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Abstract
Navigating mobile robots along time-efficient and collision-free paths in crowds is still an open and challenging problem.
The key is to build a profound understanding of the crowd for mobile robots, which is the basis of a proactive and foresighted
policy. However, since the interaction mechanisms among pedestrians are complex and sophisticated, it is difficult to
describe and model them accurately. For the excellent approximation capability of deep neural networks, deep reinforcement
learning is a promising solution to the problem. However, current model-free learning-based approaches in crowd navigation
always neglect planning and still lead to reactive collision avoidance policies and shortsighted behaviors. Meanwhile, most
model-based learning-based approaches are based on state values, imposing a substantial computational burden. To address
these problems, we propose a graph-based deep reinforcement learning method, social graph-based double dueling deep
Q-network (SG-D3QN), that (i) introduces a social attention mechanism to extract an efficient graph representation for
the crowd-robot state, (ii) extends the previous state value approximator to a state-action value approximator, (iii) further
optimizes the state-action value approximator with simulated experiences generated by the learned environment model,
and (iv) then proposes a human-like decision-making process by integrating model-free reinforcement learning and online
planning. Experimental results indicate that our approach helps the robot understand the crowd and achieves a high success
rate of more than 0.99 in the crowd navigation task. Compared with previous state-of-the-art algorithms, our approach
achieves better performance. Furthermore, with the human-like decision-making process, our approach incurs less than half
of the computational cost.
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1 Introduction

In the last two decades, mobile service robots have
been introduced into various crowded environments, such
as campuses, canteens, hospitals, and exhibition halls.
To perform their tasks (e.g., patrolling, carrying food,
transporting pharmaceuticals, and guiding visitors), they
continuously move through the crowd. In these scenarios,
navigating mobile robots along collision-free and time-
efficient paths is a fundamental and crucial problem.
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Despite the undeniable progress made in recent years, it
remains an open and challenging problem.

The main challenge comes from pedestrians, who
have their policies and intents and make their decisions
independently. Various explicit or implicit interaction
mechanisms facilitate collaboration in the crowd. These
interaction mechanisms are inherently complex and difficult
to describe and model accurately. However, without an
explicit model of crowd interactions, mobile robots cannot
develop an understanding of crowd scenarios, let alone
construct a proactive and foresighted collision avoidance
strategy.

Various approaches have been proposed to address
the problem. Model-based approaches, such as social
force models [1, 2] and velocity obstacles [3–5], aim to
simplify the interaction mechanisms. They facilitate the
finding of collision-free action in a minimal computation
time. However, oversimplified and reactive interaction
mechanisms limit the robot’s ability to understand various
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crowd scenarios and result in shortsighted and occasionally
unnatural behaviors.

Other approaches, categorized as trajectory-based
approaches, separate the crowd navigation task into two
disjoint subtasks: first predicting pedestrians’ trajectories
and then planning collision-free paths. Various complex
models, such as deep neural networks, have been used to
describe the interaction mechanisms explicitly. They have
achieved amazing performance on pedestrian trajectory
datasets [6–8]. However, only a small portion of them have
been applied in crowd navigation [9, 10]. The main reason
is that they always suffer from high computational costs
with increasing crowd size and density. In addition, the
freezing robot problem [11] is also a common problem in
trajectory-based approaches, in which predicted trajectories
cover such a large portion of the space that the robot cannot
find a plausible path [12].

With the rapid development of machine learning algo-
rithms, some researchers have turned their attention to
reinforcement learning (RL), especially deep reinforcement
learning (DRL). These learning-based approaches aim to
find an optimal policy and gain the maximal long-term
return. Depending on the form of state inputs of deep
neural networks, they can be further divided into sensor-
level and agent-level approaches. Sensor-level approaches
take raw sensor readings as state inputs, such as laserscans
[13] or images. They have the advantage that all percep-
tual information is directly fed into the networks. However,
building a good understanding of crowd scenarios is diffi-
cult due to the lack of explicit high-level representations.

In contrast, agent-level approaches require agent-level
state inputs [14–17], which are extracted with various
clustering, tracking, and multi-sensor fusion algorithms.
The most immediate and important benefit is that the
agent-level representation enables explicit extraction of the
structure information and analysis of the crowd interaction
mechanism. In addition, agent-level representation is useful
for incorporating trajectory predictions into a learning-
based planning framework [10], which is the key to a

proactive and foresighted navigation policy. However, these
approaches still face two key challenges. The first is to deal
with the changing crowd size. Typical deep neural networks
require a predetermined input size. The second challenge is
to aggregate the neighbors’ information efficiently.

In this work, we focus on integrating model-free DRL
with online planning to provide a proactive and foresighted
crowd navigation method named social graph-based double
dueling deep Q-network (SG-D3QN). Here, the D3QN
is used to generate coarse state-action values and select
candidate optimal actions intuitively, while online planning
is built to further refine the coarse state-action values by
performing rollouts. The illustration of SG-D3QN can be
found in Fig. 1.

Compared with previous works, the proposed framework
is improved in the following points. First, the agent-level
crowd states are constructed as graph data and the social
attention mechanism is introduced to aggregate neighbors’
information selectively. Second, the previous state value
estimator is extended to the D3QN, coarsely and intuitively
estimating state-action values. To improve the accuracy of
the state-action value estimator, a large number of simulated
experiences generated by the learned environment model
are introduced into the training process. Third, a human-
like decision-making process is built by integrating the
D3QN and online planning. Benefitting from the forward-
moving action-clipping, the proposed method significantly
reduces the computational cost of each decision. Then, the
reward function is redesigned based on current navigation
scenarios to enhance the training convergence. Later, a
large number of simulation experiments are designed to
evaluate the proposed approach. Experimental results show
that the proposed method helps the robot understand the
crowd scenario well, outperforms state-of-the-art methods,
and can be extended to non-holonomic robots and visible
scenarios. Finally, a hardware experiment on a Fetch robot
proves that the proposed method be migrated to real robots.
Open-source code and a hardware demonstration video are
available at github.com/nubot-nudt/SG-D3QN.

