Comparison of similarity of multi-granularity reduction

Approximation quality conditional entropy

FABS D RABS D PABS D FABS CE RABS CE PABS CE

wine 0.6493 0.6636 0.7021 0.6588 0.6205 0.6250

ionosphere 0.6771 0.7478 0.7130 0.6546 0.5986 0.6556

glass 0.9635 0.9626 0.9900 0.9675 0.9800 0.9833

data banknote 0.9875 1.0000 1.0000 0.9875 1.0000 1.0000

sonar 0.2255 0.2170 0.2897 0.2576 0.3042 0.4102

fertility 0.8121 0.7471 0.7667 0.7505 0.6980 0.6918

accent 0.9049 0.8562 0.9195 0.9199 0.8351 0.9467

waveform 0.7883 0.7617 0.8189 0.7434 0.7724 0.8335

plrx 0.8362 0.8103 0.8958 0.9084 0.8911 0.8891

wdbc 0.8046 0.8765 0.8096 0.7750 0.6679 0.7849

movement 0.4767 0.6406 0.3340 0.3314 0.2763 0.3388

BreastTissue 0.8997 0.9100 0.9536 0.9428 0.9722 0.9854

Average rank 2.3333 2.1667 1.4167 2.1667 2.3333 1.4167
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Fig. 4 Comparisons among classification accuracies w.r.t. different reducts (Decision tree)

(2). When using approximation quality, PABS is basi-
cally better than FABS and RABS in terms of time effi-
ciency. Because PABS reduces the number of times to
calculate the distance between samples. Occasionally, a spe-
cial case occurs, such as FABS being faster than PABS on a
data set waveform. It is found in the experiment that FABS
may be better than PABS in time efficiency if the data sam-
ple is large and the number of attributes is small relative to
the number of samples, while the overall multi-granularity
reduction speed of PABS still maintains a high level.

4.3 Reduction attribute quality comparison

Table 3 exhibits the elapsed time of obtaining the multi-
granularity reducts.. This section compares the average
length of multi-granularity reducts obtained by different
algorithm. After that, we calculat the similarity of multi-
granularity reducts derived by PABS and Brute. Meanwhile
the similarity between FABS with Brute and RABS with
Brute is also calculated. Detailed results can be found in
Tables 4 and 5.
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Table 6 Average accuracy of KNN

Approximation quality conditional entropy

FABS D RABS D PABS D FABS CE RABS CE PABS CE

wine 0.9593 0.9445 0.9583 0.9525 0.9365 0.9529

ionosphere 0.8367 0.8339 0.8389 0.8347 0.8341 0.8423

glass 0.6182 0.6190 0.6195 0.6215 0.6202 0.6592

data banknote 0.9977 0.9976 0.9977 0.9985 0.9981 0.9939

sonar 0.7269 0.7131 0.7439 0.7204 0.7343 0.7162

fertility 0.8795 0.8800 0.8800 0.8800 0.8800 0.8800

accent 0.7437 0.7360 0.7487 0.7492 0.7376 0.7309

waveform 0.8127 0.7887 0.8110 0.8155 0.7942 0.8142

plrx 0.6604 0.6590 0.6585 0.6577 0.6585 0.6644

wdbc 0.9652 0.9594 0.9657 0.9638 0.9638 0.9694

movement 0.6209 0.5589 0.6302 0.6134 0.5614 0.6265

BreastTissue 0.6457 0.6296 0.6454 0.6361 0.6236 0.6445

Average rank 1.7500 2.6667 1.5000 1.9167 2.4167 1.6667

4.3.1 Comparison of length

Table 4 and Fig. 3 show the average attribute length of
multi-granularity reducts. The average attribute length of
multi-granularity reducts can be written as:

B =
∑

B∈B
|B|

|B| . (9)

The underlined ones represent the algorithm with the
shortest average attribute length under the same constraint.
According to experience, reduct with too many attributes
may result in redundancy of data, while too short reduct will

lead to loss of information. The experimental results show
that no matter which constraint is used, the multi-granularity
reducts length obtained by PABS is mostly smaller than that
obtained by FABS and larger than that obtained by RABS. It
can be said that PABS algorithm adopts a more conservative
strategy to obtain reduct. Therefor the reducts will not be
too long or too short.

