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Abstract
Accurate traffic flow prediction is crucial for the development of intelligent transportation. It can not only effectively avoid 
traffic congestion and other traffic problems, but also provide a data basis for other complex tasks. The rapid development 
of social technology and the increasingly complex traffic environment lead to the emergence of massive traffic data. Traffic 
flow prediction as a spatial-temporal prediction problem has been widely concerned, but the traditional forecasting methods 
often ignore the spatial-temporal dependence, difficult to meet the prediction requirements. Therefore, this paper proposes 
a novel spatial-temporal model based on an attention one-dimension convolutional neural network (1D-CNN) and a gated 
interpretable framework, which models historical traffic data from the perspectives of time and space respectively. The core 
of the model proposed in this paper is to construct spatial-temporal blocks. First, a 1D-CNN based on channel attention 
mechanism and “inception” structure is proposed to extract temporal correlation. Then, considering the complexity of the 
actual traffic network, an interpretable multi-graph gated graph convolution framework is proposed to extract the spatial 
correlation. Finally, extensive experiments are carried out on real data sets, which prove the effectiveness of the proposed 
model, and it is very competitive compared with some state-of-the-art methods.
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1  Introduction

With the continuous development of society, the increas-
ingly complex traffic situation has brought great challenges 
to the construction of an intelligent transportation system 
(ITS). The growth of population and the widespread popu-
larity of transportation tools have led to traffic jams, traffic 
accidents, and other social events. As a key part of intel-
ligent transportation, traffic flow prediction can effectively 
help solve similar incidents and coordinate traffic manage-
ment. Traffic flow refers to some traffic flow states on the 
road composed of pedestrians, running vehicles and roads, 
etc. By using historical traffic flow data to predict the future, 
it can help people avoid congestion during the journey and 
choose convenient and safe routes. The research of traffic 

flow prediction started very early. Currently, the problem 
of traffic flow prediction based on spatial-temporal data is 
widely concerned by researchers [1–3].

In the past few decades, scholars have proposed many 
methods to predict traffic flow [4], which can be broadly 
divided into two categories: 1. Traditional prediction mod-
els based on statistical methods. 2. Prediction models based 
on machine learning methods. The first category includes 
AR (auto-regressive model), ARMA (auto-regressive mov-
ing average model), ARIMA (auto-regressive integrated 
moving a sverage model) [5]. Kumar et al. [6] proposed a 
traffic flow forecasting model based on seasonal ARIMA 
(SARIMA), after the model performs the necessary differ-
entiation to stabilize the input time series, the autocorre-
lation function (ACF) and partial autocorrelation function 
(PACF) were plotted to identify the appropriate order of the 
SARIMA model. The second category includes support vec-
tor machines (SVM), artificial neural networks (ANN) and 
Bayesian networks, etc. [7, 8]. This kind of method can well 
capture the complex nonlinear relationship in traffic time 
series and has been widely studied in the past years. Li et al. 
[9] proposed a new dynamic radial basis function (RBF) 
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neural network to predict outbound passenger volume and 
improve passenger flow control. However, with the develop-
ment of society and technology, the traditional shallow neu-
ral network models are not performing well in the face of the 
increasingly complex traffic networks and huge traffic data 
volume, and they are usually only applicable to the traffic 
prediction of a single station. In the face of spatial-temporal 
data, they can not well mine the spatial-temporal correlation. 
While the rise of deep learning has just solved this problem. 
Through the continuous attempts of researchers, deep learn-
ing has achieved a huge breakthrough in the field of traffic 
flow prediction [10]. Models such as deep neural network 
(DNN), convolutional neural network (CNN), recurrent 
neural network (RNN) have been well applied in the field 
of traffic. Deep learning models can excavate the tempo-
ral and spatial correlation of traffic data [11–15]. Yu et al. 
[16] proposed a spatial-temporal recurrent convolutional 
network (SRCN), which inherited the advantages of deep 
convolutional neural networks (DCNN) and long short-term 
memory networks (LSTM), through DCNN to obtain traf-
fic network dependence, LSTM to obtain time dependence. 
However, although most current deep learning-based meth-
ods can improve the mining ability of nonlinear relations 
through complex structures, there are still many shortcom-
ings in the acquisition of spatial correlation. Although RNN 
can well mine the changes in time series, it has the problems 
of slow training and easy to ignore the spatial correlation of 
data [17]. Although CNN can extract the relevance in tem-
poral and spatial at the same time through the convolution 
kernel, it organizes the traffic network into the form of grids 
and ignores the spatial information brought by the network 
structure.

In the problem of spatial-temporal prediction of traffic 
flow, the traffic network can be regarded as a graph structure. 
Compared with CNN, which decomposes the network into 
a grid, the graph neural network (GNN) proposed in recent 
years [18] has received extensive attention from scholars 
because it can better mine the spatial correlation in the traffic 
data [19–21], such as T-GCN [22], STGCN [23], ASTGCN 
[24], DCRNN [25]. These models construct graph models 
based on real traffic networks to obtain spatial dependence 
of traffic data. Fang et al. [26] proposed the global tempo-
ral and spatial n setwork (GSTNet), which constructed a 
spatial-temporal block that contained a multi-resolution time 
module and a globally related space module to obtain the 
temporal and spatial correlation respectively. Song et al. [27] 
proposed that the synchronous modeling mechanism of the 
spatial-temporal synchronous convolutional network model 
(STSGCN) can effectively capture complex spatial-temporal 
information while ignoring the heterogeneity in data.