Fig. 1 Illustration of SG-D3QN.
When moving in a crowd, the
robot selectively aggregates
pedestrians’ information with
social attention weights,
generates the candidate optimal
actions by ranking the coarse
state-action values, and refines
the coarse state-action values by
performing rollouts on the
current state
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2 Related work

In this section, we summarize prior work on agent-level
learning-based crowd navigation, and then, we briefly
introduce related work on graph neural networks (GNNs).
Finally, we review related work on integrating planning and
learning.

2.1 Agent-level learning-based crowd navigation

Agent-level learning-based approaches originate from the
multi-robot collision avoidance problem. In [16], Chen et
al. pioneeringly developed a decentralized multi-agent col-
lision avoidance algorithm based on DRL. They built a
value network to estimate the expected time to the goal.
Many researchers followed this work and proposed various
improvements. To address varying crowd size, Everett et al.
used long short-term memory (LSTM) to encode the crowd
state into a fixed-length representation [18, 19]. Pedestri-
ans’ states were fed into the recurrent network according to
their distances to the robot. The recurrent architecture sim-
plified the interaction mechanism and did not fully exploit
the structural information of the crowd. A further method
was proposed in [14], in which neighborhood agents were
encoded in an occupied map. However, since the occupied
map was coarse-grained and local, some structural informa-
tion was still lost. In more recent works, researchers realized
the power of GNNs to extract structural information. In [15],
two graph convolutional networks (GCNs) were trained: one
for encoding the robot-robot state and one for predicting
attention weights. Another temporally parallel work can be
found in [20], where the crowd was modeled as a relational
graph.
Inspired by [20] and [15], a similar graph-based represen-
tation of the crowd is built in this work. Our work differs
from their approach in selectively aggregating neighbors’
information. The attention weights in [15] are trained based
on human gaze data, and the relational weights in [20] are
inferred with a Gaussian similarity function. In contrast, in
this work, the attention weights are generated by introduc-
ing the social attention mechanism, which models attention
in the crowd better [21].

2.2 Graph neural network

GNNs are a family of neural networks that can deal
with graph-structured data. GNNs explicitly extract high-
level and flexible graph representations of the attributes
and structure of the graph and are widely used in
various classification or regression applications, such as
action recognition, relational reasoning, traffic network
forecasting, and pedestrian trajectory prediction. Among
GNNs, GCNs attract much attention for their simplicity and

efficiency. They use a binary adjacency matrix to represent
edges between nodes and propagate neighbor information
by graph convolution [22], which can take the weighted
average of a node’s neighborhood information. According
to the notion of convolution, GCNs can be further divided
into two categories: spectral-based and spatial-based.
Spectral-based approaches develop graph convolutions by
removing noise from graph signals based on spectral
graph theory, while spatial-based approaches redefine graph
convolutions by propagating node information along edges.
Spatial-based approaches have been rapidly growing in
recent years due to their attractive efficiency, flexibility, and
generality.

Since a crowd typically produces non-Euclidean data,
it is natural for us to build a GCN to extract a high-level
representation of the crowd state. Furthermore, because the
process of aggregating information depends on interactions
among agents, we select the graph attention network (GAT),
a typical spatial-based approach, to encode the robot-crowd
state. In our implementation, the social attention mechanism
[21] is introduced to compute attention weights, which will
be described in detail in Section 3.2.

2.3 Integrating planning and learning

Learning and planning are two crucial ideas for solving
sequential decision problems. The former aims to generate
a state/state-action value estimator by end-to-end training,
while the latter uses the prior environment model to
perform rollouts and find the optimal policy, e.g., the A*
algorithm.

DRL approaches can be divided into two principal cat-
egories: model-based RL and model-free RL [23]. Model-
free RL approaches model the sequence planning problem
similar to a supervised learning task and directly map
states to probability distributions of actions. After extensive
training, they learn a value estimator of long-term returns.
However, because of the lack of a straightforward plan-
ning process, the generated strategies are inherently reactive
[24]. Model-based RL approaches consider planning as
their main component. They derive possible future trajec-
tories based on an a priori environment model, estimate
the state/state-action value with learned approximators, and
then select the optimal action with search algorithms. As
a result, they allow for flexible migration to new envi-
ronments and avoid extreme situations. A non-negligible
problem for them is that they often need an accurate pre-
dictive model. As DRL approaches continue to evolve, an
increasing number of researchers are becoming aware of
these issues and trying to improve them by combining learn-
ing with online planning, such as the value iteration network
(VIN) [24], value prediction network (VPN) [25], TreeQN
[26], and MuZero [27].
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When it comes to crowd navigation, many learning-
based approaches are model-free, such as most sensor-
level learning-based approaches mentioned above [13].
They focus on learning, neglect planning, and still lead
to reactive collision avoidance policies and shortsighted
behaviors. Other model-based learning-based approaches
integrate learning and planning. However, they are based on
state values, rather than state-action values, imposing a huge
computational burden [14–17, 20]. The main reason is that
in the decision-making process, all child states are required
to be traversed, although most of them are useless.

Inspired by [25, 26], we extend previous state value
approximators to a state-action value estimator in this
work. Based on the learned state-action value estimator, a
human-like decision-making process is proposed to reduce
meaningless expansions, in which the robot first evaluates
the state-action values coarsely and intuitively, and then
refines the coarse state-action values selectively.

3Methodology

This section begins with modeling the crowd navigation
problem, followed by a newly proposed framework named
SG-D3QN, which is shown in Fig. 2. The proposed
framework consists of three parts: a two-layer GAT to
extract an efficient graph representation from the crowd
state, a D3QN to estimate state-action values coarsely,
and an online planner to refine coarse state-action values.
Later, we further describe the one-step decision process,
which constitutes the navigation policy. Finally, many
implementation details are introduced at the end of this
section.

3.1 Crowd navigationmodeling

As a typical sequential decision-making problem, the crowd
navigation task can be formulated as a Markov decision

Fig. 2 Framework of SG-
D3QN. The crowd-robot state is
described in the form of graph
data. Then, the D3QN utilizes a
two-layer GAT to extract a high-
level representation and directly
evaluates the state-action values
of the current state. The core of
the online planner is the rollout
performance based on the
learned D3QN and environment
model, both of which are
optimized with simulated
trajectories
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process (MDP), described by a tuple M = 〈S, A, P, R, γ 〉
[16]. S is the state space, A is the action space, P is the
state transition model, R is the reward function, and γ is
the discount factor. Following the convention, a lowercase
with superscript t indicates the variable’s value at time t . For
example, st , at and rt represent the state, the action and the
immediate reward at time t , respectively. All of them will be
described in detail as follows.

