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Abstract
The economic load dispatch (ELD) problem strives to optimize the division of total power demand among the power
generators under specified constraints. It is solved by scheduling the generating units of a power plant that meet the
load demand with minimum generation cost while satisfying various equality and inequality constraints. Achieving global
optimal points is considered difficult due to the involvement of a non-linear objective function and large search domain.
The slime mould algorithm (SMA) was recently proposed to solve complex problems. Its convergence rate and capability
of capturing optimal global solutions are pretty satisfactory. In this paper, a chaotic number-based slime mould algorithm
(CSMA) is suggested for ELD problems the first time. Five test cases with different power demands have been considered
to compare the performance of the proposed approach against SMA, salp swarm algorithm (SSA), moth flame optimizer
(MFO), grey wolf optimizer (GWO), biogeography based optimizer (BBO), grasshopper optimization algorithm (GOA),
multi-verse optimizer (MVO) on 6, 13, 15, 40, and 140 generators ELD problems. The experimental results show that the
proposed algorithm reduces the total generation cost significantly. CSMA outperformed SMA in all test cases that justify the
effectiveness of chaotic sequences used in the proposed work. Further, three statistical tests have been conducted to justify
the competitiveness of the suggested approach.
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1 Introduction

Economic load dispatch (ELD) is one of the prominent
problems of the power systems domain [1]. It has attracted
the attention of many researchers in the past few decades,
and it is still a hot topic of research in the field of
power systems. This problem aims to minimize the total
generation cost in producing specific power demands while
satisfying a set of constraints. A power plant can have
multiple generating units (generators) with their respective
cost coefficients and limits constraints. These generating
units are treated as energy-producing resources in a power
plant. The proper utilization of generating units is required
to optimize fuel consumption and energy as fossil fuels used
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to generate electricity are limited in nature. The generating
units can be appropriately utilized through an efficient
optimization algorithm with the following characteristics.

• The algorithm must produce the best scheduling
strategy that meets a certain load demand.

• The algorithm must satisfy all input constraints and
work effectively on non-linear functions.

• The algorithm must be capable of handling problems of
high dimensions.

Various optimization algorithms have already been sug-
gested to deal with ELD problems while achieving the
aforementioned conditions. Still, none of them can defeat
all other algorithms in all benchmark datasets. Optimization
algorithms for handling ELD problems are being developed
in the hope of getting a globally optimal solution while
avoiding premature convergence. These algorithms use cer-
tain mathematical equations to perform exploitation and
exploration and follow the same steps in uni-modal and
multi-modal problems, even though they may have differ-
ent requirements. An algorithm that effectively deals with
uni-modal problems may not be effective in multi-modal
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problems; however, the converse is not valid. An algorithm
designed to solve multi-modal problems will work effi-
ciently in uni-modal problems. As multi-modal problems
may have more than one global or local optimal solution,
a thorough investigation of search space is required to tar-
get all optimal solutions. In general, algorithms encounter
difficulty in achieving the desired objective if the dimen-
sion of the problem increases. An algorithm that performs
well in lower-dimensional optimization problems may not
work efficiently in higher-dimensional optimization prob-
lems. Therefore, combining a diversity-producing mecha-
nism with a fast converging algorithm works more appro-
priately in high-dimensional optimization problems.

ELD is a multi-modal high-dimensional constrained
optimization problem with a large search domain and
non-linear objective function. ELD aims to determine the
best schedule of generating units to minimize the total
generation cost while meeting certain load demand under
specified constraints [2, 3] with each generating unit
producing electricity (power) in its generation range. In the
conventional formulation of ELD, some practical features
such as ramp rate limits, prohibited operating zones, and
valve point effect were not considered. However, in real
power systems, these features are usually encountered.
Therefore, neglecting these features may lead to inaccurate
solutions of the ELD problems [4, 5].

The large search domain and high dimensionalities of
ELD need an optimization algorithm with a powerful explo-
ration method that helps in avoiding the problem of local
entrapment during optimization. This is one of the NP-hard
problems that require more computational time during opti-
mization. These problems may be solved by giving more
attention to implementing an efficient diversity-preserving
approach. In solving such problems, nature-inspired algo-
rithms have gained a wide range of acceptability due to
their population-based search techniques [6–9]. However,
some nature-inspired algorithms do not contain much nov-
elty. Authors in [10] have argued that the concepts used
in the cuckoo search are similar to that of (μ + λ) evolu-
tionary strategies. Authors in [11] have presented sufficient
evidence that grey wolf, bat, and firefly algorithms are not
novel. These algorithms have reiterated the ideas introduced
first for particle swarm optimization. Some other research
articles have highlighted valuable insight into optimization
algorithms in [12–14]. Authors in [15] proposed a new
dendritic neuron model for solving complex problems.

The presence of constraints makes it difficult to solve
ELD. These constraints are handled by using the respective
penalty functions. Hence, an optimization algorithm should
have the ability to handle these constraints by implementing
a penalty function while solving ELD. In such a case,
optimization algorithms need more intelligent exploitation

and exploration methods. An exploration method targets
the promising solutions throughout the search space,
whereas an exploitation method tries to search around
the neighborhood of the good solutions found so far. A
powerful exploration method improves the global search
ability, while an intelligent exploitation method improves
the convergence rate of the optimization algorithm. These
two methods need to be balanced during the program
execution to avoid the problems of random search and local
entrapment.

In ELD problems, the search domain for ith generator
is given by the range [P min

i , P max
i ]. Here, P min

i and
P max

i represent the lower and upper limits, respectively
for ith generator. The number of generators in a power
plant is treated as the dimension of the problem. In
most of the datasets available in the literature, the
number of generators is 6, 13, 15, 20, 40, 80, 140, and
160. In general, optimization algorithms perform well
in solving ELD problems with up to 20 generators. As
the number of generators in a power plant increases,
the optimization algorithms find it difficult to solve
ELD problems efficiently. To handle hard problems of
different domains, recently, some meta-heuristics have been
suggested. These algorithms use some natural phenomena
to achieve the desired goal. Faris et al. [16] proposed a
monarch butterfly optimization (MBO) algorithm. Moth
search algorithm (MSA) is proposed for global optimization
in [17]. Yang et al. [18] presented a hunger games
search (HGS) algorithm for solving complex problems.
An efficient approach based on the Runge Kutta method
(RUN) is proposed in [19] for optimization problems. Tu
et al. [20] suggested colony predation algorithm (CPA)
for complex problems. Heidari et al. [21] proposed Harris
hawks optimization (HHO) algorithm for hard problems.
Modified versions of the HHO algorithm are used to solve
data clustering problems in [22, 23].

Recently, the slime mould algorithm (SMA) [24] is
proposed for solving complex problems. This algorithm
implements the natural phenomenon of slime behavior
during the foraging to the food source. SMA, being a
new algorithm, there is a lot of scope of its performance
improvement and its applicability in various real-world
problems of science and engineering. Authors of the base
paper of SMA and other researchers have argued the
effectiveness of this algorithm in solving complex problems.
These points could be the motivation for using SMA to
tackle the ELD Problems. The replacement of random
numbers by chaotic sequences improves the performance
of an optimization algorithm [25]. In this paper, a
chaotic sequence guided slime mould algorithm (CSMA)
is presented for solving ELD problems with prohibitive
operating zones and ramp rate limits. In short, the originality
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and major contributions of this paper are summarized as
follows.

• Integration of merits of chaotic sequences generated
by the logistic chaotic map into a fast converging
algorithm.

• Validation of efficacy of CSMA by five test cases with
6, 13, 15, 40, and 140 generators ELD problems.

• Comparison of the performance of CSMA with
seven recent state-of-the-art algorithms SMA, SSA,
MFO, GWO, BBO, GOA, and MVO based on the
experimental values.

• Total generation cost for specified load demand is used
as the main performance metric for comparing the
performances of the algorithms.

• Validation for the effectiveness of CSMA using three
statistical tests: Friedman test, Iman-Davenport test, and
Holm test.