4.3.2 Comparison of similarity

This section compares the similarity of multi-granularity
reducts derived by FABS, PABS to the multi-granularity
reducts obtained by Algorithm 1. The higher the similarity

Table 7 Average accuracy of Decision tree

Approximation quality conditional entropy

FABS D RABS D PABS D FABS CE RABS CE PABS CE

wine 0.9201 0.9019 0.9247 0.9181 0.9029 0.9195

ionosphere 0.8841 0.8868 0.8946 0.8869 0.8861 0.8900

glass 0.6746 0.6745 0.6795 0.6674 0.6662 0.6730

data banknote 0.9821 0.9822 0.9824 0.9808 0.9813 0.9875

sonar 0.6941 0.6657 0.7017 0.6851 0.6914 0.7286

fertility 0.7652 0.7467 0.7395 0.7638 0.7471 0.7614

accent 0.6749 0.6672 0.6829 0.6818 0.6726 0.6604

waveform 0.7360 0.7128 0.7388 0.7358 0.7157 0.7379

plrx 0.5379 0.5380 0.5412 0.5310 0.5298 0.5610

wdbc 0.9262 0.9191 0.9190 0.9206 0.9237 0.9247

movement 0.6422 0.6112 0.6476 0.6464 0.6095 0.6520

BreastTissue 0.6336 0.6230 0.6451 0.6324 0.6185 0.6389

Average rank 2.0833 2.5833 1.3333 2.0833 2.6667 1.2500
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Fig. 5 Comparisons among classification accuracies w.r.t. different reducts (KNN)

with Algorithm 1, the smaller the difference with the
original algorithm, and the more it can reflect the trend of
the original multi-granularity reduction with the increase of
the neighborhood, which is more beneficial to the selection
of neighborhood radius under different data sets. So we
define attribute similarity as: Sim(B1, B2) = |B1∩B2||B1∪B2| .
Naturally, the similarity of multi-granularity reducts is

Sim(B1,B2) =
∑

Bi∈B1,Bj ∈B2

Sim(Bi, Bj ). (10)

Where B1,B2 are multi-granularity reducts while Bi, Bj

are actually a reduct with respect to same δ.
As it depited in Table 5, the similarity between PABS

and Algorithm 1 is higher than that between FABS and
Algorithm 1 in most cases. It can be concluded that
the multi-granularity reducts generated by PABS is more
excellent than the multi-granularity reducts obtained by
FABS. The Conclusion is true when comparing RABS with
PABS.
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4.4 Comparison of classification accuracy

Finally, we choose some classical classifiers to carry out
experiments, which can get the classification accuracy
under the multi-granularity reduction. Figure 4 displays
the classification accuracy of different multi-granularity
reduction algorithms using the classifier decision tree,
and Table 6 demonstrates the average accuracy of multi-
granularity reducts under the KNNclassifier. Figure 5 shows
the accuracy rate obtained by using KNN classifier to
classify different multi-granularity reduction algorithms.
Table 7 demonstrates the average accuracy rate of multi-
granularity reducts under decision tree classifier.

According to Tables 6 and 7, it is not difficult to find that
the average accuracy of PABS is often higher than that of
FABS in different data sets. However, according to Section
3, we know that the average length of the reduction obtained
by PABS is smaller than that of FABS. This means that
PABS uses fewer attributes to achieve a higher classification
accuracy than FABS.

By comparing PABS with RABS, it can be inferred that
the average accuracy of PABS is obviously better than that
of RABS on most data sets. Therefore, it can be proved
that PABS is more effective than FABS and RABS in
multi-granularity reduction.

5 Conclusions

Compared with single-granularity reduction, multi-
granularity reduction based on neighborhood rough set
enable us to find the appropriate neighborhood radius.
However, traditional multi-granularity reduction often takes
a considerable amount of time. In this paper, we explored
a multi-granularity reduction algorithm based on neigh-
borhood rough sets. By reducing duplicate calculation of
the sample distance matrix, the computation time of the
algorithm will be greatly reduced. Furthermore, to select
an attribute over multi-granularity attribute selection, the
voting strategy is applied. Experiments on 12 UCI data sets
demonstrate the effectiveness and efficiency of the algo-
rithm. Based on the overall results, we can conclude that
the proposed algorithm can not only synthesize information
of multiple granularity to search for reduction, but also
greatly reduce the time consumption required for obtaining
multi-granularity reducts.

The following topics are challenges for further
researches.