3.1.1 State space

Assumption 1 The environment is deterministic, and all
agents can obtain the position and velocity information of
pedestrians accurately.

Suppose a mobile robot navigates in a crowd of N

pedestrians over discrete time steps, and there are N + 1
independent agents in the planar workspace. We number
agents with subscript i, 0 for the robot and i(i > 0) for
the ith pedestrian. For every agent, its configuration can be
divided into two parts: the observable state and the hidden
state. The observable state consists of the agent’s position
p = [px, py], velocity v = [vx, vy] and radius ρ, while the
hidden state includes the agent’s intended goal position g =
[gx, gy], preferred velocity vp and heading angle φ. The
robot can only observe the observable state of pedestrians.
Therefore, the robot’s state/observation s can be represented
as:

s = [w0, w̃1, ..., w̃N ]
wi = [px, py, vx, vy, ρ, gx, gy, vp, φ] ∈ R

9, i =0, 1, ..., N

w̃i = [px, py, vx, vy, ρ] ∈ R
5, i = 1, 2, ..., N

(1)

where wi denotes the full configuration of agent i, and w̃i

means the observable configuration of pedestrian i. Both
of wi and w̃i are described in the robot-centric coordinate,
which has an origin at the center of the robot and an x-axis
pointing towards the robot’s goal.

3.1.2 Action space

Assumption 2 The robot is modeled as a unicycle, of which
the action space consists of 81 discrete actions.

In this work, we follow the setting of discrete action
space from previous works [14, 16, 20]. Specifically, the
robot’s action at time t can be described by:

at = (vt
0, δ

t
0), (2)

where vt
0 and δt

0 are the target speed and steering angle of
the robot. Specifically, the action space consists of the stop
action (at = (0.0, 0.0)) and 80 other discrete actions with

5 values of vt
0 evenly spaced in (0, vp] and 16 values of δt

0
evenly spaced in [0, 2π ). The setting can be easily extended
to car-like robots by limiting the steering angle.

3.1.3 State transition model

Assumption 3 There is no communication among agents,
and they make their decisions independently.

The state transition model P(st+1, rt |st , at ) is deter-
mined by the agents’ kinematics. To simplify the problem,
all simulated pedestrians are set as holonomic agents, and
their kinodynamic constraints are omitted. Their actions
have the same form as at

0, but their action space is contin-
uous. Besides, it should be noted that due to the lack of a
communication network, agents are never informed of oth-
ers’ actions. Therefore, pedestrians’ actions are unknown
for the robot and the crowd navigation problem is always
modeled further as a partially observable markov decision
problem (POMDP) [15, 19, 20]. Then, the state transition
model of agent i can be described as:

φt+1
i = φt

i + δt
i

vt+1
i =

[
vt
i cos(φt+1

i ), vt
i sin(φt+1

i )
]

pt+1
i = pt

i + vt+1
i � t .

(3)

Here, �t is the time step, which is set to 0.25 s. As
mentioned above, the robot has never been informed of
pedestrians’ actions. Therefore, it only knows its own state
transition model and has to build a trajectory predictor for
pedestrians to replace their state transition model, such as a
linear motion model [14, 16], and a recurrent neural network
[20].

3.1.4 Reward function

The reward function is a highly essential point in DRL.
However, previous studies [14, 15, 20] directly apply the
reward function from [16], which was originally designed
to resolve the noncommunicating two-agent collision
avoidance problem. As the scene continues to expand, the
mismatched reward makes the training process challenging
and results in poor training convergence [20]. Therefore, the
reward function is redesigned in this work, which includes
three parts: rg , rc and rs . Among them, rg is designed to
navigate the robot towards its goal, rc is built to penalize
collision cases, and rs is designed to reward the robot for
maintaining a safe distance from all pedestrians. Formally,
the reward function at time t can be given as:

rt = rt
g + rt

c + rt
s , (4)
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where rt
g , r

t
c and rt

s are given by:

rt
g =

{
0.25 if ||pt

0 − g0|| < 0.2

0.2(||pt−1
0 − g0|| − ||pt

0 − g0||) otherwise
(5)

rt
c =

{
− 0.25 if ||pt

0 − pt
i || < ρ0 + ρi

0 otherwise
(6)

rt
s =

N∑
i=1

f (μt
i, μs)

f (μt
i , μs) =

{
μt

i − μs if μt
i < 0.2

0 otherwise,

(7)

whereμs = 0.2 denotes the threshold distance that the robot
needs to maintain from pedestrians at all times, and μt

i is the
actual minimum separation distance between the robot and
the ith pedestrian at time t. Note that these parameters in the
reward function are determined experimentally.

3.1.5 Deep Q-learning

After formulating the crowd navigation problem as an MDP,
we can utilize deep Q-learning, a type of model-free RL,
to find the optimal policy, which maps the agent-level state
st to the optimal action at . The optimal policy is defined
as π∗ : st → at . The corresponding optimal state-
action function is denoted by Q∗(st , at ), which indicates
the expected discounted return of (st , at ) in reaching its
goal. Therefore, the optimal policy π∗ : st → at can
be determined by the optimal state-action value function
Q∗(st , at ), which is described by:

π∗(st ) = argmax
at

Q∗(st , at ). (8)

Then, finding the optimal policy can be transformed into the
problem of finding the optimal state-action value function.
Because the optimal state-action value function satisfies the
Bellman optimal equation, described in (9), the Bellman
update equation is built to optimize the state-action value
function recursively.

Q∗(st , at ) =
∑

st+1,rt

P (st+1, rt |st , at )

×[rt + γmax
at+1

Q∗(st+1, at+1)], (9)

where γ ∈ (0, 1) is the discount factor that balances the
immediate and future rewards.

3.2 Graph representation with social attention

In this work, a social attention mechanism is introduced
into the GAT to learn a good graph representation
of the crowd-robot state. Different from [14], attention
weights are computed for all agents, regardless of robot

or pedestrian. Both robot-human interactions and human-
human interactions can be modeled via the same graph
convolution operation.

