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Abstract
Human beings are capable of imagining a person’s voice according to his or her appearance because different people have 
different voice characteristics. Although researchers have made great progress in single-view speech synthesis, there are few 
studies on multi-view speech synthesis, especially the speech synthesis using face images. On the basis of implicit relation-
ship between the speaker’s face image and his or her voice, we propose a multi-view speech synthesis method called SSFE 
(Speech Synthesis with Face Embeddings). The proposed SSFE consists of three parts: a voice encoder, a face encoder and 
an improved multi-speaker text-to-speech (TTS) engine. On the one hand, the proposed voice encoder generates the voice 
embeddings from the speaker’s speech and the proposed face encoder extracts the voice features from the speaker’s face as 
f-voice embeddings. On the other hand, the multi-speaker TTS engine would synthesize the speech with voice embeddings 
and f-voice embeddings. We have conducted extensive experiments to evaluate the proposed SSFE on the synthesized speech 
quality and face-voice matching degree, in which the Mean Opinion Score of the SSFE is more than 3.7 and the matching 
degree is about 1.7. The experimental results prove that the proposed SSFE method outperforms state-of-the-art methods 
on the synthesized speech in terms of speech quality and face-voice matching degree.
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Introduction Machine learning has been widely studied 
and applied in medical, entertainment, finance, security, 
and other fields [1–4]. With the explosive growth of data, 
there are a large number of various types of non-linear data. 
Multi-view learning takes multiple modal data sources 
or multiple feature representations as input, in which the 
information of multiple perspectives will complement each 
other, to improve the performance of feature representation. 
In general, multi-modal data includes audio, image, text, 
video, and etc. Multiple features refer to features extracted 
from different modal data or different levels. Multi-view 
learning makes full use of the complementary information 
of these data or features and achieves great success in the 

field of machine learning and artificial intelligence, which 
has attracted the attention of researchers.

The face image and voice of the same person can be 
regarded as two data modalities with the same identity 
attribute. As we all have a common feeling that there is a 
connection between a person’s face and voice. Although the 
association is not completely one-to-one correspondence, we 
can imagine a person’s face through his voice to some extent 
and vice versa. From the perspective of face structure, the 
distribution of facial tissues, the shape, size, and position 
of skeletal muscles, and the vocal organs’ acoustic charac-
teristics determine the vocal-tract of sound production [5]. 
Neuroscientists also demonstrated a neurological relation-
ship between faces and voices: human voice and face share 
a common neuro-cognitive pathway structure [6].

Based on the proven relationship between the speaker’s 
face image and voice, we focus on speech synthesis tasks 
with face embeddings. Specifically, given a person’s face 
image to produce a voice that sounds consistent with the 
person’s identity. It is noteworthy that we are not to clone the 
speaker’s voice completely but to learn the underlying asso-
ciations between voices and faces to produce a voice that 
matches the speaker’s facial features as much as possible. 
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The key of this work is to learn the common feature repre-
sentation containing both the speaker’s face and voice infor-
mation and further synthesize the speech through the TTS 
system. The research can be used for video dubbing, voice 
simulation of speech-impaired people, and voice reconstruc-
tion of people who have passed away.

The speech synthesis with face embeddings is a two-
stage task, in which the first stage extracts voice features 
from speaker’s faces and the second stage converts features 
into speech through Text-to-Speech (TTS). TTS is a tech-
nique that produces a speech from given text. The similarity 
and naturalness of synthetic speech are key indicators for 
evaluating the TTS system. However, many traditional TTS 
models only learned an averaged prosodic distribution of 
the speaker’s corpus in the modeling of prosody, so it is dif-
ficult to learn the dynamic characteristics of the voice. The 
speech generated from the end-to-end architecture proposed 
in [7] could be highly similar to the human voice. While the 
speech generated by the model sometimes had sudden silent 
fragments, which cannot break sentences well. The modeling 
of prosody could improve the fluency and naturalness of pro-
nunciation to some extent. As proposed in [8], style tokens 
capture the speaker’s style features from different dimen-
sions and have been proven to be effective at synthesizing 
expressive and long-form sentences.

We propose an end-to-end cross-modal speech synthe-
sis framework with face embeddings (SSFE), as shown in 
Fig. 1. The whole framework is divided into three inde-
pendent training modules: voice encoder, face encoder, and 
multi-speaker TTS system. The role of the voice encoder is 
to guide the learning of the face encoder. During training, 
the voice encoder takes the spectrogram of the speaker’s 
speech as input and outputs a voice embedding. When train-
ing the face encoder, the voice encoder is fixed. The face 
encoder learns the feature representation containing both the 

speaker’s face and voice information under the guidance of 
the voice embedding, denoted as f-voice embedding. Take 
the voice embeddings of the same person obtained from the 
voice encoder as positive samples; and the voice embeddings 
of other speakers in the same batch as negative samples. The 
distance between the f-voice embedding and the positive 
samples is as close as possible, and the distance between 
the f-voice embedding and the negative samples is as far as 
possible to guide the feature extraction process of the face 
encoder. The TTS system takes text sequences and voice 
embeddings as input and outputs synthesized speech during 
training. We extended the end-to-end TTS model by adding 
the style token layer to further capture style and prosody 
information. In the inference stage, we input a face image 
into the face encoder to extract the f-voice embedding. The 
speech is then synthesized from the given text sequence and 
the f-voice embedding.