In order to better capture the dependencies of complex 
spatial-temporal traffic data, this paper proposes a spatial-
temporal gated multi-graph network (STGMN). The model 

contains multiple spatial-temporal blocks. Each spatial-
temporal block obtains multi-level temporal correlation 
by constructing an attention 1DCNN based on the incep-
tion mechanism, and captures complex spatial correlation 
by constructing a graph convolution framework based on 
gated multi-graphs.

From the perspective of temporal dependence, the traf-
fic flow tends to change periodically, and the traffic flow 
will also be affected by the previous moments. Therefore, 
we use filters of different sizes in the model and control 
their output through the attention mechanism, which can 
supplement the time dependence from multiple scales. 
From the perspective of space, as the traffic network 
becomes more and more complex, the change of traffic 
flow is obviously affected by its topological structure, and 
the traffic flow data between adjacent stations and stations 
with upstream and downstream relationships are obviously 
closely related. However, in past studies, researchers usu-
ally only build the model with one kind of graph network. 
In this paper, a multi-graph mechanism is proposed, and 
different graphs are convoluted and stacked through an 
interpretable framework, which greatly improves the per-
formance of the graph convolution model.

In summary, the contributions of this article include: 

1.	 A novel spatial-temporal prediction model is proposed, 
it integrates temporal and spatial modules to extract tem-
poral and spatial correlations respectively.

2.	 A multi-resolution CNN framework based on attention 
mechanism is proposed as a temporal block. In this mod-
ule, convolution kernels of different sizes are used to 
extract the spatial dependence of traffic data at different 
scales, and the features obtained are fused and adjusted 
by the channel attention mechanism.

3.	 An interpretable multi-graph gated graph convolution 
framework is proposed as a spatial block. In this module, 
the deep spatial information of traffic data is gradually 
mined through the graph convolution layer of different 
graph structures by residual stacking. Also, a gating 
mechanism is proposed to control the output.

4.	 This paper verifies the feasibility of the model on real 
datasets, and compares the prediction results of the pro-
posed model with the results of some models proposed 
in recent years, and proves that the model in this paper 
has obtained better results.

The content of this article is organized as follows: Section 2 
describes and defines the traffic flow problem and introduces 
the graph convolutional network. Section 3 details the model 
proposed in this article. Section 4 conducts experiments on 
the proposed model on real datasets and compares it with 
other models. Section 5 contains a summary of the article 
and discusses future work.
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2 � Preliminaries

In this section, we give a brief description of traffic flow and 
traffic flow prediction. At the same time, the application of 
current deep learning methods (especially graph convolu-
tion) in traffic flow prediction is analyzed and discussed.

2.1 � Traffic flow prediction problem

As an important part of intelligent transportation system 
(ITS), traffic flow prediction has been concerned and stud-
ied by researchers. The traffic flow prediction problem is 
essentially a spatial-temporal sequence prediction problem, 
which uses historical traffic data to predict the future.

Use Xi ∈ ℝ
N×C to represent the data of N stations at time 

point i, where C represents the number of features. Use 
graph G = (V ,E) to denote the topological structure of the 
transportation network, V denotes the stations on the road, 
E represents the connectivity between stations.

The goal of the traffic flow prediction problem is to learn 
a mapping function f, which can predict future data based 
on the input historical data and graphs. In summary, a traffic 
flow problem that uses historical data with a length of n in 
the past and traffic network information to predict future T 
steps can be expressed as follows:

Figure 1 represents the acquisition process of a data set. Data 
samples were constructed based on known historical traffic flow 
data, and continuous 2T traffic data were taken, of which T data 
were taken as input (x) and the other data as output (y). In addi-
tion, considering the importance of the traffic network relation-
ship in the traffic flow prediction problem, the graph information 
containing site correlations is also used as part of the input.

It should be noted that traffic flow forecasting, as a spa-
tial-temporal forecasting problem, is facing the following 

(1)
[
Xt−n+1,Xt−n+2, ...,Xt,G

] f
→

[
Xt+1,Xt+2, ...,Xt+T

]

challenges: 1. As a forecasting problem, how to better capture 
the time dependence; 2. How to combine the real traffic net-
work and forecasting to mine the spatial relationship. 3. How to 
model the influence of other factors, such as weather, holidays.

2.2 � Graph convolution network for traffic flow 
prediction

In recent years, the use of deep learning methods to solve 
complex traffic flow prediction problems has received wide-
spread attention [28]. In the past, researchers usually used the 
traditional convolutional neural network based on map grids to 
deal with spatial dependence [29, 30], but obviously, the real 
transportation network is a more complex graph topology, and 
the number of neighbors at each station may be different. CNN 
which cannot process data with a non-Euclidean structure, can-
not effectively extract features under such a network structure. 
Therefore, to make convolution applicable to graph-structured 
data, graph convolution is proposed. In recent years, researchers 
have begun to integrate graph convolution into traffic flow pre-
diction framework to solve the spatial dependence problem [31].

