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Abstract
Graph convolutional neural networks (GCNs) have become increasingly popular in recent times due to the emerging graph 
data in scenes such as social networks and recommendation systems. However, engineering graph data are often noisy and 
incomplete or even unavailable, making it challenging or impossible to implement the de facto GCNs method directly on 
them. Current efforts for tackling this issue either require an overparameterized model that is hard to scale, or simply re-
weight the existing edges for different downward tasks. In this work, we tackle this problem through introducing a graph 
learning convolutional neural network (GLCNN), which can be employed on both Euclidean space data and non-Euclidean 
space data. The similarity matrix is learned by a supervised method in the graph learning layer of the GLCNN. Moreover, 
graph pooling and distilling operations are utilized to reduce over-fitting. Comparative experiments are done on three different 
datasets: citation dataset, knowledge graph dataset, and image dataset. Results demonstrate that the GLCNN can improve the 
accuracy of the semi-supervised node classification by mining useful relationships among nodes. The performance is more 
obvious especially on datasets of Euclidean space. Specifically, GLCNN outperforms the best baseline by 3.1% and 1.1% 
on MNIST and SVHN datasets. Moreover, the robustness is explored by adding noises on the edge of the graph. Sensitive 
analysis and visualizations are performed to demonstrate effects of some key parameters.

Keywords Graph learning · Semi-supervised · Graph convolutional neural networks

1 Introduction

Deep learning (DL) has achieved enormous success in the 
past ten years due to the increased GPU computing power, 
the much-expanded data scale, and the effectiveness of 
increasingly complex models in extracting information on 
the Euclidean space data. In recent years, the application 
of machine learning algorithms on graph data has received 
widespread attention, and the GCNs have been developed 
rapidly. It has been used in the recommendations system 
[1, 2], the image segmentation [3], and drug discovery [4] 

et al. However, GCNs can only be used when the graph 
structure of data is available. Most models assume that the 
initial graph structure can accurately reflect the relationship 
between nodes, however, real-world graph are not suitable 
for different downstream tasks due to the incomplete or 
presence of noise. Therefore, GCNs based on such ideal-
ized assumptions will inevitably lead to sub-optimal results. 
Neglecting that is an intrinsic shortcoming of many GCN 
methods.

Recently, Deng et al. [5] constructed a weighted graph in 
the process of graph embedding. They manually converted 
the initial attribute matrix into an attribute graph by select-
ing k-nearest-neighbors after the spectral graph clustering. 
This typical unsupervised method was highly subjective. Yu 
et al. [6] raised a graph-revised module using GCN. The 
change of the original graph structure was done by changing 
the weights of existing edges and adding new edges. The 
experiment proved that this module was effective when the 
graph was incomplete or when the labeling rate was low. 
However, it learned one fixed graph for all the subsequent 
GCN layers. More recently, Franceschi et al. [7] proposed 
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an advanced method that could learn the parameters of GCN 
and the graph simultaneously by solving a bilevel program. 
The idea was inspiring, however, this approach suffered from 
a scalability problem. It needs to lean the N2 parameters of 
the N-node graph. The existing methods that manually con-
struct an adjacent matrix or learn a fixed adjacent matrix for 
the rest layer have a limited effect on the downstream task. In 
this paper, GLCNN for semi-supervised node classification 
is proposed. The network can be employed when the graph 
structure has large noise or when the adjacent relationship 
is unknown. The GLCNN contains the input layer, graph 
learning layer, and prediction layer. It can update the node 
representation and the adjacent matrix simultaneously in 
the graph learning layer. Through the graph distilling and 
pooling operations, it can reduce the over-fitting effect. The 
prediction layer outputs node labels, which allows the cal-
culation of classification accuracy. The experiments show 
that the learned graph structure is effective especially on the 
Euclidean dataset.

We mainly have the following three contributions. First, 
the graph learning layer is defined to dynamically adjust the 
adjacent relationship, which is more effective in fully min-
ing the hidden connection information in the graph. Second, 
graph distilling operation is defined to further remove noise. 
Experiments show that our method can achieve robustness 
at a low labeling rate. Lastly, GLCNN can handle datasets 
where the graph structure is not known such as images, and 
experiment results indicate its effectiveness. The codes used 
in our experiments will be uploaded at https:// github. com/ 
LeeKa ngjie after publication.

The next four sections are arranged as follows. Some 
related works about GCN and graph learning are listed in 
Section 2. The GLCNN details are interpreted in Section 3. 
The results of the experiments and comparison on different 
datasets are given in Section 4. The summary and outlook 
are made in the last section.

