
Applied Intelligence (2022) 52:15496–15516
https://doi.org/10.1007/s10489-022-03356-z

Stochastic optimization for bayesian network classifiers

Yi Ren1 · LiMin Wang2 · XiongFei Li2 ·Meng Pang3 · JunYangWei1

Accepted: 7 February 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
How to reduce the complexity of network topology and make the learned joint probability distribution fit data are two
important but inconsistent issues for learning Bayesian network classifier (BNC). By transforming one single high-order
topology into a set of low-order ones, ensemble learning algorithms can include more hypothesis implicated in training
data and help achieve the tradeoff between bias and variance. Resampling from training data can vary the results of
member classifiers of the ensemble, whereas the potentially lost information may bias the estimate of conditional probability
distribution and then introduce insignificant rather than significant dependency relationships into the network topology
of BNC. In this paper, we propose to learn from training data as a whole and apply heuristic search strategy to flexibly
identify the significant conditional dependencies, and then the attribute order is determined implicitly. Random sampling
is introduced to make each member of the ensemble “unstable” and fully represent the conditional dependencies. The
experimental evaluation on 40 UCI datasets reveals that the proposed algorithm, called random Bayesian forest (RBF),
achieves remarkable classification performance compared to the extended version of state-of-the-art out-of-core BNCs (e.g.,
SKDB, WATAN, WAODE, SA2DE, SASA2DE and IWAODE).

Keywords Bayesian network classifiers · Ensemble learning · Stochastic optimization · Random sampling

1 Introduction

Classification is a fundamental issue in machine learning
and data analysis that requires to learn a classifier or a
function, which can assign the right class labels to different
instances represented by an attribute vector [1]. Bayesian
network classifiers (BNCs) [2] describe data in the form
of directed acyclic graph (DAG) in which nodes represent
the attributes in a given domain and edges connecting
the respective nodes indicate the dependencies between
these attributes. However, learning a full Bayesian network
classifier is very time consuming and quickly becomes an
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NP-hard problem with the increasing number of attributes
[3].

In consequence, how to learn restricted BNCs has
attracted a lot of research interest in the past decades
[4–7]. Numerous supervised BNCs have been proposed,
such as Naive Bayes (NB) [8, 9], tree-augmented Naive
Bayes (TAN) [10] and k-dependence Bayes (KDB) [11, 12].
However, these BNCs can only represent a limited number
of conditional dependencies, which are always the most
significant [13]. Information-theoretic metrics, e.g., mutual
information (MI) and conditional mutual information
(CMI), are commonly applied to roughly quantify the
mutual or conditional dependence between the attributes.
However, due to the limitation in structure complexity and
computation complexity, the biased estimate of high-order
conditional probability may result in poor performance
especially when processing small data.

To address this issue, researchers propose to learn
ensemble of classifiers [14–16] which combines multiple
learning models’ decisions to classify new examples by
(weighted) voting. Ensembles are more likely to include
more hypothesis, and often perform better than the single
classifiers that make them up. Ensemble learning does
not require the learned BNC to represent high-order
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dependencies, and the network topology of each member
is relatively simpler, thus high-confidence estimate of low-
order conditional probability helps approximate the true
target function [17]. Boosting [18] and bagging [19] are the
two most popular ensemble learning approaches, each of
them trains classifiers with different subsets of the training
data [20].

The key issue for constructing an ensemble is how to
vary the results of the member classifiers, and keep the
covariance between the (varied) classifiers low, but not raise
the bias of the base classifier [21]. The instances from
the training dataset may not follow the same probability
distribution, thus the (conditional) dependency relationships
between variables may vary greatly for different instances,
and these relationships should be fully represented by
committee members of the ensemble. Boosting and bagging
vary the learned (conditional) dependency relationships by
resampling, whereas that may potentially lose information
implicit in the data as a whole. The estimate of conditional
probability distribution will be biased and when applied to
compute MI or CMI, insignificant rather than significant
dependency relationships may be introduced to the network
topology of BNC.

According to Bayes theorem and chain rule of the
joint probability, BNC assumes predictive attribute Xj

as the candidate parent of attribute Xi and represents
conditional dependence between them in the network
topology only when j < i holds. That is, for attribute order
{X1, X2, · · · , Xn} given implicitly or explicitly, attribute
Xj should appear before Xi . For different instances,
predictive attributes may take specific values, thus the
attribute order and the dependency relationships may
vary greatly. Although significant dependency relationships
appear much more often than insignificant ones, the latter
may also appear for specific instances.

Breiman [19] reveals that ensemble learning improves
classification accuracy for “unstable” learning procedure
where small changes in the training set may result in
large changes in models. To systematically create multi-
ple BNCs using the same dataset, we propose to apply
stochastic optimization to make the learned BNCs unsta-
ble. Different BNCs can represent dependency relationships
from different aspects and then generalize their classifica-
tion in complementary ways. The main contributions and
innovations of this paper can be highlighted as follows:

– Following the principles of stochastic optimization, we
propose to learn the attribute order and conditional
dependencies by applying random sampling. The result-
ing highly scalable algorithm, called RBF (random
Bayesian forest), combines the low variance of ensem-
ble learning with the low bias of high-dependence
topology.

– We compare the classification performance of RBF
with extended version of other state-of-the-art BNCs
(e.g., SKDB, WATAN, WAODE, SA2DE, SASA2DE
and IWAODE) on 40 datasets, ranging in size from 5
to 60 attributes and 57 to 164,860 instances. We show
that our algorithm shows competitive classification
performance in terms of zero-one loss, root mean
squared error(RMSE), bias-variance decomposition and
Friedman test.

The paper is organized as follows: we review the
background and provide a brief introduction to ensemble
learning in Section 2. Section 3 describes in detail our
base learning algorithm, called random Bayesian classifier
(RBC), and then the ensemble of RBC, called random
Bayesian forest (RBF). Section 4 presents the experimental
evaluation and compares the performance of RBF with
related BNCs. Section 5 draws the conclusions.

2 Related work

2.1 Bayesian network classifier

The Bayesian network (BN) defines a pair (G, Θ) that
encodes a joint probability distribution over a set of
attributes X = {X1, . . . , Xn} and class variable Y . It
consists of two parts: (1) a DAG G = {V, E} whose
nodes V represent attributes, and edges E represent attribute
dependencies, and (2) the parameters Θ which quantifies
the network topology. BNC approximates joint probability
distribution with a factorization according to a BN. Given a
specific instance x = {x1, x2, . . . , xn}, BNC B assigns the
maximum a posteriori (MAP) class (simply y∗) to x by

y∗ = argmaxy∈Y PB(y|x) = argmaxy∈Y
PB(x,y)
PB(x) ∝ argmaxy∈Y PB(x, y)

= argmaxy∈Y P (y)
n∏

i=1
P(xi |πB

i , y)

(1)

where πB
i represents the parent attributes of Xi in B.

Thus the problem of learning posterior probability PB(y|x)
for classification turns to be the problem of learning joint
probability PB(x, y) for data fitting. Equation (1) implicitly
requires to learn an attribute order first so that attribute
Xi can only select parents from attributes before it in
the order. To make the network topology of BNC fit
data, each factor (i.e., P(xi |πB

i , y)) in (1) should help
maximize the estimate of PB(x, y). For full BNC, the i-th
attribute may have at most i − 1 candidate parents, whereas
high-order dependencies will lead to biased estimate of
conditional probability. We take the dataset magic 1 from
the UCI repository of machine learning as an example for

1https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
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experimental study. Dataset magic contains the result of
simulated registration of high energy gamma particles in an
atmospheric Cherenkov telescope with 19,020 instances, 10
attributes and 2 class labels.

