
https://doi.org/10.1007/s10489-022-03233-9

Semi‑supervised node classification via graph learning convolutional
neural network

Kangjie Li1,2 · Wenjing Ye1

Accepted: 11 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Graph convolutional neural networks (GCNs) have become increasingly popular in recent times due to the emerging graph
data in scenes such as social networks and recommendation systems. However, engineering graph data are often noisy and
incomplete or even unavailable, making it challenging or impossible to implement the de facto GCNs method directly on
them. Current efforts for tackling this issue either require an overparameterized model that is hard to scale, or simply re-
weight the existing edges for different downward tasks. In this work, we tackle this problem through introducing a graph
learning convolutional neural network (GLCNN), which can be employed on both Euclidean space data and non-Euclidean
space data. The similarity matrix is learned by a supervised method in the graph learning layer of the GLCNN. Moreover,
graph pooling and distilling operations are utilized to reduce over-fitting. Comparative experiments are done on three different
datasets: citation dataset, knowledge graph dataset, and image dataset. Results demonstrate that the GLCNN can improve the
accuracy of the semi-supervised node classification by mining useful relationships among nodes. The performance is more
obvious especially on datasets of Euclidean space. Specifically, GLCNN outperforms the best baseline by 3.1% and 1.1%
on MNIST and SVHN datasets. Moreover, the robustness is explored by adding noises on the edge of the graph. Sensitive
analysis and visualizations are performed to demonstrate effects of some key parameters.

Keywords Graph learning · Semi-supervised · Graph convolutional neural networks

1 Introduction

Deep learning (DL) has achieved enormous success in the
past ten years due to the increased GPU computing power,
the much-expanded data scale, and the effectiveness of
increasingly complex models in extracting information on
the Euclidean space data. In recent years, the application
of machine learning algorithms on graph data has received
widespread attention, and the GCNs have been developed
rapidly. It has been used in the recommendations system
[1, 2], the image segmentation [3], and drug discovery [4]

et al. However, GCNs can only be used when the graph
structure of data is available. Most models assume that the
initial graph structure can accurately reflect the relationship
between nodes, however, real-world graph are not suitable
for different downstream tasks due to the incomplete or
presence of noise. Therefore, GCNs based on such ideal-
ized assumptions will inevitably lead to sub-optimal results.
Neglecting that is an intrinsic shortcoming of many GCN
methods.

Recently, Deng et al. [5] constructed a weighted graph in
the process of graph embedding. They manually converted
the initial attribute matrix into an attribute graph by select-
ing k-nearest-neighbors after the spectral graph clustering.
This typical unsupervised method was highly subjective. Yu
et al. [6] raised a graph-revised module using GCN. The
change of the original graph structure was done by changing
the weights of existing edges and adding new edges. The
experiment proved that this module was effective when the
graph was incomplete or when the labeling rate was low.
However, it learned one fixed graph for all the subsequent
GCN layers. More recently, Franceschi et al. [7] proposed

 * Wenjing Ye
 mewye@ust.hk

 Kangjie Li
 kliba@connect.ust.hk

1 Department of Mechanical and Aerospace Engineering, The
Hong Kong University of Science and Technology Clear
Water Bay, Kowloon, Hong Kong

2 State Key Laboratory of Fluid Power and Mechatronic
Systems, Zhejiang University, Hangzhou, China

/ Published online: 10 February 2022

Applied Intelligence (2022) 52:12724–12736

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03233-9&domain=pdf

Semi-supervised node classification via graph learning convolutional neural network

an advanced method that could learn the parameters of GCN
and the graph simultaneously by solving a bilevel program.
The idea was inspiring, however, this approach suffered from
a scalability problem. It needs to lean the N2 parameters of
the N-node graph. The existing methods that manually con-
struct an adjacent matrix or learn a fixed adjacent matrix for
the rest layer have a limited effect on the downstream task. In
this paper, GLCNN for semi-supervised node classification
is proposed. The network can be employed when the graph
structure has large noise or when the adjacent relationship
is unknown. The GLCNN contains the input layer, graph
learning layer, and prediction layer. It can update the node
representation and the adjacent matrix simultaneously in
the graph learning layer. Through the graph distilling and
pooling operations, it can reduce the over-fitting effect. The
prediction layer outputs node labels, which allows the cal-
culation of classification accuracy. The experiments show
that the learned graph structure is effective especially on the
Euclidean dataset.

We mainly have the following three contributions. First,
the graph learning layer is defined to dynamically adjust the
adjacent relationship, which is more effective in fully min-
ing the hidden connection information in the graph. Second,
graph distilling operation is defined to further remove noise.
Experiments show that our method can achieve robustness
at a low labeling rate. Lastly, GLCNN can handle datasets
where the graph structure is not known such as images, and
experiment results indicate its effectiveness. The codes used
in our experiments will be uploaded at https:// github. com/
LeeKa ngjie after publication.

The next four sections are arranged as follows. Some
related works about GCN and graph learning are listed in
Section 2. The GLCNN details are interpreted in Section 3.
The results of the experiments and comparison on different
datasets are given in Section 4. The summary and outlook
are made in the last section.