2  Related works

2.1  Graph convolutional neural networks

Most researches about GCN can be categorized into spec-
tral-based and spatial-based methods [8]. They have all 
developed rapidly in recent years. For example, Monti et al. 
[9] proposed MoNet, a unified framework that could gener-
alize the CNN architecture to non-Euclidean domains like 
manifolds and graphs. They showed that several existing 
non-Euclidean CNN methods could be regarded as specific 
examples of their framework. Kipf et al. [10] raised a scal-
able network for semi-supervised learning on graph data. It 
employed the 1st order truncation of Chebyshev polynomials 

of spectral graph convolutions. However, the computation 
was non-parallel and suffered from a Laplacian smoothing 
problem. Hamilton et al. [11] proposed GraphSAGE, which 
could generate node embeddings by sampling and aggregat-
ing the representations from its neighborhood. In order to 
overcome the limited range of neighborhood aggregation 
procedure, Xu et al. [12] proposed a JK-net inspired by the 
random walk. It could learn structure-aware node representa-
tions by leveraging different neighborhood ranges. However, 
it could not fully use the graph information by random-walk 
strategy. Petar et al. [13] presented graph attention networks 
(GATs) by assigning different weights to different neighbor-
hoods. It leveraged a masked self-attentional layer without 
costly matrix operations. As the spectral-based GCNs cannot 
be directly implemented on the directed graph, Ma et al. [14] 
proposed an improved approach by making use of refined 
Laplacians, which had a stronger ability to extract features 
from directed graphs. In order to convert graph structure 
data into grid structure, Gao et al. [15] proposed a learnable 
graph convolutional layer (LGCL), which selected a fixed 
number of neighboring nodes when calculating each feature. 
However, it could not perform down-sampling on graphs and 
is mainly applied to generic graph data. To resolve the chal-
lenge of applying GCN on the dynamic graph, Pareja et al. 
[16] proposed EvolveGCN, which adjusted the model along 
the temporal dimension. Chen et al. [17] studied the shallow-
structure problem of most GCN models and proposed the 
GCNII to relieve the problem of over-smoothing. To obtain 
a more efficient convolution layer, Fu et al. [18] introduced 
Hessian graph convolutional networks (HesGCN) and opti-
mized the one-order spectral graph Hessian convolutions.

2.2  Graph learning methods

As for graph learning, when a graph structure is unavailable, 
a simple approach is to create a k-nearest neighbor (kNN) 
graph [19] using the measurement of the similarity between 
two nodes. For instance, Deng et al. [5] generated a kNN 
graph based on the l2-norm distance between the represen-
tations of two nodes. Tang et al. [20] devised a method to 
dynamically learn the graphs that could adapt to the under-
lying structure of node representations in various layers. 
However, the graph creation and parameter learning steps 
were independent. The graph could not guarantee to best 
facilitate GCN learning. Lately, more and more approaches 
to automatically build a graph is explored. Henaff et al. [21] 
proposed a fully connected network to learn the graph in a 
supervised manner. But the learning process was separated 
from the parameter learning in GCN, which could not guar-
antee to be useful to the downstream task. Jiang et al. [22] 
proposed a graph learning convolutional network (GLCN), 
which learned an optimal graph by integrating graph convo-
lution and graph learning in one network architecture. But it 
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could not deal with situations when the adjacent matrix was 
noisy. In order to use data of different graph structure as the 
input, Li et al. [23] raised a generalized and flexible GCN. 
It could learn a task-driven adaptive graph by learning the 
distance metric. The graph learning quality directly influ-
ences the semi-supervised classification task. Lin et al. [24] 
proposed a deep graph learning to find better node feature 
by learning the global structure and local structure simulta-
neously. In order to apply GCN-based graph learning on a 
large-scale graph, Yang et al. [25] presented Node2Grids to 
map the coupled graph data into grid-like data, which could 
save memory and computational resource. Pu et al. [26] pro-
posed an innovative graph learning method that could incor-
porate node-side and observation-side knowledge together. 
It could improve the durability of graph learning on missing 
and incomplete graph data.

3  Methodology

We first present notation and preliminary knowledge of the 
graph theory and graph convolutional neural networks. We 
then describe the proposed GLCNN and its architecture, 
which is split into the input layer, graph learning layer, and 
prediction layer. A detailed explanation of the implementa-
tion details is given last.

3.1  Notation and preliminary

Consider a graph G which includes a node set 
V =

{
v1, ..., vN

}
 and an edge set E1,..,M ⊆ V × V  , where N 

and M are the nodes and edges numbers. The connectivity 
relationship of the nodes in the graph can be expressed as the 
adjacent matrix A with a size of N × N . If nodes vi and vj are 
connected, Ai,j is 1, otherwise, it is 0. The Laplacian matrix 
of the graph is calculated as L = D − A , where Di,i =

∑
j Ai,j . 