Figure 1(a)∼1(f) respectively visualize the distribution
of values of P(x2|xi, y) (i = 1, 3, 4, 7, 9, or 10). The Y-
axis in Fig. 1 represents the values of P(x2|xi, y) sorted
in descending order when x2 = 4 and y = 1, the X-axis
represents the index number of values of Xi , and the dotted
line represents the value of P(x2|y). As shown in Fig. 1, for
different values of Xi , there exist instances corresponding
to P(x2|y) > P (x2|xi, y) although they may appear less
often. That is, Xi may be independent from X2 and thus
the lower-order probability P(x2|y) is more reasonable than
higher-order probability P(x2|xi, y) in some cases.

NB is the simplest BNC with a strong independence
assumption that all the attributes are independent given class
variable Y , thus NB doesn’t need to learn the attribute order
and conditional dependencies. However, the conditional
independence assumption of NB may hold only while
dealing with sparsely distributed datasets, so its estimates of
conditional probabilities are often suboptimal. In contrast,
KDB provides a highly scalable learning approach that
alleviates some of NB’s independence assumption by
allowing each non-class attribute to have up to k parents.
KDB first computes mutual information I (Xi; Y ) to sort
attributes. Each attribute Xi can have at most k parent
attributes with the highest values of I (Xi; Xj |Y ) according
to the current topology. Flexible KDB (FKDB) [22] takes
an efficient heuristic learning strategy to sort attributes
by comparing conditional entropy. To control the structure
complexity, FKDB selects a subset of πi , which can
minimize the conditional entropy of attribute Xi , and learns
significant causal relationships from data. Selective KDB
(SKDB) [23] evaluates and selects candidate parents for

Xi from all possible attribute subsets {x1, · · · , xi−1}, and
chooses the value of k up to the maximum capacity
available. Thus it is highly scalable and achieves a good
tradeoff between structure complexity and classification
accuracy.

2.2 Ensemble learning

As discussed above, the same conditional probability dis-
tribution may fit different instances to different extents.
Ensemble learning improves the performance of single
learners by training multiple learners to encode possi-
ble probability distributions and then combine them. To
learn ensemble of BNCs and combine the decisions of
committee members, Webb et al. [24] propose the aver-
aged one-dependence estimators (AODE), which respec-
tively chooses each attribute as the parent of all the
other attributes, and then averages all superparent one-
dependence estimators (SPODEs). Jiang et al. [25] propose
the weighted AODE (WAODE) to assign different weights
to SPODEs. Kong et al. [26] propose the averaged tree-
augmented one-dependence estimators (ATODE), which
adds the augmented edges for each SPODE by identify-
ing causality between attributes. Jiang et al. [27] propose
the averaged tree augmented naive Bayes (ATAN), which
selects each attribute as the root node to build a one-
dependence maximum weighted spanning tree, and then
averages all of the spaning TAN classifiers. Hellman et al.
[28] introduce the ensembled continuous Bayesian networks
(ECBNs), which predict values for continuous random vari-
ables and discover salient dependence relationships. Geiger
and Heckerman [29] propose the Bayesian multinet to
learn a single network for different partitions of the class
label, and then use multiple networks to encode asymmetric
independence assertions.

Fig. 1 The distributions of
values of P(x2|xi , y) on dataset
magic
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Bagging and boosting are popular ensemble learning
approaches that combine arbitrary number of base-learners,
and are applicable to different machine learning algorithms.
By manipulating the training data given to a “base” learning
algorithm, bagging [19] uses the bootstrap [30] (i.e.,
sampling with replacement) to broaden “independency”
among the component classifiers [31]. The outputs of
the subclassifiers are finally combined by averaging or
voting. Boosting [18, 32] iteratively trains subclassifiers
on weighted training data. A “weak” classifier (e.g., NB)
is built first and then a succession of classifiers are built
iteratively. The data points misclassified by the previous
classifier are given more weight. AdaBoost [33] is the most
popular boosting algorithm.

Diversity in training data or learning procedure helps to
build diverse learners, and randomness provides an efficient
and effective way to introduce diversity. Ho [34] proposes
random subspace method (RSM) to randomly select a
subset of attributes. Kunwar et al. [35] propose Random
Bayesian Network (RBN) which trains on a different set
of training samples (Bagging) and attribute set (RSM).
Ma et al. [36] propose Bagging-MultiTAN to respectively
train different TAN classifiers on different training subsets.
Breiman [37] proposes Random Forest (RF) which uses
bagging to aggregate multiple decision trees that are each
grown using a process that involves a stochastic element to
increase diversity.

3 Random bayesian forest

3.1 Ourmotivation and structural learning
framework

Information-theoretic metrics, e.g., mutual information
I (Xi; Y ) or conditional mutual information I (Xi; Xj |Y )

defined as follows, are widely applied to measure (condi-
tional) dependency relationships for BNC learning.
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I (Xi ;Y ) =
∑

Xi ,Y

P (xi , y) log
P(xi , y)

P (xi )P (y)
=

∑

Xi ,Y

Pi log δi

I (Xi ;Xj |Y ) =
∑

Xi ,Xj ,Y

P (xi , xj , y) log
P(xi , xj |y)

P (xi |y)P (xj |y)
=

∑

Xi ,Xj ,Y

Pij log δij

(2)

I (Xi; Y ) measures the direct mutual dependence
between predictive attribute Xi and class variable Y , and
thus it can also measure the extents to which Xi is effec-
tive for classification. For restricted BNCs, all the predic-
tive attributes depend on a common class variable Y , and
augmented edges measured by I (Xi; Xj |Y ) are added to

represent conditional dependence between attributes only.
Given specific instance x = {x1, x2, · · · , xn}, if P(xi, y) >

P (xi)P (y) then xi and y are mutually dependent rather
than independent in term of probability theory. The higher
the value of δi , the stronger the probability-theoretic depen-
dence between xi and y. As shown in (2), significant
mutual dependence needs to satisfy two requirements:
stronger probability-theoretic dependence measured by δi ,
and higher probability measured by Pi when the dependence
happens. Similarly, significant conditional dependence also
needs to satisfy two requirements: stronger probability-
theoretic conditional dependence measured by δij , and
higher probability measured by Pij when the conditional
dependence happens.

Given an attribute order {X1, X2, · · · , Xn}, implicitly
or explicitly, Xi is the candidate parent for attributes
{Xi+1, · · · , Xn} in the order. If the first few attributes in the
order are relatively independent from the rest of attributes,
less conditional dependencies will be introduced for them
and that may bias the estimates of conditional probabilities.
To achieve the bias-variance tradeoff for structure learning,
we propose to apply heuristic search strategy to flexibly
learn the significant conditional dependencies, and then the
attribute order is determined implicitly.