We evaluate the model in terms of speech quality, speech 
similarity, face-voice matching degree and robustness. The 
results show that the speech generated from our SSFE frame-
work matches the face well, and the speech quality is compa-
rable to the speech synthesized using the voice embeddings 
extracted from the voice encoder. The main contributions of 
this work can be summarized as follows:

–	 A two-stage training strategy is adopted proposed for the 
voice encoder to speed up the extraction of speech fea-
tures.

–	 A Style Token based Text-To-Speech (ST-TTS) system 
is proposed to extract the style features of voices and 
they are fused with the traditional voice features to obtain 
more expressive voice representation.

–	 A tailor-designed domain adaption method is proposed, 
which the proposed SSFE could have a common repre-
sentation of voice and face feature spaces.

Fig. 1   The training pipeline of the SSFE framework
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The remaining chapters are organized as follows: In Sec-
tion 2, we present related work on multi-view learning and 
speech synthesis. Section 3 is the focus of this paper. We 
elaborate the pipeline and training settings of the SSFE 
framework in this part. Section 4 shows the improvement 
effect of each module through sufficient experiments and 
gives the specific adjustment processes. In addition, we give 
the evaluation results of the model from three perspectives 
of speech quality, speech similarity, and face-voice matching 
degree, and give the comparison with the current advanced 
methods. Finally, we summarize the current work and look 
into the future work in Section 5.

1 � Related work

1.1 � Multi‑view learning

Multi-view learning In contrast to single-view learning, 
multi-view learning extracts interrelated and complemen-
tary information from multi-view data, which is beneficial 
to explain the essential characteristics of the research object 
and improve learning performance. Therefore, multi-view 
learning has attracted more and more attention. One of the 
earliest and representative research achievements of multi-
view learning is Canonical Correlation Analysis (CCA) [9], 
which is a statistical method to search linear mapping of 
two eigenvectors.

In recent years, multi-view learning has achieved suc-
cess in many fields. To solve the problem of insufficient 
multi-task shared class label set, a multi-task and multi-view 
clustering algorithm based on local linear embedding under 
heterogeneous conditions was proposed in [10]. Wu et al. 
[11] achieved excellent results in the recognition of multi-
modal mixed character CAPTCHA, which is composed of 
English letters, Arabic numerals, Chinese characters, and 
mathematical operators. Zhang et al. [12] proposed a multi-
view clustering model based on a non-negative matrix for 
multi-stage factor analysis of Alzheimer’s disease. Zhou 
et al. [13] proposed using different depth information as a 
supplement to RGB information to obtain more expressive 
features. The depth information is extracted and fused at 
different levels, and then fused with RGB features. In [14], 
they also fused RGB and thermal modal features to realize 
semantic segmentation of urban scenes and achieved excel-
lent performance. In the field of cross-modal retrieval, an 
effective cross-modal retrieval method MS2GAN is pro-
posed [15]. This method can jointly extract and utilize both 
the modality-specific and modality-shared features effec-
tively. In face recognition, Fei Wu et al.[16] improved multi-
spectral face recognition by considering both spectrum and 
class label information. The proposed approach significantly 
outperforms state-of-the-art multi-spectral face recognition 

methods. Like our multi-view speech synthesis work, there 
are some studies on spiking neural networks that are biologi-
cally inspired neural networks [17, 18], and these studies 
provide a bridge between biological learning and machine 
learning. In addition, the idea of multi-view learning was 
also integrated with ensemble learning [19].

Cross-modal audio-visual research There has been an 
increasing amount of literature on audio-visual research. 
Tamura, S. et  al. [20] built a cross-modal audio-visual 
voice conversion model. Hori, C. [21] used teacher-student 
networks to research the audio-visual scene-aware dialog. 
Tae-Hyun et al. [22] proposed a three dependently trained 
Speech2Face framework to generate a face image from a 
given speech. There are some studies about generating face 
from audio using Generative Adversarial Network [23]. 
Nagrani et al. [24] conducted a biometric matching between 
faces and voices. Experiments confirmed that there is 
indeed biological information associated with human faces 
and voices. Some scholars have committed to audio-visual 
matching researches for speech recognition [25]. There are 
some lip-reading tasks from video to speech [26, 27] and 
some image2speech studies on image description [28]. Ryan 
Jenkins et al. [29] demonstrated that those with excellent 
facial memory and matching ability performed better in 
speech matching and memory. This proves that cross-modal 
face and voice and cross-task mechanism of memory and 
perception drive superior performance.

1.2 � Speech synthesis

Speech synthesis on single-view learning The earliest 
method is statistical parametric speech synthesis (SPSS) 
appeared in the late 1990s. It uses a statistical generation 
model to learn the relationship between the calculated fea-
tures on the input text and the output acoustic features. With 
the development of deep learning, the TTS systems based 
on DNN have emerged [30] and WaveNet [31] and Tacotron 
[32] were proposed and breakthroughs were made in the 
TTS field. WaveRNN was proposed in [33] to improve the 
slow speed of WaveNet.