2 Related works

2.1 Graph convolutional neural networks

Most researches about GCN can be categorized into spec-
tral-based and spatial-based methods [8]. They have all
developed rapidly in recent years. For example, Monti et al.
[9] proposed MoNet, a unified framework that could gener-
alize the CNN architecture to non-Euclidean domains like
manifolds and graphs. They showed that several existing
non-Euclidean CNN methods could be regarded as specific
examples of their framework. Kipf et al. [10] raised a scal-
able network for semi-supervised learning on graph data. It
employed the 1st order truncation of Chebyshev polynomials

of spectral graph convolutions. However, the computation
was non-parallel and suffered from a Laplacian smoothing
problem. Hamilton et al. [11] proposed GraphSAGE, which
could generate node embeddings by sampling and aggregat-
ing the representations from its neighborhood. In order to
overcome the limited range of neighborhood aggregation
procedure, Xu et al. [12] proposed a JK-net inspired by the
random walk. It could learn structure-aware node representa-
tions by leveraging different neighborhood ranges. However,
it could not fully use the graph information by random-walk
strategy. Petar et al. [13] presented graph attention networks
(GATs) by assigning different weights to different neighbor-
hoods. It leveraged a masked self-attentional layer without
costly matrix operations. As the spectral-based GCNs cannot
be directly implemented on the directed graph, Ma et al. [14]
proposed an improved approach by making use of refined
Laplacians, which had a stronger ability to extract features
from directed graphs. In order to convert graph structure
data into grid structure, Gao et al. [15] proposed a learnable
graph convolutional layer (LGCL), which selected a fixed
number of neighboring nodes when calculating each feature.
However, it could not perform down-sampling on graphs and
is mainly applied to generic graph data. To resolve the chal-
lenge of applying GCN on the dynamic graph, Pareja et al.
[16] proposed EvolveGCN, which adjusted the model along
the temporal dimension. Chen et al. [17] studied the shallow-
structure problem of most GCN models and proposed the
GCNII to relieve the problem of over-smoothing. To obtain
a more efficient convolution layer, Fu et al. [18] introduced
Hessian graph convolutional networks (HesGCN) and opti-
mized the one-order spectral graph Hessian convolutions.

2.2 Graph learning methods

As for graph learning, when a graph structure is unavailable,
a simple approach is to create a k-nearest neighbor (kNN)
graph [19] using the measurement of the similarity between
two nodes. For instance, Deng et al. [5] generated a kNN
graph based on the l2-norm distance between the represen-
tations of two nodes. Tang et al. [20] devised a method to
dynamically learn the graphs that could adapt to the under-
lying structure of node representations in various layers.
However, the graph creation and parameter learning steps
were independent. The graph could not guarantee to best
facilitate GCN learning. Lately, more and more approaches
to automatically build a graph is explored. Henaff et al. [21]
proposed a fully connected network to learn the graph in a
supervised manner. But the learning process was separated
from the parameter learning in GCN, which could not guar-
antee to be useful to the downstream task. Jiang et al. [22]
proposed a graph learning convolutional network (GLCN),
which learned an optimal graph by integrating graph convo-
lution and graph learning in one network architecture. But it

12725

1 3

https://github.com/LeeKangjie
https://github.com/LeeKangjie

K. Li, W. Ye

could not deal with situations when the adjacent matrix was
noisy. In order to use data of different graph structure as the
input, Li et al. [23] raised a generalized and flexible GCN.
It could learn a task-driven adaptive graph by learning the
distance metric. The graph learning quality directly influ-
ences the semi-supervised classification task. Lin et al. [24]
proposed a deep graph learning to find better node feature
by learning the global structure and local structure simulta-
neously. In order to apply GCN-based graph learning on a
large-scale graph, Yang et al. [25] presented Node2Grids to
map the coupled graph data into grid-like data, which could
save memory and computational resource. Pu et al. [26] pro-
posed an innovative graph learning method that could incor-
porate node-side and observation-side knowledge together.
It could improve the durability of graph learning on missing
and incomplete graph data.

3 Methodology

We first present notation and preliminary knowledge of the
graph theory and graph convolutional neural networks. We
then describe the proposed GLCNN and its architecture,
which is split into the input layer, graph learning layer, and
prediction layer. A detailed explanation of the implementa-
tion details is given last.

3.1 Notation and preliminary

Consider a graph G which includes a node set
V =

{
v1, ..., vN

}
 and an edge set E1,..,M ⊆ V × V , where N

and M are the nodes and edges numbers. The connectivity
relationship of the nodes in the graph can be expressed as the
adjacent matrix A with a size of N × N . If nodes vi and vj are
connected, Ai,j is 1, otherwise, it is 0. The Laplacian matrix
of the graph is calculated as L = D − A , where Di,i =

∑
j Ai,j .

If i ≠ j,Di,j = 0 . The degree matrix D is used to perform the
normalization of A as shown later.

GCNs are a very important type of machine learning
model used on graph structure data. All GCNs have two
common inputs. The first is the node representation matrix
H ⊂ ℝ

N×n , where n is the dimension of the node representa-
tion. The second is the adjacent matrix A. Given a training
set Vtrain , the aim is to train a mapping function f, that is
f (H,A) → Y , to minimize the loss function:

where W is the weight matrix in the mapping function f,
f (H,A)v is the predicted label of all nodes in the training set.
l is the loss function, which is commonly the cross-entropy

(1)Loss =
∑

v∈Vtrain

l(f (H,A)v, yv) +�(W)

loss. � is the regularization function, which is used to pre-
vent over-fitting. Otherwise the network will remember the
training dataset and produce a large bias on the test datasets.
For example, Kipf et al. [10] proposed a two-layer GCN as
the mapping f, as shown in the following expression:

whereA∗ = D−1∕2(A + I)D−1∕2 , D is the diagonal matrix
withDi,i = 1 +

∑
j Ai,j.

The major notations used in the present paper are sum-
marized in Table 1.

3.2 GLCNN architecture

Some recognition tasks in the non-Euclidean domain might not
have prior knowledge of graph structure. It is necessary to esti-
mate a similarity matrix first [27]. The problem to be solved by
the GLCNN can be described as follows. For data with a graph
structure, it optimizes the graph structure by mining the associa-
tion relationship and further applies the relationship to down-
stream tasks. For data without graph structure, it firstly uses kNN
to build a graph and then optimizes the graph. The schematic
diagram of the whole process is shown in Fig. 1.