If i ≠ j,Di,j = 0 . The degree matrix D is used to perform the 
normalization of A as shown later.

GCNs are a very important type of machine learning 
model used on graph structure data. All GCNs have two 
common inputs. The first is the node representation matrix 
H ⊂ ℝ

N×n , where n is the dimension of the node representa-
tion. The second is the adjacent matrix A. Given a training 
set Vtrain , the aim is to train a mapping function f, that is 
f (H,A) → Y  , to minimize the loss function:

where W is the weight matrix in the mapping function f, 
f (H,A)v is the predicted label of all nodes in the training set. 
l is the loss function, which is commonly the cross-entropy 

(1)Loss =
∑

v∈Vtrain

l(f (H,A)v, yv) +�(W)

loss. � is the regularization function, which is used to pre-
vent over-fitting. Otherwise the network will remember the 
training dataset and produce a large bias on the test datasets. 
For example, Kipf et al. [10] proposed a two-layer GCN as 
the mapping f, as shown in the following expression:

whereA∗ = D−1∕2(A + I)D−1∕2 , D is the diagonal matrix 
withDi,i = 1 +

∑
j Ai,j.

The major notations used in the present paper are sum-
marized in Table 1.

3.2  GLCNN architecture

Some recognition tasks in the non-Euclidean domain might not 
have prior knowledge of graph structure. It is necessary to esti-
mate a similarity matrix first [27]. The problem to be solved by 
the GLCNN can be described as follows. For data with a graph 
structure, it optimizes the graph structure by mining the associa-
tion relationship and further applies the relationship to down-
stream tasks. For data without graph structure, it firstly uses kNN 
to build a graph and then optimizes the graph. The schematic 
diagram of the whole process is shown in Fig. 1.

The GLCNN is used to mine the similarity matrix and 
validate the effectiveness of the graph learning process. It 
contains the input layer, graph learning layer, and prediction 
layer as shown in Fig. 2. A more detailed description of each 
layer is provided in subsections.

3.2.1  The input layer

The topological structures are rich sources of discriminative 
features. Some recognition tasks defined in non-Euclidean 
domains can make use of prior knowledge about graph struc-
ture [28]. However, many practical problems do not have 

(2)f (H,A) = Sof tmax(A∗Relu(A∗HW1)W2)

Table 1  Major notations and description

Notation Description

G The graph
V = v1, ..., vN The node set
E The edge set
N, M The node and edge number in the graph
A, D, L The adjacent matrix, degree matrix and 

Laplacian matrix of graph
H The node representation matrix
Y The node label
S The similarity matrix
P The embedding matrix in the input layer
W The weight matrix in the graph learning layer
F The mask matrix in the prediction layer
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such knowledge. Therefore, the input layer should be able to 
deal with two situations, that is, with and without a known 
adjacent matrix.

Currently, there are two types of methods for constructing 
the similarity matrix: unsupervised and supervised methods. 
The first step in unsupervised methods is to calculate the 
distance between features i and j:

where hi and hj are the representative vectors of features i 
and j respectively. This is the simplest way to calculate the 
distance. It can also be calculated by first regularizing the 
features. After obtaining the distance value, it is necessary 
to calculate the strength of the relationship between nodes 
using a Gaussian diffusion kernel [29]:

where � is the variance of the distance. The advantage of this 
unsupervised method is that there is no need to label data. 
Therefore, it can be used to estimate the similarity between 
data with the same characteristics. However, the estimated 
similarity between features depends on the chosen kernel 
function and distance calculation criteria, which may not 
be suitable for specific classification tasks. Besides, the dis-
tance calculation method in the Euclidean space is not nec-
essarily suitable for the calculation of the similarity in the 
non-Euclidean space, for example, some nodes with small 
distances calculated using (3) may not actually be connected. 
This is due to that the features used to calculate the distance 
may be unprocessed raw data that may not truly reflect the 
characteristics. For example, some physical connections are 
inherent, which are not related to similarity calculations. 

(3)d(i, j) = ‖hi − hj‖2

(4)S(i, j) = exp−d(i,j)∕�
2

Therefore, the similarity matrix established through unsu-
pervised methods is not suitable for the subsequent super-
vised learning process.

Therefore, we choose to use supervised methods to calcu-
late the similarity between nodes. The calculation is carried 
out in the graph learning step inside the input layer structure 
we designed. The entire input layer is shown in Fig. 3.