The learning framework of proposed RBF is depicted in
Fig. 2. RBF is an ensemble of RBCs which are obtained by
applying stochastic optimization. For given dataset D after
preprocessing, RBC selects one attributeXr as the root node
which is assumed to be dependent on class variable only,
and then it will be added to the network topology G. Then
RBC recursively selects the next attribute Xi and adds it
to G. Xi is assumed to be dependent on all the attributes
already in G, or all the attributes in G are candidate parents
of Xi . Due to the restriction in structure complexity, Xi can
only selects limited number of attributes as its parents Πi .
Thus during the learning procedure, RBC needs to select
Xr , Xi and Πi , and RBC selects by performing random
sampling based on the probability distribution. After that
RBCs vote for the most possible class label.

3.2 RBF learning algorithm

3.2.1 Random selection of root node Xr

For full BNC there exists directed edge Xj → Xi between
attributes Xj and Xi when j < i. That is, the root attribute
Xr is the only one that is dependent on class variable Y ,
whereas the other attributes are dependent onXr to different
extents. Thus similar to KDB, mutual information I (Xi; Y )

is introduced to measure the significance of attribute Xi .
Higher value of I (Xi; Y ) corresponds to stronger mutual
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Fig. 2 The learning framework
of RBF

dependence related to attribute Xi . Thus Xi with the highest
value of I (Xi; Y ) is considered in priority as the candidate
root attribute. We first normalize the values of I (Xi; Y )

for different attributes and transform them into the form
of probability. Then the attributes are listed in descending
order of the normalized probability. To introduce diversity
and mitigate the negative effect of overfitting, as described
in Algorithm 1, we perform random sampling based on the
probability distribution to select root attribute from the list,
and then add it to the network topology. The root attribute
is also the first candidate parent attribute for the other
attributes.

3.2.2 Random selection of children node Xi

The attributes already in the network topology G constitute
candidate parents for the newly added children attributes, or
the children attributes should have strong conditional depen-
dence on the parent attributes. Thus children correlation
criterion CCC(Xi |G) is introduced to select the children
attribute as follows.

CCC(Xi |G) =
∑

Xj ∈G,i �=j

I (Xi; Xj |Y ) (3)

The values of CCC(Xi |G)(Xi /∈ G) are normalized
first and transformed into the form of probability. Then
the corresponding attributes are sorted into list �CCC

in descending order of the normalized probability. As
described in Algorithm 2, we perform random sampling
to select children node from the list, and then add it
to the network topology. But note that, if the candidate
children attributes are assumed to be independent from the
attributes already in G, i.e., CCC(Xi |G) = 0(Xi /∈ G),
then one of them will be randomly selected as the children
attribute.
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3.2.3 Random selection of parents nodeΠi

Due to the restriction in computational complexity and
structure complexity, each children attribute Xi can only
select limited number of parent attributes, or more precisely,
at most k parents for k-dependence BNC. Thus conditional
mutual information I (Xi; Xj |Y ) is introduced to select
parent attributes for Xi as follows. Similar to the learning
procedure described in Algorithm 2, Algorithm 3 applies
random sampling to select parents from attributes in G. For
k-dependence topology, Algorithm 3 will perform random
sampling and select at most k parents for attribute Xi .
Corresponding directed edges will be added to G. If Xi is
independent from all the attributes in G then its parents will
be selected randomly.

3.2.4 RBF learning algorithm

The network topology G is represented in the form of tree
and contains three parts: root node, branch node (including
parent attribute or children attribute) and directed edge
between them. The proposed algorithm, called random
Bayesian classifier (RBC), applies random sampling to
select them at different learning phases. Algorithm 4
describes the learning procedure of RBC.

Introducing randomness to the learning procedure of BNC
will build an “unstable” topology, and that helps avoid
overfitting and reduce variance. On the other hand, the
training data is just a sample from the complete dataset,
that may result in potentially lost information implicated.
One single BNC cannot encode by coincidence the most
significant dependency relationships in its topology, that
would result in suboptimal classification performance.

Ensemble of classifiers performs better than its com-
mittee members on average. Different attribute orders and
augmented edges will form different BNCs. It also shows
that the classification performance of different BNCs varies
and, in some cases, varies greatly. Randomness helps to
independently learn RBCs which describe the true Bayesian
network from different aspects. The wrong prediction from
BNCAmay be corrected by BNC B. In this paper, we adopt
RBC as the base algorithm and then the different classifiers
are obtained by applying stochastic optimization. After that
they vote for the most possible class label. Algorithm 5 gives
the general learning framework for the ensemble of RBC.

Introducing randomness to the learning procedure of
BNC will build an “unstable” topology, and that helps avoid
overfitting and reduce variance. On the other hand, the
training data is just a sample from the complete dataset,
that may result in potentially lost information implicated.
One single BNC cannot encode by coincidence the most
significant dependency relationships in its topology, that
would result in suboptimal classification performance.

Ensemble of classifiers performs better than its com-
mittee members on average. Different attribute orders and
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augmented edges will form different BNCs. It also shows
that the classification performance of different BNCs varies
and, in some cases, varies greatly. Randomness helps to
independently learn RBCs which describe the true Bayesian
network from different aspects. The wrong prediction from
BNC Amay be corrected by BNC B. In this paper, we adopt
RBC as the base algorithm and then the different classifiers
are obtained by applying stochastic optimization. After that
they vote for the most possible class label. Algorithm 5 gives
the general learning framework for the ensemble of RBC.

3.3 Classification process and complexity analysis

For subclassifier RBCm, given the testing instance x, RBCm

assigns the MAP class to x by

y∗
m = argmax

y∈Y
P (y)

n∏

i=1

P(xi |πRBCm

i , y) (4)

After training a set of learners, ensemble learning com-
bines multiple learning models’ predictions appropriately.
Thus, in practice, the class-membership prediction produced
by RBF are simply voted as follows:

y∗ = argmax{F(y1), F (y2), · · · , F (yq)} (5)

where y∗ is the predicted class label, F(yi) is the number of
models whose prediction results are yi in all models and q

is the number of class labels.
During the training phase, the time complexity of form-

ing the frequency table from which the probability estimates
by RBF is O(tn2), where t and n respectively denote the
number of training instances and the number of attributes.
Calculating I (Xi; Y ) and I (Xi; Xj |Y ) respectively need
O(cnv) andO(c(nv)2) time, where v is the maximum num-
ber of values of discrete attributes and c is the number
of classes. The procedure of randomly selecting the root
attribute needs O(n) time. The time complexity of ran-
domly selecting attributes and conditional dependencies is
O(n(n2 + kn)), where k is user-defined. Finally, the com-
putational complexity of RBF is O(tn2 + cnv + c(nv)2 +
p(n + n(n2 + kn))), where p is the number of RBCs. Dur-
ing the testing phase, classifying a test instance using RBF
only needs O(pnck) time.