The GLCNN is used to mine the similarity matrix and
validate the effectiveness of the graph learning process. It
contains the input layer, graph learning layer, and prediction
layer as shown in Fig. 2. A more detailed description of each
layer is provided in subsections.

3.2.1 The input layer

The topological structures are rich sources of discriminative
features. Some recognition tasks defined in non-Euclidean
domains can make use of prior knowledge about graph struc-
ture [28]. However, many practical problems do not have

(2)f (H,A) = Sof tmax(A∗Relu(A∗HW1)W2)

Table 1 Major notations and description

Notation Description

G The graph
V = v1, ..., vN The node set
E The edge set
N, M The node and edge number in the graph
A, D, L The adjacent matrix, degree matrix and

Laplacian matrix of graph
H The node representation matrix
Y The node label
S The similarity matrix
P The embedding matrix in the input layer
W The weight matrix in the graph learning layer
F The mask matrix in the prediction layer

12726

1 3

Semi-supervised node classification via graph learning convolutional neural network

such knowledge. Therefore, the input layer should be able to
deal with two situations, that is, with and without a known
adjacent matrix.

Currently, there are two types of methods for constructing
the similarity matrix: unsupervised and supervised methods.
The first step in unsupervised methods is to calculate the
distance between features i and j:

where hi and hj are the representative vectors of features i
and j respectively. This is the simplest way to calculate the
distance. It can also be calculated by first regularizing the
features. After obtaining the distance value, it is necessary
to calculate the strength of the relationship between nodes
using a Gaussian diffusion kernel [29]:

where � is the variance of the distance. The advantage of this
unsupervised method is that there is no need to label data.
Therefore, it can be used to estimate the similarity between
data with the same characteristics. However, the estimated
similarity between features depends on the chosen kernel
function and distance calculation criteria, which may not
be suitable for specific classification tasks. Besides, the dis-
tance calculation method in the Euclidean space is not nec-
essarily suitable for the calculation of the similarity in the
non-Euclidean space, for example, some nodes with small
distances calculated using (3) may not actually be connected.
This is due to that the features used to calculate the distance
may be unprocessed raw data that may not truly reflect the
characteristics. For example, some physical connections are
inherent, which are not related to similarity calculations.

(3)d(i, j) = ‖hi − hj‖2

(4)S(i, j) = exp−d(i,j)∕�
2

Therefore, the similarity matrix established through unsu-
pervised methods is not suitable for the subsequent super-
vised learning process.

Therefore, we choose to use supervised methods to calcu-
late the similarity between nodes. The calculation is carried
out in the graph learning step inside the input layer structure
we designed. The entire input layer is shown in Fig. 3.

The inputs are the initial H0 and A0 . The outputs are
H1 and A1 . In the case when the initial A0 is unavailable,
kNN is used to construct A0 . Note that a modifying step is
needed before outputting A1 . In kNN calculation, the dis-
tance between any two nodes is first calculated according to
Formulas (4) and (5), and then only the top k closest values
are retained as A0:

where topK(Si) is the set of the top k points closest to Si.
In the graph learning step, we use a single-layer neural

network to calculate the similarity relationship:

(5)A0 =

{
sij, sij ∈ topK(Si),

0, sij ∉ topK(Si).

Fig. 1 Schematic illustration of
the overall process of GLCNN
computation

Fig. 2 The architecture of the
proposed method. From left to
right, it includes an input layer,
n
th graph learning layers, and a

prediction layer. The loss func-
tion includes two parts: node
classification loss and graph
learning loss

Fig. 3 Input layer structure

12727

1 3

K. Li, W. Ye

where a is the weight vector, which needs to be obtained
through the back-propagation algorithm. Assuming
H0 ∈ ℝ

n×p , then a ∈ ℝ
p×1 , ReLU is the single activation

function in the neural network. Sij reflects the strength of the
connection between nodes i and j.

When the input node representation has a large dimen-
sion, the vector a will have a large dimension and the
calculation of sij will be computationally intensive. To
improve computational efficiency, we add a convolution
(Conv) step before Graph learning step. We multiply H0 by

(6)Sij =
exp(ReLU(aT �Hi − Hj�))

∑n

j=1
exp(ReLU(aT �Hi − Hj�))

a low-dimensional embedding matrix P ∈ ℝ
p×d so that the

input of Graph learning has a lower dimension d.

In the Modifying step, we sum the similarity matrix S and A0
learned by Graph learning so that the output A1 still contains
the relationship information in A0.

where �1 is the weight coefficient between A0 and S. In sum-
mary, the pseudo-code of the input layer is shown below. It
uses a kind of nonlinear function to compute the neighbor-
hood similarities between pairs.

(7)H∗

0
= H0P

(8)A1 = A0 + �1S

Fig. 4 Graph learning architecture

3.2.2 The graph learning layer

The structure is shown in Fig. 4. Similarly, the adjacent
matrix Ai−1 and node representation Hi−1 of the previous
layer are used as the input, the adjacent matrix Ai and node
representation Hi of the current i layer are the output. In
addition to GNN operation, graph Distilling and Pooling
steps are introduced in the layer to reduce the overfitting
of the algorithm. The adjacent matrix of each layer can be
dynamically changed, which can make it adaptive to the cal-
culation of different layers.