The rest of the paper is organized as follows. We present
the literature review in Section 2. Section 3 describes the
mathematical formulation of ELD and various constraints
associated with it. Section 4 describes CSMA in detail. The
description of the datasets and parameter setting is given in
Section 5. The analysis of experimental results is given in
Section 6. Section 7 highlights the conclusions and future
research directions.

2 Literature review

Pothiya et al. [26] proposed an approach based on
multiple tabu search (MTS) algorithms to solve the dynamic
economic dispatch problem with generator constraints.
They used experimental data to show the efficacy of
MTS against genetic algorithms, simulated annealing, and
particle swarm optimization (PSO). Lin et al. [27] suggested
an improved tabu search (ITS) algorithm for ELD problems.
They suggested the idea of a flexible memory system
to avoid the problem of local entrapment. After the first
proposal of tabu search for the ELD problems, other variants
have been suggested to speed up the performance during
optimization. PSO, on the other hand, has been applied with
different variations to solve ELD [28]. Another well-known
and powerful algorithm to solve ELD is based on differential
evolution (DE) [29].

Jayabarathi et al. [30] used the crossover and muta-
tion operators combined with a grey wolf optimizer to
solve ELD. They claimed the efficacy of their proposal
through experimental results. Pradhan et al. [31] integrated
opposition-based learning into the basic GWO algorithm to
improve the convergence rate and solution quality while
solving ELD. Elsakaan et al. [32] suggested an enhanced
moth-flame optimizer (MFO) to solve non-smooth economic

dispatch problems. They combined the merits of levy flight
with MFO to achieve the desired goal. Mandal et al. [33]
incorporated mutation and crossover operators of differen-
tial evolution in krill herd algorithm (KHA) to solve ELD.
They used experimental data to argue for the importance
of integrated operators in KHA. Bulbul et al. [34] proposed
an opposition-based krill herd algorithm for ELD. Coelho
et al. [35] proposed an improved harmony search (IHS)
algorithm based on exponential distribution for ELD. The
involvement of exponential distribution with the harmony
search algorithm yielded better performance for IHS. ELD

has also been solved by a tournament-based harmony search
(THS) algorithm [36]. THS replaced the random selection
process in the memory consideration operator with the tour-
nament selection process to achieve the desired objective
while improving the convergence rate. Pothiya et al. [37]
suggested an ant colony-based optimizer for ELD. They
introduced the concept of the priority list, variable reduc-
tion, and zoom feature to improve the overall performance
of the suggested approach. Elsayed et al. [38] presented an
approach based on the social spider algorithm for solving
the economic dispatch problem.

Recently, hybrid approaches have been widely used
to solve various science and engineering optimization
problems. These approaches leverage the merits of existing
techniques to perform specific tasks efficiently. Various
hybrid algorithms have been developed in the field of
power systems. Bhattacharya et al. [39] proposed a
hybrid algorithm by combining differential evolution with
biogeography-based optimization (DE/BBO) algorithm to
solve convex and nonconvex ELD problems considering
transmission losses and constraints such as ramp rate
limits, valve-point loading, and prohibited operating zones.
In addition, various other hybrid algorithms have been
proposed to solve a variety of ELD problems, and the
efficacy of the approaches has been justified based on
experimental values and comparative performance analysis
[40–43].

The use of chaotic sequences in place of random
numbers improves the convergence rate and quality of
solutions during optimization [44]. A chaotic sequence-
based differential evolution algorithm for solving complex
problems is proposed in [45]. Yang et al. [46] proposed
an adaptive chaotic spherical evolution algorithm for
optimization. Xu et al. [47] implemented chaotic local
search into grey wolf optimizer to avoid the problem of
local entrapment during the search process. By utilizing the
evidence argued by many researchers, chaotic sequences are
used in various optimization algorithms to solve real-world
global optimization problems in science and engineering.
Adarsh et al. [48] introduced a chaotic map-based bat
algorithm for ELD problems. They used chaotic sequences
to enhance the performance of their suggested approach.
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They used experimental data to claim the effectiveness of
their proposal. Arul et al. [49] proposed a chaotic self-
adaptive differential harmony search (CSADHS) algorithm
to solve the dynamic economic dispatch problem. They
replaced the pitch adjustment operator in the harmony
search algorithm with a chaotic self-adaptive differential
mutation operator to improve the searching ability with
less computational cost. Lu et al. [50] proposed a chaotic
map-based differential evolution for dynamic economic
dispatch problems. Coelho et al. [51] integrated chaotic
sequences and implicit filtering local search methods in PSO

to solve ELD problems. A multi-population-based chaotic
JAYA algorithm is proposed to solve ELD problems in [52].
In [52], random numbers are replaced by chaotic numbers
to improve the convergence rate of the JAYA algorithm. In
addition, the population is divided into sub-populations to
enhance diversity during optimization.

Zhao et al. [53] proposed a cuckoo search algorithm-
guided approach by introducing a self-adaptive step size
and neighbor-study strategies to improve the global search
ability while solving the ELD problems. Moreover, they
proposed an improved lambda iteration strategy to create
offspring. Mohammadi and Abdi [54] suggested a modified
crow search algorithm guided approach for ELD problems.
They proposed an approach to capture optimal global
solutions by introducing an adaptive adjustment of the flight
length. A harmony search-based method is proposed in [55]
to solve ELD problems. In [55], the update process of the
harmony search algorithm based on a greedy approach is
replaced by another efficient method to enhance the global
search capability of the algorithm during the search process.
The effectiveness of the simplex search method is integrated
into artificial algae algorithm to solve ELD problems in [56].

Prakash et al. [57] proposed a quasi-oppositional self-
learning teacher-learner-based-optimization algorithm to
solve ELD problems. Kaboli et al. [58] proposed an artificial
cooperative search algorithm to solve ELD problems. This
algorithm tries to balance exploitation and exploration
during the optimization to avoid the problem of stagnation
and random search. Trivedi et al. [59] proposed an interior
search algorithm to solve ELD and combined economic
emission dispatch (CEED) problems in microgrids. An
Ameliorated GWO algorithm is presented in [60] to
solve ELD by synergizing the exploration and exploitation
mechanism. In addition, an opposition-based learning
approach is used to target the global optimal solution in [60].

Srivastava et al. [61] proposed an aggrandized class
topper optimization algorithm for solving ELD. A crow
search algorithm guided approach for ELD is presented in
[62]. Some other approaches for ELD are given in [63,
64]. A clustering-based cuckoo search approach for ELD
problems is presented in [65]. Authors have shown the
effectiveness of clustering in cuckoo search for solving

ELD problems. A moth flame optimizer-guided approach
for ELD problems is presented in [66]. Kamboj et al. [67]
presented an approach based on a grey wolf optimizer for
ELD. A biogeography-based optimizer is proposed for ELD
problems in [68]. Salp swarm algorithm (SSA) [69] is
developed to solve complex problems. The main motivation
of SSA is the swarming behavior of salps when navigating
and foraging in oceans. After the first version of SSA,
it is being applied to solve various real-world problems.
A grasshopper optimization algorithm (GOA) [70] is
presented for solving hard problems. The main inspiration
of GOA is the behavior of grasshopper swarms. Mirjalili
et al. [71] proposed a multi-verse optimizer (MVO) for
solving challenging real-world problems. The authors have
justified the competitiveness of MVO using experimental
results.

3Mathematical formulation and constraints

In this section, we present the basic concepts and
mathematical formulation of ELD and various constraints
associated with it.

3.1 Total generation cost

The total generation cost with D generators is given by

min Ft =
D∑

i=1

Fi(Pi)

=
D∑

i=1

(
aiP

2
i + biPi + ci

)
+ ei

×|sin(fi × (P min
i − Pi))| (1)

where Ft and Fi are the total generation cost and cost
function, respectively of ith generator. Pi is the power
generated by ith generator, and ai , bi , ci , ei , fi are its cost
coefficients.