Some researchers have begun to conduct the end-to-
end training of the TTS model. Sotelo j et al. [34] trained 
TTS models directly from < text, audio > pairs without 
hand-made intermediate representations. Luong, H. [35] 
introduced an “unsupervised speaker adaptation” method 
using a small amount of speech data for speech synthesis. 
Tacotron2 [36] used WaveNet as a vocoder to reverse the 
spectrogram generated by the encoder-decoder structure 
with an attention mechanism. Morita, T.et al. [37] proposed 
an end-to-end unsupervised TTS system without text. 
Zhang et al. [38] proposed an unsupervised pre-training 
mechanism that could be more effectively applied to low-
resource language synthesis.

14841Speech synthesis with face embeddings
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Speech synthesis on multi-view learning Although 
research on audio-visual cross-modal tasks has been increas-
ing, there are still few cross-modal speech synthesis research, 
especially speech synthesis using face images. Beskow and 
Jonas [39] developed a multi-modal speech synthesis sys-
tem, which could synthesize audio-visual animation from an 
arbitrary text by using parameter-controlled face and head 
models. Goto, S. et al. [40] proposed a three-stage cross-
modal TTS framework, which used supervised GE2E loss, a 
measure based on cosine distance, to guide the face encoder.

Style and prosody model There are several approaches 
to style and prosody modeling that have been studied, such 
as the DNN-based speech synthesis model [41] although it 
requires explicit labels. Cluster-based unsupervised modeling 
method [42] relies on the features of manual design. After 
that, the concept of reference embedding was introduced in 
[43]. Wang et al. Guided attention [44] could accelerate the 
training speed by adding prior knowledge. Namely, there is a 
linear relationship between the position of each word and the 
moment of pronouncing it when we read the text.

2 � Method

2.1 � Problem formulation

Our SSFE framework consists of three modules, as shown 
in Fig. 1: 1) the voice encoder, taking spectrograms as 
input and voice embeddings as output; 2) the face encoder, 
extracting the f-voice embeddings from face images; 
and 3) the ST-TTS system to synthesize the speech from 
< voice embedding , text sequence > pairs. When training 
the face encoder, the voice encoder and ST-TTS are pre-
trained. We will give the definition of the SSFE framework 
in accordance with these three modules.

During training, the speaker’s audio and face are simul-
taneously input into the voice encoder and face encoder, 
respectively. The information flows through the models as 
follows:

The role of the voice encoder in the SSFE framework 
is to extract the discriminative voice features from a given 
speaker’s speech. During training, it takes a sequence of log-
Mel spectrogram frames from an arbitrary length ground-
truth utterance as input, and maps them to a fixed d-length 
voice embedding. The model computes the utterance embed-
ding as vu for each utterance uji(1 ≤ j ≤ N, 1 ≤ i ≤ M) , with 
a total of N speakers and M utterances per speaker:

where M1 represents the map from utterance uji to embed-
ding vu . The speaker embedding vs ∈ ℝ

d×L of speech length 
L is defined as the mean of M utterance embeddings:

(1)M1 ∶ uji �→ vu

At the same time, the face encoder learns the feature rep-
resentation from the speaker’s face. It takes input as face 
images fji(1 ≤ j ≤ N, 1 ≤ i ≤ M) , which corresponding the 
j-th speaker’s utterances uji and outputs the f-voice embed-
dings vf :

where M2 represents the map from the i-th face of the j-th 
speaker fji to face embedding vf .

The voice embeddings extracted from the same iden-
tity are denoted as pos-voice embeddings vpu , and the voice 
embeddings with different identity are denoted as neg-voice 
embeddings vn

u
 . For the domain adaption of face images and 

voices, the f-voice embedding vf  extracted from the face 
image is expected to be close to the vpu and far away from the 
voice embeddings vn

u
 in a mini-batch as much as possible.

After that, the learned vf  and the specified text sequence 
will be fed into the ST-TTS system for speech synthesis. The 
ST-TTS system is composed of two independently trained 
neural networks: (1) a style token based synthesizer, which 
takes a < voice embedding , text sequence > pair as input and 
synthesizes a log-Mel spectrogram mel as output. (2) a Wav-
eRNN based vocoder, which converts synthesized log-Mel 
spectrogram mel into synthetic speech sp:

where M3 and M4 represents the map of two networks 
respectively.

Specifically, the style token based synthesizer is pre-
trained with the voice embeddings extracted from the voice 
encoder. During training, the f-voice embedding vf  derived 
from the face encoder is replaced by the speaker embedding 
vs derived from the voice encoder. The module takes pairs 
of < voice embedding , text sequence > as input and outputs 
the synthesized speech, as shown in Fig. 2.

The speaker embedding vs is fed into the style token 
layer before being input to the synthesizer. The module 
measure the similarity between the vs and K style tokens 
Tk(1 ≤ k ≤ K) using the multi-head attention. The output 
Si ∈ ℝ

d×L is a weighted style-token combination as shown 
in (5), which then is used to condition the Mel spectrogram 
synthesis of text sequences.