2.3 � Graph convolution network

GCN can aggregate the features of each node with those of its 
neighborhood, which means, it can aggregate the local features 
in the spatial-temporal network. Therefore, graph convolution 
operation can make good use of graph relations. A basic graph 
operation [32] can be expressed in the following (2).

Where Hl ∈ ℝ
N×C×T represents the input. Let a graph be 

defined as G(V, E) with vertices V and edges E, edge weights 
are given as eij . A represents the adjacency matrix, which 
is a matrix representing the adjacency between vertices, 
Aij = eij . D̃ represents the corresponding degree matrix, 
consisting of node degrees. Ã = A + IN is the graph plus the 

(2)Hl+1 = g(X,A) = 𝜎
(
ÂHlW0

)

Fig. 1   Acquisition process of 
data sets
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self-connected adjacency matrix, Â = D̃
−

1

2 ÃD̃
−

1

2 represents 
the normalized graph, W0 ∈ ℝ

C×C� is the neural network 
parameter, and � is the activation function, such as ReLU.

3 � Proposed model

Section 3 introduces the proposed model STGMN in detail. 
The model is mainly composed of stacked spatial-temporal 
blocks, which mainly include two parts: temporal module 
and spatial module. The temporal module extracts multi-scale 
time dependence through multi-resolution 1DCNN, and adap-
tively adjusts channel weight through channel attention. The 
spatial module uses an interpretable multi-graph convolution 
framework to mine the effective information from the relation-
ships between stations.

3.1 � The architecture of STGMN

The architecture of STGMN model proposed in this paper 
is shown in Fig. 2. The model mainly includes two spa-
tial-temporal blocks and an output block. In STGMN, each 
spatial-temporal block includes a temporal module based 
on attention multi-resolution convolutional network and a 
spatial module based on gated multi-graph convolutional 
network. The output block contains an attention-based con-
volution layer and a complete connection layer.

The novelty of the proposed model is that it separately 
constructs modules to extract spatial-temporal and tempo-
ral dependencies. For the mining of temporal relationships, 
a channel-focused multi-resolution CNN model is used to 
improve the temporal data processing capability of CNN. 
For more complex spatial relationships, an interpretable 
multi-graph framework is used, which deeply considers the 
spatial information of the traffic network. The detailed struc-
ture of each module is described in the following sections.

3.2 � Temporal module

In the temporal dimension, the traffic conditions at differ-
ent moments are different for the future. For CNN, the time 

range of extraction is determined by specifying the size of 
the filter, but the correlations obtained by models are differ-
ent in different time ranges, so this paper proposes a multi-
resolution feature extraction approach.

The idea of “Inception” structure [33] is to increase the 
width of the network by using filters of different sizes to 
obtain features of different scales. Based on this idea, a 
multi-resolution convolutional network module combined 
with channel attention mechanism is proposed in this paper. 
It mainly consists of a multi-scale convolutional module, a 
channel attention module, and an output module. Its specific 
structure is shown in Fig. 2. First of all, the multi-scale con-
volutional module selects one-dimensional CNN to extract 
time dependence, and in order to improve the mining abil-
ity of CNN, filters of different sizes are used for operation. 
Then, the dependencies of the output channels are modeled 
by channel attention. Finally, an output module contain-
ing the convolution layer and the attention layer is used to 
control the length of the output sequence of the temporal 
module.

3.2.1 � Multi‑resolution convolutional network

In recent years, CNN, RNN, and other models have been 
widely applied to the analysis of time series with good 
results. RNN makes data processing with the order, gives 
the network memory, very suitable for processing sequence 
data. However, the structure of CNN is simple, and when 
one-dimensional CNN is used to process the sequence data, 
it can not only effectively mine the temporal correlation, 
but also greatly improve the training speed. Therefore, this 
paper chooses to use CNN to obtain the temporal depend-
ence of traffic flow. At the same time, to further excavate the 
time relationship in the sequence, the idea of “Inception” 
structure is introduced, and a multi-resolution convolutional 
neural network model is adopted, in which filters of different 
sizes are used to obtain features of different scales.

We use multi-resolution blocks to capture the temporal 
relationship. The key idea is to increase the width of the 
network and make the convolutional layer have filters of dif-
ferent sizes, which can help to better capture the temporal 

Fig. 2   The model structure of 
STGMN
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dimension dependence of traffic data. The input data of the 
data block is processed by using filters of different sizes. 
At the same time, the residual connection mechanism is 
introduced to splice the input and different convolution cal-
culation results together as the output. The structure of the 
multi-resolution block is shown in Fig. 3.