The inputs are the initial H0 and A0 . The outputs are 
H1 and A1 . In the case when the initial A0 is unavailable, 
kNN is used to construct A0 . Note that a modifying step is 
needed before outputting A1 . In kNN calculation, the dis-
tance between any two nodes is first calculated according to 
Formulas (4) and (5), and then only the top k closest values 
are retained as A0:

where topK(Si) is the set of the top k points closest to Si.
In the graph learning step, we use a single-layer neural 

network to calculate the similarity relationship:

(5)A0 =

{
sij, sij ∈ topK(Si),

0, sij ∉ topK(Si).

Fig. 1  Schematic illustration of 
the overall process of GLCNN 
computation

Fig. 2  The architecture of the 
proposed method. From left to 
right, it includes an input layer, 
n
th graph learning layers, and a 

prediction layer. The loss func-
tion includes two parts: node 
classification loss and graph 
learning loss

Fig. 3  Input layer structure
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where a is the weight vector, which needs to be obtained 
through the back-propagation algorithm. Assuming 
H0 ∈ ℝ

n×p , then a ∈ ℝ
p×1 , ReLU is the single activation 

function in the neural network. Sij reflects the strength of the 
connection between nodes i and j.

When the input node representation has a large dimen-
sion, the vector a will have a large dimension and the 
calculation of sij will be computationally intensive. To 
improve computational efficiency, we add a convolution 
(Conv) step before Graph learning step. We multiply H0 by 

(6)Sij =
exp(ReLU(aT �Hi − Hj�))

∑n

j=1
exp(ReLU(aT �Hi − Hj�))

a low-dimensional embedding matrix P ∈ ℝ
p×d so that the 

input of Graph learning has a lower dimension d.

In the Modifying step, we sum the similarity matrix S and A0 
learned by Graph learning so that the output A1 still contains 
the relationship information in A0.

where �1 is the weight coefficient between A0 and S. In sum-
mary, the pseudo-code of the input layer is shown below. It 
uses a kind of nonlinear function to compute the neighbor-
hood similarities between pairs.

(7)H∗

0
= H0P

(8)A1 = A0 + �1S

Fig. 4  Graph learning architecture

3.2.2  The graph learning layer

The structure is shown in Fig. 4. Similarly, the adjacent 
matrix Ai−1 and node representation Hi−1 of the previous 
layer are used as the input, the adjacent matrix Ai and node 
representation Hi of the current i layer are the output. In 
addition to GNN operation, graph Distilling and Pooling 
steps are introduced in the layer to reduce the overfitting 
of the algorithm. The adjacent matrix of each layer can be 
dynamically changed, which can make it adaptive to the cal-
culation of different layers.

The graph learning steps are the same as those of the 
input layer. The calculation of GNN adopts the graph con-
volution formula:

where Wi−1 is the weight matrix to be learned in this layer.
In the Distilling step, first, Ai−1 and Si−1 are added in the 

graph learning step. Then the new Ai is obtained through the 
following distillation formula:

(9)Zi−1 = ReLU(A∗

i−1
)Hi−1Wi−1

(10)
−

Ai−1 = Ai−1 + �2Si−1

(11)
Ai(p, q) = sparsemax(

−

Ai−1(p, q)) = [
−

Ai−1(p, q) − T(
−

Ai−1)]+

where �2 is the weighting between Ai−1 and Si−1 , The sparse-
max() function [30] returns all the values in the matrix that 
are greater than a certain threshold, and the remaining val-
ues all become 0, [x]+ = max{0, x} . T() is the distillation 
function, and returns the temperature value [31] that needs 
to be distilled according to the input matrix. Usually, the 
distillation temperature value is set to be a number that is 
proportional to the size of the input matrix. Assuming that 
the distillation function returns a constant temperature value 
of 0%, then Ai =

−

Ai−1 . If it returns a larger temperature value, 
such as 90%, the size of the adjacent matrix will be reduced 
by 90%, which means the largest 90% values in the matrix 
are removed. The distillation is an important step because 
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it eliminates many weak connections in the adjacent matrix 
that deteriorate the accuracy and efficiency of subsequent 
calculations.

In the Pooling step, the node representation output by 
GNN is pooled bitwise. Assuming that zv ∈ Zi−1 is a node 
representation vector to be pooled and taking the jth bit of 
the vector as an example, the pooling step replaces the jth 
bit of this vector by the maximum value of the jth bit of 
all neighboring node representations. This calculation is 
expressed as follows.

where N(hv) is the set of all neighboring nodes of node hv . 
The pooling step defined above is the same as the maximum 
pooling in the convolutional neural network. It does not need 
to rely on additional parameters, so it is easier to implement 
in graph convolution. In summary, the pseudo-code of the 
graph learning layer is shown in Algorithm 2.