3.2 Constraints

3.2.1 Power equality constraint

This constraint states that the power generated by all
generating units should be equal to the sum of load demand
and power loss. Mathematically,

D∑

i=1

Pi = PD + PL (2)
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where PD is the load demand in a power plant. PL is the
power loss that is computed using B-coefficients as follows:

PL =
D∑

i=1

D∑

j=1

PiBijPj +
D∑

i=1

B0iPi + B00 (3)

where Bij , B0, B00 are the transmission loss coefficients.

3.2.2 Generation limits constraint

This constraint states that the ith generating unit can
generate power between the lower and upper limits as
follows:

P min
i ≤ Pi ≤ P max

i (4)

where P min
i and P max

i are the lower and upper limits of ith
generator, respectively.

3.3 Ramp rate constraints

The ramp rate constraint restricts the operating range of the
physical lower and upper limits to the effective lower limit
P min

i and upper limit P max
i , respectively. According to [72],

the inequality constraints due to ramp rate limits for unit
generation changes are given

1) as generation increases

Pi − P 0
i ≤ URi (5)

2) as generation decreases

Pi − P 0
i ≤ DRi (6)

where Pi and P 0
i are the current and previous output,

respectively. URi and DRi are the up ramp limit and
down ramp limit, respectively, of the ith generator in
MW/time-period.

3.4 Prohibited operating zone constraints

A power generator may have prohibited operating zones
(POZs) due to the physical limitation of power plant
components [73]. A generator with POZs has discontinuous
input-output characteristics. Each generator with (Z − 1)

POZs is characterized by Z disjoint operating sub-regions.
The POZ constraints are given by [74]:

P L
iz ≤ Pi ≤ P U

iz , z = 1, 2, · · · , Z (7)

Note that P L
i1 = P min

i , P U
iZ = P max

i . Z is the num-
ber of prohibited zones for each generator. The cost
function of generator with prohibited zones is given in
Fig. 1.

Respective penalty functions handle all the constraints
mentioned above during the program execution. The
description of these penalty functions is given below.

Fig. 1 Cost function with
prohibited operating zones

Power Output (MW)

Fuel Cost ($/h)

Prohibited Operating Zone
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3.4.1 Power balance penalty (PBP)

This penalty function is used to handle power equality
constraint described in (2) and is defined as:

PBP = |PD + PL −
D∑

i=1

Pi | (8)

In the ideal case, the value of PBP is zero.

3.4.2 Capacity limits penalty (CLP)

This penalty function is used to handle generation limits
constraint described in (4). Its mathematical formulation is

CLP =
D∑

i=1

|Pi − P min
i | −

(
Pi − P min

i

)

+
D∑

i=1

|P max
i − Pi | − (

P max
i − Pi

)
(9)

In the ideal case, the value of CLP is zero.

3.4.3 Ramp limits penalty (RLP)

This penalty function is used to handle ramp rate constraints
given in (5) and (6). This penalty function is mathematically
formulated as

RLP =
D∑

i=1

|Pi − DRi | − (Pi − DRi)

+
D∑

i=1

|URi − Pi | − (URi − Pi) (10)

3.4.4 Prohibited operating zone penalty (POZP)

This penalty function is used to handle the POZ constraints
given in (7). Its mathematical formulation is

POZP =
D∑

i=1

(Ppoz)
2 (11)

where

Ppoz =
{

min(Pi − P L
iz, P

U
iz − Pi), P L

iz ≤ Pi ≤ P U
iz

0, otherwise

}

(12)

where P L
iz and P U

iz are the lower bound and upper bound of
the ith generator for the zth prohibited zone.

The penalty functions mentioned-above give either zero
or non-zero values. The zero value of the penalty function
indicates that the respective constraint is satisfied. In that
case, the multiplication of penalty function value with any
value of λ will be zero. Therefore, the total generation

cost will remain the same. A non-zero value of the penalty
function indicates that the respective constraint is not
satisfied. The non-zero value can be treated as an error
value. A solution that is unable to satisfy the constraint must
be discarded. Since, in this work, we are dealing with a
minimization problem. All optimization algorithms try to
minimize the total generation cost of the generating units.
Each penalty function value is multiplied by a constant
value to magnify the error if it occurs. The resultant value
is added to the total generation cost (fitness value). Hence,
during the selection, the solutions that do not satisfy the
constraints will not be selected and will not be able to create
offspring.

The values presented in the Table 1 are chosen in such
a way that a solution gets discarded if it does not satisfy
the constraint. For example, if we consider test case 1, the
values are λ1 = 1000, λ2 = 1000, λ3 = 100000, λ4 = 10000.
These values are multiplied by the power balance penalty,
capacity limits penalty, ramp limits penalty, and prohibited
operating zone penalty, respectively. The resultant value is
then added to the total generation cost. In such a case, the
possibility of a solution getting discarded is very high if
it does not satisfy the constraints. Test cases 2 and 4 are
not given the data to calculate ramp limits and prohibited
operating zone penalties. Therefore, there is a dash (-)
corresponding to these values in Table 1. The total penalty
(TP) is computed by:

T P = λ1 ×PBP +λ2 ×CLP +λ3 ×RLP +λ4 ×POZP

(13)

where λ1, λ2, λ3, and λ4 are constants given in Table 1.
The fitness function (1) with the above set of constraints

(2), (4), (5), (6), (7) is considered as in (14) using the penalty
function method.

min Ft =
D∑

i=1

Fi(Pi)

=
D∑

i=1

(aiP
2
i + biPi + ci) + ei

×| sin(fi × (P min
i − Pi))| + T P (14)

Table 1 Value of λ in different test cases

Test Cases λ1 λ2 λ3 λ4

1 103 103 105 105

2 105 103 – –

3 103 103 105 105

4 105 103 – –

5 107 105 107 105
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We will use the above concepts to describe our algorithm
in the next section.

4 Proposed algorithm

This section describes the proposed algorithm (CSMA) in
detail. The optimization algorithms start their execution
with the randomly initialized candidate solutions in the
specified boundary as the initial search direction is not
known in complex problems. Like other optimization
algorithms, the proposed method starts with the randomly
initialized population. Mostly, in the random initialization
of solutions, the boundaries of the search domain and a
minimum of one random value are used. The boundaries
of the search domain depend on the problem taken under
consideration. In this study, the lower and upper limits of
generating units in the power plants decide the boundaries
of the search domain. Each randomly initialized solution is
a vector of size 1×D. Here, D is treated as the dimension of
the problem taken under consideration. In this work, D is the
number of generating units in the power plant. The solutions
for each of the D generators are randomly initialized
by:

Pji = P min
i + r ×

(
P max

i − P min
i

)
(15)

where i varies from 1 to D and j varies from 1 to N

(N is the population size). P min
i and P max

i are the lower
and upper limits, respectively, of the ith generator. Pji is
the power generated by the ith generator at j th individual
in the population, and r is a random value between 0 to
1. After random initialization, each solution needs to be
evaluated using (14). Here, each solution can be treated as
a slime mould. Power demand is passed in the program
code during the optimization process. The algorithms are
supposed to generate supplied power demand with the least
generation cost. Meanwhile, it is also desirable to have
minimum power loss and power balance penalty. In this
study, all algorithms motivate costly generating units to
produce minimum power to minimize the total generation
cost.

Based on the total generation cost, the most appropriate
scheduling of generating units can be identified for the first
iteration, and relevant values can be saved for future use.
Afterward, each solution needs to be updated to identify
other possible generating units scheduling. The solution
updating method depends on the algorithm taken into
consideration. Different algorithms have different solution
updating methods. These methods intentionally try to
implement exploration and exploitation of solutions to

achieve the desired goal. The mathematical expression for
updating the position of slime mould is given in (16).

