
https://doi.org/10.1007/s10489-022-03308-7

Parallelized extreme learning machine for online data classification

Vidhya M1 · Aji S1

Accepted: 26 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The challenges raised by the massive data are being managed by the community through the advancements of infrastructure
and algorithms, and now the processing of fast data is becoming a new hurdle to the researchers. Extreme Learning Machine
(ELM) is a single-layer learning model with reliable performances and it is computationally simpler than the new generation
deep architectures. ELM process the data in batches and the model has to be rerun while updates happening in the datasets. In
the theoretical background of ELM, the past knowledge cannot be reused for improving the performance in online learning
where the data set will be updated with mini-batches. In this paper, we have introduced a knowledge base to deal with the
remembrance of knowledge in ELM. The architecture of the proposed model is designed to process mini-batches of any
size to speed up the processing of the data on its arrival. A group of data sets with different properties such as sparse and
feature dimensions is used in the experiments to evaluate our method. The performance of the algorithm is compared with
a set of benchmarked classifiers and stream classifiers in the scikit-learn public platform. It is observed that our method
could perform better in most of the experiments. It clear in the results that the Parallel ELM model outperformed the other
methods in the training time across all the datasets. The consistent performance of our method shows the significance of
parallel algorithms of ELM that can remember past knowledge.

Keywords Extreme learning machine · Online machine learning · Stream classifiers · Fast data processing

1 Introduction

The volume of the data is increasing exponentially with the
wide acceptance of IoT and as a result, the decision-making
entities are modifying their strategies to accommodate the
massive growth data for their business needs. The volume
of data arriving at every instance of time is to be processed
at the arrival itself for structured storage and future use.
Handling the fast occurrence of massive data is the present
challenge faced by the research and industry community
dealing with such kinds of online applications. The future
computational algorithms will focus more on the fast
processing of data, and the near real-time solutions for very
fast data streams are becoming the research target of many
groups. The potential of such fast algorithms will range

� Vidhya M
vidhya.ela@keralauniversity.ac.in

Aji S
aji@keralauniversity.ac.in

1 Department of Computer Science, University of Kerala,
Thiruvananthapuram, Kerala, India

from the security systems used in army operations to the
business plans in a consumer shop.

Online data, the live data, processing have a larger poten-
tial in smart application those are going to lead us in the
coming decade. Autonomous cars [27] are one of the inter-
esting areas where the hardware, sensors and algorithms
work together efficiently and faster than the human. The
online processing in the earlier computational era is carried
out through the batch processing of data, where the huge
data volume will be divided into smaller compared to the
initial. Those batches will be fed into the computational sys-
tem for processing on a sequential basis, where the batches
will be processed one by one in a pre-determined order.
The size of batches and execution time of the process will
decide the future of such an application, and such kind of
architecture is not preferred in the later stages as well. The
advancements in the computing infrastructures and algo-
rithms helped the researchers to use the online data analysis
in many applications areas that has published recently, like
remote sensing [22, 26], hostile activity analysis [23], cyber
forensic [24, 25]. The advancements in machine learning
improved the capability of artificial intelligence applica-
tions to a great extent. The biologically-inspired strate-
gies, especially the Artificial Neural Network are used in

/ Published online: 3 March 2022

Applied Intelligence (2022) 52:14164–14177

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03308-7&domain=pdf
mailto: vidhya.ela@keralauniversity.ac.in
mailto: aji@keralauniversity.ac.in


many computer vision and allied areas. The arrival of deep
architecture in learning models has provided a drastic shift
in the computational aspects, especially in computer vision.
The industry and researchers were deeply impressed by the
capability of the model to extract high-level and quality fea-
tures from the input data using multiple layers. Most of the
transformations of data that happened between these lay-
ers were complex and required more computational cost in
terms of time and infrastructure. Hence the deep architec-
ture is rarely used in applications where these constraints
are strictly restricted.

The real-time processing was expensive and complex in
its earlier stages, but later the researchers in this area made
it lighter and simple. Extreme Learning Machine (ELM) is
one of the simplest machine learning model that consists of
only one hidden layer, hence the computational complexity
is that much reduced. The generalization capability of ELM
is theoretically proven and the dimension of output weight
in ELM is proportional to the number of neurons in the
hidden layer. ELM working with batches of input data and
hence there is a single pass computation in the model. The
training parameters in the ELM are taken randomly and
training output is derived from the connections between
the hidden layer and output layer. The performance of
ELM is competing and the time taken for the execution is
remarkable, hence it is exercised in many machine learning
applications particularly in near real-time environments. A
recent work came for real-time COVID19 diagnosis [34]
using ELM is an example for the same.

The resources utilization in terms of memory and training
time of most new-generation algorithms are high, and the
real-time or online data processing strategies should have
emphasized those aspects. Generally, ELM takes a bundle
of data in a single pass for training, and it can be modified
for a sequential model where a fixed batch size of data
will be fed into the model for processing. In this case, the
model must wait for the next batch to be filled, creating a
lag in the execution. This work intends to tap the theoretical
foundation of ELM and design a model that can effectively
manage input batches of any size.