The graph learning steps are the same as those of the
input layer. The calculation of GNN adopts the graph con-
volution formula:

where Wi−1 is the weight matrix to be learned in this layer.
In the Distilling step, first, Ai−1 and Si−1 are added in the

graph learning step. Then the new Ai is obtained through the
following distillation formula:

(9)Zi−1 = ReLU(A∗

i−1
)Hi−1Wi−1

(10)
−

Ai−1 = Ai−1 + �2Si−1

(11)
Ai(p, q) = sparsemax(

−

Ai−1(p, q)) = [
−

Ai−1(p, q) − T(
−

Ai−1)]+

where �2 is the weighting between Ai−1 and Si−1 , The sparse-
max() function [30] returns all the values in the matrix that
are greater than a certain threshold, and the remaining val-
ues all become 0, [x]+ = max{0, x} . T() is the distillation
function, and returns the temperature value [31] that needs
to be distilled according to the input matrix. Usually, the
distillation temperature value is set to be a number that is
proportional to the size of the input matrix. Assuming that
the distillation function returns a constant temperature value
of 0%, then Ai =

−

Ai−1 . If it returns a larger temperature value,
such as 90%, the size of the adjacent matrix will be reduced
by 90%, which means the largest 90% values in the matrix
are removed. The distillation is an important step because

12728

1 3

Semi-supervised node classification via graph learning convolutional neural network

it eliminates many weak connections in the adjacent matrix
that deteriorate the accuracy and efficiency of subsequent
calculations.

In the Pooling step, the node representation output by
GNN is pooled bitwise. Assuming that zv ∈ Zi−1 is a node
representation vector to be pooled and taking the jth bit of
the vector as an example, the pooling step replaces the jth
bit of this vector by the maximum value of the jth bit of
all neighboring node representations. This calculation is
expressed as follows.

where N(hv) is the set of all neighboring nodes of node hv .
The pooling step defined above is the same as the maximum
pooling in the convolutional neural network. It does not need
to rely on additional parameters, so it is easier to implement
in graph convolution. In summary, the pseudo-code of the
graph learning layer is shown in Algorithm 2.

(12)
−

hv(j) = max({hv(j), hk(j),∀hk ∈ N(hv)})

3.2.3 The prediction layer

In the final layer, we employ the softmax classifier to clas-
sify the node label.

where H∗ represents the input node representation, and W∗
represents the weight matrix to be trained in the prediction
layer. The number of columns in Hout is b, which is the same
as the number of categories in the classification problem.

To train the neural network shown in Fig. 2, it is neces-
sary to define a loss function, which is the combination of
the node classification loss Lpred and the graph learning loss
Lgl : L = Lpred + Lgl.

The node classification loss Lpred is defined as the cross-
entropy loss:

(13)Hout = sof tmax(A∗H∗W∗)

Table 2 Details of the datasets
used in present work

Cora Citeseer Pubmed Simplified NELL MNIST SVHN

Type Citation network Knowledge graph Image
Nodes 2708 3327 19717 9891 1000 1000
#Edges 5429 4732 44338 13142 None None
#Classes 7 6 3 210 10 10
#Features 1433 3703 500 5414 128 128
Labeling rate 0.052 0.036 0.003 0.01 0.30 0.30

where YL represents the set of nodes with labels in the clas-
sification problem, F is the mask matrix. If node i belongs
to the class j, then Fij is 1, otherwise, it is 0.

The graph learning loss Lgl is formulated based on two
prior pieces of knowledge: (1) Sparsity: The useful asso-
ciation relationships in the graph structure are sparse; (2)
Smoothness: nodes that have similar representations have a
strong connection relationship, otherwise, they have a weak

(14)Lpred = −
∑

i∈YL

b∑

j=1

FijlogH
out
ij

connection relationship. Hence the graph learning loss con-
tains two parts:

where ||.||2 represents the 2-norm of the vector, ||.||F rep-
resents the Frobenius norm of the matrix. In the first part
of the loss function, when the distance between node rep-
resentations hi and hj is large, it is encouraged to learn a
small Sij value. With this optimization, the network becomes
smooth. The second part controls the sparsity of the learned

(15)Lgl =

n∑

i,j=1

||hi − hj||22Sij + �3||S||2F

12729

1 3

K. Li, W. Ye

S. The denser the network is, the larger the result of this
part becomes. When the data scale is large, the running
resources may be exhausted. In this case, the second part
can be removed. For example, the second part needs to be
removed when running Pubmed citation data.

4 Experiment and analysis

The effectiveness of the GLCNN is tested on both Euclid-
ean datasets and non-Euclidean datasets. Firstly, we present
the experiment setup. Then we compare the node classifica-
tion results and perform an ablation study. Finally, param-
eter sensitivity analysis is conducted. All experiments are
implemented on a Win10 professional server with 4 GPUs
and 32 GB RAM.

4.1 Experiment setup

The experiments are carried out on two kinds of datasets.
One of them is in non-Euclidean space, in which the adja-
cent matrix is known in advance. The other is image datasets
[32] in Euclidean space such as MINIST and SVHN. Here

Fig. 5 Image data representa-
tions and t-SNE of MNIST, and
SVHN. (a) MNIST. (b) SVHN.
(c) t-SNE of MNIST.(d)t-SNE
of SVHN

we utilize the first one thousand images of the full public
dataset. The numbers of the datasets are listed in Table 2.
Each node in a citation dataset represents a paper, and the
edge represents the citation relationship between papers. The
class is the research field of different papers. The Pubmed
data set is currently the data set with the lowest labeling
rate, and it has nearly 20,000 nodes and is large in scale. It
is closer to the real environment where there is a lot of data
but the labeling rate is very low. In the knowledge graph, the
node represents the text description of things, and the edges
represent the relationship between things. The NELL dataset
represents another situation, that is, the number of classes
is large but the average number of data used for training in
each class is small, which makes training on that data very
challenging. In an image dataset, each node is an image, and
the feature is the RGB value of the image pixel. Since the
image dataset has no edge, one needs to generate the initial
adjacent matrix according to kNN in advance. The choice of
k is 10, which corresponds to ten digits of 0-9. The purpose
of using image datasets is to verify the applicability of the
similarity mining process proposed in the previous section.