4 Experimental results

We perform experiments on 40 benchmark datasets from the
UCI repository of machine learning [38] and summarize the
characteristics of datasets in Table 1, including the name of
dataset, the number of instances, attributes, and classes. The
results of RBF using MDL (Minimum Description Length)

Table 1 Datasets

No. Dataset Instance Attribute Class

1 labor 57 16 2

2 labor-negotiations 57 16 2

3 zoo 101 16 7

4 echocardiogram 131 6 2

5 lymphography 148 18 4

6 hepatitis 155 19 2

7 wine 178 13 3

8 autos 205 25 7

9 sonar 208 60 2

10 new-thyroid 215 5 3

11 soybean-large 307 35 19

12 ionosphere 351 34 2

13 dermatology 366 34 6

14 house-votes-84 435 16 2

15 cylinder-bands 540 39 2

16 chess 551 39 2

17 syncon 600 60 6

18 soybean 683 35 19

19 crx 690 15 2

20 breast-cancer-w 699 9 2

21 anneal 898 38 6

22 tic-tac-toe 958 9 2

23 vowel 990 13 11

24 german 1000 20 2

25 car 1728 6 4

26 segment 2310 19 7

27 kr-vs-kp 3196 36 2

28 dis 3772 29 2

29 hypo 3772 29 4

30 sick 3772 29 2

31 phoneme 5438 7 50

32 satellite 6435 36 6

33 thyroid 9169 29 20

34 Electrical-Grid 10000 13 2

35 nursery 12960 8 5

36 magic 19020 10 2

37 adult 48842 14 2

38 shuttle 58000 9 7

39 connect-4 67557 42 3

40 localization 164860 5 11
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Table 2 A summary table of the statistics employed

Statistics employed Description

Zero-one loss Zero-one loss [44] is one of the most commonly used metrics to evaluate the classification performance. Supposing
y and ŷ are the true class label and that generated by a learning algorithm, respectively, given M unlabeled test
instances, the zero-one loss function is defined as

ξ(y, ŷ) =
∑M

i=1 1 − �(yi , ŷi )

M
, (6)

where �(yi , ŷi ) = 1 if yi = ŷi and 0 otherwise.

RMSE RMSE [45] measures how well calibrated the probability estimates are. The RMSE is defined as follows,

RMSE =
√

1
s

s∑

i=1
(1 − P(ŷ|x))2, (7)

where s is the sum of training instances.

Bias and variance The bias-variance decomposition provides a different perspective on the error of learned classifiers [46]. The bias of a
classifier can measure the difference between systematic predictions and true response, and the variance of a classifier
can measure the variability or randomness of its predictions.

bias2 = 1
2

∑

ŷ,yεY

[P(ŷ|x) − P(y|x)]2, (8)

and

variance = 1
2 [1 − ∑

ŷεY

P (ŷ|x)2], (9)

Friedman and
Bonferroni-
Dunn
test

The Friedman test [47] is a non-parametric test and explores the statistical significance of multiple algorithms over
multiple data sets. It computes as follows:

FF = (D−1)X 2
F

D(t−1)−X 2
F

(10)

where

X 2
F = 12D

t(t+1)

t∑

i=1
R2

i − 3D(t + 1) (11)

where t , D and Ri respectively represent the number of algorithms, the number of datasets and the average rank of the
i-th algorithm. The null hypothesis of the Friedman test will be rejected if there exists significant difference among
algorithms, then the Bonferroni-Dunn test will be performed to further analyze the difference by comparing critical
difference(CD). We assess the difference between the algorithms to be significant if the corresponding average ranks
greater than the CD [48]. The value of CD can be computed as follows:

CD = qα

√
t (t+1)
6D , (12)

where qα are the critical values that are calculated by dividing the values in the row for the infinite degree of freedom
of the table of Studentized range statistics (α = 0.05) by

√
2.

discretization [39] to preprocess numerical attributes. The
missing values in the datasets are processed into a distinct
value in all cases, m-estimation (m = 1) [40] is used for base
probability estimation. Each algorithm is processed with 10
rounds of 10-fold cross validation. The following algorithms
are introduced for comparison with our proposed RBF:

· SKDB [23], selective KDB with k = 5.
· WATAN [27], weighted averaged TAN.
· WAODE [25], weighted AODE.
· SA2DE [41], selective A2DE which uses both MI and

CMI to directly rank the attributes.
· SASA2DE [42], sample-based attribute selection A2DE

whose sample size is 50k.
· IWAODE [43], instance-based weighting AODE.
The primary loss functions are zero-one loss, RMSE,

bias and variance, and the detailed results in Tables 8,

9, 10 and 11 are shown in the Appendix. We use the
Win/Draw/Loss (WDL) records where each cell’s W/D/L in
the table indicates that one classifier is better than another
on W datasets, equal on D datasets and worse on L datasets
to show the classification performance. A summary table of
the statistics employed is shown in Table 2.

To illustrate how to determine the number of committee
members of RBF, in Fig. 3 we present learning curves for
all the datasets (which are described in Table 1). As can be
seen, lower bias delivered by large number of committee
members and lower variance by random sampling result
in lower error for RBF, while as the number increases to
some extent the zero-one loss doesn’t change significantly.
When RBF selects 30 classifiers as an ensemble it can
substantially reduce error across all the datasets, thus we
take 30 as the default number of members for RBF.
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Fig. 3 The changes in RMSE
and zero-one loss as the number
of committee members of the
ensemble increases

4.1 Diversity of the classifier generated by RBF

To use ensembling well, we need good performing learners
with lower correlation. Dietterich [49] has measures of
dispersion of an ensemble and notes that more accurate
ensembles have larger dispersion. Breiman’s [37] results
indicate that the generalization error of random forests
depends on the strength of the individual trees in the forest
and the correlation between them.

In order to investigate the diversity of classifiers
generated by RBF, statisticians have developed several
measures of agreement (or disagreement) between classiers.
The most widely used measure is the Kappa statistic (K
statistic) [49]. We show the diversity of the classifiers on
some datasets by k-error diagrams, which help visualize
the accuracy and diversity of the individual classifiers
constructed by the RBF classifier.

Given two classifiers g1 and g2. Suppose there are W

classes, and let H be a W × W square array such that Hij

contains the number of test examples assigned to class i

by g1 and into class j by g2. The K statistic is defined
as:

k = Θ1 − Θ2

1 − Θ2
, (13)

where Θ1 be an estimate of the probability that the
two classifiers agree, and Θ2 be an estimate of the
probability that the two classifiers agree by chance. They
are respectively defined as follows:

Θ1 =
∑W

i=1 Hii

m
, (14)

Θ2 =
W∑

i=1

(

W∑

j=1

Hij

m
·

W∑

j=1

Hji

m
), (15)

where m is the total number of test examples. k = 0 when
the agreement of the two classifiers equals that expected
by chance, and k = 1 when the two classifiers agree on
every example. Negative values occur when agreement is
weaker expected by chance—that is, there is systematic
disagreement between the classifiers.

We choose 12 datasets (hepatitis, sonar, chess,
car, kr-vs-kp, dis, hypo, nursery, magic,
adult, connect-4 and localization) from Table 1.
We run RBF on every dataset and obtain 30 classifiers. For
each pair of classifiers, we compute their K statistic value
according to equation (13). We then construct a scatter plot
in which each point corresponds to a pair of classifiers.
Its x coordinate is the diversity value (k) and its y coordi-
nate is the mean accuracy of the classifiers. Figure 4 shows
the mean accuracy and K statistic value between every two
classifiers. The classifiers generated by RBF have larger
diversity on some datasets (e.g. chess, kr-vs-kp, dis
and localization), but have smaller diversity on some
other datasets (e.g. hypo, nursery and connect-4). In
some datasets (e.g. hepatitis and sonar), some quite
agreement classifiers are generated. However, there exist the
diversity in the majority of classifiers.