The proposed model is a distributed version of batch
processing where the data is divided into mini-batches
and given for processing in a different ELM process.
Any number of batches can be processed through this
architecture at a time within a defined time of execution.
Instead of waiting for the slot, a particular batch can directly
give for processing on its arrival itself. The output of
the parallel application is fixed according to the number
of the hidden nodes so that a batch with any size can
be given to a process and the integration of the results
is a comparatively simple task. The knowledge updating
mechanism used in our method helped to fine-tune the
knowledge of ELM hence it could improve the results

on every arrival of the batches. Datasets from different
public sources were used in the experiments of this work.
The datasets consist of sparse datasets and other formats
with categorical and numerical data. The datasets are also
of different dimensions, in their feature sets and number
of instances, to check the constancy of the results with
various combinations. The performance of the proposed
parallel ELM is compared with benchmarked methods in the
scikit-learn [12] implementation and stream classifiers in
scikit-multiflow [18] framework. Various evaluation metrics
like accuracy, f1 score and precision are used to validate the
reliability of the proposal. The training time of the proposed
method is also compared with all the methods used in the
study. Performance of the method with some newly arrived
works in stream data classification methods [39–43] is also
compiled at the end of the experiment section. It is observed
in the experiments that our method outperformed the other
methods in terms of the performance metrics. The training
time of the proposal is remarkable and shows the relevance
of our architecture in the live data classification.

The rest of the paper is organized as follows: Section 2
gives an abstract view of the related works and the other
methods used for the study. Section 3 is dedicated to
explaining the proposed method and the theoretical model
behind the proposal. The experimental setup, results and
analysis are included in Section 4. The conclusion of the
work is given in Section 5.

2 Related works

The machine learning methods are extensively used in
many real-time applications [14, 20, 35, 36, 38] and their
improvements helped those applications to become smarter.
The general acceptance of Artificial Neural Networks gives
confidence to the researchers to do more experiments with
ANN and to derive new algorithms. There are a lot of
works in the deep architecture of ANN which is found more
efficient but the same is computationally complex and time-
consuming. The ELM is a single-layer feed forward network
derived by Huang et al. [1]. TheMoore-Penrose Generalized
Inverse and Minimum Norm Least Squares Solution [1]
of Learner Systems are the two basic principles behind
the working of ELM. The ELM became reputed among
the community because of its reliable performance through
the Universal approximation [8, 29] principle. Instead of
instance-by-instance processing, the ELM process a batch
in a single step, and hence the model has to be rerun
while appending the datasets. Huang et al. [30] derived
another extension of ELM called incremental ELM, where
the optimum number of hidden nodes in ELM has derived
analytically [31]. Online Sequential ELM (OS-ELM) [32] is
emerged to address the drawback of ELM while processing

1 3

Parallelized extreme learning machine... 14165



the batch data. A dual objective method is introduced by
them to deal with the data that come as batches in a periodic
interval. It is noted in their results that the method is
performed better than the other algorithms in the domain.
This work is recently updated by Hualong Yu et al. [33] by
modifying it to accommodate issues of increasing classes
in the upcoming batches. The work of Mirza and Lin
[28], named weighted online sequential extreme learning
machine, is found suitable for imbalanced class problems.

In the state of art methods, there are several proven
strategies in the classification domain which are generally
used in online applications. The Stochastic Gradient
Descent (SGD) [4] is one among them, in which the
internal learning parameters are updated in every iteration
from the random mini-batches of the actual dataset. In
Radial Basis Function kernel SVM [5], the classical
SVM will become powerful with the help of the Radial
Basis Kernel that uses the exponent polynomial for the
discrimination of classes. Gaussian Process Classifier [6]
is a probabilistic classifier that generalizes the Gaussian
probability distribution. Random Forest Classifier [7]
is an ensemble of uncorrelated decision trees and the
net performance of the classifier will be always better.
Multi-layer Perceptron is the classical model in learning
algorithms and the basis of the new generation classifiers.
AdaBoost classifier [9] is an ensemble of a couple of
classifiers and it will boost performance through an iterative
ensemble method. Gaussian Naive Bayes Classifier [10] is
based on the Naive Bayes methods where much importance
is given to the conditional independence of the feature sets.
Quadratic Discriminant Analysis [11] is used to classify
the nonlinear distributions which is an extension of Linear
Discriminant Analysis.

The Dynamic Weighted Majority Classifier [13] can be
used as a stream classifier which is an ensemble of a
couple of learning methods and the classification happens
according to the weighted-majority vote mechanism. Online
Boosting classifier [15] is a variant of ensemble model in
online machine learning methods, where the capability of
weak learning algorithms is increased in batch processing.
Oza Bagging classifier [16, 17] is a stream classifier
which is an extended version of ensemble-based boosting
algorithms. In this algorithm, an additional parameter is
used to denote the importance of each batch in the online
process and it will be updated over time.

3 Proposedmethod

ELM is a single pass SLFN network that converts the input
data into ELM feature space. As explained in the proceeding
part of this section, the theory and working of ELM shows
that it is computationally less expensive than the other

learning models. Figure 1 represents the general architecture
of ELM where function f represents the relation 7 and f ′ is
carried out as per relation 5.

There are four main components in the proposed method
as shown in Fig. 2– Parallel ELM, Weight Synthesiser,
Knowledge Base and Evaluator. The data, either from a live
source or available data store, for the training is partitioned
into batches and passes to the parallel ELM block. The ELM
training modules are tiny in terms of execution complexity
and coding, which takes the data chunk and produces the
output weight βi . The outputs of the parallelly executing
ELMs are processed in the weight synthesizer and produce
the actual output of the run. The corresponding weights are
stored, updated, in the knowledge base for the incoming
datasets. The evaluator module will evaluate the testing
dataset with the help of output weight. The algorithm of the
strategy is given in Algorithm 1.

The ELM is formulated on top of two competes [1] -
Moore-Penrose Generalized Inverse and Minimum Norm
Least Squares Solution of Learner Systems. Any system
that can be modelled with a linear relation Ax = y

can be effectively solved with the help of Moore-Penrose
Generalized Inverse. The matrix A

†
(q×p) will be the Moore-

Penrose Generalized Inverse of the matrix A(p×q) under the
following situations.