Figure 5 shows the image dataset, MNIST, which is a
binary graph and SVHN, which is an image dataset with

12730

1 3

Semi-supervised node classification via graph learning convolutional neural network

RGB three channels. Figure 5 (c) and (d) are the 2-dimen-
sional visualizations of these two datasets using a dimension
reduction algorithm. The ten colors represent ten numbers:
0-9. The dimension reduction is performed using the t-SNE
algorithm [33]. It is a non-linear dimensionality reduction
method, which finds the structure in the data based on the
probability distribution of random walk on the neighbor-
hood. It can be seen that images that have the same value
trend to cluster together.

After tuning, the hyper-parameters are set as follows: the
number of the graph learning layer is 1, dropout value is
0.6, weight decay is set to 1e-4 except for the case of Cit-
eseer dataset, in which the weight decay is 1e-3. The last
10% of the similarity matrix value is set to 0 according to
the descending order. The dimension of node representation
embedding in the input layer is 70, and the dimension of
GNN output in the graph learning layer is 30.

4.2 Node classification results

Table 3 summarizes the accuracy of the node classification
results of different algorithms. The calculations of means
and variances are based on the result of 20 runs. Transduc-
tive learning is used in this work because the node repre-
sentation of the validation set and the test set have been
used in training. In the table, n/a means that this method

is not applicable for the image dataset in Euclidean space.
The number in parentheses indicates that accuracy is calcu-
lated using the adjacent matrix constructed by kNN as input.
The symbol - means that the accuracy cannot be obtained
because their code is not public available.

It can be seen that Deepwalk and Planetoid have a rela-
tively poor performance, because they are all random-walk
based algorithms, which cannot effectively mine graph struc-
ture information. Compared with GCN, the accuracies of
GLCNN are higher in most datasets. This advantage is more
obvious on the Euclidean dataset. That is because our graph
learning layer can learn the association relations useful for
downstream classification tasks, and further, make the node
representations of the output layer more distinctive. The per-
formance of the GLCNN is better than that of the GAT in all
datasets except Citeseer for the same reason, which further
demonstrates its advantages in graph data representation and
learning. JLGCN and Graphzoom all have a compression
operation in learning node representation, which may lose
part of the node information. They also have a process of
dynamically adjusting the similarity matrix, but generally,
they are still inferior to our algorithm. The GLCN algorithm
cannot dynamically adjust the similarity relationship dur-
ing the learning process. Although good results have been
achieved on Cora and Citeseer, it still has certain limita-
tions in processing Euclidean-space data, which our work is
superior. Compared with HGAT, although the effect is not

Table 3 Results of node classification in terms of accuracies on various datasets in the transductive setting

Method Cora Citeseer Pubmed Simplified NELL MNIST SVHN

DeepWalk [34] 67.2% 43.2% 65.3% 28.2% n/a n/a
Planetoid [35] 75.7% 64.7% 77.2% 37.7% n/a n/a
GCN [10] 81.5% 70.3% 79.0% 38.0% n/a(69.0%) n/a(13.0%)
GAT [13] 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3% 38.2 ± 0.6% n/a(66.0%) n/a(13.0%)
JLGCN [20] 83.9% 73.3% – – n/a n/a
Graphzoom [5] 83.9% 71.1% 77.1% – n/a n/a
GLCN [22] 85.5% 72.0% 78.3% – n/a n/a
HGAT [36] 83.7 ± 0.3% 73.3 ± 0.4% 79.8 ± 0.1% 41.1 ± 0.5% n/a(67.4% ± 0.5%) n/a(40.0%± 0.1%)
GLCNN 84.6 ± 0.2% 71.4 ± 0.2% 79.0 ± 0.2% 38.3 ± 0.1% 70.5% ± 0.5% 41.1%± 0.5%

Table 4 Comparison of
different aspects of the proposed
method

Method Propagation model Adjacent matrix Euclidean data Complexity

GCN [10] D
−1∕2

AD
−1∕2

HW given cannot O(N)
GAT [13] �HW weighted cannot O(N2)

JLGCN [20] Λ−1∕2(A + A
∗)Λ−1∕2

HW adaptive cannot O(N)
Graphzoom [5] (D−1∕2

AD
−1∕2)kHW weighted cannot O(N)

GLCN [22] D
−1∕2

SD
−1∕2

HW weighted can O(N)
HGAT [36] �W(MH + H

∗) weighted cannot O(N2)

GLCNN (A + �S)HW adaptive can O(N)

12731

1 3

K. Li, W. Ye

very prominent on graph datasets, significant progress has
been made on image datasets. The possible reason is that
the hierarchical method can better learn the node represen-
tation in non-Euclidean space. Most recently, some works
like GCNII [17] are said to achieve the best results on the
first three datasets in the table. However, they are pre-print
work, which is lacks of validation. So we did not list them.
In a nutshell, even though our algorithm could not achieve
the best results on all non-Euclidean datasets, we believe
it is at least a competitive one. And we emphasize it has a
significant improvement on the Euclidean dataset compared
with other graph neural networks, indicating the effective-
ness of graph learning layer.

In addition to the accuracy, we also further compared the
propagation model, the generation method of the adjacent
matrix and the time complexity of the proposed method with
the other GCN work as listed in Table 4. The propagation
model is the main indicator that distinguishes different GCN
algorithms. We briefly listed them in the table, the specific
meaning of each formula can refer to the references. Differ-
ent propagation models essentially result in different ways to
handle the adjacent matrix. Whether the adjacent matrix A is
directly given or calculated using the subsequent weighted
method, it cannot be dynamically adjusted according to dif-
ferent downstream tasks in the multi-layer connection. The
opposite is the adaptive method, where each layer dynami-
cally adjusts the A structure. This is why our method is better
than others. The time complexity in the table refers to the
relationship between the running time of the algorithm and
the node number N. It can be seen that the GAT-based meth-
ods need to calculate the attention layer � , and the calcula-
tion time increases quadratically with the number of nodes
N. Our proposed method and other GCN methods have a
linear complexity.