(2)vs =
1

M

M
∑

i=1

vui

(3)M2 ∶ fji �→ vf

(4)
M3 ∶< voice embedding, text sequence >�→ mel

M4 ∶ mel �→ sp

(5)vsty =

K
∑

k=1

wk ⋅MultiHead(vs, Tk)
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The speaker embedding vs and the style embedding vsty will 
be concatenated and text sequence will be passed through 
synthesizer to predict a log-Mel spectrogram mel.

In the synthesizer, the text sequence is encoded as text 
embedding t. The attention mechanism acts as a bridge 
between the encoder and the decoder to learn the alignment 
information between voice features and text features. Finally, 
the spectrogram is decoded by the decoder.

The WaveRNN is regarded as our vocoder to complete the 
signal conversion from frequency domain to time domain. 
The model replaces the entire 60 convolutions from WaveNet 
as a single GRU layer and improves the computing speed 
than WaveNet. During training, it takes the ground truth 
aligned Mel spectrogram in a batch generated by the synthe-
sizer as the input, and the ground truth audio as the target.

During inference, the synthesized mel will be inverted to 
time-domain waveform, namely synthesized speech sp.

2.2 � Training settings and model details

2.2.1 � Voice encoder

The goal of the voice encoder is to extract the discriminative 
voice features from a given speaker’s speech. The network is 
composed of 3 LSTM layers, which takes 40-channel log-Mel 
spectrograms as input and outputs 256-dimensional embed-
dings as characteristics of different speakers. Different from 
[7], we increase the hidden size from 256 to 768 and replace 
ReLU activation with Tanh before the L2-normalization. The 
model is optimized by a GE2E loss. The similarity comparison 
against the correct speaker’s own embedding is removed to 
reduce the bias. The similarity matrix Sji,k is defined as:

(6)mel = Synth(text,Concat(vs, vsty))

(7)sp = Voc(mel)

where w and b are learnable weight and bias parameters 
and j = k represents utterances of speaker j matches the k-th 
speaker embedding (1<=k<=N). For the j-th speaker, the 
exclusive speaker embeddings v(−i)

s
 are defined as:

Then, each embedding vu is optimized to get as close to 
the speaker embedding v(−i)

s
 as possible. The voice embed-

dings extracted from voices are used to guide the learning of 
f-voice embeddings, to realize the domain adaption of voice 
and face features.

2.2.2 � Face encoder

The face encoder learns the feature representation containing 
both the speaker’s face and voice information under the guid-
ance of the voice embedding. Specifically, to reduce the gap 
between face and voice, the pre-trained voice encoder described 
in Section 3.2.1 is used to extract voice embeddings. Take this 
feature as the learning goal of the face encoder, the feature rep-
resentation containing both face and voice features are learned 
by minimizing the loss between the face embeddings extracted 
by the face encoder and the voice embeddings extracted by the 
voice encoder. At the same time, to make the extracted voice 
features reflect the differences of voice features from different 
facial structures, it is necessary to make the distance between the 
learned voice features and the voice features of other speakers 
extracted by the voice encoder as large as possible.

Inception-ResNet-v1 is regarded as the architecture of our 
face encoder. To make the network learn the features of faces 
more accurately, we use MTCNN1, a pre-trained face detection 

(8)Sji,k =

{

w ⋅ cos(vu, v
(−i)
s

) + b if j = k

w ⋅ cos(vu, vs) + b if j ≠ k

(9)v(−i)
s

=
1

M − 1

M
∑

m=1,m≠i

vum

Fig. 2   The training pipeline of the ST-TTS system

1  https://​github.​com/​david​sandb​erg/​facen​et/​tree/​master/​src/​align
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model, to extract the face parts from raw images and resize 
them to 160 × 160 before the image is input into the network. 
The face encoder takes aligned face images of speakers 
as input and outputs vf  with the size of 256 that equals vu 
extracted from the voice encoder. The dropout is set to 0.8 on 
the fully connected layer. To further speed up the calculation, 
we randomly select 40 images and 40 voices for each speaker 
in a mini-batch rather than all face images and audios.

As mentioned in Section 3.1, the f-voice embedding vf  
is expected to be closer to all voice embeddings vpu of the 
same identity and far away from the voice embeddings vn

u
 

extracted from other speakers in a mini-batch. To speed up 
convergence, for each generated vf  , we select hard < v

p
u, v

n
u
> 

pairs that satisfy:

where � is a hyper-parameter restricts the vpu and vn
u
 in a 

fixed margin. This constraint means that when the distance 
between vf  and vpu exceeds the distance between vf  and vn

u
 

by � , the contribution of face image feature vf  to training is 
small and can be discarded. Training only those vpu and vn

u
 

that are most difficult to distinguish from vf  can accelerate 
the convergence of the model. Then, the L2 distance measure 
is applied between the feature embeddings. The model is 
optimized by minimize the loss function defined as:

where N is the number of speaker in a mini-batch. We select 
< vf , v

p
u, v

n
u
> triplets from each mini-batch with size of 90, 

and speakers per batch is set to 45. The vf  learned by face 
encoder contains both the face and voice information, and 
then could be input to the ST-TTS system to synthesize the 
speech with specified text sequences.