4.2 Comparison in terms of zero-one loss and RMSE

Tables 3 and 4 showWDL records summarizing the relative
zero-one loss and RMSE of the different algorithms. The
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Fig. 4 the k-error diagrams of
the classifiers generated by RBF
on twelve datasets

Table 3 Win/Draw/Loss
records of zero-one loss on all,
small and large datasets

SKDB WATAN

All Small Large All Small Large

RBF 31/5/4 23/2/0 8/3/4 31/7/2 18/5/2 13/2/0

p <0.0001 <0.0001 0.3877 <0.0001 0.0004 0.0002

WAODE SA2DE

All Small Large All Small Large

RBF 24/10/6 14/6/5 10/4/1 28/8/4 22/1/2 6/7/2

p 0.0014 0.0636 0.0117 <0.0001 <0.0001 0.2891

SASA2DE IWAODE

All Small Large All Small Large

RBF 20/15/5 18/4/3 2/11/2 26/9/5 15/7/3 11/2/2

p 0.0041 0.0015 1.3750 0.0002 0.0075 0.0225
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Table 4 Win/Draw/Loss of
RMSE on all, small and large
datasets

SKDB WATAN

All Small Large All Small Large

RBF 25/11/4 19/5/1 6/6/3 24/12/4 14/9/2 10/3/2

p 0.0001 <0.0001 0.5078 0.0002 0.0042 0.0386

WAODE SA2DE

All Small Large All Small Large

RBF 15/21/4 10/11/4 5/10/0 25/11/4 18/5/2 7/6/2

p 0.0192 0.1796 0.0625 0.0001 0.0004 0.1797

SASA2DE IWAODE

All Small Large All Small Large

RBF 15/20/5 14/8/3 1/12/2 18/17/5 10/10/5 8/7/0

p 0.0414 0.0127 1.0000 0.0106 0.3018 0.0078

p value following each WDL record is the outcome of a
two-tailed binomial sign test and represents the probability
that RBF would obtain the observed or more extreme ratio
of wins to losses. We assess a difference is significant if
p ≤ 0.05, and all such p values are changed to boldface
corresponding tables.

As can be seen from Tables 3 and 4, RBF achieves
the advantage in terms of zero-one loss and RMSE over
all the other BNCs, and the difference between them is
statistically significant on all datasets. Generally, variants of
AODE, e.g., WAODE, SA2DE, SASA2DE and IWAODE,
assume different independence assumptions for different
SPODE members and the complementary characteristic
help fully represent all possible conditional dependencies.
In contrast, SKDB and WATAN apply conditional mutual
information to identify dependency relationships, which
may be information-theoretic rather than probability-
theoretic significant. The experimental results show that our

heuristic search and random sample strategies provide high
accuracy. For example, RBF beats SKDB on 31 datasets
whereas it beats IWAODE on 26 datasets in terms of zero-
one loss. RMSE-wise, RBF beats SKDB on 25 datasets
whereas it beats IWAODE on 18 datasets.

The complexity of problem domains makes ever more
urgent the need for scaling-up of existing learning
algorithms to deal with datasets of different sizes. To clarify
the effectiveness of heuristic search strategy and random
sampling, we categorize datasets in terms of their sizes.
For example, datasets with less than 2,000 instances (25
datasets) and more than 2,000 instances (15 datasets) are
denoted as small size and large size respectively. On smaller
datasets RBF has a better zero-one loss performance and
RMSE than other BNCs, and most achieved a significant
advantage. On larger datasets RBF has significantly better
zero-one loss than WATAN (13 wins and 0 loss), WAODE
(10 wins and 1 loss), IWAODE (11 wins and 2 losses). RBF

Fig. 5 Scatter plot of
comparisons in terms of
zero-one loss
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Fig. 6 Scatter plot of
comparisons in terms of RMSE

is comparable to SKDB, SA2DE and SASA2DE in terms
of zero-one loss and RMSE on large datasets. We claim that
RBF’s improved performance on small size datasets is very
encouraging.

To further illustrate that heuristic search strategy and
random sampling are powerful methods to improve the
performance of ensemble models. Figures 5 and 6
respectively present the scatter plots of the comparison
results of RBF against other BNCs in terms of zero-one loss
and RMSE, and the dotted line means that RBF performs
almost the same as the alternative BNC. Note that some
outlier points are removed for significance analysis. We
can observe that most data points are located above the
dotted line, that means RBF performs better than other
BNCs much more often, and the advantages are obvious and
significant.

4.3 Comparison in terms of bias-variance
decomposition

Tables 5 and 6 respectively show the W/D/L comparison
results using bias and variance. In general, lower bias
means that model can capture fine detail in the training
data. But this low bias may has potentially higher variance,
which leads to greater changes in the topology learned
from sample to sample. SKDB and WATAN try to fully
represent the most significant conditional dependencies and
build more robust topologies, that often result low bias and
high variance. In contrast, variants of AODE inherit the
tradeoff between bias and variance due to its impractical
independence assumptions for different SPODE members
and ensemble learning strategy. Significant and insignificant

conditional dependencies are indiscriminately represented
in the SPODE members. RBF also reduces bias by applying
ensemble learning strategy, whereas it reduces variance by
applying random sampling to randomly select conditional
dependencies from all possible significant ones. Compared
to SKDB, RBF achieves the advantage in terms of bias
although less often (19 wins and 11 losses). Variance-wise,
high-dependence BNCs may have high variance, leading to
overfitting training data. Thus RBF obtains lower variance
significantly more often than SKDB (32 wins and 4 losses).
Compared with WATAN, RBF has a more significant
advantage in bias (20 wins and 8 losses) and variance (31
wins and 6 losses). RBF achieves lower bias and variance
more often than variants of AODE, except for IWAODE
in variance. The reason might be that IWAODE applies
weighting approach to improve the estimates of conditional
probabilities while retaining the basic topologies of all
SPODEs, and the weaker independence assumptions help
avoid overfitting.

From Tables 5 and 6, when dealing with small datatsets,
RBF is comparable to other BNCs in terms of bias. RBF
has significantly better variance performance than SKDB
(20 wins and 2 losses), WATAN (21 wins and 3 losses) and
SA2DE (18 wins and 4 losses). IWAODE is a low variance
high bias learner, it should be suitable for small data. This
can be seen in Table 6 where IWAODE has significantly
better variance than RBF (18 wins and 4 losses) on small
datasets. When dealing with large datasets, most of the
results are not significant, except for WATAN (9 wins
and 1 loss) in terms of bias and SKDB (12 wins and 2
losses) and SA2DE (11 wins and 2 losses) in terms of
variance.
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Table 5 Win/Draw/Loss
comparison results of bias on
all, small and large datasets

SKDB WATAN

All Small Large All Small Large

RBF 19/10/11 15/4/6 4/6/5 20/12/8 11/7/7 9/5/1

p 0.2005 0.0784 1.0000 0.0357 0.4807 0.0215

WAODE SA2DE

All Small Large All Small Large

RBF 14/9/17 7/5/13 7/4/4 17/7/16 13/2/10 4/5/6

p 0.7201 0.2632 0.5488 1.0000 0.6776 0.7539

SASA2DE IWAODE

All Small Large All Small Large

RBF 11/9/20 8/6/11 3/3/9 17/13/10 8/9/8 9/4/2

p 0.1496 0.6476 0.1460 0.2478 1.1964 0.0654

4.4 Difference among all the classifiers

The average ranks of the algorithms obtained by applying
the Friedman test with respect to zero-one loss, RMSE, bias
and variance are shown in Table 7. The Friedman statistic
FF is distributed according to the F distribution with t−1 =
6 and (t − 1)(D−1) = 234 degrees of freedom. The critical
value of F(6, 234) for α = 0.05 is 2.14. At the bottom of
Table 7, we could see that the FF statistics for zero-one loss,
RMSE, bias and variance are 50.5600, 40.1800, 19.3100
and 73.7900 respectively. Therefore, we can reject the null
hypothesis, indicating that there are significant differences
among those 7 algorithms.