AA†A = A, A†AA† = A†, (AA†)T

= AA†, (A†A)T = A†A (1)

x̂ will be a the Least Mean Squares Solution of Ax = y

when

‖Ax̂ − y‖ = min
x

‖Ax − y‖ (2)

in Euclidean norm ‖.‖. In another way, A† will be a
minimum norm least squares solution of Ax = y. A
simple learning system with N samples - (xi, ti), xi =
[xi1, xi2...xin]T and ti = [ti1, ti2...tim] can be modelled as

M∑

i=1

βig(wi .xj + bi) = yj , j = 1, 2, ...N (3)

where M hidden neurons,wi the initial weight β is the
weight connecting to the output layer, bi is the threshold
applied to the corresponding neuron, the g(x) will be
the activation that produces the prediction y by satisfying∑N

j=a ‖yi − ti‖ = 0 and the relation 3 will become

M∑

i=1

βig(wi .xj + bi) = tj , j = 1, 2, ...N (4)

And it can be represented as in the form of leaner system as

Hβ = T (5)

1 3

V. M and A. S14166



Fig. 1 General Architecture of
ELM

As per the minimum norm least squares solution, the output
weight β of a single feed forward learning network can be
derived as

β = H †T (6)

where H is the Hidden Layer vectors of the input matrix,
and it is represented as

H =
⎡

⎢⎣
g(w1.x1 + b1) · · · g(wN .x1 + bN)

...
. . .

...
g(w1.xN + b1) · · · g(wN .xN + bN)

⎤

⎥⎦ (7)

and

β =
⎡

⎢⎣
βT
1
...

βT
N

⎤

⎥⎦ and T =
⎡

⎢⎣
T T
1
...

T T
N

⎤

⎥⎦ (8)

The relation (6) is used to find the output weight of ELM
in the Parallel ELM block of the proposed architecture.
The initial value of weight and bias strongly affects the
performance of the ELM. In the general implementation of

ELM the

[
w

b

]
is assigned randomly. In our method, the

primary values of these parameters are derived from the
Singular Value Decomposition of the data sample.

SV D(di) = USV T (9)

where V is an orthogonal matrix, S is a diagonal matrix in
which the first r diagonal values are non-zero values and U
is a semi-unitary matrix. By the low rank approximation,
the first r values of the matrices are enough to represent the
initial matrix as

di ⇐ UrSrV
T
r (10)

Fig. 2 The Architectural
Diagram of proposed method

1 3

Parallelized extreme learning machine... 14167



where Ur and Vr consists of the first r column of the
matrices in (8) and Sr be a r × r square matrix. Hence the
initial values of the weight and bias are can be deduced
[

w

b

]
= Vr (11)

Because of the inherent representation capability of the
matrix Vr , the ELM could perform better than the traditional
method.

In Algorithm 1, the steps with a line number 2 are
executed by the parallel processes. There are four major
steps in it, 2.a. to 2.d., in which the SVD initialization of
internal parameters is the first phase. The Hidden Layer
matrix and output weights are calculated for each set of
batches as in the case of the first phase. The output weight of
the particular batch is also stored by the concerned parallel
process.

Remembrance of the past knowledge for future improve-
ment is one of the key ideas of major learning models.
In the case of ELM, such kind of feedback is technically
not possible in its learning activity. We have introduced the
additional structure Knowledge Base (KB) for attempting
this drawback of ELM. The KB is a fixed-length structure
that consists of L weight vectors. The weight vectors of the
individual ELM in the parallel processes will be stored in
the KB according to the eligibility criteria. The weight that

has been derived at each time of evaluation will be fed back
to the KB to strengthen the performance of the methodol-
ogy. The output weight that is indifferent from the existing
collection is discarded through mechanisms such as dis-
tance measure from the mean of the entire collection and
the degree of reliability that the testing data set gives. Hence
the vectors that can contribute significantly to processing
the incoming data stream are stored in KB. A mean model-
based centrality measure is used to find the output weight of
the model at an instance of evaluation. Being a simple mea-
sure, the weight synthesizing process will not create much
computational burden to the model without sacrificing the
performance.

The theoretical model reveals that the ELM is computa-
tionally efficient for the processing of data on the fly. There
is no need to fine-tune the internal parameters, and the major
computation is happening with a few steps. By introducing
the parallel algorithm architecture, the proposed method can
handle any number of batches at a time. Hence the proposed
method can further improve the computational cost, com-
paring with sequential processing. The SVD initialization
of the parameters, Hidden Layer matrix and output weight
calculations are the steps in the method that can consume
computational power but it is negligible in comparison with
the new generation learning models.

4 Experiment and results

We have conducted a different set of experiments to
evaluate the performance of the proposed strategy. The
experiments are categorized into three - i) detecting the
influence of batch size in the overall performance, ii)
performance comparison with a bunch of benchmarked
strategies in classification, iii) a comparative study with the
performance of some methods in the domain. The F1 score,
Accuracy and Precision are used to quantify the efficiency
of the method, while milliseconds are used to measure the
execution time of the learner algorithm. A desktop PC with
an Intel i5 processor with 6 cores, 2.90GHz speed and an
internal memory of 32 GB is used for both coding and
execution of the work. We have conducted experiments with
hidden nodes of min{BatchSize, FeatureDimension}.
The model is designed to incorporate any number of parallel
processes at a time. In the experiments, we have used two or
three parallel processes at a time.

We have used a basket of publically available real-world
datasets in these experiments and the details are abstracted
in Table 1.