In the graph representation, the nodes and edges
represent agents and direct interactions among agents. Since
agents often have different types and dimensions, (e.g.,
w0 ∈ R

9 and wi ∈ R
5, i > 0), multilayer perceptrons

(MLPs) are utilized to extract the fixed-length latent
states. Immediately afterward, the latent states are fed into
subsequent graph convolutional layers. Considering that
neural networks are often composed of a stack of multiple
layers, the superscript l is used to distinguish latent states
at different layers. Here, the MLPs are marked as layer 0.
Therefore, latent states extracted with MLPs are given as:

H 0 =
[
h00, h

0
1, ..., h

0
N

]

h00 = �r(w0; Wr)

h0i = �p(wi; Wp), i = 1, 2, ..., N,

(10)

where �r and �p are MLPs with rectified linear
unit (ReLU) activations, and their network weights are
represented by Wr and Wp, respectively.

Then, a social attention mechanism is introduced into the
spatial graph convolution operation to model interactions in
a crowd. First, a query matrixQ and a key matrixK are built
to transform the input features into higher-level features.
Then, these features are concatenated to compute attention
coefficients eij via a fully connected network (FCN). The
FCN is followed by a LeakyReLU nonlinearity with a
negative input slope of 0.2. Finally, the attention coefficients
are normalized via a softmax function. A sketch of the
layerwise graph convolution operation on the ith node and
its neighborhood is shown in Fig. 3, and the corresponding
layerwise graph convolution rule is given as:

eij = LeakyRuLU(a(qi || kj ))

αij = softmaxj (eij ) = exp(eij )∑
k∈N(i) exp(eik)

hl+1
i = σ

⎛
⎝ ∑

j∈N(i)

αl
ij h

l
j

⎞
⎠ ,

(11)

where qi = �q(hi; Q), kj = �k(hj , K), and || is the
concatenation operation. A layerwise FCN is utilized as the
attention function a(·) = �a(·; 1), mapping concatenated
states to attention weights. αij is the normalized attention
weight, indicating the importance of the j th node to the ith
node. N(i) is the neighborhood of the ith node in the graph.
Similar to previous work [14–17, 20], all agents can obtain
accurate observable states for other pedestrians. Therefore,
the neighborhood of the ith agent includes all pedestrians.

Considering that indirect interactions in the crowd are
also quite important, we equipped the GAT with two graph
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Fig. 3 Layerwise graph
convolution operation on the ith
node and its neighborhood. The
superscript l denotes the layer
number, Q is the query matrix
and K is the key matrix

convolutional layers. In addition, to avoid the vanishing
gradient problem and speed up the training process, the
outputs from all layers are added together to form the final
output of the GAT. The skip connection operation is as
follows:

H = H 0 + H 1 + H 2, (12)

where H is the final output of the GAT and H 0, H 1, and H 2

are the hidden states from different layers.

3.3 Graph-Based Deep Q-learning

Encouraged by the great success of DQNs [28, 29] in RL,
a D3QN is built to estimate state-action values in this work.
The significant difference from the previous state value
network is that the D3QN requires only the current state as
input. It is a model-free RL method and does not need to
traverse subsequent states.

As shown at the bottom of Fig. 2, our D3QN
includes three separate modules: MLPs that extract fixed-
length latent states, a two-layer GAT to obtain graph
representations H , and a dueling architecture to estimate
state-action values. The whole network is trained in an end-
to-end manner; namely, all parameters are trained jointly
rather than step-by-step.

For the specific implementation, the D3QN has a dueling
architecture, which consists of two streams, one for the
state value and one for state-dependent advantage functions
[30]. In this work, a two-layer MLP, �c(H ; α), is built as
a common convolutional feature learning module, and two
fully connected layers, �v(·; β) and �d(·; η), are used to
obtain a scalar V (H ; α, β) and an |A|-dimensional vector
D(H, a; α, η). Here, H is the final graph representation
mentioned in (12), and α, β and η are the parameters of
the dueling architecture. Finally, the state-action function
Q(H, a; ·) can be described by

Q(H, a; α, β, η) = V (H ; α, β) + D(H, a; α, η). (13)

Besides, in traditional deep Q-learning, the training process
only focus on the optimal state-action value. However, when
performing rollouts the robot needs to explore more than
one actions to improve its policy. Therefore, it is necessary

to optimize both of the optimal state-action value and these
sub-optimal state-action values. Inspired by Dyna [31], the
learned environment model is applied to develop simulated
experiences. In developing simulated experiences, the robot
will only expand on the top-k actions, rather than on all
actions as [31]. Finally, an optimization based on simulated
experiences is added into each update.

The learning algorithm is shown in Algorithm 1, where
θ denotes all parameters of the D3QN. At the beginning
of each episode, the crowd-robot state s0 is randomly
initialized (line 5). Afterward, the robot is simulated to
move in the crowd until terminal states, which consist of
Arrival, Collision and Timeout. In this work, the maximum
navigation time is set to 30 s. The robot is equipped with an
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ε-greedy policy (line 7-11), in which ε gets progressively
smaller. The experience replay technique [29, 32] is also
used to increase data efficiency and reduce the correlation
among samples. At every step, the newly generated state
value pairs are assimilated into an experience replay
memory E (line 12-14) with a size of 105. In every training,
minibatch experiences M are sampled from E to update
the network (line 15-16). And then, a simulated experience
subset M ′ is developed by M and the learned environment
model (Line 17). Later, M ′ is used to re-optimize the
network (Line 18). To promote convergence, the network
Q(· ; θ) is cloned to build a target network Q′(· ; θ ′) (line
19-21), which generates the Q-learning target values for the
next C episodes. Here, the mean-square error of Q-value
estimation on minibatch M or M ′ is defined as:

L(θ) = 1

|M|
∑
s∈M

(r + γ max
at+1

Q′(st+1, at+1; θ ′)

−Q(st , at ; θ))2, (14)

where M can be replaced by M ′ and | · | means the number
of elements in the set.