Before showing the learned similarity relationship, the
input and the output of node representation are visualized to
illustrate the mechanism of classification. Taking the Cora
dataset as an example, the visualization are shown in Fig. 6.
In the representation of output nodes, the separation between
different classes is clearer than that of the input. Hence, the
classification ability of the GLCNN algorithm in node rep-
resentation and in semi-supervised classification is expected
to be improved.

To illustrate the change of the similarity matrix after
the graph learning layer intuitively, we use the heat map

Fig. 6 t-SNE visualization of
node representation of Cora. (a)
Node representation of inputs.
(b) Node representation of
outputs

Fig. 7 Heat maps of the adjacent matrix of Cora. (a) The loaded simi-
larity matrix. (b) The similarity matrix learned after the Graph learn-
ing layer

Table 5 The comparative experiments on three different type datasets

Method Cora Simplified NELL MNIST

GLCNN 84.6 ± 0.2% 38.3 ± 0.1% 70.5 ± 0.5%
GLCNN-w/o

graph learning
layer

84.4 ± 0.1% 38.2 ± 0.1% 70.0 ± 0.2%

12732

1 3

Semi-supervised node classification via graph learning convolutional neural network

to visualize it, which is plotted in Fig. 7. In this case, only
the values of the first 50 nodes are shown in the graph. The
change of values of the adjacent matrix can be seen clearly
in the two enlarged regions. This demonstrates that the graph
learning layer can dynamically adjust the similarity matrix
in the graph so that the subsequent node classification can
have higher accuracy.

4.3 Ablation study

To illustrate the role of the graph learning layer, an abla-
tion experiment is conducted to compare the accuracy of
the GLCNN algorithm on three datasets with and without
the learning layer.

It can be seen from Table 5 that the accuracy of classi-
fication decreased slightly after removing the graph learn-
ing layer, indicating the graph learning layer proposed in
this work has a certain effect. The training and validation
accuracies of GLCNN and GLCNN without graph learning
layer on Cora dataset are plotted in Fig. 8. It can be seen
the difference between the validation set and training set is
smaller, which shows that the graph distilling and pooling

can effectively improve the accuracy of similarity matrix
mining by avoiding over-fitting.

4.4 Parameter study

In order to assess the robustness of GLCNN on noisy graphs,
we build graphs with random edge deletions or additions.
The experiments are conducted on Cora and MNIST data-
sets. On the Cora dataset, the number of edges is randomly
removed or added by 25%, 50%, and 75% of the original
total number, respectively. On the MNIST dataset, we ran-
domly add the number of edges by 5%, 15%, and 25% of the
original total number, and remove the number of edges by
25%, 50%, and 75% of the original total number.

Testing accuracies of the GLCNN on various “noisy”
Cora and MNIST datasets are plotted in Figs. 9 and 10
respectively. Results show that on the Cora dataset, the
accuracies of both GLCNN and GCN algorithms decrease
significantly with the deleted edges, but the declining speed
of the GLCNN is lower than that of the GCN because
the graph learning layer can offset part of the edge prun-
ing effect. When new edges are added, the accuracy of the
GLCNN remains nearly unchanged, while the accuracy of

Fig. 8 Algorithm training
loss and accuracy curves. (a)
GLCNN. (b) GLCNN-w/o
graph learning layer

Fig. 9 The relationship between
the test accuracy (±standard
deviation) and (a) the ratio of
the removed edges and (b) the
ratio of the added edges on the
Cora dataset

12733

1 3

K. Li, W. Ye

the GCN declines significantly, indicating that the GLCNN
is much more robust than GCN. As for the MNIST dataset,
contrary to our intuition, the test accuracy does not decrease
monotonically with the number of deleted edges. The reason
might be that for the data in this non-Euclidean space, the
initial adjacency matrix is generated by the kNN algorithm,
so it may contain a lot of invalid information. When the
proportion of deleted edges increases to 75%, most of the
invalid connections are filtered out. Although some effective
connections are also likely to be filtered out, the remaining
effective connections are enough to allow the algorithm to
achieve higher accuracy. For the case with increased edges,
both GLCNN and GCN show an obvious decreasing trend,
however, the declining speed of GLCNN is slower than that
of GCN, which shows that the graph learning layer still
works, but the effect is not as large as that on Cora.

The number of graph learning layers and distillation
degree are two key parameters in GLCNN. In order to
explore their influence on the accuracy of results, sensitiv-
ity analyses are conducted on two datasets. The number of
layers varies from 1 to 2, and the distilling temperature value
is set to be 5%, 10%, and 25% respectively.

It can be seen from Table 6 that the classification accura-
cies of cases with two graph learning layers are not as good
as that of the single layer. It may be due to the Laplacian
smoothing phenomenon caused by twice convolution [37],
which reduces the classification accuracy. When the distil-
lation degree is 5%, the accuracy is less than that of 10%.
Because many noises in the correlation are not removed.

However, when the distillation degree is too large, for exam-
ple, 25%, the accuracy rate shows a downward trend, pos-
sibly due to the fact that the useful connection information is
also distilled away. The results of the bilevel graph learning
layer on the MNIST dataset are different. The accuracy rate
increases with the increased distillation degree, which indi-
cates that the positive benefit of distillation is greater than
the negative effect caused by Laplacian smoothing.