The datasets are selected from different public depos-
itories - the Covtype, Electricity, Airlines and Poker are
taken from Massive Online Analysis(MOA) [2]]; Adult,
Nomao, RCV1 and Shuttle are from UCI machine learning

1 3

V. M and A. S14168



Table 1 Datasets used in the experiments

Dataset Type Feature Type Nos.Features Class Instances

Covtype Dense Categorical, Numeric 54 10 581012

Electricity Dense Numeric 8 2 45312

KDD99 Dense Numeric 41 23 494021

Shuttle Dense Numeric 9 7 58000

SEAa Dense Numeric 3 2 1000000

AGRa Dense Numeric 9 2 1000000

Airlines Dense Numeric 7 2 539383

Weather Dense Numeric 9 2 18160

Adult Dense Categorical, Numeric 14 2 48842

Nomao Dense Numeric 120 2 34465

RCV1 Sparse Numeric 47236 2 111740

Real-sim Sparse Numeric 20958 2 72309

repository [3]; Weather and Real-sim are downloaded from
OpenML [19]; The SEAa and AGRa [21] are synthetic
datasets. Two sparse datasets - RCV1 and Real-sim are also
used in the preliminary experiments. We have selected com-
paratively larger datasets, ranges from 34465 to Ten Lakhs
instances, to simulate the online arrival of data by dividing it
into batches. The number of feature sets was also one of the
criteria for selecting the data sets, and we have a very good
range of features with a minimum of 3 and a maximum of
47236. Most of the datasets are binary classes and some of
them have more than 10 classes as well. The attributes of the
two datasets have both categorical and numerical data and
we have converted those categorical data to numerical as a
preprocessing phase. As seen in Table 1, we have chosen the
datasets such a way to give participation to the maximum
parameters that can directly affect the performance of the
classification task.

4.1 Batch size and performance of proposedmethod

The number of samples used in the training activity will
generally affect the quality of the performance of the
classifiers. The objective of this set of experiments is to
verify the same in our proposed method. All the datasets
listed in Table 1 are used for the experiments. We have
created a stream of batches in different sizes, ranges from
200 to 2000, for the experiment. The datasets are divided
into an 80-20 ratio for training and testing purposes.

The classification accuracies of the experiments with 12
datasets are shown in Fig. 3. The training part of the datasets
is partitioned into batches of 200, 300, 400, 500, 1000 and
2000 sizes, and conducted the experiments separately for
each set. The testing dataset will be fed into the model in a
single stretch, and there were samples with more than lakhs
of instances in some datasets. The accuracies obtained in all
the experiments for the 200 samples were the lowest among

all. It is clear in the results that the accuracy was increasing
along with the size of the samples. The Airlines dataset got
the lowest accuracy of 0.65 among all the datasets. Three
datasets- Electricity, KDD99 and Shuttle – were top in the
performance and the Electricity marked the best accuracy of
0.998. The other datasets performed in the range of 75% to
95% accuracy.

It is also observed in Fig. 4 that the performance of the
model becoming consistent after the batch size of 500. Only
two datasets- SEAa and Weather show a simple negative
trend after the 1000 batch size. While studying the spread
and deviation of the accuracy within every batch size, we
have noted that the deviation of the results was very minute
and ranges from 0.0251 to 0.00021. The interesting thing
is that the standard deviation of the results in the batch
sizes 500, 1000 and 2000 were again reducing significantly
and coming to the range 6.4x10-3 to 0.18x10-3. For these
batches, the negligible inconstancy of the results shown
the earlier batches have further reduced more than 50% in
seven datasets in the collection. All these statistics show
that the method is consistently performing with almost all
datasets and batches taken for the study, especially from
500 to 2000.

The proposed method is also compared with a couple of
ELM variants-UFROS-ELM [44], EOS-ELM [45] and IDS-
ELM [46]. The results obtained are pictured in Fig. 5 – (a)
shows the accuracy obtained with these methods against the
datasets Electricity, KDD99, and Shuttle. Figure 5(b) gives
the training time of these methods with another set of data.

It is noted in Fig. 5(a) that our method performed well
with the other variants of ELM; there is a slight upper hand
only for the others in some experiments. These competitive
results show the importance of our method, where the
training process happens with mini-batches. The knowledge
base that has been updated in every stage, with new
mini-batches, has a significant role in the results produced.

1 3

Parallelized extreme learning machine... 14169



Fig. 3 Performance of proposed method in different datasets and batches

In other ELM variants, the entire training data is taken in a
single stretch, but they could not capture a substantial upper
hand in the accuracy.

It is evident in Fig. 5(b) that the time taken by the
proposed method is significantly low compared with the
other ELM variants used for the study. Since the proposed
method used mini-batches for the training, the training time
recorded the lowest in the group, an essential criterion for
the stream data analysis.

4.2 Performance comparison with benchmarked
methods

The experiments conducted in this section are to compare
the performance of our method with a bunch of bench-
marked algorithms in classification. We have chosen the
Stochastic Gradient Descent (SGD) [4], Radial Basis
Function kernel SVM (RBF SVM)[5], Gaussian Process
Classifier (GPC) [6], Random Forest Classifier (RFC)[7],

Fig. 4 Standard Deviation of the
results for the batch size 500 to
2000

1 3

V. M and A. S14170



Fig. 5 Performance comparisons of the proposed method with ELM-Variants. (a) Accuracy of the methods (b) Training time of the methods

Multi-layer Perceptron (MLP), AdaBoost classifier
(ABC)[9], Gaussian Naive Bayes Classifier (GNB)[10],
Quadratic Discriminant Analysis(QDA)[11], and ELM for
the study. The scikit-learn [12] implementation of these
classifiers is used though out these experiments. Some of
the methods are not directly supporting the sparse datasets
and hence the RCV1 and Real-sim are not analysed any-
where in this section. The presentation of the results in this
section is done in three stages – analyse the effect of mini-
batch size in the performance of the classifiers, comparative
analysis of the accuracy and F1 score of the methods and

the comparative analysis of training time of the classifiers
with the proposed method.