3.4 Online planning based on rollout performance

Previous works have proven that a D3QN has the
potential to partly address the shortsightedness problem in
crowd navigation. However, with unknown human behavior
policies, it is difficult to generate a perfect network. Inspired
by [25, 33, 34], the learned D3QN is combined with
online planning to refine coarse state-action values by
performing rollouts on the current state and recursively
building up a look-ahead tree. The look-ahead tree has two
hyperparameters: depth d and width k, where d determines
the number of steps in the forward search and k determines
the number of child nodes at each expansion.

Compared with previous works [14, 16, 20], the biggest
difference in rollouts is that the proposed method builds
up a human-like decision-making process, first roughly
estimated and then carefully refined. Based on the coarse
state-action values generated by the D3QN, action clipping
can be moved forward before the traversal of all child states
in rollouts. Therefore, at each node expansion, only child
states with top-k action values must be traversed, which
avoids a lot of useless rollouts and results in a much lower
computational cost.

A two-step rollout in the look-ahead tree search diagram
is shown in Fig. 4 and the decision process is shown
in Algorithm 2. At each expansion, the D3QN is first
used to coarsely evaluate state-action values and generate
the best candidate actions A′ (line 7). And then, the
environment model is utilized to predict the corresponding
rewards and subsequent states based on the current states

Fig. 4 Two-step rollout on state st . Here, gray squares denote states,
while colored discs denote actions. Besides, a blue arrow and a red
arrow are used to denote the learned D3QN and the environment
model, respectively. To distinguish the simulated trajectories from real
trajectories, the imaged state, reward, and action are marked with ˜ .
Therefore, simulated trajectories begin at state s, and action a can be
represented as (st , at , r̃ t , s̃t+1, ãt+1, r̃ t+1, s̃t+2, ãt+2, · · · )

and candidate actions (line 15). Continuously repeating the
process of node expansion, a lot of simulated trajectories
are constructed, and coarse state-action values generated by
the D3QN can be refined on these simulated trajectories
according to (15) (line 12-17). Finally, the refined state-
action values of candidate best actions, denoted by
Qd(st , at , θ), are utilized to determine the truly best action
(line 4).

Qd(st , at ; θ)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q(st , at ; θ) if d = 0

d

d + 1
Q(st , at ; θ) + 1

d + 1
(r̃ t

+ γ max
ãt+1

Qd−1(s̃t+1, ãt+1; θ)) otherwise.

(15)

3.5 Implementation details

In this work, the hidden units of �r(·), �h(·), �r , �v and
�d have dimensions of (64,32), (64,32), (128), (128) and
(128), respectively. In every layer, the output dimensions
of �q(·) and �k(·) are 32. In the dueling architecture,
�r , �v and �d have output dimensions of 128, 1, and
81, respectively. All the parameters are trained via RL
and updated by adaptive moment estimation (Adam) [35].
The learning rate and discount factor are 0.0005 and 0.9,
respectively. In addition, the exploration rate of the ε-
greedy policy decays linearly from 0.5 to 0.1 in the first
5000 episodes and remains at 0.1 in the remaining 5000
episodes. For the rollout performance, the planning depth
and planning width are set to 1 and 10, respectively.
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4 Experiments

4.1 Simulation setup

SG-D3QN has been evaluated in both simple and complex
scenarios, which are built based on the simulation envi-
ronment named CrowdNav [14]. Simple scenarios include
five pedestrians, which are controlled by optimal recipro-
cal collision avoidance (ORCA) [4]. The pedestrians’ initial
positions and goal positions are set on the circle, symmetric
about the circle’s center. Therefore, all agents will inter-
act near the center of the circle at approximately 4.0 s. In
addition to the five circle-crossing pedestrians, complex sce-
narios introduce another five square-crossing pedestrians,
whose initial positions and goal positions are sampled ran-
domly in a square with a side length of 10 m. The square
shares the same center as the circle. In either simple or com-
plex scenarios, once the pedestrian arrives at his or her goal
position, a new goal position will be randomly reset within
the square. The former goal position is recorded as a turn-
ing position. The initial position, the turning position, and
the final goal position of pedestrian 0 are marked in Fig. 6a.
Note that the robot is invisible in both scenarios, and simu-
lated pedestrians will never give way to the robot. The main
reason for the setting is that we hope the robot takes full

responsibility for collision avoidance and proactively avoids
pedestrians. Such an active collision avoidance policy is the
final goal of this work.

4.2 Qualitative evaluation

4.2.1 Training process

SG-D3QN is trained in both simple and complex scenarios.
The resulting training curves are shown in Fig. 5. At the
beginning of training, completing the crowd navigation task
with a randomly initialized model is difficult, and most
termination states are timeout. As the training continues,
the robot quickly learns to keep a safe distance from the
pedestrians and slowly understands the crowd. In the last
period of training, SG-D3QN achieves relatively stable
performance. The difference between different scenarios
is predictable. The main reason is that there are more
interactions in complex scenarios, making the environment
more challenging than in simple scenarios. The detailed
quantitative results are described in Section 4.3.

4.2.2 Collision avoidance behaviors

With the learned policy, the robot can safely and quickly
reach its goal position in both simple and complex
scenarios. The resulting trajectory diagrams are shown in
Fig. 6. In complex scenarios, the robot has to pay much
attention to avoiding pedestrians than in simple scenarios,
resulting in a rougher trajectory and a longer navigation
time. In both simple and complex scenarios, the robot
performs proactive and foresighted collision avoidance
behaviors. The robot can always recognize and avoid the
approaching interaction center of the crowd. For example,
in the simple scenario, the robot turns right at approximately
1.5 s to avoid potential encirclement at 5.0 s. In addition, as
shown in Fig. 6b, the robot is also able to avoid areas with
intensive interaction very well.

4.2.3 Attention modeling

Figure 7 shows the attention weights in two test crowd
scenes. In both simple and complex scenarios, the robot
pays much attention to pedestrians who are close it, e.g.,
Pedestrian 2 and 4 in Fig. 7a and Pedestrian 5 in Fig. 7b.
It also pays attention to pedestrians who will interact with
it, such as Pedestrian 3 and 5 in Fig. 7a and Pedestrian 8
in Fig. 7b. Additionally, robot’s attention weights are also
affected by pedestrians’ velocities. Taking Pedestrian 3 and
6 in Fig. 7b for example, their positions are similar, but their
velocities are in nearly opposite directions, which results
in an obvious difference in their attention weights. Another
interesting point is the self-attention weight of the robot.
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Fig. 5 Training curves in both simple scenarios (red and solid) and
complex scenarios and complex scenarios (blue and dashed). From
top to bottom, left to right, the y-axis corresponds to the total reward,

average return, navigation time and discomfort rate per episode,
averaged over the last 100 episodes

The fewer pedestrians there are around the robot, the greater
the self-attention weight. This means that the robot can

balance its navigation task and collision avoidance behavior.
We highly recommend readers to watch our demo video.