(10)∥ vf − vn
u
∥2
2
− ∥ vf − vp

u
∥2
2
> 𝛼

(11)L =

N
∑

j

[∥ vf − vp
u
∥2
2
− ∥ vf − vn

u
∥2
2
+�]+

2.2.3 � ST‑TTS system

The ST-TTS system consists of a synthesizer and a vocoder 
for speech synthesis. During training, the input of the 
synthesizer are pairs of < voice embedding , text sequence > . 
For arbitrary length text sequences, each character is 
encoded as 512-dimension.

The synthesizer uses Tactron2 as the basic architecture 
and the style token module is added to enhance the abil-
ity of extracting voice features. Specifically, the voice 
features extracted from the voice encoder and the style 
features extracted from the style token module are fused 
through concatenation to obtain voice representation con-
taining richer information. As shown in Fig. 2, the module 
consists of N random initialized style token embeddings 
T = T1, T2, T3, ..., TN to capture rich style dimensions in 
speaker embeddings. We apply a multi-head attention with 
h heads after random initialized style tokens to learn the 
style embedding, a weighted combination of tokens. In our 
experiments, we set N = 10, h = 4 and each token embed-
ding is 512/h, so that the style embedding is 512-D after the 
concatenation of 4 heads attention output. The style token 
module is jointly trained with the synthesizer, and no any 
other loss based on this is introduced.

The 256-dimensional voice embedding is concatenated 
with text embedding at each timestep. The dimension of 
attention space is set to 128 and batch size is 64. The Adam 
optimizer is used with �1 = 0.9 , �2 = 0.999 , � = 1 × 10−6 . 
For the synthesizer, the initial learning rate is 1 × 10−3 and 
the final learning rate is 1 × 10−5 with a decay rate equal-
ing 0.5. When training the vocoder, we use raw audio and 
ground truth aligned Mel spectrograms generated from the 
synthesizer as input to learn time-domain waveforms.

To better illustrate the training procedure of the whole 
SSFE framework, the pseudo code is given in Algorithm 1:

14844 X. Wu et al.
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3 � Experiments

3.1 � Datasets

The three modules of our SSFE framework are trained by 
different datasets, as shown in Table 1. According to the per-
formance reported in [7], LibriTTS-other [45], VoxCeleb1 
[24] and VoxCeleb2 [46] are used for training the voice 
encoder and LibriTTS-clean is used for ST-TTS.

The LibriTTS dataset, rather than the LibriSpeech 
dataset, is a large-scale corpus comprising approximately 
585 hours of speech and consists of the union of the “clean” 
and “other” sets, in which the “clean” set contains cleaner 
speech than the “other” set. It is added in the encoder 
training process first. This is because the LibriTTS dataset is 
a purer version of the LibriSpeech dataset, with a sampling 
rate of 24kHz, and the sentence contains punctuation 
marks not found in the Librispeech dataset, which helps 
to learn more natural prosodic information. When the loss 
of model training is stable below 0.01, CommonVoice 
[47], VoxCeleb1 [24] and VoxCeleb2 [46] datasets were 
added. CommonVoice dataset is an English dataset with 
60K speakers. A large amount of training data can greatly 
improve the feature extraction capability of the encoder 
model. Both VoxCeleb1 and VoxCeleb2 are derived from 
celebrity videos on YouTube. VoxCeleb1 has 1251 speakers 
for about 150k utterances, while VoxCeleb2 has 6112 
speakers for over 1128k utterances. All datasets are sampled 
at 16kHz. Noisy audio datasets VoxCeleb1 and VoxCeleb2 
were added in order to further improve the robustness of 
the model.

In the training process of the synthesizer and vocoder, 
we both use the train-clean-100 and train-clean-360 parts 
of the LibriTTS dataset. The reason for using “clean” parts 
is because the quality of the dataset affects the quality of the 
synthesized audio.

For the training of the face encoder, we carry out experi-
ments on different datasets. On the one hand, we compare 
the proposed method with existing cross-modal speech syn-
thesis methods in terms of speech quality and gender recog-
nition accuracy. Consistent with the setup of the comparison 

methods proposed in [26, 27], we train and test the model 
on the Grid dataset. Grid dataset is an audio and video pair 
dataset composed of 33 speakers, with 1000 utterances per 
speaker. Each sentence is composed of command + color 
+ preposition + letter + digit + advertisement. Two male 
speakers s1, s2, and two female speakers s4, s29 were 
selected to perform a test task of speaker dependence. Each 
speaker is divided into training, validation, and test sets in a 
ratio of 90% ∶ 5% ∶ 5%.

On the other hand, to compare the matching degree 
between speech and face synthesized by face feature, we 
prepare < image, audio > pairs, in which the images are 
derived from the VGGFace2 dataset [48] and the audios 
from VoxCeleb2 dataset. VGGFace2 is also extracted from 
YouTube videos of celebrities and contains all speakers 
of VoxCeleb2. To match identities with the VoxCeleb2, 
we select the intersection of the VGGFace2 dataset and 
VoxCeleb2 dataset to train the face encoder. For all 6,112 
speakers in the intersection, 5,994 speakers are used for 
training and 118 speakers for evaluation. This setting is 
consistent with [40].