In order to further explore the significant difference
among algorithms, we perform the Bonferroni-Dunn test
and show the comparison results in terms of zero-one loss,
RMSE, bias and variance in Fig. 7, where the middle line
corresponds to the average level of different algorithms. For
α = 0.05 with 7 algorithms and 40 datasets, qα is 2.638 and
the value of CD is 1.274. The CD interval is marked to the
left and right of the average rank of RBF.

As can be seen from the Fig. 7, RBF enjoys a significant
advantage over other algorithms in terms of zero-one loss.
RBF ranks first in terms of RMSE whereas it doesn’t have

a significantly higher score than SASA2DE, WAODE and
IWAODE. With respect to bias, the performance of RBF is
comparable to other BNCs. With respect to variance, the
performance of RBF is comparable to SASA2DE, WAODE
and IWAODE, significantly better than WATAN, SA2DE
and SKDB.

5 Conclusions

Ensemble learning can lead to performance improve-
ment for “unstable” learning algorithms. State-of-the-art
approaches, e.g., Bagging and Boosting, use resampling
from the training set to produce very different models.
To mitigate the negative effect caused by biased estimate
of probability distributions, we propose to apply heuristic
search strategy and random sampling to randomly select
strong dependency relationships. In return for this extra
random sampling during training, the proposed algorithm,
RBF, provides well-calibrated posterior class probability
estimates and always improves classification accuracy by
reducing the structure complexity. RBF reduces bias by
applying ensemble learning strategy and reduces variance
by applying random sampling, thus it achieves the tradeoff

Table 6 Win/Draw/Loss
comparison results of variance
on all, small and large datasets

SKDB WATAN

All Small Large All Small Large

RBF 32/4/4 20/3/2 12/1/2 31/3/6 21/1/3 10/2/3

p <0.0001 0.0001 0.0129 <0.0001 0.0003 0.0923

WAODE SA2DE

All Small Large All Small Large

RBF 18/5/17 9/5/11 9/2/4 29/5/6 18/3/4 11/2/2

p 0.7283 0.8238 0.2668 0.0001 0.0043 0.0225

SASA2DE IWAODE

All Small Large All Small Large

RBF 19/11/10 13/6/6 6/5/4 10/6/24 4/3/18 6/3/6

p 0.1360 0.1671 0.7539 0.0243 0.0043 1.2256
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Fig. 7 The comparison results
of the Bonferroni-Dunn test in
terms of zero-one, RMSE, bias
and variance on 40 datasets. CD
= 1.274
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between bias and variance. As shown in the experimental
results, RBF attains lower error than the other out-of-core
BNCs considered.

RBF provides an efficient and effective solution to poten-
tially large problem space in learning Bayesian network
classifier (BNC). This solution allows it to capture and
take advantage of the additional fine-detail that is inhe-
rent in very large data while its efficiency makes it fea-

Table 7 Average ranks of the algorithms

Algorithm zero-one loss RMSE bias variance

RBF 2.1875 2.9000 3.7625 3.1500

SASA2DE 3.5500 2.9500 2.9750 3.5625

WAODE 3.6875 3.6250 3.6875 3.4000

IWAODE 4.1750 4.1625 4.6375 2.4000

WATAN 4.5500 4.4625 4.7250 4.8125

SA2DE 4.9125 4.7250 3.9875 4.9875

SKDB 4.9375 5.1750 4.2250 5.6875

FF statistic 50.5600 40.1800 19.3100 73.7900

sible to deploy. We take the dataset localization2 from
the UCI repository of machine learning as an example.
Dataset localization contains recordings of five peo-
ple performing different activities and each person wore
four sensors (tags) while performing the same scenario five
times. Dataset localization has 164,860 instances, 5
attributes (Sequence Name, Tag identificator, x coordinate
of the tag, y coordinate of the tag and z coordinate of
the tag) and 11 class labels (walking,falling, ‘lying down’,
lying, ‘sitting down’, sitting, ‘standing up from lying’, ‘on
all fours’, ‘sitting on the ground’, ‘standing up from sit-
ting’ and ‘standing up from sitting on the ground’). As
shown in Fig. 4, the classifiers generated by RBF have
significant diversity on dataset localization. RBF sig-
nificantly reduces misclassification rate (0.2672) compared
to SKDB (0.3013), WATAN (0.3575), WAODE (0.3566),
SA2DE (0.3078), SASA2DE (0.2735) and IWAODE
(0.3593). Future directions for research include:

2https://archive.ics.uci.edu/ml/datasets/
Localization+Data+for+Person+Activity
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1. Weighting approaches to combining the predictions
from committee members of the ensemble in a more
reasonable and efficient way;