X =
⎧
⎨

⎩

(P min
i + α.(P max

i − P min
i ), r < z

Xb(t) + Vb.(W .XA(t) − XB(t)), r < p

Vc.X(t), r ≥ p

⎫
⎬

⎭ (16)

where Vb ∈ [−a, a] and Vc decreases linearly from 1
to 0. Xb and t represent the individual location with the
highest odour concentration currently found, and current
iteration, respectively. XA and XB are two randomly
selected individuals from slime mould. W and X represent
the weight and position, respectively of a slime mould. In
this study, parameter z is set to 0.03. Here, it should be noted
that each variable in (16) is in the form of a vector of size
1×D.

p is defined according to (17)

p = tanh |F(i) − BF | (17)

where i ∈ 1, 2, · · · , N , F(i) and BF are the fitness of i-th
individual and the best fitness, respectively found so far. The
value of a is calculated using (18):

a = arctanh

(
− (

t

T
) + 1

)
(18)

where T represents the maximum number of iterations
considered in this study. For the best N/2 solutions, W is
calculated using (19).

W = 1 + r .log

(
BF − F(i)

BF − WF
+ 1

)
(19)

For the remaining N/2 solutions, W is calculated using (20).

W = 1 − r .log

(
BF − F(i)

BF − WF
+ 1

)
(20)

where BF and WF represent the best and the worst fitness
values, respectively found in the current iteration.

In (16), α ∈ (0, 1) is a chaotic sequence of size
1 × D created by the logistic chaotic map. This map is
mathematically formulated as follows [75]:

xt+1 = cxt (1 − xt ) (21)

here, c = 4, and xt = 0.75.
The proposed method for solving ELD problems is given

in Algorithm 1.
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4.1 Analysis of computational complexity

The proposed algorithm mainly consists of random initial-
ization, fitness evaluation, sorting, and population update.
The computational complexity of random initialization and
fitness evaluation is O(N ×D) and O(N), respectively. The
computational complexity of sorting and population update
is O(N log N) and O(N×D), respectively. In this study, the
maximum iterations and number of independent runs are T
and R, respectively. Therefore, the total computational com-
plexity of the proposed algorithm is O(R × (N × D + T ×
N(1 + log N + D))).

In this study, the computational complexity of algorithms
depends on N, T, R, D. These parameters are the same
for all algorithms considered. In this work, the flow of the
program execution is the same for all the algorithms, which
are (1) the random initialization of population, (2) fitness
evaluation, (3) creation of new solutions, (4) selection of
the top solutions. Therefore, the computational complexity

of the remaining algorithms will be similar to that of the
proposed approach.

5 Datasets and parameter setting

We used five test cases with 6, 13, 15, 40, and 140
generators to compare the performance of the algorithms.
Power demands and references of these test cases are
given in Table 2. The cost coefficients, minimum and
maximum power generation capacity of generating units, B-
coefficients, and other relevant information of used datasets
can be found in detail in respective references.

5.1 Experimental setup

We compared the performance of the proposed approach
against seven algorithms: slime mould algorithm (SMA)
[24], salp swarm algorithm (SSA) [69], moth flame opti-
mizer (MFO) [66], grey wolf optimizer (GWO) [67],
biogeography-based optimizer (BBO) [68], grasshopper
optimization algorithm (GOA) [70], and multi-verse opti-
mizer (MVO) [71]. The individual parameters of these
algorithms are set according to the respective paper. How-
ever, three parameters that are common for all algorithms
are set as follow:

• Population size (N) = 25.
• Maximum iterations (T) = 600.
• Independent runs (R) = 30.

For a fair comparison, all algorithms are implemented in
MATLAB R2017a on a machine with 8GB of RAM and
a Core-i5 processor. All algorithms are executed over 30
independent runs. We compute a solution that meets the
load demand with minimum generation cost in each run.
In other words, we compute a solution with a minimum
balance penalty. If two solutions have the same balance
penalty, we save the solution with minimum generation cost.
At the same time, we keep the total generation cost for
the minimum balance penalty concerning iteration. Out of
30 independent runs, we stored the best solution for the
respective algorithms and test cases.

Table 2 Description of datasets used in this study

Sr. No. Test Case # generators Power Demand (MW) Reference

1 Test case 1 6 1263 [72]

2 Test case 2 13 1800 [76]

3 Test case 3 15 2630 [77]

4 Test case 4 40 10500 [76]

5 Test case 5 140 49342 [78]

15332 T. Singh



Table 3 Comparison of the experimental results for test case 1

Power CSMA SMA SSA MFO GWO BBO GOA MVO

P1 452.1021 429.0046 454.133 449.3141 469.165 453.7971 452.0043 496.0728

P2 172.096 173.0249 199.9928 179.4009 169.1438 175.3897 175.4473 177.9637

P3 251.8451 261.2887 257.3872 252.4426 264.303 246.2134 259.7947 248.1452

P4 128.9404 132.2047 128.738 150 128.0659 140.4549 135.1351 148.6548

P5 164.1094 173.4473 163.5624 150.2007 157.1685 167.6643 157.803 139.7994

P6 106.7149 106.8766 71.9534 93.7543 87.9716 91.9848 95.3758 64.6089

TPG 1275.8079 1275.8468 1275.7668 1275.1126 1275.8178 1275.5042 1275.5602 1275.245

PL 12.8079 12.8469 12.7668 12.1126 12.7637 12.5039 12.5602 12.25

PBP 0 1.00E-04 0 2.27E-13 0.0541 0.0003 2.27E-13 0.0052

TGC 15451.89584 15453.11477 15455.49006 15448.51678 15505.49444 15448.13172 15446.49854 15479.2

Bold entries represent the best (optimized) cost to meet specified power demands

6 Analysis of experimental results

This section presents the analysis of experimental results.
We performed the analysis in two ways based on (1) the
quantitative values of the power balance penalty, power
loss, total generation cost, and (2) the statistical test. We
conducted various experiments to identify the best possible
method to solve ELD problems. Tables 3, 4, 5, 6, 7
and 8 represent the comparison of experimental values
of algorithms for test cases 1-5 ELD problems on load
demands of 1263MW, 1800MW, 2630MW, 10500MW, and
49342MW, respectively. These tables represent the optimal
power output of each generating unit, total power output,

power loss, power balance penalty, and total generation cost.
The minimum values of total generation cost, power loss,
and power balance penalty are desirable.

Analysis of Tables 3–8 prove the effectiveness of the
proposed approach in solving ELD problems. Table 4 shows
that SSA crosses the boundary of the search domain in
most of the cases, which is not desirable. In such cases,
algorithms find difficulty in identifying the optimal power
output of generating units. To avoid such problems, modular
clamping could be more effective instead of boundary
clamping. From Tables 5–8, it is easy to conclude that MFO

crosses the search domain for some generating units. The
reason could be the updating method adopted in MFO that

Table 4 Comparison of the experimental results for test case 2

Power CSMA SMA SSA MFO GWO BBO GOA MVO

P1 456.1793 635.4627 679.9999 537.601 356.5023 530.5871 430.8568 472.721

P2 359.9911 0 0.0001 0 170.6964 222.6766 279.3771 127.6703

P3 58.1085 132.0909 360 225.5374 157.6633 142.9125 225.7135 106.2248

P4 166.6687 142.1908 60 180 82.7489 124.5816 91.2189 177.3811

P5 60.354 177.3557 60 144.0892 140.9382 162.5963 108.9245 75.8999

P6 170.912 177.7333 60 105.0287 169.5707 126.8706 156.7571 171.3589

P7 60.4646 60 60 102.2321 115.0123 68.1776 78.4613 61.4193

P8 168.3948 60.1755 60 60 162.6712 66.7819 109.8634 180

P9 60.0187 112.0158 60.0001 108.9372 153.7838 73.1143 60 135.203

P10 40.1758 41.5267 40 40 42.0602 54.6918 71.9579 110.4757

P11 40 88.989 119.9999 115.0877 66.4048 56.6178 76.8698 41.3109

P12 55.1596 79.1544 120 98.5675 108.3154 78.831 55 84.3163

P13 103.5729 93.3052 120 82.9192 73.5981 91.6423 55 56.0184

TPG 1800 1800 1800 1800 1799.966 1800.081 1800 1800

PL 0 0 0 0 0 0 0 0

PBP 0 0 0 2.27E-13 0.0344 0.0814 0.0003 0.0004

TGC 18701.48614 18932.83 18751.11 18631.65 22542.18 27127.16 18716.94 19488.14

Bold entries represent the best (optimized) cost to meet specified power demands
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Table 5 Comparison of the experimental results for test case 3