3.2 � Results

3.2.1 � Voice encoder

The purpose of the first part of our experiment is to obtain a 
voice encoder model to not only extract sound features accu-
rately, but also to converge faster. In [7], an internal dataset 
is used to train the voice encoder. Because we cannot obtain 
the internal dataset, we add the CommonVoice dataset to 
train the voice encoder.

In addition, we propose a two-stage training strategy. 
In the beginning, we used the “other” part of LibriTTS 
for training. When the loss of the model stabilized below 
0.01 (about 200k-250k steps), we add CommonVoice, Vox-
Celeb1, and VoxCeleb2 datasets. When the model is trained 
to about 800k steps, the ReLU activation function of the last 
layer of lstm is changed to the Tanh activation function, and 
the loss gradually decreases. When it reaches 1 million steps, 
the model gradually tends to converge.

As shown in Fig. 3, the UMAP dimension reduction 
results of the speaker embeddings training at 1k, 5k, 20k, 
50k, 1M and 1.2M steps are respectively shown in subfig-
ures. Different colors indicate different speakers, and 10 
utterances are randomly selected for each speaker. We can 
see that as the training step increases, the different utter-
ances of the same speaker are more and more closely clus-
tered together, and the distance between clusters of different 
speakers is getting larger and larger. It indicates that our 
voice encoder can recognize the voices of different speak-
ers. Namely, it has learned the characteristics of different 
speakers’ voices.

Table 1   Datasets in different modules of the SSFE framework

dataset type voice encoder face encoder ST-TTS

LibriTTS audio
√

(other)
√

(clean)
Common-

Voice
audio

√

VoxCeleb1 audio,image
√

(audio)
VoxCeleb2 audio,image

√

(audio)
√

(audio)
VGGFace2 image

√

GRID audio,video
√
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3.2.2 � ST‑TTS system

In this section, we will measure the performance of the 
style token based synthesizer. We use “Tac2” to indicate 
the Tacotron2 based synthesizer, and “ST” to indicate the 
style tokens. Therefore, “Tac2 only” means that the voice 
features learned from the voice encoder are used directly 
to synthesize the spectrogram; and “ST+Tac2” means that 
the voice features that input to the synthesizer contain the 
style information extracted from the style token module. 

In Tacotron2, attention is used as a bridging mechanism 
between the encoder and the decoder, reflecting the synthe-
sizer’s ability to align pairs < voice features, text features > . 
The better the alignment information is learned, the more 
diagonal the curve is.

As shown in Fig. 4, the first row represents the ability 
to learn attention alignment information in the “ST+Tac2” 
mode. The model can learn alignment information from 
about step 9k, and can learn a clear curve at steps 11k, 13k, 
and 15k. The learning curve is diagonal, indicating that 

Fig. 3   UMAP visualizations of the voice encoder at different training steps

Fig. 4   Visualization of learning effect of attention alignment information in the synthesizer
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attention has learned the alignment information correctly. 
In the “Tac2 only” mode, the speed of attention learning is 
significantly slower than in the “ST+Tac2” mode. It can be 
seen that the model only learns a little alignment informa-
tion at step 15k, and the learned curve is not clear or even 
divergent. Therefore, it can be proved that “ST+Tac2” can 
learn the alignment information faster and more effectively 
than the “Tac2 only” mode. Finally, the Mel spectrogram 
predicted by the synthesizer is shown in Fig. 5.

3.2.3 � Face encoder

Comparison of algorithm complexity For Face2Speech, 
VGG-19 is adopted as the backbone of the face encoder. 
In the SSFE framework, we consider Inception-ResNet-v1 
or Inception-ResNet-v2 as the face encoder. The Floating 
Point Operations (FLOPs) are often used to measure the 
time complexity of an algorithm and the number of model 
parameters are used to measure the space complexity. Tak-
ing these three networks as the backbone of the face encoder 
respectively, the calculation results of FLOPs and the num-
ber of parameter are shown in Table 2. As we can see from 
Table 2, both the FLOPs and the number of parameters of 
Inception-Resnet networks are less than VGG-19. Compared 
with Inception-Resnet-v2, Inception-ResNet-v1 has lower 
time and space complexity. Based on above, we consider 
using Inception- Resnet-v1 or Inception- Resnet-v2 as the 
backbone of our face encoder.

Comparison of clustering effects of the f-voice embed-
dings We compare the clustering effects of the f-voice 

embeddings when Inception-ResNet-v1 and Inception-
ResNet-v2 are used to conduct experiments under the same 
experimental conditions. It’ s reported that Inception-
ResNet-v1 has a smaller model structure, and the classifica-
tion accuracy is lower than Inception-ResNet-v2. To deter-
mine the effects of the two models in our experiments, we 
use them to train the face encoder respectively. The UMAP 
dimension reduction visualization results of the feature 
embeddings extracted from the two models are shown in 
the first and the second column of Fig. 6, where the UMAP 
distance matrix is the Euclidean distance.