1. The acceleration strategy can be applied to other multi-
granularity attribute reduction algorithms.

2. How to find the optimal reduct among multi-granularity
reducts.
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10. Garcı́a-torres M, Gómez-vela F, Melián-batista B, Moreno-
vega JM (2016) High-dimensional feature selection via feature
grouping: A variable neighborhood search approach. Inf Sci
326:102–118

11. Hu C, Zhang L, Wang B, Zhang Z, Li F (2019) Incremental
updating knowledge in neighborhood multigranulation rough sets
under dynamic granular structures. Knowl-Based Syst 163:811–
829

12. Hu Q, Yu D, Xie Z (2008) Neighborhood classifiers. Expert Syst
Appl 34(2):866–876

13. Jiang Z, Liu K, Yang X, Yu H, Fujita H, Qian Y (2020) Accelerator
for supervised neighborhood based attribute reduction. Int J
Approx Reason 119:122–150

14. Jiang Z, Yang X, Yu H, Liu D, Wang P, Qian Y (2019)
Accelerator for multi-granularity attribute reduction. Knowl-
Based Syst 177:145–158

15. Jing Y, Li T, Fujita H, Wang B, Cheng N (2018) An incremental
attribute reduction method for dynamic data mining. Inf Sci
465:202–218

16. Ju H, Ding W, Yang X, Fujita H, Xu S (2021) Robust supervised
rough granular description model with the principle of justifiable
granularity. Appl Soft Comput 110:107612

17. Li J, Yang X, Song X, Li J, Wang P, Jun D (2019) Neighborhood
attribute reduction: A multi criterion approach. International
Journal of Machine Learning and Cybernetics 10(4):731–
742

18. Liang J, Wang F, Dang C, Qian Y (2012) An efficient rough
feature selection algorithm with a multi-granulation view. Int J
Approx Reason 53(6):912–926

17649



Y. Li et al.

19. Lin G, Qian Y, Li J (2012) NMGRS: Neighborhood-based
multigranulation rough sets. Int J Approx Reason 53(7):1080–
1093

20. Lin Y, Li J, Lin P, Lin G, Chen J (2014) Feature selection
via neighborhood multi-granulation fusion. Knowl-Based Syst
67:162–168

21. Liu K, Yang X, Fujita H, Liu D, Yang X, Qian Y (2019) An
efficient selector for multi-granularity attribute reduction. Inf Sci
505:457–472

22. Liu K, Yang X, Yu H, Mi J, Wang P, Chen X (2019) Rough
set based semi-supervised feature selection via ensemble selector.
Knowl-Based Syst 165:282–296

23. Ni P, Zhao S, Wang X, Chen H, Li C (2019) PARA: A positive-
region based attribute reduction accelerator. Inf Sci 503:533–550

24. Qian J, Liu C, Miao D, Yue X (2020) Sequential three-way
decisions via multi-granularity. Inf Sci 507:606–629

25. Qian Y, Liang J, Pedrycz W, Dang C (2010) Positive approxi-
mation: An accelerator for attribute reduction in rough set theory.
Artif Intell 174(9-10):597–618

26. Qian Y, Liang J, Yao Y, Dang C (2010) MGRS: A multi-
granulation rough set. Inf Sci 180(6):949–970

27. Rao X, Yang X, Yang X, Chen X, Liu D, Qian Y (2020) Quickly
calculating reduct: An attribute relationship based approach.
Knowl-Based Syst 200:106014

28. She Y, Li J, Yang H (2015) A local approach to rule induction in
multi-scale decision tables. Knowl-Based Syst 89:398–410

29. She Y, Qian Z, He X, Wang J, Qian T (2021) On generalization
reducts in multi-scale decision tables. Inf Sci 555:104–124

30. Shu W, Qian W, Xie Y (2020) Incremental feature selection for
dynamic hybrid data using neighborhood rough set. Knowl-Based
Syst 194:105516

31. Sun L, Wang L, Ding W, Qian Y, Xu J (2020) Neighborhood
multi-granulation rough sets-based attribute reduction using
lebesgue and entropy measures in incomplete neighborhood
decision systems. Knowl-Based Syst 192:105373

32. Urbanowicz RJ, Meeker M, La Cava W, Olson RS, Moore JH
(2018) Relief-based feature selection: Introduction and review. J
Biomed Inform 85(July):189–203