Figure 3 shows the multi-resolution block structure of 
the proposed model’s two spatial-temporal blocks. The first 
spatial-temporal block contains three filters: 1 × 1 , 1 × 3 , and 
1 × 5 . Because the sequence length T decreases after passing 
through the first spatial-temporal block, there is no filter of 
size 1 × 5 in the multi-resolution block-2. Taking the multi-
resolution block-1 as an example, the formula is as follows:

Where X(r−1) ∈ ℝ
Cr−1×N×Tr−1 represents  the input , 

X(r) ∈ ℝ
Cr×N×Tr represents the output, ∗ represents the con-

volutional operation, �1,�2,�3 respectively represent three 
different sizes of filters, (Cr∕2 × 1 × 1) , (Cr∕4 × 1 × 3) and 
(Cr∕4 × 1 × 5) , and by padding ensure Tr = Tr−1.

3.2.2 � Attention based convolutional network

Multi-resolution block combines the calculation results of 
different filters only in the form of the splice, so the chan-
nel attention mechanism (ECA) is introduced to capture the 
correlation between channels [34]. Channel attention has 
great potential in improving the performance of deep con-
volutional neural networks. The local cross-channel interac-
tion strategy without dimension reduction proposed by ECA-
Net can not only learn effective channel attention, but also 
greatly reduce the complexity of the attention model. The 
weights of each channel in ECA are calculated as follows:

(3)
X(r) =ReLU

(
𝛷1 ∗ X(r−1) ⊕𝛷2 ∗ X(r−1)⊕

𝛷3 ∗ X(r−1) ⊕ X(r−1)

)

(4)� =�(Wky)

(5)g
(
X(r)

)
=

1

NT

N,T∑
i=1,j=1

X
(r)

i,j

Where g(X(r)) ∈ ℝ
C is the global average pool (aggregated 

feature), � is the Sigmoid function, Wk is a C × C parameter 
matrix, which is set as follows:

The weight calculation of channel yi only considers its inter-
action with k neighbors, and the formula is as follows:

where �k
i
 indicates the set of k adjacent channels of yi.

A more efficient approach would be to have all channels 
share the same weight.

The ECA module obtains cross-channel interaction locally, 
so it needs to set an appropriate K value manually, and man-
ual verification will consume a lot of computing resources. 
Therefore, an adaptive strategy is proposed in ECA-NET. 
Given channel dimension C, neighborhood size k can be 
adaptively determined by:

where � and b are set to 2 and 1, respectively.
ECA module can effectively improve the performance of 

convolutional neural network. Combined with the Inception 
block in this paper, ECA module can reflect the value of the 
dependence of different time scales and improve the mining 
ability of the model in the temporal dimension. We will get 
the weight to adjust the input, the calculation formula is as 
follows:

(6)

⎡⎢⎢⎢⎣

w1,1 ⋯ w1,1 0 0 ⋯ ⋯ 0

0 w2,2 ⋯ w2,k+1 0 ⋯ ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 ⋯ 0 0 ⋯ wC,C−k+1 ⋯ wC,C

⎤⎥⎥⎥⎦

(7)�i = �

(
k∑

j=1

w
j

i
y
j

i

)
, y

j

i
∈ �k

i

(8)�i = �

(
k∑

j=1

wjy
j

i

)
, y

j

i
∈ �k

i

(9)k = �(C) =
||||
log2

�
+

b

�

||||odd

(10)X̂(r) = 𝜔X(r) = 𝜔(X1,X2, ...,XCr
) ∈ ℝ

Cr×N×Tr

Fig. 3   Architecture of Multi-
resolution blocks
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3.2.3 � Summary of the temporal module

In the multi-resolution temporal module proposed in this 
paper, a multi-scale filter is used to process the data in order 
to find the temporal correlation in the data. A lightweight 
channel attention mechanism is introduced to analyze the 
importance of each channel and give different weights to each 
channel without burdening the network structure. Finally, a 
CNN layer is added to compress the data in the time dimen-
sion and serve as the input of the subsequent spatial module.

3.3 � Spatial module

In the spatial dimension, for transportation networks, traf-
fic conditions at neighboring locations affect each other. In 
recent studies, attention has been paid to the help of spatial 
relationships for traffic flow prediction, but the use is still 
relatively homogeneous and often limited to inter-site con-
nectivity, but complex traffic networks often contain deeper 
dependencies, so this module aims to explore how to better 
use spatial information for data feature mining.

In this paper, an innovative Spatial module of multi-graph 
convolutional neural network is proposed, which combines 
the architecture of fully connected deep neural network 
(N-BEATS) proposed in [35] with the mechanism of multi-
graph structure. Its architecture is shown in Fig. 4. The idea 
of the module is to stack the graph convolution blocks using 
different graph information based on the residual connection 
and to control the output of each small module through the 
gating mechanism. Next, we will analyze the module from 
the perspective of multi-graph mechanism, stack mecha-
nism, and gating mechanism.

3.3.1 � Multi‑graph mechanism

When using graph convolution to capture spatial-temporal 
correlations in traffic data, it is very important to construct 

an appropriate graph. However, in the face of the complex 
traffic network environment, one graph is obviously not 
enough to describe the relationship between stations, so this 
section shows the different types of correlation between traf-
fic networks and how to build a graph based on these cor-
relations. The following three graph generation methods are 
used in the model:

(1) Distance graph
First, the most basic distance relationship is used to 

describe the relationship between the stations. In the real 
traffic network, the connection and distance between the sta-
tions are very valuable for reference. The traffic flow vari-
ations of stations close to each other may be similar, so the 
distance is chosen to represent the weight between stations. 
The calculation formula for the weights wij of the distance 
matrix Adis is as follows:

Where �2 and � are thresholds used to control matrix dis-
tribution and sparsity. We use the reciprocal of distance to 
describe the relationship between stations. The closer the 
distance between stations is, the greater the weight is; oth-
erwise, the smaller the weight is.