As can be seen from Fig. 6(a), the voice features extracted 
from the same speaker by Inception-ResNet-v1, represented 
with the same color, are almost gathered together, and the 
voice embeddings of different genders are significantly 
divided into male and female clusters. For Inception-ResNet-
v2, as showed in Fig. 6(b), most of the extracted voice fea-
tures can be correctly divided into two clusters by gender. 
However, there are individual speakers that are misclassified, 
such as n004029. Compared with the Inception-ResNet-v1 
model, the overlap of voice feature locations is more signifi-
cant among different speakers of the same gender. As shown 

Fig. 5   The target Mel-Spectrogram and predicted Mel-Spectrogram predicted by style token layer based synthesizer

Table 2   Comparisons of algorithm complexity on different models

Framework Input FLOPs Params

Inception-ResNet-v1 160 × 160 × 3 240M 23.0M
Inception-ResNet-v2 160 × 160 × 3 564M 54.7M
VGG-19 160 × 160 × 3 20654M 143.7M
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that different voice characteristics from the same speaker 
have larger intraclass distances and more dispersed distribu-
tions. In addition, considering that the algorithm reported in 
Table 2, we choose Inception-ResNet-v1 as the backbone of 
our face encoder.

3.2.4 � Evaluations

3.2.4.1  Speech quality evaluation.  Similar to the settings 
used in cross-modal speech synthesis methods [26, 27], we 
perform speech quality evaluation on the GRID dataset. It 
is worth mentioning that although both the research direc-
tion of these two studies is cross-modal speech synthesis, 
the specific goal is not to synthesize speech corresponding 
to the speaker’s face but to perform lip-reading tasks based 
on videos. Therefore, we can not compare the face-voice 

matching degree with them, but compare the quality of 
speech generated under the condition of cross-modal speech 
synthesis. To be consistent with these studies, we evaluated 
the speech on four speakers s1, s2, S4 and s29.

Mean opinion score(MOS) is an important measure of 
the naturalness, fluency and clarity of synthesized speech. 
MOS is rated ranging from 1 to 5 and higher values indicate 
better audio quality. In our experiment, each speech of the 
four speakers s1, s2, S4 and s29 is scored by 20 volunteers. 

The average scores of MOS are shown in the first column 
in Table 3. Compared with the existing cross modal speech 
synthesis methods, our method can synthesize higher qual-
ity speech from images in video. The average of MOS is 
3.94, which means that most speech sounds fluent, pause 
naturally, and can basically achieve the quality comparable 
to natural speech.

Another indicator is the accuracy of gender recognition. 
The values include male, female and hard to judge. The syn-
thesized speech is considered to be gendered correctly only 
if the speaker’s gender can be correctly identified by the 
volunteers through the synthesized speech. The accuracy of 
gender recognition is shown in column 2 of Table 3. Com-
pared with the existing methods, our method does achieve 
the highest recognition accuracy.

Fig. 6   UMAP visualization of the f-voice embeddings extracted from the face encoder, which trained with (a) Inception-ResNet-v1 and (b) 
Inception-ResNet-v2, respectively

Table 3   MOS and Gender recognition evaluation results of the pro-
posed and reference models

Framework MOS Gender 
recogni-
tion

Video2Speech [26] 1.35 43.2%

Lip2AudSpec [27] 1.63 85.1%

SSFE(ours) 3.94 87.5%

Table 4   Matching scores and 
preference scores with 95% 
confidence intervals

Framework Matching Score Preference Score

SF SV SF SV

Face2Speech [40] 2.01 ± 0.07 1.91 ± 0.06 0.548 ± 0.049 0.452 ± 0.049

SSFE(ours) 1.70 ± 0.114 1.61 ± 0.129 0.577 ± 0.090 0.433 ± 0.090
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Matching evaluation Face2Speech is the only audio-vis-
ual cross-modal speech synthesis framework that aims to 
synthesize speech matching the speaker’s face image to the 
best of our knowledge. Although the evaluation of speech is 
subjective, we still compare our results with theirs, as shown 
in Table 4. We have prepared two systems to evaluate: 1) 
SF, the speech generated with f-voice embedding extracted 
from the face encoder, and 2) SV, the speech generated with 
f-voice embedding extracted from the voice encoder.

We test the matching degree between the speaker’s face 
image and synthesized speech of all 118 speakers in the test 
set, that is, the degree to which synthesized voice sounds 
more consistent with the face’s identity. We divide 118 voice 
pairs (SF, SV) from all subjects into 20 groups of 6 pairs. 
Each group of voices is scored by three volunteers, and a 
total of 60 persons participated in the scoring. The scoring 
metric, proposed in [22], is a four-point scale: 1) Match well, 
2) Match moderately, 3) Match slightly, and 4) Not match.

As we can see from Table 4, the matching score of SF in 
the SSFE framework is higher than SV and lower than the 
reported value of Face2Speech. The matching score indi-
cates that the f-voice embedding extracted from the face 
with the SSFE framework can achieve an alternative effect 
for the speaker’s voice characteristics.