Power CSMA SMA SSA MFO GWO BBO GOA MVO

P1 442.3627 411.9042 453.3456 414.669 449.2663 417.1372 441.9616 395.9525

P2 362.1448 364.9595 370.8865 347.7588 373.4517 361.1331 361.4166 270.7895

P3 129.9984 129.9996 128.8434 130 122.9923 126.9073 127.9938 129.0111

P4 129.9994 127.8854 127.6552 130 123.8456 119.7826 127.9885 123.3212

P5 150.1493 154.2636 152.2417 150 155.5002 161.1515 158.0847 153.985

P6 459.9591 455.8144 458.0856 459.1144 458.5167 415.3898 460 459.0193

P7 429.9094 404.2705 400.735 397.9086 404.5571 413.3875 429.6221 416.6748

P8 60.4653 60.2894 105.7626 60 133.8719 127.0909 153.6797 137.7381

P9 161.4039 157.3844 110.4698 162 117.0195 116.3765 25 143.191

P10 155.5549 158.7252 111.7072 135.1363 140.4845 129.1154 81.2059 158.1521

P11 20.7804 70.5312 62.8821 70.8672 32.6746 59.5413 80 78.3053

P12 79.9997 74.6833 51.8546 79.7251 22.0828 72.9551 80 65.6436

P13 25.6061 29.1402 57.1767 45.7809 44.6857 73.21 46.5231 75.2504

P14 42.5303 17.3164 54.9603 50.0125 51.0037 32.7375 44.5052 40.5552

P15 15.2454 47.5947 15.8565 29.8765 37.9998 38.2458 42.0039 21.0709

TPG 2666.1091 2664.762 2662.463 2662.849 2667.952 2664.162 2659.985 2668.66

PL 36.0888 34.762 32.4628 32.8493 37.8874 34.1967 29.9864 38.6566

PBP 0.0203 0 0 0 0.065 0.0352 0.0013 0.0034

TCG 32911.81303 32929.19 32934.52 32963.97 33123.18 33091.4 32873.84 33144.73

Bold entries represent the best (optimized) cost to meet specified power demands

motivates the solutions to cross the boundary range of the
search domain.

Table 9 represents the ranking of each algorithm for
different test cases and average ranking. This ranking has
been calculated based on the total generation cost. An
algorithm with the least generation cost got rank 1 (best).
This table shows that CSMA outperforms SMA in all test
cases considered in this study. The reason behind the
competitive performance of CSMA could be the inclusion of
chaotic sequences generated by the logistic chaotic map. For
test cases 4 and 5, CSMA got the first rank. These test cases
correspond to 40 and 140 generators ELD problems. In this
study, the number of generators is treated as the dimension
of the optimization problem. Therefore, it can be concluded
that the proposed algorithm will perform well in higher
dimensional optimization problems. The average ranking
of MVO is 7, which is the worst among all approaches
considered. In this work, GOA got the second position.

In this study, each algorithm is executed 30 times. Each
time, the maximum number of iterations is taken as 600. The
best value of the total generation cost in each independent
run is saved. Therefore, the best 30 values of total generation
cost are obtained at the end of the program execution.
These values are used in box plots. Figures 4b, 5 and
6b represent the box plots of algorithms for different test
cases. A careful observation of these plots justifies the
effectiveness of CSMA. On the other hand, an observation

of total generation cost concerning iterations is also a
method of comparing the performances of the algorithms.
To do so, convergence curves of algorithms for all test
cases have been plotted. Figures 2a, 3 and 4a show the
convergence curves. In minimization problems, a high rate
of decrease in objective values is desirable. The suggested
algorithm has shown similar behavior during the program
execution (Figs. 5 and 6).

To validate the competitiveness of the proposed algo-
rithm statistically, three statistical tests (Friedman test [79],
Iman-Davenport test [80], Holm test [81]) have been per-
formed at a 5% significant level. Friedman test is one of the
nonparametric tests mathematically formulated as follows.

FT = 12

nA(A + 1)

A∑

j=1

R2
j − 3n(A + 1) (22)

Here, FT represents the Friedman test statistical value. n
and A are the number of test cases and the number of
algorithms, respectively. In this work, n = 5, and A =
8. Rj represents the sum of ranks for the j-th algorithm.
The calculated Friedman test value is now compared with
the table of Chi-square statistics by considering degree of
freedom = 7(number of algorithms - 1) at a significance
level α = 0.05. The p-value for a given Friedman test
value can be calculated from https://www.socscistatistics.
com/pvalues/chidistribution.aspx.
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Table 6 Comparison of the experimental results for test case 4