Fig. 6 Trajectory diagrams for a
simple scenario (a) and a
complex scenario (b). Here, the
discs represent agents, black for
the robot and other colors for
pedestrians. The numbers near
the discs indicate the time. The
time interval between two
consecutive discs is 1.0 s. Small
arrows on the line indicates the
forward direction. Here, the
initial positions, the turning
positions and the final goal
positions are marked with
triangles, squares and
five-pointed stars, respectively
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Fig. 7 Robot attention weights
for agents in a simple scenario
(a) and a complex scenario (b).
The natural numbers are the
serial numbers, and the
two-digit decimals are the
attention weights the robot gives
to agents. The red arrows
indicate the velocity attitudes of
agents. The initial position and
goal position of the robot are
marked by a black disc and a red
five-pointed star, respectively.
Besides, a red dot at the center of
the circle is used to distinguish
the robot from pedestrians

4.3 Quantitative evaluation

4.3.1 Performance comparison

Three existing state-of-the-art methods, ORCA [4], local-
map-self-attention reinforcement learning (LM-SARL) [14]
and model predictive relational graph learning (MP-RGL)
[20], are implemented as baseline methods. In the imple-
mentation of ORCA, the target pedestrian’ radii increase by
μs = 0.2 to maintain a safe distance from other pedestrians.
Both one-step and two-step implementation of MP-RGL are
tested in our experiments, represented by MP-RGL-Onestep
and MP-RGL-Twostep, respectively. Following [20], the
planning width of MP-RGL-Twostep is set to 2. In addi-
tion, to verify the effect of online-planning, a D3QN version
of SG-D3QN is also developed as a contrast algorithm by
setting the planning depth to 0. Besides, three versions
of SG-D3QN, with their planning depths of 1, 2, and 3,
are tested in our experiments. Here, we use SG-D3QN-
Onestep, SG-D3QN-Twostep, and SG-D3QN-ThreeStep

to distinguish them. For a fair comparison, all RL methods
are trained with the reshaped reward function, which makes
our MP-RGLs achieve much better performance than the
original version proposed in [14, 20]. In addition, the train-
ing process is repeated five times, and the resulting models
are evaluated with 1000 random test cases. The random
seeds in the five training processes are 0,1,2,3,4. Finally, the
statistical results are shown in Table 1 (for simple scenarios)
and Table 2 (for complex scenarios).

In the quantitative evaluation, the metrics include
“Success”, the success rate of the robot reaching its goal
safely; “Collision”, the rate of the robot colliding with pe-
destrians; “Nav. Time”, the navigation time to reach the goal
in seconds; “Disc. Num”, the number of times the robot vio-
lates the safety distance of a pedestrian (if the robot vio-
lates more than one pedestrian at the same time, the num-
ber of violated pedestrians will be added to Disc. Num);
“Return”, the discounted cumulative return averaged over
steps, which considers a combination of earned rewards
and time efficiency; and “Run Time”, the run time per

Table 1 Quantitative results in simple scenarios

Methods Success Collision Nav. Time (s) Disc. Num Avg. Return Run time (ms)

ORCA [4]* 0.8240±0.0000 0.1760±0.0000 12.07±0.00 2700.0±0.0 0.555±0.000 0.55±0.00

D3QN [14] 0.9728±0.0087 0.0274±0.0087 11.25±0.11 959.0±431.6 0.697±0.023 1.37±0.01

LM-SARL [14] 0.9952±0.0027 0.0048±0.0027 10.41±0.07 1320.6±255.4 0.737±0.008 36.89±0.95

MP-RGL-Onestep [20] 0.9946±0.0046 0.0032±0.0016 10.63±0.17 1099.6±369.2 0.724±0.013 32.11±0.66

MP-RGL-Twostep [20] 0.9956±0.0036 0.0036±0.0024 10.41±0.14 918.6±276.2 0.735±0.013 93.48±1.29

SG-D3QN-Onestep 0.9970±0.0012 0.0030±0.0012 10.07±0.14 881.0±197.2 0.744±0.009 6.90±0.21

SG-D3QN-Twostep 0.9984±0.0021 0.0016±0.0021 9.96±0.12 676.0.0±139.5 0.750±0.006 28.17±0.76

SG-D3QN-Threestep 0.9982±0.0021 0.0018±0.0021 9.90±0.13 677.8±117.9 0.752±0.006 127.61±2.55

(*) Note that ORCA is not affected by the random seed, so its standard deviation is always 0
Bold entries mean the best performance in six quantitative metrics
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Table 2 Quantitative results in complex scenarios

Methods Success Collision Nav. Time (s) Disc. Num Avg. Return Run Time (ms)

ORCA [4]* 0.7690±0.0000 0.2220±0.0000 13.88±0.00 5884.0±0.0 0.432±0.000 0.57±0.00

D3QN [14] 0.8890±0.0071 0.1110±0.0071 13.80±1.01 2003.4±14.9 0.587±0.028 1.66±0.01

LM-SARL [14] 0.9844±0.0020 0.0158±0.0021 11.87±0.07 2281.4±273.7 0.686±0.012 44.17±0.34

MP-RGL-Onestep [20] 0.9898±0.0038 0.0090±0.0024 11.87±0.17 1366.0±193.7 0.699±0.010 43.18±0.42

MP-RGL-Twostep [20] 0.9936±0.0021 0.0064±0.0021 11.63±0.18 1226.0±130.5 0.715±0.003 126.92±1.23

SG-D3QN-Onestep 0.9924±0.0021 0.0076±0.0021 11.18±0.18 1450.6±412.2 0.711±0.015 8.79±0.27

SG-D3QN-Twostep 0.9940±0.0010 0.0040±0.0010 11.05±0.16 1364.4±123.0 0.717±0.005 37.19±0.33

SG-D3QN-Threestep 0.9964±0.0021 0.0036±0.0021 10.92±0.17 1347.8±34.0 0.724±0.001 169.29±2.44

(*) Note that ORCA is not affected by the random seed, so its standard deviation is always 0
Bold entries mean the best performance in six quantitative metrics

decision in milliseconds on a computer with an i9-10900K
CPU. Here, all metrics are averaged over steps across
all episodes and test cases, and ± is used to indicate
the standard deviation measured using five independently
seeded training runs.