As in the case of previous experiments, we have con-
ducted a series of experiments with different mini-batch
sizes ranging from 200 to 2000. The first set of experiments
in this section is to analyse the influence of the batch size
in different classifiers. It is noted that different methods
recorded their maximum in various batch sizes.

It is noted that all the batches got represented in Fig. 6.
There were ten datasets and ten classifiers; hence a total of
100 combinations were plotted in the scatter plot Fig. 6. It is

Fig. 6 The size of the top wining batches of the classifiers with various dataset-method combinations

1 3

Parallelized extreme learning machine... 14171



Table 2 Comparison of Accuracy with benchmarked methods

SGD RBFSVM GPC RFC MLP ABC GNB QDA ELM Proposed

Covtyge 49.96 50.24 67.73 56.16 49.55 55.57 43.88 43.92 57.67 69.36

Electricity 99.3 99.78 99.88 96.49 99.25 99.75 79.01 99.79 99.49 99.82

KDD99 98.06 98.15 98.63 99.19 98.07 79.41 98.8 98.8 97.92 99.68

Shuttle 92.45 95.98 99.68 98.1 92.03 91.31 91.3 95.02 91.91 99.41

SEAa 75.32 75.51 75.57 75.17 75.59 74.45 74.98 75.25 75.37 77.65

AGRa 54.55 57.92 60.7 57.63 58.31 58.47 56.51 61.35 56.99 66.97

Airlines 56.08 55.76 56.37 56.08 55.43 55.76 56.28 57.01 56.35 65.20

Weather 67.81 67.81 79.82 74.2 67.81 76.21 63.82 78.61 78.8 81.26

Adult 79.58 77.83 79.61 80.42 76.32 80.94 79.75 80 79.66 79.97

Nomao 93.28 93.92 94.89 88.95 91.57 94.02 85.09 84.62 85.32 94.21

Avg.Rank 7.15 5.95 2.8 5.45 7.1 6.05 8.05 4.85 6 1.6

noted that some dataset-method combinations for maximum
results in the lesser batch sizes. The frequency of top winning
combinations in the 200 to 500 batch size is comparatively
lower than 1000 and 2000. Even though the mini-batch 2000
has received a higher density of winning hits, it is noted that
the best results will not be deeply affected by the batch sizes,
and it shows the importance of parallelized strategy using
mini-batches.

The average ranking of the methods is also given in
Table 2. It is noted that Covtype and Electricity got the
lowest and highest accuracies respectively in the entire
experiments. In the other methods, the GPC performed well
and they are top in two datasets – Electricity and Nomao.
NBC was the poor performer in the list and they ranked the
least in the four data sets- Covtype, Electricity, Shuttle and
Weather. Our method received the best ranking compared
with the other nine methods. We could achieve the top
position in six datasets and the second position in the other
three. The highest accuracy received for our method was
with Electricity even though we are in the second position.
The lowest accuracy of 65.2 is marked with Airlines, but we
could win the top position in that experiment. Our proposed
method received an accuracy above 90% with four datasets
and only three got below 70%. It is also observed that the
performance of our method with the winning method in the
concerned experiment is only below 1%. It is happy to view
that our method performed better than the initial version of
ELM. All these facts show that our method performed better
compared with all other benchmarked methods in most of
the datasets. The knowledgebase updated in every process
of validation helped our model to fine-tune the knowledge
for better classification.

It is in Fig. 7 noted that most of the datasets except
Covtype, AGRa and AGRa, scored more than 80%
precision in at least one of the experiments. Three datasets-
Electricity, KDD99 and Shuttle – got more than 99%

precision and Electricity got the highest score of 99.88. Our
parallel method scored the best precision in four datasets
and reached the second potion with another two. The RFC
received the highest precisions for Electricity and Nomao
datasets, and hence they could reach the second position.
It is observed that most of the methods performed well
with the datasets Electricity, KDD99 and Shuttle. As seen
in the previous set of experiments the proposed methods
outperformed in the precision score as well. The consistent
and better results of some datasets with most of the methods
show the rich features or patterns underlined in those
datasets.

It is noted in Fig. 8 that the training time is increasing
along with the mini-batch size. There are two distinct groups
of graphs in the figure where the training time of the sparse
dataset, Real-sim and RCV1, are entirely different from
others. The minimum training time for these datasets was
15.01 and 26.12 respectively which is much above the other
groups. The other nine datasets in the list have taken only a
minimal time for the training that comes in the range from
0.284 to 14.6 milliseconds. While considering the average
training time of all the datasets, the Weather performed the
best and the RCV1 reached the worst. Considering the earlier
group, the variation of time across the batch size dimension
is very less in this group. It is cleared in the experiment that
both the batch size and feature size influence the training
time of our proposed method. The consistent performance
of our method in a range of 1.09 to 6.12 milliseconds once
again proves the significance of our strategy.

It is cleared in Table 3 that seven methods out of ten need
much time for the training in all the datasets where SGD
is the only one exceptional case other than ELM and the
proposed method. The basic theoretical background of ELM
and proposed methods are the same and our method is doing
some additional computations as explained in Algorithm 1.
Hence the proposed strategy got a slightly higher learning

1 3

V. M and A. S14172



Fig. 7 Precision obtained by the methods for different datasets

time than the ELM which is below 0.1 milliseconds in
most cases. The other methods except SGD need more
than 100 times the learning time than the ELM versions.

The proposed method required below 1 millisecond for
completing the training in seven datasets and others have
taken only 2.3 seconds and below.