(12)
−

hv(j) = max({hv(j), hk(j),∀hk ∈ N(hv)})

3.2.3  The prediction layer

In the final layer, we employ the softmax classifier to clas-
sify the node label.

where H∗ represents the input node representation, and W∗ 
represents the weight matrix to be trained in the prediction 
layer. The number of columns in Hout is b, which is the same 
as the number of categories in the classification problem.

To train the neural network shown in Fig. 2, it is neces-
sary to define a loss function, which is the combination of 
the node classification loss Lpred and the graph learning loss 
Lgl : L = Lpred + Lgl.

The node classification loss Lpred is defined as the cross-
entropy loss:

(13)Hout = sof tmax(A∗H∗W∗)

Table 2  Details of the datasets 
used in present work

Cora Citeseer Pubmed Simplified NELL MNIST SVHN

Type Citation network Knowledge graph Image
# Nodes 2708 3327 19717 9891 1000 1000
#Edges 5429 4732 44338 13142 None None
#Classes 7 6 3 210 10 10
#Features 1433 3703 500 5414 128 128
Labeling rate 0.052 0.036 0.003 0.01 0.30 0.30

where YL represents the set of nodes with labels in the clas-
sification problem, F is the mask matrix. If node i belongs 
to the class j, then Fij is 1, otherwise, it is 0.

The graph learning loss Lgl is formulated based on two 
prior pieces of knowledge: (1) Sparsity: The useful asso-
ciation relationships in the graph structure are sparse; (2) 
Smoothness: nodes that have similar representations have a 
strong connection relationship, otherwise, they have a weak 

(14)Lpred = −
∑

i∈YL

b∑

j=1

FijlogH
out
ij

connection relationship. Hence the graph learning loss con-
tains two parts:

where ||.||2 represents the 2-norm of the vector, ||.||F rep-
resents the Frobenius norm of the matrix. In the first part 
of the loss function, when the distance between node rep-
resentations hi and hj is large, it is encouraged to learn a 
small Sij value. With this optimization, the network becomes 
smooth. The second part controls the sparsity of the learned 

(15)Lgl =

n∑

i,j=1

||hi − hj||22Sij + �3||S||2F
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S. The denser the network is, the larger the result of this 
part becomes. When the data scale is large, the running 
resources may be exhausted. In this case, the second part 
can be removed. For example, the second part needs to be 
removed when running Pubmed citation data.

4  Experiment and analysis

The effectiveness of the GLCNN is tested on both Euclid-
ean datasets and non-Euclidean datasets. Firstly, we present 
the experiment setup. Then we compare the node classifica-
tion results and perform an ablation study. Finally, param-
eter sensitivity analysis is conducted. All experiments are 
implemented on a Win10 professional server with 4 GPUs 
and 32 GB RAM.

4.1  Experiment setup

The experiments are carried out on two kinds of datasets. 
One of them is in non-Euclidean space, in which the adja-
cent matrix is known in advance. The other is image datasets 
[32] in Euclidean space such as MINIST and SVHN. Here 

Fig. 5  Image data representa-
tions and t-SNE of MNIST, and 
SVHN. (a) MNIST. (b) SVHN. 
(c) t-SNE of MNIST.(d)t-SNE 
of SVHN

we utilize the first one thousand images of the full public 
dataset. The numbers of the datasets are listed in Table 2. 
Each node in a citation dataset represents a paper, and the 
edge represents the citation relationship between papers. The 
class is the research field of different papers. The Pubmed 
data set is currently the data set with the lowest labeling 
rate, and it has nearly 20,000 nodes and is large in scale. It 
is closer to the real environment where there is a lot of data 
but the labeling rate is very low. In the knowledge graph, the 
node represents the text description of things, and the edges 
represent the relationship between things. The NELL dataset 
represents another situation, that is, the number of classes 
is large but the average number of data used for training in 
each class is small, which makes training on that data very 
challenging. In an image dataset, each node is an image, and 
the feature is the RGB value of the image pixel. Since the 
image dataset has no edge, one needs to generate the initial 
adjacent matrix according to kNN in advance. The choice of 
k is 10, which corresponds to ten digits of 0-9. The purpose 
of using image datasets is to verify the applicability of the 
similarity mining process proposed in the previous section.