(2) Correlation graph based on DTW
In addition to using the distance relationship between sta-

tions to construct the graph matrix, we also propose to use the 
historical data relationship of each station to construct the graph 
and use DTW (Dynamic Time Warp Distance) algorithm to 
calculate the correlation between the historical data of stations. 
The basic idea of DTW is to regularize the time axis through 
the numerical similarity of time series, and then to find the opti-
mal corresponding relationship between the two time series.

When using historical data for each station to evaluate simi-
larities between stations, there is often a “time lag” problem. 

(11)wij =

⎧⎪⎨⎪⎩

exp

�
−

d2
ij

�2

�
, i ≠ j and exp

�
−

d2
ij

�2

�
≥ �

0, otherwise

Fig. 4   Architecture of Spatial 
module. The center of the graph 
is the core of the multi-graph 
mechanism, which can receive 
multiple graph structures and 
connect stacked convolution 
blocks through residuals. The 
right side of the graph is a 
gated structure, which controls 
the output of the multi-graph 
structure part
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Although the two stations have similar fluctuations on the traf-
fic flow change curve, the different geographical locations will 
cause different time steps. Assume that there are historical 
traffic flow data curves for two stations in Fig. 5, two curves 
can be observed on the change if there are a lot of similari-
ties, but their fluctuations have phase difference, if only used 
Euclidean distance to measure their relationship, obviously 
the result is bad. Therefore, DTW can be a good solution to 
his problem. DTW is defined as follows, there are two time 
series, X =

{
x1, x2,… , xm

}
 and Y =

{
y1, y2,… , yn

}
 respec-

tively, where m and n are the lengths of X and Y. The cumula-
tive distance is constructed as follows:

Where d(xi, yj) =
√

(xi − yj)
2 , denotes the distance between 

xi and yj . For the final process of cumulative distance is, in fact, 
in the distance matrix B to find an optimal path W, to minimum 
cumulative distance and the distance measure is defined as:

W has also been called a warping path, which is a corre-
spondence between two sequences. W must satisfy the con-
straints of boundary, continuity and monotony, (1) Boundary 
constraints: the starting point of path W is W1 = (x1, y1) and 
the end point is WK = (xK , yK) ; (2) Constraints of continuity 
and monotony: if Wk = (xk, yk) , then Wk+1 must be one of 
(xk+1, yk), (xk+1, yk+1), (xk, yk+1).

After calculating the shortest cumulative distance D 
between the historical data of each station by DTW, the 
larger the D is, the smaller the correlation between the 
sequences is. Therefore, 1/D is taken as the weight of our 
correlation graph Ar.

(12)
D(i, j) =d(xi, yj)

+ min{D(i − 1, j),D(i, j − 1),D(i − 1, j − 1)}

(13)DTW(X, Y) = min{D(m, n)}

(3)Adaptive graph
In addition, considering that the first two graph structures 

are both looking for the correlation between traffic stations 
from the perspective of traffic flow data, we also use the adap-
tive adjacency matrix proposed by [36] in our model. It has 
the advantage that it does not require any prior knowledge, 
but is acquired through continuous learning during training, 
which exactly meets our needs for complex traffic networks 
In the real environment, the stations may be affected by geo-
graphical location, environment, humanity, and other factors, 
and there is a complex dependent relationship. Therefore, at 
the end of multi-graph framework of the spatial-temporal 
block, we use the adaptive graph to carry out the final con-
volution operation. Through it, we can excavate more hidden 
spatial information. The formula is as follows:

Where E1,E2 ∈ ℝ
N×C are the parameters generated by ran-

dom initialization. The SoftMax function is applied to nor-
malize the adaptive adjacency matrices.

3.3.2 � Stack mechanism

In order to mine the information of each graph as much as 
possible, this paper proposes a novel multi-graph prediction 
framework based on the structure of N-BEATS, as shown in 
the middle of Fig. 4. Each GCN block in the spatial module 
corresponds to a graph convolution operation, and the spe-
cific stacking mechanism between the GCN blocks is shown 
in Fig. 6. For the first GCN block in the module, its input 
is x and a graph matrix, and its output is x̃ and ỹ . x is the 

(14)Ãadp = SoftMax
(
ReLU

(
E1E

T
2

))

Fig. 5   Comparison chart of traffic flow data fluctuation curve of two 
stations

Fig. 6   Architecture of GCN block. It describes the residual connec-
tion mode of the GCN block, where the GCN block takes the input 
from the upper layer and with the output x̃ and ỹ as the input to the 
lower layer and as part of the output of the space module, respectively
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historical traffic data, ỹ is the forecast result for the future, 
and x̃ can be understood as the “backcast” of the input x, 
which is the best estimate of the input x. For the rest of the 
blocks, they also need an input xl , which is a residual output 
of the previous blocks. xl , x̃l represent the input and output 
of the l-th block respectively, and the input of the next block 
is calculated as follows:

Because of the complexity of the traffic network, the 
single graph structure is often not enough to describe its 
relevance, so the multi-graph mechanism emerges. How-
ever, in past studies, scholars’ applications of the multi-
graph mechanism have usually included two approaches: 
1. Multiple graphs were fused into one graph and then 
calculated. 2. Convolve the graph in simple layer series 
and parallel. Although these methods take into account 
the complexity of the traffic network, the simple integra-
tion can not well excavate the spatial dependence. There-
fore, this paper uses an interpretable multi-graph stacking 
framework.