2. More appropriate loss functions to tackle RBF’s
tendency to overfit or underfit training sets;

3. Customized selection of edges and numbers of parents
for different attributes in a discriminative manner.

Appendix

Table 8 Experimental results of zero-one loss

Dataset SKDB WATAN WAODE SA2DE SASA2DE IWAODE RBF

labor 0.0702 0.0526 0.0526 0.0877 0.0175 0.0526 0.0351

labor-negotiations 0.1053 0.1053 0.0526 0.0877 0.0702 0.0526 0.0351

zoo 0.0396 0.0198 0.0297 0.0297 0.0297 0.0198 0.0000

echocardiogram 0.3511 0.3282 0.3206 0.3435 0.3435 0.3282 0.3206

lymphography 0.2770 0.1689 0.1554 0.2635 0.1757 0.1419 0.1351

hepatitis 0.2194 0.1742 0.1806 0.2065 0.2194 0.1742 0.1677

wine 0.0674 0.0337 0.0169 0.0618 0.0393 0.0169 0.0337

autos 0.1951 0.2146 0.1951 0.2098 0.1707 0.2098 0.1805

sonar 0.2740 0.2212 0.2260 0.2644 0.2356 0.2260 0.2067

new-thyroid 0.0651 0.0651 0.0465 0.0605 0.0744 0.0465 0.0605

soybean-large 0.1140 0.1010 0.0814 0.1173 0.0945 0.0912 0.0879

ionosphere 0.0769 0.0684 0.0712 0.0969 0.0798 0.0712 0.0741

dermatology 0.0792 0.0328 0.0191 0.0273 0.0273 0.0191 0.0137

house-votes-84 0.0506 0.0529 0.0506 0.0391 0.0506 0.0483 0.0437

cylinder-bands 0.2278 0.2463 0.1796 0.5704 0.4111 0.1926 0.1796

chess 0.0762 0.0926 0.0944 0.0980 0.0944 0.1034 0.0708

syncon 0.0567 0.0083 0.0100 0.0267 0.0150 0.0150 0.0150

soybean 0.0556 0.0527 0.0483 0.0586 0.0556 0.0542 0.0498

crx 0.1696 0.1478 0.1377 0.1623 0.1377 0.1319 0.1435

breast-cancer-w 0.0658 0.0415 0.0358 0.0916 0.0401 0.0372 0.0386

anneal 0.0111 0.0100 0.0089 0.0156 0.0145 0.0178 0.0067

tic-tac-toe 0.1806 0.2265 0.2724 0.1514 0.1023 0.2662 0.1816

vowel 0.1778 0.1263 0.1949 0.1929 0.1414 0.1697 0.1212

german 0.3290 0.2760 0.2400 0.2870 0.2520 0.2560 0.2410

car 0.0556 0.0567 0.0885 0.0671 0.0613 0.0851 0.0394

segment 0.0615 0.0394 0.0338 0.0576 0.0351 0.0333 0.0351

kr-vs-kp 0.0329 0.0776 0.0576 0.0476 0.0507 0.0826 0.0457

dis 0.0122 0.0154 0.0143 0.0122 0.0117 0.0127 0.0141

hypo 0.0175 0.0130 0.0101 0.0080 0.0082 0.0114 0.0109

sick 0.0228 0.0257 0.0244 0.0244 0.0239 0.0260 0.0239

phoneme 0.1909 0.2345 0.2308 0.1822 0.1824 0.2104 0.1865

satellite 0.1206 0.1207 0.1148 0.1276 0.0922 0.1117 0.0920

thyroid 0.0784 0.0723 0.0655 0.0690 0.0570 0.0706 0.0599

Electrical-Grid 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

nursery 0.0291 0.0654 0.0708 0.0609 0.0609 0.0735 0.0422

magic 0.1718 0.1674 0.1762 0.1625 0.1609 0.1744 0.1545

adult 0.1532 0.1380 0.1445 0.1360 0.1331 0.1502 0.1296

shuttle 0.0009 0.0014 0.0009 0.0017 0.0007 0.0011 0.0007

connect-4 0.2007 0.2354 0.2406 0.2397 0.2245 0.2409 0.2283

localization 0.3013 0.3575 0.3566 0.3078 0.2735 0.3593 0.2672

The value in boldface indicates the classifier with the best performance
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Table 9 Experimental results of RMSE

Dataset SKDB WATAN WAODE SA2DE SASA2DE IWAODE RBF

labor 0.2067 0.2105 0.1920 0.2700 0.1555 0.1649 0.1575

labor-negotiations 0.2655 0.2778 0.2057 0.2672 0.1871 0.1739 0.1913

zoo 0.0884 0.0614 0.0724 0.0746 0.0841 0.0650 0.0359

echocardiogram 0.4928 0.4890 0.4872 0.4901 0.4889 0.4881 0.5598

lymphography 0.3156 0.2705 0.2496 0.3027 0.2607 0.2304 0.2446

hepatitis 0.4243 0.3645 0.3695 0.3926 0.3863 0.3743 0.3545

wine 0.1668 0.1416 0.0983 0.1701 0.1423 0.1001 0.1214

autos 0.2203 0.2320 0.2290 0.2230 0.2117 0.2317 0.2106

sonar 0.4426 0.4130 0.4091 0.4308 0.3999 0.4246 0.4036

new-thyroid 0.1899 0.1740 0.1605 0.1815 0.1995 0.1584 0.1826

soybean-large 0.0978 0.0902 0.0860 0.0962 0.0871 0.0866 0.0862

ionosphere 0.2674 0.2613 0.2489 0.2791 0.2604 0.2546 0.2463

dermatology 0.1433 0.0850 0.0688 0.0778 0.0806 0.0661 0.0690

house-votes-84 0.2066 0.2181 0.1927 0.1773 0.1984 0.1998 0.1830

cylinder-bands 0.4427 0.4277 0.4016 0.7005 0.4898 0.3952 0.3848

chess 0.2399 0.2594 0.2603 0.2692 0.2643 0.2835 0.2417

syncon 0.1326 0.0503 0.0537 0.0882 0.0678 0.0629 0.0612

soybean 0.0662 0.0654 0.0646 0.0656 0.0609 0.0697 0.0648

crx 0.3760 0.3415 0.3219 0.3469 0.3207 0.3259 0.3351

breast-cancer-w 0.2373 0.1904 0.1855 0.2491 0.1772 0.1776 0.1838

anneal 0.0582 0.0538 0.0536 0.0589 0.0593 0.0699 0.0458

tic-tac-toe 0.3551 0.4023 0.4085 0.3288 0.2937 0.3992 0.3575

vowel 0.1567 0.1254 0.1633 0.1606 0.1355 0.1463 0.1278

german 0.5146 0.4373 0.4161 0.4409 0.4158 0.4157 0.4294

car 0.1621 0.1617 0.1983 0.1621 0.1627 0.2019 0.1184

segment 0.1210 0.0968 0.0870 0.1081 0.0885 0.0879 0.0892

kr-vs-kp 0.1573 0.2358 0.2343 0.2034 0.1819 0.2635 0.1876

dis 0.1041 0.1098 0.1046 0.0969 0.0972 0.1058 0.1018

hypo 0.0840 0.0723 0.0647 0.0596 0.0615 0.0698 0.0630

sick 0.1447 0.1426 0.1452 0.1383 0.1382 0.1547 0.1452

phoneme 0.0756 0.0844 0.0871 0.0737 0.0742 0.0795 0.0764

satellite 0.1917 0.1849 0.1800 0.1862 0.1598 0.1774 0.1531

thyroid 0.0813 0.0742 0.0715 0.0729 0.0660 0.0734 0.0685

Electrical-Grid 0.0141 0.0141 0.0141 0.0142 0.0141 0.0141 0.0141

nursery 0.0953 0.1385 0.1577 0.1321 0.1321 0.1572 0.1096

magic 0.3646 0.3461 0.3526 0.3507 0.3409 0.3534 0.3527

adult 0.3361 0.3076 0.3197 0.3079 0.3018 0.3250 0.3296

shuttle 0.0143 0.0177 0.0131 0.0181 0.0131 0.0159 0.0131

connect-4 0.3062 0.3315 0.3356 0.3349 0.3257 0.3359 0.3499

localization 0.2010 0.2095 0.2087 0.2000 0.1854 0.2093 0.1894

The value in boldface indicates the classifier with the best performance
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Table 10 Experimental results of bias