Figure 5 shows the image dataset, MNIST, which is a 
binary graph and SVHN, which is an image dataset with 
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RGB three channels. Figure 5 (c) and (d) are the 2-dimen-
sional visualizations of these two datasets using a dimension 
reduction algorithm. The ten colors represent ten numbers: 
0-9. The dimension reduction is performed using the t-SNE 
algorithm [33]. It is a non-linear dimensionality reduction 
method, which finds the structure in the data based on the 
probability distribution of random walk on the neighbor-
hood. It can be seen that images that have the same value 
trend to cluster together.

After tuning, the hyper-parameters are set as follows: the 
number of the graph learning layer is 1, dropout value is 
0.6, weight decay is set to 1e-4 except for the case of Cit-
eseer dataset, in which the weight decay is 1e-3. The last 
10% of the similarity matrix value is set to 0 according to 
the descending order. The dimension of node representation 
embedding in the input layer is 70, and the dimension of 
GNN output in the graph learning layer is 30.

4.2  Node classification results

Table 3 summarizes the accuracy of the node classification 
results of different algorithms. The calculations of means 
and variances are based on the result of 20 runs. Transduc-
tive learning is used in this work because the node repre-
sentation of the validation set and the test set have been 
used in training. In the table, n/a means that this method 

is not applicable for the image dataset in Euclidean space. 
The number in parentheses indicates that accuracy is calcu-
lated using the adjacent matrix constructed by kNN as input. 
The symbol - means that the accuracy cannot be obtained 
because their code is not public available.

It can be seen that Deepwalk and Planetoid have a rela-
tively poor performance, because they are all random-walk 
based algorithms, which cannot effectively mine graph struc-
ture information. Compared with GCN, the accuracies of 
GLCNN are higher in most datasets. This advantage is more 
obvious on the Euclidean dataset. That is because our graph 
learning layer can learn the association relations useful for 
downstream classification tasks, and further, make the node 
representations of the output layer more distinctive. The per-
formance of the GLCNN is better than that of the GAT in all 
datasets except Citeseer for the same reason, which further 
demonstrates its advantages in graph data representation and 
learning. JLGCN and Graphzoom all have a compression 
operation in learning node representation, which may lose 
part of the node information. They also have a process of 
dynamically adjusting the similarity matrix, but generally, 
they are still inferior to our algorithm. The GLCN algorithm 
cannot dynamically adjust the similarity relationship dur-
ing the learning process. Although good results have been 
achieved on Cora and Citeseer, it still has certain limita-
tions in processing Euclidean-space data, which our work is 
superior. Compared with HGAT, although the effect is not 

Table 3  Results of node classification in terms of accuracies on various datasets in the transductive setting

Method Cora Citeseer Pubmed Simplified NELL MNIST SVHN

DeepWalk [34] 67.2% 43.2% 65.3% 28.2% n/a n/a
Planetoid [35] 75.7% 64.7% 77.2% 37.7% n/a n/a
GCN [10] 81.5% 70.3% 79.0% 38.0% n/a(69.0%) n/a(13.0%)
GAT [13] 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3% 38.2 ± 0.6% n/a(66.0%) n/a(13.0%)
JLGCN [20] 83.9% 73.3% – – n/a n/a
Graphzoom [5] 83.9% 71.1% 77.1% – n/a n/a
GLCN [22] 85.5% 72.0% 78.3% – n/a n/a
HGAT [36] 83.7 ± 0.3% 73.3 ± 0.4% 79.8 ± 0.1% 41.1 ± 0.5% n/a(67.4% ± 0.5%) n/a(40.0%± 0.1%)
GLCNN 84.6 ± 0.2% 71.4 ± 0.2% 79.0 ± 0.2% 38.3 ± 0.1% 70.5% ± 0.5% 41.1%± 0.5%

Table 4  Comparison of 
different aspects of the proposed 
method

Method Propagation model Adjacent matrix Euclidean data Complexity

GCN [10] D
−1∕2

AD
−1∕2

HW given cannot O(N)
GAT [13] �HW weighted cannot O(N2)

JLGCN [20] Λ−1∕2(A + A
∗)Λ−1∕2

HW adaptive cannot O(N)
Graphzoom [5] (D−1∕2

AD
−1∕2)kHW weighted cannot O(N)

GLCN [22] D
−1∕2

SD
−1∕2

HW weighted can O(N)
HGAT [36] �W(MH + H

∗) weighted cannot O(N2)

GLCNN (A + �S)HW adaptive can O(N)
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very prominent on graph datasets, significant progress has 
been made on image datasets. The possible reason is that 
the hierarchical method can better learn the node represen-
tation in non-Euclidean space. Most recently, some works 
like GCNII [17] are said to achieve the best results on the 
first three datasets in the table. However, they are pre-print 
work, which is lacks of validation. So we did not list them. 
In a nutshell, even though our algorithm could not achieve 
the best results on all non-Euclidean datasets, we believe 
it is at least a competitive one. And we emphasize it has a 
significant improvement on the Euclidean dataset compared 
with other graph neural networks, indicating the effective-
ness of graph learning layer.