Fig. 8 The time taken (milliseconds) for training for different datasets and batch sizes

1 3

Parallelized extreme learning machine... 14173



Table 3 Training Time (milliseconds) of benchmarked and proposed method

Covtype Electricity KDD99 Shuttle SEAa AGRa Airlines Weather Adult Nomao Av.Rank

SGD 3.000 2.167 2.667 2.000 2.333 3.000 3.167 2.000 2.333 3.167 3.20

RBFSVM 26.117 1.667 19.133 7.500 3.167 3.333 3.167 3.667 3.667 7.167 4.05

GPC 268.300 26.900 6.100 31.900 120.70 175.5 4.000 2.000 84.80 74.800 5.45

RFC 23441 424.200 57640 36827 375 14662 3361 25503 7139 29601 9.80

MLP 32.900 34.900 34.900 38.900 39.90 43.90 33.90 36.90 37.90 35.900 5.50

ABC 913.600 824.100 1029.7 1342.8 455.80 237.30 423.8 130.7 196.5 1047.2 8.90

GNB 226.400 244.200 164.60 163.60 192.50 231.40 221.4 235.4 252.4 1044.2 7.90

QDA 211.233 189.283 193.98 181.65 170.88 180.03 183.07 180.85 188.7 463.61 7.20

ELM 1.032 0.267 1.039 0.633 0.480 0.615 0.667 0.675 0.105 0.234 1.10

Proposed 1.076 0.284 1.134 0.691 0.530 0.620 0.690 0.692 0.105 2.345 1.90

4.3 Performance comparison with stream classifiers

We have extensively used the scikit-multiflow [18], a
dedicated and open source framework for stream data
analysis, in the experiments discussed in this section. The
performance of the proposed method is compared with four
ensemble methods for stream classifiers [37] - Dynamic
Weighted Majority Classifier (DWMC)[13], Accuracy
Weighted Ensemble Classifier (AWEC), Online Boosting
classifier (OBC) [15], Oza Bagging classifier (OzBC)[17].
All the datasets except the sparse datasets are used in the
experiments. The accuracy and F1 score of the methods
are compared to evaluate the reliability of the proposed
method. The training time of the method is also studied in
the experiments.

The maximum accuracy in Table 4 of this section,
99.82%, is obtained for the Electricity with parallel ELM.
The least accuracy of 50.3 is recorded by the Accuracy
Weighted Ensemble Classifier for the dataset Adult. It is
observed that the proposed method got the highest accuracy
for six datasets and in the meantime, it has placed in the last
position for the other two. Our method received more than

Table 4 Comparison of Accuracy with stream methods

DWMC AWEC OBC OzBC Proposed

Covtype 81.75 64.35 85.5 88.67 69.36

Electricity 83.45 77.2 77.85 76.9 99.82

KDD99 98.6 56.15 99.7 97.97 99.68

Shuttle 92.1 94.9 97 96.37 99.41

SEAa 87.5 87.85 79.95 86.17 77.65

AGRa 79 82.15 71.35 74.43 66.97

Airlines 63 59.65 60.3 64.53 65.2

Weather 71.35 71.4 75.3 77.3 81.26

Adult 75.15 50.3 72.95 75.05 79.97

Nomao 79.95 88.5 91.05 86.9 94.21

Avg. Rank 2.857 3.571 2.857 3.000 2.714

90% accuracy for four datasets and reached the first position
in six datasets. It is noted in the results that all the methods
performed consistently with four datasets in the list. Among
the other stream classifiers, DWC and Online Boosting
classifier performed almost the same pattern and shared the
second position in the average ranking. As in the case of
other experiments, the overall performance of our parallel
ELM performed better compared with the stream-based
classifiers as well.

The F1 score achieved by the different streaming clas-
sifiers and the proposed methods for the ten datasets is
abstracted in Fig. 9. A score of 90% and more has been
recorded in six experiments in the pool and four of them
were scored by the proposed method. As the extension of
the indication of Table 4, the parallel ELM outperformed the
stream classifiers for the F1 matrix.

It is seen in Table 5 that the parallel ELM could complete
the training earlier than the other stream-based classifiers
for all the data sets. The DWMC performed comparatively
better than the other three methods and in most of the data
sets, it has recorded the training time near to the proposed
strategy. A proportional variation of training time with
respect to the number of features and batch size is visible
throughout our method. Such kind of pattern is not visible
in most of the classifiers in this category. The comparative
study in the table strengthens the inferences derived in the
previous sections and experiments.

Our proposed method obtained maximum accuracy of
99.82%, 99.68% in Electricity and KDD99 datasets. The
Pokerhand, Stagger, LED datasets obtained third and the
fourth position. Hyperplane obtained the fifth position.
Covtype, Airline datasets got the lowest accuracy of all. It
is clear from the table, the training time of our proposed
method is comparatively low than the other existing methods.

Table 6 compares the proposedmethodwith some ensemble-
based learning algorithms that deal with stream data clas-
sification. Datasets that have some reported outputs with
the selected methods are taken for the compilation of this

1 3

V. M and A. S14174



Fig. 9 The F1 Score of obtained for the datasets by the stream classifiers and proposed method

Table 5 Training Time
(milliseconds) of stream
classifiers and proposed
method with 2000 batch mini
size

DWMC AWEC OBC OzBC Proposed

Covtype 9.500 11.845 742.129 142.912 1.076

Electricity 1.010 0.903 574.437 26.473 0.284

KDD99 4.127 8.088 1643.593 260.920 1.134

Shuttle 1.841 1.548 586.249 31.928 0.691

SEAa 0.586 0.565 580.006 14.878 0.530

AGRa 0.646 1.059 690.716 30.980 0.620

Airlines 1.558 0.836 595.261 24.049 0.690

Weather 1.115 0.962 619.228 25.671 0.692

Adult 1.557 1.575 751.515 48.316 0.105

Nomao 4.505 8.750 1348.254 265.967 2.345

Table 6 A comparative analysis with existing methods in stream data classification. The training Time(TT) is given in milliseconds