Dataset SKDB WATAN WAODE SA2DE SASA2DE IWAODE RBF

labor 0.0316 0.0142 0.0200 0.0668 0.0342 0.0205 0.0205

labor-negotiations 0.0584 0.0653 0.0268 0.0874 0.0584 0.0268 0.0368

zoo 0.0585 0.0270 0.0273 0.0339 0.0342 0.0282 0.0288

echocardiogram 0.3002 0.2658 0.2572 0.3005 0.3033 0.2840 0.2714

lymphography 0.1310 0.0978 0.0951 0.2833 0.0820 0.0857 0.1014

hepatitis 0.1727 0.1684 0.1655 0.1555 0.1590 0.1749 0.1737

wine 0.0569 0.0531 0.0381 0.0315 0.0378 0.0317 0.0417

autos 0.2265 0.2269 0.2115 0.2590 0.1740 0.2034 0.1960

sonar 0.1675 0.1646 0.1722 0.1659 0.1588 0.1694 0.1604

new-thyroid 0.0356 0.0332 0.0263 0.0396 0.0375 0.0304 0.0358

soybean-large 0.1137 0.1151 0.0655 0.1019 0.0797 0.0811 0.1131

ionosphere 0.0940 0.0823 0.0751 0.0816 0.0738 0.0881 0.0890

dermatology 0.0693 0.0263 0.0061 0.0087 0.0167 0.0065 0.0278

house-votes-84 0.0304 0.0393 0.0406 0.0273 0.0276 0.0493 0.0406

cylinder-bands 0.1942 0.2193 0.1501 0.5514 0.4352 0.1711 0.1689

chess 0.1229 0.1398 0.1286 0.1074 0.1190 0.1397 0.1325

syncon 0.0553 0.0202 0.0180 0.0275 0.0299 0.0336 0.0314

soybean 0.0617 0.0521 0.0503 0.0551 0.0529 0.0693 0.0689

crx 0.1234 0.1148 0.0953 0.1257 0.1202 0.0904 0.1090

breast-cancer-w 0.0302 0.0349 0.0327 0.0685 0.0238 0.0234 0.0248

anneal 0.0067 0.0194 0.0194 0.0126 0.0167 0.0181 0.0072

tic-tac-toe 0.1266 0.1742 0.2104 0.1003 0.0832 0.1994 0.1401

vowel 0.1556 0.1842 0.1811 0.1773 0.1732 0.2249 0.1719

german 0.2187 0.2046 0.2036 0.2164 0.2081 0.2112 0.2041

car 0.0494 0.0478 0.0633 0.0426 0.0401 0.0599 0.0317

segment 0.0518 0.0489 0.0357 0.0372 0.0408 0.0436 0.0434

kr-vs-kp 0.0283 0.0700 0.0518 0.0426 0.0422 0.0763 0.0459

dis 0.0176 0.0194 0.0179 0.0179 0.0170 0.0168 0.0193

hypo 0.0089 0.0119 0.0078 0.0063 0.0059 0.0080 0.0084

sick 0.0202 0.0206 0.0216 0.0200 0.0194 0.0220 0.0238

phoneme 0.1585 0.1982 0.2172 0.1571 0.1323 0.1829 0.1546

satellite 0.0850 0.0945 0.0902 0.0901 0.0767 0.0884 0.0823

thyroid 0.0533 0.0584 0.0561 0.0499 0.0488 0.0648 0.0569

Electrical-Grid 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

nursery 0.0397 0.0522 0.0616 0.0525 0.0466 0.0658 0.0345

magic 0.1244 0.1252 0.1541 0.1260 0.1303 0.1595 0.1267

adult 0.1193 0.1312 0.1387 0.1233 0.1238 0.1437 0.1234

shuttle 0.0009 0.0009 0.0006 0.0008 0.0007 0.0007 0.0006

connect-4 0.1636 0.2253 0.2237 0.2114 0.2040 0.2255 0.2153

localization 0.2004 0.3105 0.3068 0.2232 0.2134 0.3126 0.2014

The value in boldface indicates the classifier with the best performance
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Table 11 Experimental results of variance

Dataset SKDB WATAN WAODE SA2DE SASA2DE IWAODE RBF

labor 0.0842 0.0542 0.0221 0.1068 0.0447 0.0268 0.0268

labor-negotiations 0.1258 0.1347 0.0626 0.1021 0.1047 0.0626 0.0789

zoo 0.0627 0.0548 0.0424 0.0539 0.0597 0.0445 0.0470

echocardiogram 0.1393 0.1226 0.1335 0.1274 0.1340 0.1277 0.1402

lymphography 0.1547 0.1084 0.0478 0.2045 0.0894 0.0408 0.0680

hepatitis 0.0606 0.0571 0.0541 0.0739 0.0625 0.0486 0.0459

wine 0.0702 0.0486 0.0246 0.0464 0.0317 0.0141 0.0193

autos 0.1897 0.1687 0.1503 0.2057 0.1819 0.1363 0.1466

sonar 0.1252 0.1165 0.1003 0.1051 0.1107 0.0929 0.1106

new-thyroid 0.0362 0.0203 0.0244 0.0351 0.0358 0.0203 0.0248

soybean-large 0.0814 0.1084 0.0855 0.1070 0.0791 0.0738 0.0800

ionosphere 0.0684 0.0399 0.0368 0.0491 0.0338 0.0238 0.0298

dermatology 0.0766 0.0483 0.0242 0.0307 0.0357 0.0189 0.0386

house-votes-84 0.0144 0.0172 0.0083 0.0168 0.0138 0.0079 0.0070

cylinder-bands 0.0753 0.0762 0.1010 0.0014 0.0026 0.0828 0.0867

chess 0.0427 0.0504 0.0364 0.0510 0.0444 0.0379 0.0380

syncon 0.0452 0.0217 0.0230 0.0315 0.0176 0.0164 0.0186

soybean 0.0344 0.0589 0.0334 0.0409 0.0313 0.0290 0.0372

crx 0.0709 0.0500 0.0264 0.0426 0.0207 0.0240 0.0445

breast-cancer-w 0.0449 0.0385 0.0128 0.0388 0.0273 0.0122 0.0233

anneal 0.0194 0.0158 0.0161 0.0201 0.0171 0.0103 0.0142

tic-tac-toe 0.1608 0.0819 0.0604 0.0997 0.0588 0.0529 0.0674

vowel 0.2177 0.2361 0.2310 0.2376 0.2232 0.2463 0.2287

german 0.1285 0.1017 0.0765 0.0890 0.0820 0.0692 0.0818

car 0.0403 0.0374 0.0427 0.0329 0.0340 0.0430 0.0355

segment 0.0486 0.0290 0.0255 0.0339 0.0235 0.0204 0.0244

kr-vs-kp 0.0130 0.0152 0.0119 0.0134 0.0098 0.0185 0.0101

dis 0.0020 0.0004 0.0021 0.0019 0.0028 0.0036 0.0007

hypo 0.0072 0.0063 0.0056 0.0049 0.0047 0.0068 0.0052

sick 0.0041 0.0048 0.0057 0.0047 0.0037 0.0037 0.0047

phoneme 0.0769 0.1541 0.1311 0.0870 0.0940 0.1270 0.1084

satellite 0.0449 0.0368 0.0364 0.0592 0.0317 0.0325 0.0216

thyroid 0.0352 0.0253 0.0239 0.0300 0.0219 0.0202 0.0203

Electrical-Grid 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

nursery 0.0345 0.0167 0.0111 0.0167 0.0169 0.0104 0.0150

magic 0.0532 0.0490 0.0289 0.0488 0.0429 0.0291 0.0418

adult 0.0427 0.0165 0.0113 0.0188 0.0151 0.0109 0.0137

shuttle 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003 0.0003

connect-4 0.0489 0.0149 0.0215 0.0341 0.0279 0.0209 0.0174

localization 0.1299 0.0594 0.0632 0.1122 0.0832 0.0577 0.0884

The value in boldface indicates the classifier with the best performance
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