In addition to the accuracy, we also further compared the 
propagation model, the generation method of the adjacent 
matrix and the time complexity of the proposed method with 
the other GCN work as listed in Table 4. The propagation 
model is the main indicator that distinguishes different GCN 
algorithms. We briefly listed them in the table, the specific 
meaning of each formula can refer to the references. Differ-
ent propagation models essentially result in different ways to 
handle the adjacent matrix. Whether the adjacent matrix A is 
directly given or calculated using the subsequent weighted 
method, it cannot be dynamically adjusted according to dif-
ferent downstream tasks in the multi-layer connection. The 
opposite is the adaptive method, where each layer dynami-
cally adjusts the A structure. This is why our method is better 
than others. The time complexity in the table refers to the 
relationship between the running time of the algorithm and 
the node number N. It can be seen that the GAT-based meth-
ods need to calculate the attention layer � , and the calcula-
tion time increases quadratically with the number of nodes 
N. Our proposed method and other GCN methods have a 
linear complexity.

Before showing the learned similarity relationship, the 
input and the output of node representation are visualized to 
illustrate the mechanism of classification. Taking the Cora 
dataset as an example, the visualization are shown in Fig. 6. 
In the representation of output nodes, the separation between 
different classes is clearer than that of the input. Hence, the 
classification ability of the GLCNN algorithm in node rep-
resentation and in semi-supervised classification is expected 
to be improved.

To illustrate the change of the similarity matrix after 
the graph learning layer intuitively, we use the heat map 

Fig. 6  t-SNE visualization of 
node representation of Cora. (a) 
Node representation of inputs. 
(b) Node representation of 
outputs

Fig. 7  Heat maps of the adjacent matrix of Cora. (a) The loaded simi-
larity matrix. (b) The similarity matrix learned after the Graph learn-
ing layer

Table 5  The comparative experiments on three different type datasets

Method Cora Simplified NELL MNIST

GLCNN 84.6 ± 0.2% 38.3 ± 0.1% 70.5 ± 0.5%
GLCNN-w/o 

graph learning 
layer

84.4 ± 0.1% 38.2 ± 0.1% 70.0 ± 0.2%
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to visualize it, which is plotted in Fig. 7. In this case, only 
the values of the first 50 nodes are shown in the graph. The 
change of values of the adjacent matrix can be seen clearly 
in the two enlarged regions. This demonstrates that the graph 
learning layer can dynamically adjust the similarity matrix 
in the graph so that the subsequent node classification can 
have higher accuracy.

4.3  Ablation study

To illustrate the role of the graph learning layer, an abla-
tion experiment is conducted to compare the accuracy of 
the GLCNN algorithm on three datasets with and without 
the learning layer.

It can be seen from Table 5 that the accuracy of classi-
fication decreased slightly after removing the graph learn-
ing layer, indicating the graph learning layer proposed in 
this work has a certain effect. The training and validation 
accuracies of GLCNN and GLCNN without graph learning 
layer on Cora dataset are plotted in Fig. 8. It can be seen 
the difference between the validation set and training set is 
smaller, which shows that the graph distilling and pooling 

can effectively improve the accuracy of similarity matrix 
mining by avoiding over-fitting.

4.4  Parameter study

In order to assess the robustness of GLCNN on noisy graphs, 
we build graphs with random edge deletions or additions. 
The experiments are conducted on Cora and MNIST data-
sets. On the Cora dataset, the number of edges is randomly 
removed or added by 25%, 50%, and 75% of the original 
total number, respectively. On the MNIST dataset, we ran-
domly add the number of edges by 5%, 15%, and 25% of the 
original total number, and remove the number of edges by 
25%, 50%, and 75% of the original total number.