Power CSMA SMA SSA MFO GWO BBO GOA MVO

P1 56.6088 111.7044 105.3791 48.1435 53.4627 79.2026 97.0355 81.8181

P2 110.27 62.0484 106.2879 36 62.2056 97.3916 106.2604 114

P3 60.0012 70.3685 101.4398 117.5921 106.3848 82.0864 114.796 112.4868

P4 188.7847 170.9622 189.3892 93.3786 104.5871 113.3507 148.9523 150.2621

P5 92.6865 80.1288 59.3508 47.437 75.4158 65.7503 97 56.4089

P6 68.534 136.5748 84.3609 123.7405 122.6863 105.0801 135.3812 139.1904

P7 274.6126 110.022 150.1128 300 178.6965 213.7192 272.769 177.0855

P8 191.2145 299.9953 294.2138 300 269.2612 267.9599 299.4974 298.2995

P9 280.5952 292.3559 290.7083 166.0045 287.871 259.0893 299.9718 268.4233

P10 206.0184 298.3512 292.1319 130 156.2688 242.1177 255.6323 235.2451

P11 294.9264 317.5832 186.932 263.7924 229.8713 311.0256 370.7238 371.8589

P12 302.018 105.6665 170.1992 304.4923 168.6575 308.731 205.1913 324.8202

P13 148.9083 463.8908 131.1266 489.7033 425.5147 416.3951 474.0741 313.5656

P14 461.5775 496.4607 499.1159 432.9267 497.3051 404.9229 252.2187 395.2939

P15 471.8658 354.9193 327.6567 500 424.8819 392.0007 371.0152 497.5048

P16 499.6436 494.7099 281.3945 500 467.5326 426.574 285.0095 464.6349

P17 499.855 499.1105 499.416 466.3732 479.6155 441.1167 439.5455 447.0674

P18 499.9579 263.3216 335.296 500 440.9322 469.0858 428.5404 499.0463

P19 510.941 545.2287 549.5749 256.1748 514.9695 476.6316 496.5081 247.1646

P20 548.8863 549.9944 541.4355 460.7275 525.1793 499.8877 470.4407 324.3734

P21 513.5603 540.1189 548.8805 511.0406 546.9783 502.3242 549.7075 501.9908

P22 549.9838 532.7856 530.9896 549.9962 525.4683 491.1793 548.1523 544.7195

P23 549.741 524.4338 546.1555 550 525.9502 438.4428 518.0482 419.9503

P24 254.0001 532.6146 533.1362 545.3031 514.0755 514.751 398.5565 518.1818

P25 549.988 460.1178 456.2145 332.2258 531.2003 439.6494 549.9979 550

P26 548.2001 512.6982 542.6873 497.5983 505.8669 524.8136 372.0683 411.9595

P27 13.0883 32.1278 72.2192 10 46.9861 65.0718 51.1433 125.9788

P28 10.0006 119.0028 19.197 72.345 22.9725 92.0527 56.8809 148.8649

P29 10.9041 40.204 66.7804 39.6085 11.8075 52.876 58.1429 48.3594

P30 94.5227 53.1188 96.1897 97 78.279 79.7771 96.9761 69.4158

P31 188.4519 189.7552 150.9867 190 155.9839 161.7881 189.9999 175.699

P32 189.5851 139.992 173.3299 162.2198 91.4303 143.4472 181.6041 93.5086

P33 61.9416 189.6109 186.1879 190 184.9948 150.9609 77.9802 137.0916

P34 178.7561 91.6728 180.0767 170.7627 125.0216 138.5553 129.6379 199.6099

P35 199.9947 171.2064 199.6233 200 140.0354 155.4158 196.7152 200

P36 190.3114 92.3108 137.5377 200 176.2554 171.1119 189.7362 150.6107

P37 32.9694 25.2744 101.7723 25 55.6671 59.9581 103.3023 75.1156

P38 25.0633 97.4334 107.748 45.4136 37.2699 85.2821 105.7938 47.496

P39 27.582 109.8424 109.3305 25 98.1883 77.4087 25.0001 66.6809

P40 543.4498 322.2824 545.4353 550 534.2801 483.0384 479.9932 496.2229

TPG 10500 10500.0001 10500 10500 10500.01 10500.02 10500 10500.01

PL 0 0 0 0 0 0 0 0

PBP 0 1.00E-04 0 0 0.0108 0.0233 0 0.0057

TCG 129612.3173 137380.41 131430.9 134038.8 131228.4 138667.4 133676.8 150002.6

Bold entries represent the best (optimized) cost to meet specified power demands
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Table 7 Comparison of the experimental results for test case 5

Power CSMA SMA SSA MFO GWO BBO GOA MVO

P1 77.4728 73.3944 118.1117 119 76.4016 86.8417 71.9203 81.0578

P2 150.0797 121.0671 151.9062 121.704 148.0027 136.5155 124.5906 145.1823

P3 159.9411 189.9252 174.9891 151.8194 181.0803 162.7652 127.6347 154.953

P4 184.2693 155.1537 186.651 178.9847 178.6762 162.202 188.0234 164.2585

P5 173.7841 90.5935 152.1581 90 161.1127 152.6753 177.8161 107.2449

P6 188.2131 114.5141 189.4516 190 124.411 136.1504 93.6604 188.3866

P7 489.469 289.1811 375.6716 477.8952 393.7455 314.5827 414.9862 378.7311

P8 286.5923 394.2651 418.1627 490 467.4548 404.7332 290.2061 332.984

P9 405.6354 456.6575 425.0562 496 473.343 406.2614 471.485 419.446

P10 415.9994 260.1061 493.5377 284.6985 454.1539 354.5122 261.7837 319.6923

P11 391.5847 471.5842 483.3189 460.1181 494.8724 490.6619 486.318 327.2114

P12 399.1098 430.6027 361.7197 261.4077 279.6925 433.922 457.4423 407.6214

P13 496.1587 365.0601 377.2994 489.9187 442.4291 494.3088 472.9528 462.2952

P14 491.1538 404.0223 420.7256 260 445.8683 401.1594 505.9853 443.2314

P15 366.4118 453.1569 298.9294 427.4724 454.5995 408.661 435.3757 457.2514

P16 387.1772 347.3368 339.4679 260 343.8313 359.429 345.5399 289.1565

P17 496.0091 359.2237 376.5307 442.3007 451.0703 452.8235 506 262.804

P18 427.0241 345.9771 500.128 506 482.6971 398.6512 448.7479 415.8435

P19 260 504.5314 309.3918 505 458.0311 497.691 433.2677 366.4869

P20 477.8297 504.8196 473.8439 287.8062 341.4342 436.38 428.3365 418.1566

P21 447.1571 449.2819 486.7028 505 480.4599 374.4708 465.3488 429.4026

P22 485.306 448.0837 296.6246 366.0196 487.2223 395.6001 435.9382 436.8846

P23 490.0389 444.6373 490.4175 487.5186 370.9565 409.9914 350.1997 496.5669

P24 428.8585 468.4944 498.8792 395.1974 406.5087 404.3874 443.5176 481.1926

P25 536.9538 280.2722 524.3467 537 488.2437 298.286 344.1031 524.7636

P26 280.0138 514.9762 288.8348 537 424.0139 430.1844 382.3786 402.3752

P27 345.6383 528.0222 540.5842 495.5133 441.843 531.8759 407.0899 311.3758

P28 532.5583 543.2599 451.9365 280 367.6025 479.6886 516.2797 515.2719

P29 386.3472 499.0761 479.0983 501 450.3671 437.0765 453.086 408.4647

P30 443.8706 358.687 458.593 359.9835 377.7194 423.0413 482.4497 490.5552

P31 505.9825 398.0884 321.7369 435.8686 349.2668 483.8573 336.5195 473.4224

P32 454.1763 446.2488 389.5783 393.663 442.0896 347.628 492.0128 491.3192

P33 416.206 505.9855 461.8384 311.6391 434.6745 400.9106 347.4653 462.3993

P34 357.4958 338.0513 479.3187 506 307.2888 390.2708 467.7798 449.8601

P35 425.8886 348.9051 345.7191 260 344.0444 428.7789 293.1836 484.4252

P36 494.4212 499.997 326.8902 461.7627 475.0341 445.0952 449.7267 441.0361

P37 217.4733 183.6307 222.2423 241 235.1797 165.4058 203.4266 122.6452

P38 133.6161 126.7621 232.1038 241 215.6307 190.2664 126.8608 218.4799

P39 773.7813 595.402 765.8387 428.1906 721.2376 642.2526 744.1953 613.0105

P40 751.8299 657.437 731.7187 769 747.0165 703.2876 658.2712 582.4881

P41 7.7334 7.5313 18.2237 3 18.9109 4.9498 15.6144 11.1216

P42 7.6204 17.4129 16.7409 28 7.0689 14.0123 3.0251 15.7651

P43 161.14 219.0449 243.0378 249.9768 160.7254 184.5803 214.448 242.2967

P44 207.8936 165.4296 249.0376 250 228.982 218.2821 197.2887 245.3545

P45 242.8466 174.1658 249.5649 250 204.1362 217.5414 236.0512 220.6237

P46 202.0357 177.3213 175.199 236.5814 219.7275 218.1154 231.481 206.6866

P47 204.7325 243.142 200.2765 160.1511 225.4587 224.857 240.1183 178.1489

P48 242.5101 222.3759 160.0237 231.7339 214.7964 211.7637 187.2127 161.9942

P49 240.2459 174.0533 165.568 160 232.6451 185.7102 199.001 177.0373
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Table 7 (continued)

Power CSMA SMA SSA MFO GWO BBO GOA MVO

P50 244.4358 184.2352 183.7855 197.7211 227.1553 200.2953 183.3715 205.8226

P51 323.1738 475.9821 242.9835 165 402.9733 321.5263 346.896 287.3464

P52 504 447.8945 502.4677 504 344.8789 398.1737 182.3455 428.9521

P53 494.6062 492.4716 300.1375 468.4351 431.3104 445.3387 229.4769 492.855

P54 381.1127 298.9918 499.2836 165 315.0965 383.3798 305.1919 369.2838

P55 463.4207 219.4824 454.4044 468.7232 424.8132 413.1093 462.8156 465.6795

P56 466.7117 485.2498 509.4481 312.7879 401.1815 436.2861 277.0089 499.4454

P57 216.0202 103.3902 317.4957 103 129.6951 274.5811 238.0314 256.3737

P58 499.2885 556.5314 257.7325 617 603.8345 398.1626 479.6964 256.895

P59 165.9998 292.2943 199.5912 294.9718 294.1739 185.8127 172.6762 279.8837

P60 298.6933 454.9104 292.3085 471 299.2256 385.2088 313.6063 172.438

P61 302.3841 481.2713 329.1479 379.2972 199.3959 335.2788 427.2534 299.3742

P62 142.3553 283.9263 162.6819 290.6553 153.5669 246.6347 243.2729 284.4478

P63 507.5928 502.4973 278.0768 329.7275 267.6598 433.7826 284.3413 205.5805

P64 272.6857 500.353 273.0249 511 455.5026 351.6755 164.6184 465.5135

P65 372.437 474.2131 336.094 490 362.3292 277.3936 367.3103 348.23

P66 413.5545 348.3392 389.3089 196 217.686 478.7321 336.4191 394.7427

P67 377.1664 370.8394 416.6342 490 346.5332 406.1275 485.6841 489.3291

P68 236.2541 488.4581 301.9846 196 403.8326 442.5585 459.3381 347.3527

P69 330.2952 159.5684 381.4455 408.4331 343.553 268.3647 200.386 303.7244

P70 344.3013 289.455 301.0155 364.1906 279.32 282.3124 302.0286 403.7981

P71 167.6646 267.084 223.0095 454.9889 288.6672 280.318 246.4253 211.3846

P72 405.1083 454.7411 294.8444 429.7587 438.5352 339.892 453.4153 277.3599

Iman-Davenport test This test is derived from Friedman
test [80] and mathematically expressed as follows.