5 Conclusions and future work

In this paper, we present a similarity matrix learning method
and establish a novel graph learning convolutional neural
network. The experiment results verify the effectiveness of
the GLCNN to the downstream node classification tasks. It
can be implemented on both Euclidean and non-Euclidean
datasets. In the graph learning layer, the node representa-
tion and similarity matrix can update simultaneously, which
helps to mine the hidden connectivity and to boost the algo-
rithm performance. Graph distilling and pooling operations
are proposed to reduce over-fitting. The experiments show
that GLCNN achieves competitive results among state-of-
the-art methods. It obtains a relatively higher classification
accuracy on most of the datasets, and the advantageous are
more obvious on non-graph structured datasets. Future work
can be carried out along the following directions. Firstly,
the proposed GLCNN algorithm is only compared with the
previous GCN algorithm on image datasets. There is still a

Fig. 10 The relationship
between the test accuracy
(±standard deviation) and (a)
the ratio of the removed edges
and (b) the ratio of the added
edges on the MNIST dataset

Table 6 Impact of the number
of layers and distillation degree
on the accuracy of classification
results

#layer Citeseer MNIST

0.05 0.1 0.25 0.05 0.1 0.25

1 71.0 ± 0.1% 71.4 ± 0.2% 69.8 ± 0.2% 64.5 ± 0.2% 70.5 ± 0.5% 63.5 ± 0.5%
2 66.4 ± 0.2% 66.8 ± 0.5% 66.3 ± 0.3% 66.0 ± 1.5% 67.0 ± 0.5% 67.5 ± 0.5%

12734

1 3

Semi-supervised node classification via graph learning convolutional neural network

big gap with the traditional CNN method, which is also the
direction to be improved in the future. Secondly, for Euclid-
ean datasets with an unknown category number, the k value
of kNN in the input layer will have a great impact on down-
stream tasks. The development of a systematic approach to
select k is also one of the directions of follow-up research.
More recently, spiking neural network (SNN) is developed
by imitating the communication mechanism of biological
neurons [38, 39]. It is a highly energy-efficient network and
suitable for hardware implantation. However, due to its dis-
crete input, the training procedure is not as straightforward
as that of the conventional neural networks. It has not been
popularized in various tasks like CNN and is still in the
development stage. Our method belongs to the conventional
neural network, which uses straightforward backpropagation
to train. Converting the architecture and weight of GCN to
SNN directly could avoid the difficulty in training SNN. It
might also be possible to combine the advantages of both
and make our method run more efficiently on the hardware.
It can be an interesting research direction in the future.

Acknowledgements This work is supported by the Hong Kong
Research Grants under Competitive Earmarked Research Grant No.
16206320.

References

 1. Yu W, Qin Z (2020) Graph convolutional network for recommen-
dation with low-pass collaborative filters. In: Proceedings of 37th
international conference on machine learning, pp 10936–10945

 2. Xu F, Lian J, Han Z, Li Y, Xu Y, Xie X (2019) Relation-aware
graph convolutional networks for agent-initiated social e-com-
merce recommendation. In: Proceedings of the 28th ACM inter-
national conference on information and knowledge management,
pp 529–538

 3. Lu Y, Chen Y, Zhao D, Chen J (2019) Graph-FCN for image
semantic segmentation. In: Proceedings of 16th international sym-
posium on neural networks, pp 97–105

 4. Xu Z, Kang Y, Cao Y, Li Z (2020) Spatiotemporal graph convolu-
tion multifusion network for urban vehicle emission prediction.
IEEE Trans Neural Netw Learn Syst 32(8)

 5. Deng C, Zhao Z, Wang Y, Zhang Z, Feng Z (2019) Graphzoom:
A multi-level spectral approach for accurate and scalable graph
embedding. arXiv: 1910. 02370

 6. Yu D, Zhang R, Jiang Z, Wu Y, Yang Y (2019) Graph-revised
convolutional network. In: Joint European conference on machine
learning and knowledge discovery in databases, pp 378–393

 7. Franceschi L, Niepert M, Pontil M, He X (2019) Learning discrete
structures for graph neural networks. In: International conference
on machine learning, pp 1972–1982

 8. Zhang S, Tong H, Xu J, Maciejewski R (2019) Graph convo-
lutional networks: a comprehensive review. Comput Soc Netw
6(1):11

 9. Monti F, Boscaini D, Masci J, Rodola E, Svoboda J, Bronstein
MM (2017) Geometric deep learning on graphs and manifolds
using mixture model cnns. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp 5115–5124

 10. Kipf TN, Welling M (2018) Semi-supervised classification with
graph convolutional networks. In: Proceedings of 5th International
conference on learning representations, pp 1–14

 11. Hamilton W, Ying Z, Leskovec J (2017) Inductive representa-
tion learning on large graphs. In: Advances in neural information
processing systems 30: annual conference on neural information
processing systems, pp 1024–1034

 12. Xu K, Li C, Tian Y, Sonobe T, Kawarabayashi KI, Jegelka S
(2018) Representation learning on graphs with jumping knowl-
edge networks. In: 35th International conference on machine
learning, pp 1–14

 13. Velickovic P, Cucurull G, Casanova A, Romero A, Lio P, Bengio
Y (2018) Graph attention networks. In: Proceedings of 6th Inter-
national conference on learning representations, pp 1–12

 14. Ma Y, Hao J, Yang Y, Li H, Jin J, Chen G (2019) Spectral-based
graph convolutional network for directed graphs. arXiv: 1907.
08990

 15. Gao H, Wang Z, Ji S (2018) Large-scale learnable graph convo-
lutional networks. In: Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery and data mining,
pp 1416–1424

 16. Pareja A, Domeniconi G, Chen J, Ma T, Suzumura T, Kanezashi
H, Leiserson CE (2020) EvolveGCN: evolving graph convo-
lutional networks for dynamic graphs. In: Proceedings of 34th
AAAI conference on artificial intelligence, pp 5363–5370

 17. Chen M, Wei Z, Huang Z, Ding B, Li Y (2020) Simple and deep
graph convolutional networks. In: Proceedings of 37th interna-
tional conference on machine learning, pp 1725–1735