Each GCN block in the module uses different graph 
matrices and is stacked in order by residual connection. 
The convolution operation for each graph can effectively 
mine out the spatial information in the graph. At the same 
time, using the residual connection mode, it can be under-
stood that each block removes the information that can be 
explained well from the initial input, and the following 
blocks can better mine the remaining hidden information. 
The output of each GCN block (except the last one) has two 
parts: x̃ and ỹ , where x̃ is a review of the past and represents 
the mining performance of the GCN block on the input, and 
ỹ is a prediction of the future.

In addition, three kinds of graph structures are used in the 
proposed framework, and their stacking order in the spatial 
block is arranged as follows: distance graph, DTW based 
correlation graph, and adaptive graph.

First of all, the basic distance graph is used, which 
contains the connectivity, distance, and other information 
between stations. It is the most basic description of the traf-
fic network, so it is put in the first place. Then we use DTW 
based graph to mine the correlation between stations from 
the historical data of each station, which can find the similar-
ity between stations from the perspective of data. Finally, in 
order to capture more hidden spatial information, an adap-
tive graph construction method is used. The graph can be 
continuously learned in the process of model training to bet-
ter capture the remaining hidden relationships.

(15)xl+1 = xl − x̃l

(16)out1 = r = 𝜎(X ⊕ FC(out1 ⊕ out2 ⊕ ...⊕ outk))

3.3.3 � Gating mechanism

Spatial block through continuous stack GCN block to realize 
the depth of the spatial and temporal information capture. 
In the process of deepening the network, the models are 
constantly aggregated based on different graph information 
(that is, different neighbor information) which may lead to 
unstable performance. Therefore, this paper combines the 
gating mechanism to construct a “learning” gate to carry out 
selective learning. Gating mechanism has been widely used 
in deep learning, especially in the variant of RNN, which has 
been proven to have strong transmission control capabilities.

This paper uses a gated residual block to control the final 
result, as shown at the right of Fig. 4. Firstly, the prediction 
results of all GCN blocks is splicing together, and the final 
output is controlled through the “learning” gate. Suppose 
there are k GCN blocks, and their output is out1 , out2 , ..., 
outk , X is the input of the spatial block, and the gated block 
can be expressed as:

3.3.4 � Summary of the spatial module

In this paper, we use an interpretable multi-graph framework 
to explore spatial-temporal dependencies. The basic idea is 
to stack graph convolutional networks using different graph 
structures through residual connections. In this model, the 
information that can be well represented by the current graph 
convolutional layer is continuously removed from the input, 
which facilitates the mining of hidden information by the 
next graph convolutional layer and avoids the confusion of 
data.

3.4 � Model summarization

The structure of STGMN is shown in Fig. 2, which stacks 
computing modules through a serial structure. After min-
ing the spatial-temporal dependency in traffic data through 
two spatial-temporal blocks, the data is passed into the final 
output block and the output is calculated. The output block 
contains a CNN layer using channel attention and a fully 
connected layer to control the output dimension. The specific 
calculation process of STGMN is as follows: 

1.	 Input traffic data and connectivity, distance and other 
data between stations, preprocess the data and generate 
the required graph structure.

(17)r =𝜎(X ⊕ FC(out1 ⊕ out2 ⊕ ...⊕ outk))

(18)
Output =r⊗ FC(out1 ⊕ out2 ⊕ ...⊕ outk) + (1 − r)⊗ X
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2.	 Start to train the model. The model deals with spatial-
temporal dependence through two spatial-temporal 
blocks. Firstly, spatial-temporal block captures multi-
scale temporal dependence through temporal module, 
and then obtains multi-level spatial dependence through 
multi-graph spatial module;

3.	 Transfer the result of spatial-temporal blocks to output 
block, and calculate the final prediction result.

Finally, MSE loss is used to train the model, and the formula 
is as follows:

4 � Experimental results and analysis

In this section, the proposed model experiments on real 
datasets, and the experimental results are analyzed and 
compared.

4.1 � Datasets

The datasets used in this article are from a real highway 
dataset in California, collected by the Caltrans Performance 
Measurement System (PEMS) [37]. PEMS has more than 
39,000 sensors deployed in major metropolitan areas in Cali-
fornia. The System samples at 30 seconds, and the data is 
aggregated to 5 minutes. Data features include traffic flow, 
average speed, and average lane occupancy.