We also conducted an AB test on the naturalness of the 
speech generated from the two systems. The AB test for SF 
and SV were carried out under the same evaluation environ-
ment as the matching evaluation. From the Table 4, it can 
be seen that the score of SF is even higher than that of SV 
under the 95% confidence interval. It implies that the voice 
embeddings learned from face images can further synthesize 
clear and natural-sounding speech.

In addition, we report MOS and gender recognition evalu-
ation results on VoxCeleb and VGGFace datasets in Table 5. 
It can be seen that the MOS has achieved an average value 
of 3.78 and the accuracy of gender identification reached 
82.9%, indicating that the synthesized speech sounds natural 
and has good gender classification accuracy.

The performance of our SSFE framework is better than 
other existing methods in terms of the quality of synthetic 
speech and the face-voice matching degree . This proves 
that our multi-view feature learning method is effective. 
Through the fusion of different levels of voice features, the 
synthesized speech can better capture the multi-dimensional 
information of the speaker’s timbre, intonation, and pause. 
In addition, the domain adaption of voice and face features 

is reasonable and effective to obtain a new representation 
containing both two kinds of information. Experiments show 
that our synthetic speeches does match the speaker’s face 
images well.

Similarity evaluation Although our goal is not to repro-
duce the speaker’s own voice, we still measure the simi-
larity between the embeddings generated from SF and SV. 
We visualize them by PCA, as shown in Fig. 7. We use the 
points with same color to represent the same person, where 
asterisks are embeddings extracted from SF, and dots are 
embeddings from SV. As we can see, although the points 
from SF are not completely distributed in the same posi-
tion as the points from SV, they are still distributed in rela-
tively close locations. Moreover, people of the same gender 
are distributed on the same side. This shows that our SSFE 
framework can use the speaker’s face to synthesize the voice 
that sounds similar to the voice synthesized by the speaker’s 
speech and consistent with their gender.

Robustness evaluation To measure the robustness of pro-
posed method, we train the face encoder on two groups of 
datasets and test the robustness respectively. The first group 
is the VoxCeleb voice set and VGGFace face image set, and 
the second group is the GRID dataset in the form of video-
audio pair. Two groups of experiments with and without 
noise were carried out on each dataset, in which the noise is 
Gaussian noise with a standard deviation equal to 1. For the 
video of the GRID dataset, the face image is split every 10 
frames, the other preprocessing is consistent with VGGFace, 
and the preprocessing of audios is consistent with the Vox-
Celeb dataset.

We mark the models trained with VoxCeleb and 
VGGFace datasets without and with noise as VOXVGG-wo-
noise and VOXVGG-noise, respectively. The UMAP visu-
alizations are shown in the first and second rows of Fig. 8. 
When the VoxCeleb and VGGFace datasets are used, as 

Table 5   MOS and Gender recognition evaluation results on Vox-
Celeb and VGGFace datasets

Framework MOS Gender recognition

SSFE(ours) 3.76 82.9%

Fig. 7   PCA visualization of the embeddings extracted from SF and 
SV
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shown in Fig. 8(a) and (b). We mark the experiments carried 
on the GRID dataset as GRID-wo-noise and GRID-noise, 
which are shown in Fig. 8(c) and (d). In general, the embed-
dings of the same speaker can be gathered together, and the 
embeddings of different speakers can be distinguished to a 
certain extent (note: the coordinate distance in Fig. 8(b) is 
smaller than that in Fig. 8(a)). As we can see, the experi-
ments with the GRID dataset achieve better performance 
than VoxCeleb, whether it contains noise or not. This is 
because the GRID dataset contains fewer speakers and have 
purer face image background. Although intuitively, the per-
formance of the test with noise will be discounted. However, 
from the experimental results, our model still has a similar 
performance in the case of noise. This is more obvious on 
the GRID dataset.

Based on the above experimental results, we believe that 
the SSFE framework is effective even in a complex environ-
ment with noise.

4 � Conclusion and future work

From the perspective of multi-view learning, we propose a 
speech synthesis framework called SSFE. The framework 
is trained to learn the common feature representation of 
faces and voices, so that speech synthesis can be carried 
out under the condition that only the face image of the 
speaker is provided. The experimental results demonstrate 
that the speech synthesized by the SSFE framework can 
match the speaker’s face features well and has a high degree 
of naturalness and a certain degree of similarity with the 
speaker’s speech. The proposed SSFE demonstrate learns 
a representation that can contain both face and voice 
information, which makes the connection between different 
modalities. It can be regarded as a large-scale biophysically 
meaningful neural network with multi-compartment neurons. 
In cerebellar morphological theory, it provides the connection 

Fig. 8   UMAP visualization of the f-voice embeddings extracted from the face encoder, which trained with (a)VOXVGG-wo-noise, (b)VOX-
VGG-noise, (c) GRID-wo-noise and (d)GRID-noise respectively
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between different sensory organs, which may have a certain 
enlightening effect.

In addition, our modal fusion method is reasonable in 
theory and practical results, we believe that our method 
may also be effective in feature fusion in other cross modal 
tasks. In the future, the application of our model in other 
cross-modal fusion methods and digital morphological 
computing is a direction worthy of further exploration.
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