As a reactive policy, the ORCA method has the
highest collision rate, the longest navigation time, and the
best real-time performance in both simple and complex
scenarios. It can easily induce the robot to fall into the
inevitable collision state (ICS) [36]. D3QN achieves a better
performance than ORCA, average success rates of 0.9728
and 0.889 in simple and complex scenarios. The results
can be attributed to the reinforcement learning algorithm.
After being trained with sufficient experience, the agent
can always generate a foresighted policy. Besides, as the
scenario is expanded from a simple one to a complex
one, the collision rate of D3QN has increased dramatically
to 0.1110, nearly four times that of simple scenarios.
The complex scenario makes it difficult to directly learn
an optimal control policy mapping the raw state to the
best action in complex scenarios, and a purely model-free
reinforcement learning method seems inadequate.

As expected, all LM-SARL, MP-RGLs, and SG-D3QNs
achieve performances far superior to D3QN. In particular,
LM-SARL experiences a similarly dramatic decline in
performance when the scenario is extended from simple to
complex. Its coarse local map does not deal with complex

scenarios very well. When comparing SG-D3QNs with MP-
RGLs, it is easy to see that at the same planning depth,
SG-D3QNs always achieve better performance than MP-
RGLs, especially in terms of the Nav. Time. Besides, in
terms of the Run Time, SG-D3QN-Onestep achieves a better
run-time performance than LM-SARL, MP-RGLs, other
SG-D3QNs, averaging 6.90 ms and 8.79 ms per decision
in simple and complex scenarios. With the same planning
depth, SG-D3QNs require approximately one-quarter of
MP-RGLs’ run time. These experimental results show that
SG-D3QN does reduce the computational cost significantly,
which can be attributed to its human-like decision-making
process.

Finally, it is also worth mentioning that integrating
state/state-action value estimators can always improve
the robot’s navigation policy. The multi-step variants of
either MP-RGL or SG-D3QN always achieve a better
performance than the one-step version. Besides, when we
further compare the three variants of SG-D3QN, we can
find that as the planning depth increases, its performance,
especially in terms of the Nav. Time, is gradually improving.
SG-D3QN-Threestep achieves a high success rate of 0.9984
in simple scenarios, which remains 0.9963 in complex
scenarios. At the same time, it has the best performance in
time efficiency, with a navigation time of 9.90 s and 10.92 s
in simple and complex scenarios, respectively. Considering
that the robot has to give way to other pedestrians in

Table 3 Statistical results in crowds with various size

Crowd Size Success Collision Nav. Time (s) Disc. Num Avg. Return Run. Time

6 0.9982±0.0012 0.0018±0.0012 10.30±0.74 600.8±164.0 0.741±0.009 29.98±0.59

8 0.9954±0.0023 0.0046±0.0023 10.67±0.18 871.4±131.4 0.731±0.008 34.39±0.33

10 0.9940±0.0010 0.0040±0.0010 11.05±0.16 1364.4±123.0 0.717±0.005 37.19±0.33

12 0.9918±0.0036 0.0080±0.0041 11.36±0.20 1666.0±96.4 0.705±0.016 41.55±0.41

14 0.9826±0.0051 0.0174±0.0051 11.99±0.22 2351.4±216.6 0.674±0.009 44.908±0.46

16 0.9760±0.0113 0.0240±0.0113 12.38±0.20 2938.8±309.9 0.656±0.016 48.50±0.40
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Table 4 Quantitative results with a rotational constraint of π /6

Scenario Method Success Collision Nav. Time (s) Disc. Num Avg. Return

Simple SG-D3QN-Onestep 0.9878±0.0070 ↓ 0.0122±0.0070 ↑ 10.25±0.21 ↑ 1327.0±396.8 ↑ 0.711±0.011 ↓
SG-D3QN-Twostep 0.9918±0.0036 ↓ 0.0080±0.0041 ↑ 9.90±0.12 ↓ 1101.8±311.9 ↑ 0.734±0.006 ↓
SG-D3QN-Threestep 0.9936±0.0027 ↓ 0.0064±0.0027 ↑ 9.81±0.17 ↓ 1134.8±364.8 ↑ 0.739±0.007 ↓

Complex SG-D3QN-Onestep 0.9566±0.0065 ↓ 0.0434±0.0065 ↑ 11.38±0.21 ↑ 2284.4±362.6 ↑ 0.646±0.098 ↓
SG-D3QN-Twostep 0.9690±0.0037 ↓ 0.0310±0.0037 ↑ 10.91±0.11 ↓ 1922.2±264.3 ↑ 0.694±0.006 ↓
SG-D3QN-Threestep 0.9740±0.0058 ↓ 0.0260±0.0058 ↑ 10.78±0.76 ↓ 1830.6±189.2 ↑ 0.702±0.006 ↓

The upward/downward arrow indicates that the item is larger/smaller than the corresponding one in the Table 1 or 2

navigation actively, its performance has far exceeded our
expectations.

4.3.2 Scalability in crowd size

Thanks to the graph-based representation of the crowd-
robot state, SG-D3QN trained in fixed-size crowds can
handle crowds with various size naturally. Here, SG-D3QN-
Twostep trained in complex scenarios with 10 pedestrians is
used to navigate the robot in the crowd with size of 6, 8, 12,
14, and 16. Statistical results are shown in Table 3.

The results, as expected, show a slight decrease in
success rate and average return as the crowd size increases.
However, even though the crowd size has increased by 60%,
SG-D3QN-Twostep can still achieve a high success rate
of about 0.976. What is more, when the crowd size has
decreased, the performance of SG-D3QN-Twostep can be
further improved. Besides, the increase in crowd size has
a near-linear effect on the computational cost. Therefore,
SG-D3QN-Twostep can still be effective even in a large-
sized crowd. These experimental results fully illustrate
that the proposed method has good scalability in crowd
size.