CALMID[39] DUE[40] AWDOB[41] OzaNB[42] Proposed

Acc. TT Acc. TT Acc. TT Acc. TT Acc. TT

KDD99 76.38 28.14 81.36 30.53 70.36 26.68 94.6 1650 99.68 1.134

SEAa 64.47 24.05 72.43 20.03 66.45 38.45 85.4 243 77.65 1.53

Covtype 75.29 13.48 72.49 26.48 64.56 36.17 87.1 9532 69.36 1.076

Electricity − − − − − − 73.4 15.8 99.82 0.284

Airlines 73.29 60.48 76.35 82.47 70.32 84.26 64.4 132 65.2 0.69

LED 72.37 15.68 66.49 13.68 73.54 17.98 69.8 478 74.12 0.374

Stagger 66.58 33.45 70.33 22.26 62.48 9.16 60.2 86.1 70.36 0.541

Hyperplane 72.53 23.45 63.24 57.23 66.32 35.46 − − 73.69 0.254

Pokerhand 62.42 28.35 71.37 16.67 64.56 30.23 − − 80.58 0.356

1 3

Parallelized extreme learning machine... 14175



table. The time and accuracy of each dataset are compared
and found that our method came first in six among the
nine datasets. In the case of training time, our method out-
performed all these stream-based classifies. These results
show the significance of the single-pass, knowledge-based
parallel methods in online data classification.

The results of all the experiments reveal that the strategy
followed in the proposed methods is efficient in terms
of training time and reliable performance in most of the
data sets. The underlined principle of ELM and the mean
model-based knowledge base are helped the model for
producing a consistent result. Since the learning strategy is
almost stable in different batch sizes, the performance of
parallel implementation was steady and it could improve the
execution time effectively.

5 Conclusion

This paper exploited the theory of ELM and the working
principle of parallel algorithms for modelling an efficient
architecture for online data classifications. The introduction
of a knowledge base and output weight processing module
improved the initial version of ELM. We have divided the
data sets into different mini-batches for the implementation
of parallel ELM. We have conducted a set of extensive
experiments to validate our architecture. The data sets with
various properties are selected from different public sources
for the experiments. The performance of a group of bench-
marked classifiers and stream-based methods are compared
and analysed in a collection of experiments. It is observed in
the results that our method outperformed the other strategies
in all validation matrices though out the experiments. The
training time of parallel ELM is considerably reduced in all
the experiments without sacrificing much in the reliability
of the results. In the future, the results can be further
improved by fine-tuning the knowledge updating process of
the knowledge-based module.

References

1. Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine:
a new learning scheme of feedforward neural networks. In: 2004
IEEE international joint conference on neural networks (IEEE Cat.
No. 04CH37541), vol 2. IEEE, pp 985–990

2. Bifet A, Holmes G, Pfahringer B, Kranen P, Kremer H, Jansen
T, Seidl T (2010) Moa: Massive online analysis, a framework for
stream classification and clustering. In: Proceedings of the first
workshop on applications of pattern analysis. PMLR, pp 44–50

3. Dua D, Graff C (2017) UCI machine learning repository
4. Bottou L (2010) Large-scale machine learning with stochastic

gradient descent. In: Proceedings of COMPSTAT’2010. Physica-
Verlag HD, pp 177–186

5. Chang YW, Hsieh CJ, Chang KW, Ringgaard M, Lin CJ (2010)
Training and testing low-degree polynomial data mappings via
linear SVM. J Mach Learn Res, 11(4)

6. Yang X (2020) Introduction to stochastic calculus and its
applications. Available at SSRN 3607647

7. Ho TK (1995) Random decision forests. In: Proceedings of 3rd
international conference on document analysis and recognition,
vol 1. IEEE, pp 278–282

8. Hastie T, Tibshirani R, Friedman J (2009) The elements
of statistical learning: data mining, inference, and prediction.
Springer Science & Business Media, Berlin

9. Kégl B (2013) The return of AdaBoost. MH: multi-class Hamming
trees. arXiv:1312.6086

10. John GH, Langley P (2013) Estimating continuous distributions in
Bayesian classifiers. arXiv:1302.4964

11. Tharwat A (2016) Linear vs. quadratic discriminant analysis
classifier: a tutorial. Int J Appl Pattern Recognit 3(2):145–180

12. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B et al
(2011) Scikit-learn: Machine learning in Python. J Machine Learn
Res 12:2825–2830

13. Kolter JZ, Maloof MA (2007) Dynamic weighted majority: an
ensemble method for drifting concepts. J Machine Learn Res
8:2755–2790

14. Wang R, Chow CY, Lyu Y, Lee VC, Kwong S, Li Y, Zeng J (2017)
Taxirec: recommending road clusters to taxi drivers using ranking-
based extreme learning machines. IEEE Trans Knowl Data Eng
30(3):585–598

15. Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting
data streams using ensemble classifiers. In: Proceedings of the
ninth ACM SIGKDD international conference on knowledge
discovery and data mining, pp 226–235

16. Wang B, Pineau J (2016) Online bagging and boosting for imbal-
anced data streams. IEEE Trans Knowl Data Eng 28(12):3353–
3366

17. Oza NC, Russell SJ (2001) Online bagging and boosting. In:
International workshop on artificial intelligence and statistics.
PMLR, pp 229–236

18. Montiel J, Read J, Bifet A, Abdessalem T (2018) Scikit-multiflow:
A multi-output streaming framework. J Machine Learn Res
19(1):2915–2914