33. Wan Q, Li J, Wei L, Qian T (2020) Optimal granule level selection:
A granule description accuracy viewpoint. Int J Approx Reason
116:85–105

34. Wang C, Hu Q, Wang X, Chen D, Qian Y, Dong Z (2018)
Feature selection based on neighborhood discrimination index.
IEEE Transactions on Neural Networks and Learning Systems
29(7):2986–2999

35. Wang C, Huang Y, Shao M, Fan X (2019) Fuzzy rough set-based
attribute reduction using distance measures. Knowl-Based Syst
164:205–212

36. Wang C, Huang Y, Shao M, Hu Q, Chen D (2020) Feature
selection based on neighborhood self-information. IEEE Trans
Cybern 50(9):4031–4042

37. Wu J, Song J, Cheng F, Wang P, Yang X (2020) Research on multi-
granularity attribute reduction method for continuous parameters.
Journal of Frontiers of Computer Science and Technology
61906078:1–10

38. Xu Y (2019) Multigranulation rough set model based on
granulation of attributes and granulation of attribute values. Inf Sci
484:1–13

39. Xu K, Pedrycz W, Li Z (2021) Granular computing: An
augmented scheme of degranulation through a modified partition
matrix. Fuzzy Sets Syst 1:1–18

40. Yang T, Zhong X, Lang G, Qian Y, Dai J (2020) Granular matrix:
A new approach for granular structure reduction and redundancy
evaluation. Transactions on Fuzzy Systems 28(12):3133–3144

41. Yang X, Li T, Liu D, Fujita H (2020) A multilevel neighborhood
sequential decision approach of three-way granular computing. Inf
Sci 538:119–141

42. Yang X, Chen H, Li T, Wan J, Sang B (2021) Neighborhood
rough sets with distance metric learning for feature selection.
Knowl-Based Syst 224:107076

43. Yang Y, Chen D, Wang H (2017) Active sample selection based
incremental algorithm for attribute reduction with rough sets.
Transactions on Fuzzy Systems 25(4):825–838

44. Yao MX (2019) Granularity measures and complexity measures of
partition-based granular structures. Knowl-Based Syst 163:885–
897

45. Ye J, Zhan J, Ding W, Fujita H (2021) A novel fuzzy rough set
model with fuzzy neighborhood operators. Inf Sci 544:266–297

46. Zhang X, Mei C, Chen D (2016) J. Li. Feature selection in mixed
data A method using a novel fuzzy rough set-based information
entropy. Pattern Recogn 56:1–15

47. Zhao H, Wang P, Hu Q (2016) Cost-sensitive feature selection
based on adaptive neighborhood granularity with multi-level
confidence. Inf Sci 366:134–149

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Yizhu Li received his bache-
lor’s degree from Dalian Mar-
itime University in 2015. He
is now a postgraduate student
in Hunan University. His cur-
rent research interests include
granular computing and fea-
ture selection.

Mingjie Cai received the
Ph.D. degree from Hunan
University in 2016. Currently,
he is an associate professor
at School of Mathematics,
Hunan University, China.
His current research interests
include granular computing
and machine learning.

17650



Accelerated multi-granularity reduction based on neighborhood rough sets

Jie Zhou received the Ph.D.
degree from the Tongji Uni-
versity in 2011. He is now an
associate researcher in the col-
lege of computer science and
software engineering, Shen-
zhen University, China. His
current major research inter-
ests include uncertainty anal-
ysis, pattern recognition, data
mining, and intelligent sys-
tems.

Qingguo Li received the Ph.D.
degree from Hunan University
in 1997. Currently, he is a pro-
fessor at School of Mathemat-
ics, Hunan University, China.
His current research interests
include granular computing,
lattice topology and concept
lattice.

17651


	Accelerated multi-granularity reduction based on neighborhood rough sets
	Abstract
	Introduction
	Single granularity reduction in neighborhood rough sets
	Single granularity neighborhood rough sets
	Single granularity reduction

	Accelerator for multi-granularity reduction in neghborhood rough sets
	Neighborhood rough sets with multi-radii
	Synthesize multi-granularity reduction
	Acceleration of multi-granularity attribute evaluation
	Feature selection based on voting strategy


	Experimental results
	Experiments settings
	Comparison of running time
	Reduction attribute quality comparison
	Comparison of length
	Comparison of similarity

	Comparison of classification accuracy

	Conclusions
	References