PeMSD4: the data of San Francisco Bay, including a total 
of 3848 detectors on 29 roads, data range from January to 
February 2018. There are a total of 59 days of data. Data of 
307 detectors are selected in this paper, the first 50 days as 
a training set, the last 9 days as a test set;

PeMSD8: the data of San Bernardino, containing 1979 
detectors on 8 roads, data time range from July to August 
2016. There are a total of 62 days of data. This paper selects 
the data of 170 detectors, the first 50 days are used as the 
training set and the last 12 days as the test set.

4.2 � Experimental settings

4.2.1 � Parameter settings

In the experiment of this paper, the data of the past hour are 
used to predict the data of the future one hour. Since the time 
interval of the data set is once every 5 minutes, that means, 
12 historical data are used to predict the next 12 data. In the 
model proposed in this paper, all the convolution operations 
are set with 64 filters (including graph convolution and 1D 

(19)L(MSE) =
1

N

N∑
n=1

(
yn − ŷn

)2

convolutional network). In the spatial module, the sequence 
of graphs used is distance graph, DTW diagram graph and 
adaptive graph. When using distance graph, Chebychev 
polynomials are attempted to approximate the convolution 
kernels (K=3). In the training stage, we use Adam to opti-
mize all models 50 epochs, batch size is 50, and the learning 
rate is 0.0005.

4.2.2 � Compared methods

In order to prove the validity of the model proposed in this 
paper, we set experiments to compare it with the following 
methods. 

(1)	 HA: Historical Average method.
(2)	 SVM [38]: Support Vector Machine, a traditional pre-

diction method.
(3)	 GRU [39]: Gated Recurrent Unit Network.
(4)	 LSTM [40]: Long Short-Term Memory Network.
(5)	 STGCN [23]: Spatio-Temporal Graph Convolutional 

Network model.
(6)	 ASTGCN [24]: Attention Based Spatial-Temporal 

Graph Convolutional Network model.
(7)	 Graph WaveNet [36]: A CNN-based method for Deep 

Spatial-Temporal Graph Modeling.
(8)	 AGCRN [41]: An Adaptive Graph Convolutional 

Recurrent Network to capture fine-grained spatial and 
temporal correlations in series.

4.2.3 � Evaluation functions

Mean Absolute Error (MAE) and Root Mean Squared Error 
(RMSE), two commonly used evaluation functions, are used 
in this paper to evaluate the experimental results. The for-
mulas are as follows:

4.3 � Experimental results

4.3.1 � Comparation of models

Table 1 respectively shows the prediction effects of the 
proposed model (STGMN) and other compared models on 
PeMSD4 and PeMSD8. The experimental results prove that 

(20)MAE =
1

N

N∑
n=1

||yn − ŷn
||

(21)RMSE =

√√√√ 1

N

N∑
n=1

(yn − ŷn)
2
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the proposed model can effectively extract spatial-temporal 
features and achieve good results in traffic flow prediction. 
From Table 1, we can clearly observe that:

•	 Compared with traditional prediction methods such as 
HA and SVM, the model based on deep learning achieves 
better results on both datasets.

•	 Compared with LSTM and GRU which only consider 
the time relationship, the graph-based models includ-
ing STGCN and ASTGCN have been greatly improved, 
which proves the usefulness of the graph-based method 
in the field of traffic flow prediction.

•	 STGMN achieves the best result among all models under 
all metrics, and the improvement effect is obvious.

To sum up, we may arrive at the following conclusions:

•	 In the face of increasingly complex traffic conditions, we 
should not only take into account the time dependence, 
but also make reasonable use of the spatial informa-
tion of the traffic network when forecasting traffic flow. 
Compared with traditional forecasting methods, models 
based on spatial and temporal information mining, such 

as STGCN, ASTGCN, WaveNet and STGMN, have 
achieved better results.

•	 As a spatial-temporal model, STGMN proposed in this 
paper adopts the method of constructing spatial-tempo-
ral information mining structure compared with similar 
STGCN, ASTGCN, WaveNet, etc. However, compared 
with other methods, the temporal module of STGMN 
adopts 1D-CNN based on the idea of Inception, using 
different filters to mine time characteristics, and using 
attention mechanism to combine the characteristics of 
data at different scales. The spatial module uses a novel, 
interpretability of the multi-graph architecture, making 
full use of a variety of graph structure of the space infor-
mation. These improvements enable STGMN to achieve 
higher computational efficiency and precision and show 
good performance on data sets.

In order to further analyze the performance of STGMN, 
we show the prediction errors of all models in PeMSD4 and 
PeMSD8 at each step in Figs. 7 and 8 respectively. It can be 
clearly seen that STGMN has the best effect in both data-
sets, and the prediction result of each step is the best among 
all models. Compared with other models, HA, GRU, and 
LSTM have the worst prediction effect, and the prediction 
performance decreases significantly with the increase of 
prediction length, which proves the validity of the spatial-
temporal models. The prediction performance of STGCN, 
ASTGCN, and WAVENet is similar, and they can all obtain 
excellent results in the first step. However, the stability of 
the model is not enough, and the performance degradation 
rate is obviously higher than that of STGMN and AGCNRN. 
STGMN has achieved significant improvement in all aspects. 
Compared with AGCRN, which has the closest prediction 
results with STGMN, although AGCRN has a stable predic-
tion effect, it performs a poor prediction effect at the begin-
ning, especially in PeMSD4 data, the prediction result of the 
first two steps of AGCRN is even lower than that of LSTM 