IDT = (n − 1) × FT

n × (A − 1) − FT
(23)

where IDT is the Iman-Davenport test statistical value.
The null hypothesis got rejected as the statistical value
is greater than the critical value. The p-value for a given
IDT can be evaluated from https://www.socscistatistics.
com/pvalues/fdistribution.aspx.

Holm test This is one of the post hoc tests and mathemati-
cally expressed as follows.

HT = (Ri − Rj )/

√
A × (A + 1)

6n
(24)

Where HT is Holm’s test statistical value. Here, Rj is
the average rank of the proposed algorithm, whereas Ri

represents the average rank of the algorithm that is taken
under consideration from the remaining algorithms. The
p-value for a given statistical value of the Holm test
can be calculated from https://www.socscistatistics.com/
pvalues/normaldistribution.aspx. These tests are conducted
on the total generation cost values that meet the specific
load demand. In these tests, the rejection of the NULL

hypothesis indicates a significant difference in the perfor-
mance of considered algorithms. However, the non-rejected
NULL hypothesis indicates that the algorithms perform
comparable, i.e., statistically, there is no difference in the
performance of the algorithms.

Table 10 shows the experimental values of Friedman and
Iman-Davenport tests. The rejection of the null hypothesis
for both cases indicates a significant difference among
the performances of the algorithms considered in this
work. A post hoc test (Holm test) is performed to check
whether there is a significant difference between the
proposed algorithm and the rest of the approaches. The
best performing approach (CSMA) is considered a control
algorithm to calculate the statistical values and p-values.
Table 11 shows the values of the Holm test. The rejection
of the NULL hypothesis for MVO, GWO, BBO indicates that
CSMA performs statistically better than these algorithms.
The NULL hypothesis for SMA, SSA, MFO, and GOA is
not rejected which indicates that CSMA does not perform
statistically better than these algorithms. However, the
effectiveness of CSMA against these algorithms can be
easily seen from Table 9.

Based on the experimental results and various compara-
tive performance analyses, CSMA exhibits the best perfor-
mance compared to other algorithms. The competitiveness
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Table 8 Comparison of the experimental results for test case 5 cont...

Power CSMA SMA SSA MFO GWO BBO GOA MVO

P73 342.9759 294.6996 360.3213 541 535.7507 404.9785 528.1878 464.4063

P74 216.3166 532.334 478.4643 536 461.9887 350.7128 520.4232 387.0529

P75 203.8221 432.0613 353.7201 429.3069 524.8794 494.7253 176.6602 378.9769

P76 375.512 489.8397 492.6326 417.5693 343.4826 414.074 492.9229 354.3834

P77 327.0396 539.9354 227.4967 175 309.3388 213.4494 492.1318 537.8278

P78 443.6271 457.9752 353.8265 540.2377 551.7233 517.8524 459.6522 451.0421

P79 523.1989 402.4966 344.6953 522.2994 443.518 414.3765 445.0007 336.0092

P80 530.5542 185.3222 455.8446 279.9324 252.1218 438.7996 479.6594 378.2642

P81 499.7106 538.5554 334.0833 363.3908 530.567 394.5317 351.6283 472.2309

P82 56 104.6918 111.4338 74.4671 108.2281 121.9051 79.6545 70.6115

P83 216.7871 200.1433 173.6775 245 134.3887 186.0384 196.5856 242.8647

P84 178.3296 183.5177 179.143 189.9843 125.8314 174.8195 121.8445 164.7492

P85 143.1569 129.825 171.3209 115 220.0275 198.6934 154.3966 230.6023

P86 251.4759 243.1909 274.4427 303.5084 295.2932 273.9958 246.112 302.6432

P87 235.5074 254.9104 267.3516 215.2356 271.279 265.403 281.0073 229.8411

P88 176.5254 255.6926 251.3265 175 281.3763 310.1579 342.1578 340.3538

P89 338.2206 207.591 323.0475 203.6252 179.4915 322.9022 253.5462 315.5067

P90 230.402 247.2577 340.4937 323.2467 226.3251 247.7574 337.4549 215.3024

P91 178.5985 183.4469 322.5957 175 217.9268 240.0415 242.7773 225.3382

P92 575.2898 557.7463 573.9161 542.6587 555.101 562.3627 539.9199 569.599

P93 522.8033 521.9393 539.0381 518.3468 524.2908 525.9612 531.7254 535.2415

P94 815.9595 795.0052 817.3529 834.5254 824.9991 824.9902 825.6621 828.6131

P95 816.6081 834.8441 835.8697 795 806.2576 813.6664 835.53 825.6886

P96 590.6866 615.4733 675.1559 578 637.5226 618.2086 664.1675 580.8262

P97 719.9417 675.0375 701.2872 713.49 658.6637 675.3694 678.1231 701.4669

P98 620.6947 717.8999 663.6228 718 690.7655 666.1125 714.5943 634.8006

P99 694.4985 719.8944 703.4621 619.4024 679.8593 673.8758 718.438 632.9806

P100 957.2418 886.7449 929.9415 964 907.5994 922.4305 888.1742 893.7299

P101 954.2716 944.3924 955.6371 958 888.2694 891.4551 956.137 956.9913

P102 867.3491 943.2733 922.2077 859.9809 883.6153 924.497 945.2469 912.5357

P103 926.1141 915.3124 888.2142 864.7096 922.476 867.2955 846.1395 918.4437

P104 909.8812 898.4979 928.855 885.3699 909.8899 891.6031 927.5019 923.8367

P105 867.2403 859.8458 866.03 868.1344 851.7639 862.732 856.9918 854.4255

P106 865.1416 867.9925 833.7625 871.9649 868.8118 843.1751 873.6723 870.0345

P107 842.5247 844.2482 844.2763 837.1458 866.8342 863.5153 861.9037 872.1373

P108 871.2472 866.5193 875.6149 874.301 853.2344 861.051 876.8637 824.5837

P109 844.482 819.5897 801.1017 865.2799 840.901 839.7705 868.7925 805.4522

P110 799.8528 795.1354 858.6655 798.9687 818.4574 855.7987 862.8324 822.9444

P111 814.6186 848.4687 851.2424 861.9141 866.6489 869.7675 872.5109 861.8811

P112 159.359 121.4196 193.5488 94.1588 114.3979 150.582 128.7571 143.3379

P113 200.612 120.2216 201.9706 184.2298 139.8471 140.8712 143.5149 172.6618

P114 111.0953 95.0511 102.5404 203 125.7351 155.6551 190.3734 190.1394

P115 274.3602 350.7418 371.9708 316.956 363.6156 321.3182 376.7 365.6662

P116 287.1789 262.9812 270.7993 373.8839 276.3602 269.0315 357.2407 325.2179

P117 373.6938 255.5677 295.0682 378.9996 334.2428 307.7109 244 268.8996

P118 167.5294 188.1084 156.8319 95 148.1264 152.479 188.3918 167.3204

P119 152.7825 188.4822 179.6595 95.343 171.1407 161.8016 110.1991 103.7996

P120 116.0195 136.2572 188.9641 128.7835 174.4098 161.348 194 186.1987
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Table 8 (continued)