 18. Fu S, Liu W, Tao D, Zhou Y, Nie L (2020) HesGCN: Hessian
graph convolutional networks for semi-supervised classification.
Inform Sciences 514:484–498

 19. Jiang B, Ding C, Luo B, Tang J (2013) Graph-Laplacian PCA:
Closed-form solution and robustness. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp
3492–3498

 20. Tang J, Hu W, Gao X, Guo Z (2019) Joint learning of graph rep-
resentation and node features in graph convolutional neural net-
works. arXiv: 1909. 04931

 21. Henaff M, Bruna J, LeCun Y (2015) Deep convolutional networks
on graph-structured data. arXiv: 1506. 05163

 22. Jiang B, Zhang Z, Lin D, Tang J, Luo B (2019) Semi-supervised
learning with graph learning-convolutional networks. In: Proceed-
ings of the IEEE conference on computer vision and pattern rec-
ognition, pp 11313–11320

 23. Li R, Wang S, Zhu F, Huang J (2018) Adaptive graph convolu-
tional neural networks. In: Proceedings of the AAAI conference
on artificial intelligence, vol 32(1)

 24. Lin G, Kang X, Liao K, Zhao F, Chen Y (2020) Deep graph
learning for semi-supervised classification. Pattern Recognition
118:108039

 25. Yang D, Chen C, Zheng Y, Zheng Z (2020) A flexible framework
for large graph learning. arXiv: 2003. 09638

 26. Pu X, Chau SL, Dong X, Sejdinovic D (2020) Kernel-based
graph learning from smooth signals: a functional viewpoint. IEEE
Transactions on Signal and Information Processing over Networks
7:192–207

 27. Chen Y, Wu L, Zaki MJ (2019) Deep iterative and adaptive learn-
ing for graph neural networks. arXiv: 1912. 07832

 28. Bruna J, Zaremba W, Szlam A, LeCun Y (2013) Spectral networks
and locally connected networks on graphs. arXiv: 1312. 6203

 29. Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral
techniques for embedding and clustering. Adv Neural Inform
Process Systems 14:585–591

 30. Zhang Z, Bu J, Ester M, Zhang J, Yao C, Yu Z, Wang C (2019)
Hierarchical graph pooling with structure learning. arXiv: 1911.
05954

12735

1 3

http://arxiv.org/abs/1910.02370
http://arxiv.org/abs/1907.08990
http://arxiv.org/abs/1907.08990
http://arxiv.org/abs/1909.04931
http://arxiv.org/abs/1506.05163
http://arxiv.org/abs/2003.09638
http://arxiv.org/abs/1912.07832
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1911.05954
http://arxiv.org/abs/1911.05954

K. Li, W. Ye

 31. Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in
a neural network. arXiv: 1503. 02531

 32. Hu J, Shen J, Yang B, Shao L (2020) Infinitely wide graph con-
volutional networks: semi-supervised learning via Gaussian pro-
cesses. arXiv: 2002. 12168

 33. Lian D, Zhao C, Xie X, Sun G, Chen E, Rui Y (2014) GeoMF:
joint geographical modeling and matrix factorization for point-
of-interest recommendation. In: Proceedings of the 20th ACM
SIGKDD international conference on knowledge discovery and
data mining, pp 831–840

 34. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learn-
ing of social representations. In: Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and
data mining, pp 701–710

 35. Yang Z, Cohen W, Salakhudinov R (2016) Revisiting semi-super-
vised learning with graph embeddings. In: Proceedings of 33th
international conference on machine learning, pp 40–48

 36. Li K, Feng Y, Gao Y, Qiu J (2020) Hierarchical graph attention
networks for semi-supervised node classification. Applied Intel-
ligence 50(10):3441–3451

 37. Li Q, Han Z, Wu XM (2018) Deeper insights into graph convo-
lutional networks for semi-supervised learning. In: thirty-second
AAAI conference on artificial intelligence

 38. Yang S, Gao T, Wang J, Deng B, Lansdell B, Linares-Barranco B
(2021) Efficient spike-driven learning with dendritic event-based
processing. Frontiers in Neuroscience 15(97)

 39. Yang S, Deng B, Wang J, Li H, Lu M, Che Y, Wei X, Loparo KA
(2019) Scalable digital neuromorphic architecture for large-scale
biophysically meaningful neural network with multi-compartment
neurons. IEEE Transactions on Neural Networks and Learning
Systems 31(1):148–162

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Kangjie Li received the B.S.
degree in mechanical engineering
from China University of Mining
and Technology, Xuzhou, China
in 2018. The M.Phil. degree
from Zhejiang University,
Hangzhou, China in in 2021.He
is currently a Ph.D candidate in
Hong Kong University of
Science and Technology, Hong
Kong. His research interest
includes Generative model, data-
driven mechanical design and AI
argumentation.

Wenjing Ye received her B.S.
degree from University of Science
and Technology of China, her M.S.
degree from University of Califor-
nia at San Diego and her Ph.D.
degree from Cornell University.
Before she joined the faculty of
Hong Kong University of Science
and Technology, she was a post-
doctoral associate at Massachusetts
Institute of Technology and then an
assistant Professor at Georgia Insti-
tute of Technology. Her research
focuses on Numerical techniques,
Design and optimization, Data-
driven computational methods.

12736

1 3

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/2002.12168

	Semi-supervised node classification via graph learning convolutional neural network
	Abstract
	1 Introduction
	2 Related works
	2.1 Graph convolutional neural networks
	2.2 Graph learning methods

	3 Methodology
	3.1 Notation and preliminary
	3.2 GLCNN architecture
	3.2.1 The input layer
	3.2.2 The graph learning layer
	3.2.3 The prediction layer

	4 Experiment and analysis
	4.1 Experiment setup
	4.2 Node classification results
	4.3 Ablation study
	4.4 Parameter study

	5 Conclusions and future work
	Acknowledgements
	References