Fig. 7   Comparison of each step 
error of all models on dataset 
PeMSD4

Table 1   Experimental results on PeMSD4 and PeMSD8

Bold entries indicate the best results of each evaluation index

Model PeMSD4 PeMSD8

RMSE MAE RMSE MAE

HA 55.17 37.46 45.79 31.09
SVM 45.71 32.29 38.22 27.23
GRU​ 43.61 28.70 32.02 21.05
LSTM 43.59 28.53 31.80 20.66
STGCN 35.99 23.84 27.71 18.35
ASTGCN 35.14 22.86 27.38 17.77
AGCRN 33.60 20.89 26.23 16.30
WaveNet 36.52 23.37 27.11 18.06
STGMN* 32.85 20.42 24.58 15.87
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and RNN, while the prediction curve of STGMN is obvi-
ously more stable and its performance degradation is slower.

4.3.2 � Experiments of multi‑graph mechanism

4.4 � Experiments of multi‑graph mechanism

In STGMN, a multi-graph mechanism is proposed. In order 
to verify its effectiveness and the effect of three different 
graphs selected by it, four models are respectively tested by 
taking the PeMSD8 dataset as an example.

•	 the model which uses graph convolutional network with 
distance graph only (STGMN-1).

•	 the model which uses the multi-graph mechanism with 
Chebychev (K=3) distance graph (STGMN-2).

•	 the model which uses distance graph and DTW correla-
tion graph simultaneously (STGMN-3).

•	 and the model using three graphs (distance graph, DTW 
correlation graph, and adaptive graph) simultaneously 
(STGMN).

In our experimental setting, in order to compare the 
improved effect of three different map information on spatial 
information mining, we first set STGMN-1, which only has 
the most basic information of site connection and distance, 
and is widely used in the map convolutional network by 
researchers. Meanwhile, we set STGMN-2, which introduces 
third-order Chebychev on the basis of STGMN-1. In addi-
tion, STGMN-3 also introduces DTW diagram information, 

Fig. 8   Comparison of each step 
error of all models on dataset 
PeMSD8

Fig. 9   Experimental results of 
different multi-graph mecha-
nisms
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and STGMN simultaneously uses three graph structures, 
which is a complete model setting.

The experimental results are shown in Fig. 9. It can 
be clearly observed that compared with STGMN-1, the 
performance of STGMN has been significantly improved, 
which proves the effectiveness of the multi-graph mecha-
nism proposed in this paper. In addition, it can also be 
seen that the three graph structures used in this paper 
have improved the prediction performance of the model 
to some extent. In addition, it can be seen that from 
STGMN-1 to STGMN, as graph information is added 
to the model, the prediction effect of the model is con-
tinuously improved, which proves that the three graph 
structures used in this paper can realize further mining of 
spatial information on the basis of the original model, and 
also proves the effectiveness of the multi-graph mecha-
nism proposed in this paper. With more and more infor-
mation available, the interference between graphs can be 
avoided by mining the information of graph structure step 
by step. In conclusion, the proposed multi-graph mecha-
nism and the chosen graph structure are very effective 
and can help the model to better mine different spatial 
information and further improve the prediction accuracy 
of the model.

4.4.1 � Experiments of different forecast length

Finally, in order to verify the effectiveness of the model in 
scenarios with different prediction durations, four predic-
tion lengths were set for experiments in this paper. Table 2 
shows the results of the model in this paper in predict-
ing the next 15 minutes (3 steps), the next 30 minutes (6 
steps), the next 45 minutes (9 steps), and the next 1h (12 
steps) on two datasets respectively. We can observe the 
short-term forecast result (15 minutes) is obviously better 
than that of 1h prediction results, proving that the pro-
posed model on the short-term forecast has obvious advan-
tages. In addition, the prediction result of 45 minutes is 
close to 1h, which proves that the prediction performance 

of this model is stable, and it can still maintain a relatively 
good prediction result in the face of long-term traffic pre-
diction problems.

5 � Conclusion

In the face of increasingly complex traffic conditions, this 
paper proposes a gated multi-graph attention spatial-tempo-
ral model (STGMN) for traffic flow prediction. In STGMN, 
for temporal dependence, we propose a temporal learning 
module based on attention mechanism and “Inception” 
structure. By enlarging the width of the network layer, the 
receptive field of CNN at different scales is given, which 
effectively improves the temporal capture ability of the 
model. For spatial dependence, we propose a spatial learn-
ing module based on gated multi-graph convolution, which 
can effectively improve the performance of the graph neural 
network with the multi-graph mechanism and the stacked 
framework. Finally, the validity, superiority and stability of 
the proposed model are verified by experiments on traffic 
flow datasets PeMSD4 and PeMSD8.

In future work, we will consider adding more external 
data information in the experiment to further improve the 
effectiveness of the model. At the same time, we will con-
tinue to explore the model structure, further improve the 
prediction effect, and try to introduce the model structure 
in this paper to other practical applications.
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