4.3.3 Incorporating kinematic constraints

As mentioned in Section 3.1.2, the proposed method can
be extended to car-like robots by limiting the headings
component of action. In this work, the rotational constraint

of the robot is set to π /6, which can be adjusted according
to the actual robot model. Three variants of SG-D3QN are
tested in both of simple and complex scenarios, and their
statistical results are shown in Table 4.

Obviously, the proposed method can still keep a great
performance under a rotation-constrained setting. In both
simple and complex scenarios, three variants of SG-D3QN
achieve a success rate of at least 0.95. Especially, SG-
D3QN-Threestep achieves a success rate of 0.9936 with a
navigation time of 9.81 s in simple scenarios and a success
rate of 0.9740 with a navigation time of 10.78 s in simple
scenarios. However, looking back at statistical results in
Tables 1 and 2, it is easy to find that the introduction
of rotational constraint causes a worse performance.
With the rotational constraint of π/6, SG-D3QNs always
achieve a lower success rate and average return than the
holonomic one. Besides, it should be noticed that with SG-
D3QN-Twostep and SG-D3QN-Threestep, the robot with a
rotational constraint can reach its goal a little faster than the
holonomic one. In contrast, the constrained robot violates
the safety space of pedestrians more frequently, reflected
in the rapid increase in Disc. Num. It is because that the
constrained robot has a limited action space and results in
more aggressive behavior than the holonomic one. Finally,
when comparing the performance of three variants of SG-
D3QN, it can be seen that the increase in planning depth is
still effective in improving the rotation-constrained robot’s
navigation policy, just like the experimental results of the
previous holonomic robot.

Table 5 Quantitative results in visible scenarios

Scenario Robot model Success Collision Nav. Time (s) Disc. Num Avg. Return

Simple Holonomic 0.9994±0.0009 ↑ 0.0006±0.0009 ↓ 9.83±0.14 ↓ 797.6±148.1 ↑ 0.752±0.008 ↑
Rotation-Constrained 0.9968±0.0026 ↑ 0.0032±0.0026 ↓ 9.81± 0.08↓ 1184.8±340.0 ↑ 0.734±0.005 ↑

Complex Holonomic 0.9986±0.0010 ↑ 0.0014±0.0010 ↓ 10.85±0.21 ↓ 1262.2±287.7 ↓ 0.723±0.005 ↑
Rotation-Constrained 0.9906±0.0034 ↑ 0.0094±0.0034 ↓ 10.86±0.14 ↓ 1937.6±244.4 ↑ 0.702±0.008 ↑

The upward/downward arrow indicates that the item is larger/smaller than the corresponding one in the Tables 1, 2, or 4
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Fig. 8 Screenshots from
hardware experiment. Note that
the maximum speed of the robot
is set to 0.7 m/s

4.3.4 Navigating around interactive agents

Consider that in real applications, pedestrians are often
able to see the robot and will react to its movements. We
further test the trained model in the visible setting. Unlike
experiments in Sections 4.3.1 and 4.3.3, pedestrians in this
section can see the simulated robot and avoid it. However,
due to the lack of communication network among the robot
and pedestrians, they still do not know the coming action of
the robot. Therefore, they could still collide with each other.
Besides, considering the run-time performance, only SG-
D3QN-Twostep is used here, which can run at a frequency
of approximately 30 Hz. Besides, both holonomic and
rotation-constrained robots are tested in visible scenarios.
The statistical results are shown in Table 5.

As expected, SG-D3QN-Twostep achieves a better
performance in all scenarios than in the invisible setting.
Especially for the rotation-constrained robot in the complex
scenarios, the collision rate is reduced by 69.7%, from
0.0310 to 0.0094. The improved performance can be
attributed to pedestrians’ avoidance behaviors. Although
pedestrians and the robot do not communicate with each
other, they can still cooperate to avoid the vast majority of
collisions. The results also show that the invisible setting is
more challenging than the visible setting. Besides, it must
be pointed out that the visible setting also results in the rise
in Disc. Num. Its main reason is that the environment model
is trained in the invisible scenarios, where pedestrians never
react to the robot’s action.

4.4 Hardware experiment

In addition to simulation experiments above, we also deploy
the trained policy with a rotational constraint of π/6 on
a Fetch robot with an i5 CPU (see Fig. 8. Same as
simulation experiments, the robot starts at (0, -4) and its goal
locates at (0, 4). Four volunteers participate in the hardware
experiment. Finally, the video demo can be found at github.
com/nubot-nudt/SG-D3QN.

5 Conclusion

In this paper, we propose SG-D3QN, a graph-based RL
method for social robot navigation. It achieves a high
success rate of more than 0.99 in the two types of scenarios.
Compared to previous state-of-the-art methods, SG-D3QN
achieves better performance and requires less computational
cost. The excellent performance can be attributed to the
three innovations that have been proposed in this work.
The first innovation is the introduction of a social attention
mechanism into the spatial graph convolution operation.
The improved two-layer GAT is available to extract an
efficient graph representation for the crowd-robot state. The
second innovation is applying D3QN to directly evaluate
coarse state-action values of current states and quickly
generate the best candidate actions. It greatly reduces
the computational cost of making a decision. The third
innovation is the integration of learning and online planning,

15613Z. Zhou et al.

github.com/nubot-nudt/SG-D3QN
github.com/nubot-nudt/SG-D3QN


which constructs a human-like decision-making process. By
performing rollouts on the current state, the coarse state-
action values are refined with a tree search, thus providing a
proactive and foresighted policy. These innovations are also
useful in other similar applications.

There is still much room for improvement, particularly
related to: a) continuous action space, b) inaccurate
sensing, and c) stochasticity of pedestrian behavior.
Therefore, in future work, we will further introduce
policy-based RL approaches into our framework to extend
the current discrete action space to continuous action
space. Meanwhile, we will further verify the proposed
method in more realistic scenarios, such as simulation
environments with sensory noise and pedestrian trajectory
datasets. Besides, we plan to introduce historical trajectories
of pedestrians to further enhance the robot’s understanding
of the crowd scenario, as in trajectory prediction.
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