19. Vanschoren J, Van Rijn JN, Bischl B, Torgo L (2014) OpenML:
networked science in machine learning. ACM SIGKDD Explo-
rations Newsletter 15(2):49–60. https://doi.org/10.1145/2641190.
2641198

20. Duan J, Ou Y, Hu J, Wang Z, Jin S, Xu C (2017) Fast and
stable learning of dynamical systems based on extreme learning
machine. IEEE Trans Syst Man Cybern Syst 49(6):1175–1185

21. Gomes HM, Bifet A, Read J, Barddal JP, Enembreck F, Pfharinger
B, Holmes G, Abdessalem T (2017) Adaptive random forests
for evolving data stream classification. Mach Learn 106(9):1469–
1495

22. Kumar S, Banerjee B, Chaudhuri S (2021) Improved landcover
classification using online spectral data hallucination. Neurocom-
puting 439:316–326

23. Dadkhah S, Shoeleh F, Yadollahi MM, Zhang X, Ghorbani
AA (2021) A real-time hostile activities analyses and detection
system. Applied Soft Computing 104:107175

24. Seraphim BI, Poovammal E (2021) Adversarial attack by inducing
drift in streaming data. Wirel Pers Commun, 1–25

25. Li K, Luo G, Ye Y, Li W, Ji S, Cai Z (2020) Adversarial
Privacy Preserving Graph Embedding against Inference Attack.
IEEE Internet of Things Journal

26. Dong Y, Yang C, Zhang Y (2021) Deep metric learning with
online hard mining for hyperspectral classification. Remote Sens
13(7):1368

1 3

V. M and A. S14176

http://arxiv.org/abs/1312.6086
http://arxiv.org/abs/1302.4964
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198


27. Jo K, Kim J, Kim D, Jang C, Sunwoo M (2014) Development
of autonomous car—Part I: Distributed system architecture and
development process. IEEE Trans Ind Electron 61(12):7131–7140

28. Mirza B, Lin Z, Toh KA (2013) Weighted online sequential
extreme learning machine for class imbalance learning. Neural
Process Lett 38(3):465–486

29. Huang GB, Chen L, Siew CK (2006) Universal approximation
using incremental constructive feedforward networks with random
hidden nodes. IEEE Trans Neural Netw 17(4):879–892

30. Huang GB, Chen L (2008) Enhanced random search based
incremental extreme learning machine. Neurocomputing 71(16-
18):3460–3468

31. Huang GB, Chen L, Siew CK (2006) Universal approximation
using incremental constructive feedforward networks with random
hidden nodes. IEEE Trans Neural Netw 17(4):879–892

32. Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006)
A fast and accurate online sequential learning algorithm for
feedforward networks. IEEE Trans Neural Netw 17(6):1411–
1423

33. Yu H, Xie H, Yang X, Zou H, Gao S (2021) Online sequential
extreme learning machine with the increased classes. Comput
Electric Eng 90:107008

34. Wu C, Khishe M, Mohammadi M, Karim SHT, Rashid TA (2021)
Evolving deep convolutional neutral network by hybrid sine–
cosine and extreme learning machine for real-time COVID19
diagnosis from X-ray images. Soft Comput, 1–20

35. Rathore S, Park JH (2018) Semi-supervised learning based
distributed attack detection framework for IoT. Appl Soft Comput
72:79–89

36. Zhang X, He T, Lu L, Yue S, Cheng D, Xu X (2017) Video
analysis of traffic accidents based on projection extreme learning
machine. In: 2017 international symposium on intelligent signal
processing and communication systems (ISPACS). IEEE, pp 149–
154

37. Ghomeshi H, Gaber MM, Kovalchuk Y (2020) A non-canonical
hybrid metaheuristic approach to adaptive data stream classifica-
tion. Futur Gener Comput Syst 102:127–139

38. Ghomeshi H, Gaber MM, Kovalchuk Y (2019) EACD: Evolution-
ary Adaptation to concept drifts in data streams. Data Min Knowl
Disc 33(3):663–694

39. Liu W, Zhang H, Ding Z, Liu Q, Zhu C (2021) A comprehensive
active learning method for multiclass imbalanced data streams
with concept drift. Knowledge-Based Systems 215:106778

40. Li Z, Huang W, Xiong Y, Ren S, Zhu T (2020) Incremental
learning imbalanced data streams with concept drift: The
dynamic updated ensemble algorithm. Knowledge-Based Systems
195:105694

41. Baidari I, Honnikoll N (2020) Accuracy weighted diversity-based
online boosting. Expert Systems with Applications 160:113723

42. Sarnovsky M, Kolarik M (2021) Classification of the drifting data
streams using heterogeneous diversified dynamic class-weighted
ensemble. PeerJ Computer Science 7:e459

43. Museba T, Nelwamondo F, Ouahada K, Akinola A (2021)
Recurrent adaptive classifier ensemble for handling recurring
concept drifts. Applied Computational Intelligence and Soft
Computing, 2021

44. Aydogdu O, Ekinci M (2020) A new approach for data stream clas-
sification: unsupervised feature representational online sequential
extreme learning machine. Multimed Tools Appl 79(37):27205–
27227

45. Lan Y, Soh YC, Huang GB (2009) Ensemble of online sequential
extreme learning machine. Neurocomputing 72(13-15):3391–3395

46. Xu S, Wang J (2016) A fast incremental extreme learning
machine algorithm for data streams classification. Expert Syst
Appl 65:332–344

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

1 3

Parallelized extreme learning machine... 14177


	Parallelized extreme learning machine...
	Abstract
	Introduction
	Related works
	Proposed method
	Experiment and results
	Batch size and performance of proposed method
	Performance comparison with benchmarked methods
	Performance comparison with stream classifiers

	Conclusion
	References