Power CSMA SMA SSA MFO GWO BBO GOA MVO

P121 302.4387 218.9639 198.9762 307.7353 316.5888 254.311 320.4385 302.3654

P122 4.2479 2.0641 9.2651 17.7702 6.1652 10.0783 15.2946 10.5674

P123 53.2732 35.9212 57.8264 59 48.4608 40.1275 37.2135 24.0524

P124 46.8711 16.789 50.6162 15 24.1628 42.4624 59.407 81.075

P125 48.3572 19.8603 13.6667 9.8639 14.0325 42.5497 41.4248 10.6652

P126 30.7797 21.011 29.1365 37 19.7208 30.2284 37 15.7831

P127 17.4196 25.8205 25.4816 10.5133 12.2315 28.3249 12.814 19.3954

P128 146.7311 124.4671 359.2557 112 234.8401 280.2164 276.9853 370.0679

P129 19.0518 5.3993 18.1868 16.8877 18.2136 7.8563 19.9864 15.7294

P130 20.5873 35.4891 23.245 29.3654 9.0641 15.3241 37.9884 36.4209

P131 13.3685 5.1227 13.3286 5 11.5232 9.0943 5.9504 5.3417

P132 60.484 67.1777 61.0187 50 79.2296 80.3598 74.9524 73.0282

P133 8.9211 5.0597 9.4342 5.2402 5.6159 5.6442 9.8519 7.4783

P134 44.6998 46.5964 68.7571 74 51.3174 66.504 72.8344 55.6672

P135 72.7236 50.0491 44.507 68.6575 65.1058 64.0164 61.4361 69.5997

P136 101.7478 41.4813 79.0642 41 45.584 85.7768 50.0428 95.5527

P137 38.2674 45.56 23.1646 17 38.1779 26.3798 50.9282 50.5777

P138 8.1225 8.4947 15.8652 19 13.652 12.7599 8.5672 17.8943

P139 13.3619 8.9059 15.4327 7 9.1468 12.3706 15.2215 10.5739

P140 26.1587 28.463 38.6144 26 39.4878 29.6289 26 39.8281

TPG 49342 49342 49342 49342 49342.37 49341.7037 49342 49341.9

PL 0 0 0 0 0 0 0 0

PBP 0.0001 0.0023 7.28E-12 7.28E-12 0.3734 0.2963 2.18E-11 0.1001

TCG 1899719 1945860 1915139 2308272 5649260 5211518.396 1907431 3953667

Bold entries represent the best (optimized) cost to meet specified power demands

and effectiveness of CSMA are due to its convergence
rate and population diversity. CSMA can capture promising
solutions from the entire search domain via its explo-
ration and exploitation operators. The influential exploita-
tion and exploration methods of an optimization algorithm
avoid the problem of random search and local entrapment.
In any optimization algorithm, the most important thing
is the mechanism to update the position vectors in the
search domain. Suppose the solutions of the population
can visit a variety of locations from different sections of
the search domain in a uniform fashion. In that case, the

probability of getting the optimal global solution is very
high.

In the proposed work, only a few parameters are needed
to be adjusted. This could be one of the advantages
of the suggested approach. In general, the performance
of optimization algorithms degrades with an increase in
dimensionalities. However, the experimental results indicate
the superiority of the proposed algorithm in 40 and 140
generators ELD problems. This confirms that the suggested
algorithm performs well in higher dimensional optimization
problems. This could be another advantage of the proposed

Table 9 Ranking and average ranking of considered approaches based on total generation cost in different test cases

Test Cases CSMA SMA SSA MFO GWO BBO GOA MVO

Test case 1 4 5 6 3 8 2 1 7

Test case 2 2 5 4 1 7 8 3 6

Ranking Test case 3 2 3 4 5 7 6 1 8

Test case 4 1 6 3 5 2 7 4 8

Test case 5 1 4 3 5 8 7 2 6

Average ranking 2 (best) 4.6 4 3.8 6.4 6 2.2 7 (worst)
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Fig. 2 Variation in total generation cost with respect to iterations for (a): test case 1, (b): test case 2
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Fig. 3 Variation in total generation cost with respect to iterations for (a): test case 3, (b): test case 4
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Fig. 4 (a): Variation in total generation cost with respect to iterations for test case 5, (b): Box plot for test case 1
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Fig. 6 Box plot for (a): test case 4 (b): test case 5

algorithm. The performance of the existing approaches
decreases in higher dimensional optimization problems.
Although the computational complexity of the considered
algorithms is comparable, the suggested approach takes
more execution time in some test cases. This could be the
disadvantage of the proposed method. The computation for
chaotic sequences for logistic map needs some execution
time, which affects the overall computation time of the
proposed algorithm. This might be the reason why the
suggested algorithm takes more execution time in some test
cases.

Although the suggested method outperformed other algo-
rithms considered in this study in solving ELD problems,
similar behavior in other complex applications is not guar-
anteed. To solve some special class of problems, algorithms
needed to be adjusted according to the mathematical formu-
lation of the objective function, set of constraints, dimen-
sionalities, and search domain of the optimization problem.
The proposed algorithm is modified to handle an ELD prob-
lem, a continuous optimization problem. Therefore, this
algorithm might not be suitable for solving discrete opti-
mization problems. This could be the limitation of the sug-
gested approach. Some additional adjustment and parameter
tuning needed to be done to solve discrete optimization
problems.

7 Conclusions and future research directions

In this paper, the merits of chaotic sequences generated by
a logistic chaotic map are integrated into a fast converging
algorithm to solve economic load dispatch problems. The

Table 10 Friedman test (FT) and Iman-Davenport test (IDT) values
based on total generation cost

Test Values p-Values Null Hypothesis Rejected?

FT 20.3333 0.00489 Yes

IDT 5.5454 0.00044 Yes

performance of the proposed approach is compared against
seven recent state-of-the-art algorithms using five test cases.
Based on the experimental values, it is easy to conclude
that CSMA performs better than SMA in all test cases. The
integration of chaotic sequences could be the main reason
for the effectiveness of CSMA during the optimization
process. We further validated the efficacy of the suggested
approach by conducting three statistical tests (Friedman
test, Iman-Davenport test, Holm test). Again, the proposed
method has shown its robustness in solving ELD problems.

In the future, we would like to solve other real-world
optimization problems such as electricity load forecasting,
optimal controller placement problem in a software-
defined network, and feature selection using CSMA. A
multiobjective version of CSMA can be suggested to handle
multiple conflicting objectives simultaneously.

Appendix: Abbreviations

ELD Economic load dispatch
SMA Slime mould algorithm

CSMA Chaotic slime mould algorithm
GWO Grey wolf optimizer
BBO Biogeography-based optimization
SSA Salp swarm algorithm

Table 11 Holm test (HT) values and p-values of different methods
(CSMA is the control algorithm)

Null Hypothesis

i Algorithms Values p-Values α/i Rejected?

7 MVO 3.227681 0.000624 0.007142 Yes

6 GWO 2.840358 0.002254 0.008333 Yes

5 BBO 2.582144 0.00491 0.01 Yes

4 SMA 1.678393 0.046644 0.0125 No

3 SSA 1.291072 0.098352 0.016667 No

2 MFO 1.161965 0.122638 0.025 No

1 GOA 0.129107 0.448639 0.05 No

15341Chaotic slime mould algorithm for economic load dispatch problems



GOA Grasshopper optimization algorithm
MFO Moth-flame optimization
MVO Multi-verse optimizer
TPG Total power generation

PL Power loss
TGC Total generation cost
PBP Power balance penalty
CLP Capacity limits penalty

RRLP Ramp rate limits penalty
POZP Prohibited operating zones penalty

N Population size
D Number of generating units
T Maximum iterations

G.No. Generating unit number
R Independent runs
Ft Total generation cost
Pi Power generated by ith generating unit

P min
i Minimum power generated by ith generating unit

P max
i Maximum power generated by ith generating

unit
PD Total power demand

Fi(Pi) Fuel cost function of ith generator
ai , bi , ci Fuel cost coefficients of ith generator
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