Testing accuracies of the GLCNN on various “noisy” 
Cora and MNIST datasets are plotted in Figs. 9 and 10 
respectively. Results show that on the Cora dataset, the 
accuracies of both GLCNN and GCN algorithms decrease 
significantly with the deleted edges, but the declining speed 
of the GLCNN is lower than that of the GCN because 
the graph learning layer can offset part of the edge prun-
ing effect. When new edges are added, the accuracy of the 
GLCNN remains nearly unchanged, while the accuracy of 

Fig. 8  Algorithm training 
loss and accuracy curves. (a) 
GLCNN. (b) GLCNN-w/o 
graph learning layer

Fig. 9  The relationship between 
the test accuracy (±standard 
deviation) and (a) the ratio of 
the removed edges and (b) the 
ratio of the added edges on the 
Cora dataset
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the GCN declines significantly, indicating that the GLCNN 
is much more robust than GCN. As for the MNIST dataset, 
contrary to our intuition, the test accuracy does not decrease 
monotonically with the number of deleted edges. The reason 
might be that for the data in this non-Euclidean space, the 
initial adjacency matrix is generated by the kNN algorithm, 
so it may contain a lot of invalid information. When the 
proportion of deleted edges increases to 75%, most of the 
invalid connections are filtered out. Although some effective 
connections are also likely to be filtered out, the remaining 
effective connections are enough to allow the algorithm to 
achieve higher accuracy. For the case with increased edges, 
both GLCNN and GCN show an obvious decreasing trend, 
however, the declining speed of GLCNN is slower than that 
of GCN, which shows that the graph learning layer still 
works, but the effect is not as large as that on Cora.

The number of graph learning layers and distillation 
degree are two key parameters in GLCNN. In order to 
explore their influence on the accuracy of results, sensitiv-
ity analyses are conducted on two datasets. The number of 
layers varies from 1 to 2, and the distilling temperature value 
is set to be 5%, 10%, and 25% respectively.

It can be seen from Table 6 that the classification accura-
cies of cases with two graph learning layers are not as good 
as that of the single layer. It may be due to the Laplacian 
smoothing phenomenon caused by twice convolution [37], 
which reduces the classification accuracy. When the distil-
lation degree is 5%, the accuracy is less than that of 10%. 
Because many noises in the correlation are not removed. 

However, when the distillation degree is too large, for exam-
ple, 25%, the accuracy rate shows a downward trend, pos-
sibly due to the fact that the useful connection information is 
also distilled away. The results of the bilevel graph learning 
layer on the MNIST dataset are different. The accuracy rate 
increases with the increased distillation degree, which indi-
cates that the positive benefit of distillation is greater than 
the negative effect caused by Laplacian smoothing.

5  Conclusions and future work

In this paper, we present a similarity matrix learning method 
and establish a novel graph learning convolutional neural 
network. The experiment results verify the effectiveness of 
the GLCNN to the downstream node classification tasks. It 
can be implemented on both Euclidean and non-Euclidean 
datasets. In the graph learning layer, the node representa-
tion and similarity matrix can update simultaneously, which 
helps to mine the hidden connectivity and to boost the algo-
rithm performance. Graph distilling and pooling operations 
are proposed to reduce over-fitting. The experiments show 
that GLCNN achieves competitive results among state-of-
the-art methods. It obtains a relatively higher classification 
accuracy on most of the datasets, and the advantageous are 
more obvious on non-graph structured datasets. Future work 
can be carried out along the following directions. Firstly, 
the proposed GLCNN algorithm is only compared with the 
previous GCN algorithm on image datasets. There is still a 

Fig. 10  The relationship 
between the test accuracy 
(±standard deviation) and (a) 
the ratio of the removed edges 
and (b) the ratio of the added 
edges on the MNIST dataset

Table 6  Impact of the number 
of layers and distillation degree 
on the accuracy of classification 
results

#layer Citeseer MNIST

0.05 0.1 0.25 0.05 0.1 0.25

1 71.0 ± 0.1% 71.4 ± 0.2% 69.8 ± 0.2% 64.5 ± 0.2% 70.5 ± 0.5% 63.5 ± 0.5%
2 66.4 ± 0.2% 66.8 ± 0.5% 66.3 ± 0.3% 66.0 ± 1.5% 67.0 ± 0.5% 67.5 ± 0.5%
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big gap with the traditional CNN method, which is also the 
direction to be improved in the future. Secondly, for Euclid-
ean datasets with an unknown category number, the k value 
of kNN in the input layer will have a great impact on down-
stream tasks. The development of a systematic approach to 
select k is also one of the directions of follow-up research. 
More recently, spiking neural network (SNN) is developed 
by imitating the communication mechanism of biological 
neurons [38, 39]. It is a highly energy-efficient network and 
suitable for hardware implantation. However, due to its dis-
crete input, the training procedure is not as straightforward 
as that of the conventional neural networks. It has not been 
popularized in various tasks like CNN and is still in the 
development stage. Our method belongs to the conventional 
neural network, which uses straightforward backpropagation 
to train. Converting the architecture and weight of GCN to 
SNN directly could avoid the difficulty in training SNN. It 
might also be possible to combine the advantages of both 
and make our method run more efficiently on the hardware. 
It can be an interesting research direction in the future.
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