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Abstract
Recognising human actions in video is a challenging task in real-world. Dense trajectory (DT) offers accurate recording of 
motions over time that is rich in dynamic information. However, DT models lack the mechanism to distinguish dominant 
motions from secondary ones over separable frequency bands and directions. By contrast, deep learning-based methods are 
promising over the challenge though still suffering from limited capacity in handling complex temporal information, not 
mentioning huge datasets needed to guide the training. To take the advantage of semantical meaningful and “handcrafted” 
video features through feature engineering, this study integrates the discrete wavelet transform (DWT) technique into the 
DT model for gaining more descriptive human action features. Through exploring the pre-trained dual-stream CNN-RNN 
models, learned features can be integrated with the handcrafted ones to satisfy stringent analytical requirements within the 
spatial-temporal domain. This hybrid feature framework generates efficient Fisher Vectors through a novel Bag of Temporal 
Features scheme and is capable of encoding video events whilst speeding up action recognition for real-world applications. 
Evaluation of the design has shown superior recognition performance over existing benchmark systems. It has also dem-
onstrated promising applicability and extensibility for solving challenging real-world human action recognition problems.
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1  Introduction

Recognising and understanding in the complex visual world 
is a relatively easy job for humans but a much more chal-
lenging task for computers. Computer vision has been a 
long-lasting research hotspot for over half-a-century with 
prominent discoveries and breakthroughs in every decade, 
namely a few, pictorial and geometrical representation in 
the 70s, quantitative image and scene analysis in the 80s, 
recognition in the 90s, feature engineering at the turn of the 
millennium, and deep-learning in the 2010s. Human behav-
iour analysis is one of the most intriguing research areas 
in computer vision due to its wide range of applications in 
intelligent video surveillance, abnormal behaviour detection, 
novel human computer interface (HCI) design, and even 

game and entertainment [28]. However, it remains a chal-
lenging task even now due to semantic implicit and ambigu-
ous definition of video events, for example, the classification 
and categorization of individual and crowd motions, never 
mention the inherent signal complexities from recorded or 
streamed videos ill-affected by target occlusion and variation 
of illumination conditions [28].

Intuitively, an action is considered as a human agent per-
forming a sequence of basic (or atomic) movements. Histori-
cally, there are two main research strategies for human action 
recognition: a) using “handcrafted” features and labelled 
patterns of them for representing and identifying action 
types; and 2) using semi or fully automatically “learned” 
features in an end-to-end manner for classifying behaviours. 
The prior follows a bottom-up strategy, which consists of 
three main phases: foreground detection (e.g., using Gauss-
ian Mixture Model); feature extraction and representation 
(e.g., Scale Invariant Feature Transform [18], Harris detec-
tor [13], and dense sampling [40]); and action classification 
(e.g., Support Vector Machine and Artificial Neural Net-
work). One of the popular process pipelines employs the 
dense trajectories (DT) model [40] and its varied versions 
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for the final phase, such as the improved dense trajectory 
(iDT) [41], stacked fisher vector (SFV) [24], and the dis-
criminative action vector model (DA-VLAD) [23]. Since 
it is birth in 2012, iDT had become the baseline for per-
formance evaluation in video event analysis. It remains a 
widely adopted benchmark even in the deep learning era. 
However, dense trajectory models lack the mechanism to 
distinguish dominant motions from secondary ones for dif-
ferentiating human actions over separable frequency bands 
and directions. This study explores the integration of wavelet 
techniques into the dense trajectory domain for gaining more 
descriptive human action patterns, so as to better harness 
the advantages from the semantically more representative 
handcrafted video features.

Machine learning, especially the recent trend of deep 
learning (DL), supports direct feature abstraction (mod-
elling) and pattern recognition (classification), which has 
become a mainstream pipeline for image understanding due 
to its computational brute-force approach and the robust-
ness for certain application tasks such as image classification 
[3] and object detection [19, 25]. Comparing to handcrafted 
features that are heavily dependent on complex feature 
design such as interest points, the ground-breaking CNN 
(Convolutional Neural Network) model avoided the labori-
ous feature crafting step, hence initiating a paradigm-shift 
from an “engineering” one to an “architectural” one. Many 
DL frameworks have since been piloted producing varied 
level of “performance gain” in different signal spectrum, 
from spatial, frequency to temporal. In the human action 
recognition area, Karpathy et al. presented an extensive 
empirical evaluation of CNNs on video-based action clas-
sification [9], which shows a strong potential of CNN on 
action recognition. A series of CNN-based models then fol-
lowed, including Two-stream CNN [29], C3D (3D convo-
lutional networks) [35], semantic adaptation model (SAM) 
[52], and Parallel Pair Discriminant Correlation Analysis 
(PPDCA) [48]. Two-stream models show superior perfor-
mance by joining the video features from spatial and tem-
poral domains. Various forms of two-stream architectures 
had been developed, including the hidden two-stream [56], 
two-stream with LSTM [4], spatiotemporal pyramid network 
[44], and the two-stream feature fusion CNN (TSFFCNN) 
[47], namely a few. However, one question remains on how 
to bridge the semantic gap between man-made features, 
which often carrying distinctive “meanings”, and the “auto-
mated” latent ones embedded in the ever-sprawling webs of 
deeper layers.

To tackle the current shortcomings, this study proposes 
a hybrid handcrafted and deep learning feature frame-
work to improve the performance of real-time action rec-
ognition through harnessing the advantages of engineered 
features and the learned ones. This framework deploys a 
Direct Wavelet Transform (DWT) on input frames to ensure 

effective video event separation and representation. A DT 
extraction operation is then engaged to track feature points 
and to form the so-called trajectory feature vectors consist-
ing of shapes, histogram of oriented gradients, histogram 
of optical flows, and motion boundary histograms. A pre-
trained dual-stream CNN-RNN (Convolutional Neural Net-
work and Recurrent Neural Network) feature extractor is 
devised through adopting the C3D [35] and the VGG [30] 
networks. The parameters of the dual-stream network are 
inherited from previous studies [29], including the train-
ing on the ImageNet ILSVRC-2014 classification dataset 
[30] and the fine-tuning on the chosen human action-specific 
datasets. The proposed hybrid framework then integrates the 
“learned” spatial-temporal features with the “handcrafted” 
ones by forming fisher vectors before it is classified based 
on the devised Bag-of-Temporal-Features (BoTF) event rep-
resentation scheme.

The rest of this paper is organized as follows. Section 2 
presents a brief review over the concepts and related works 
in the field. Based on the studied literatures, the rationales 
for the proposed approach are justified. In Section 3, an 
overview of the devised hybrid framework for human action 
recognition is elaborated through highlighting the imple-
mentation details of the DWT for extracting dense trajec-
tories of motions and the integration strategy for the DL 
models. Human action taxonomy and representation tech-
niques adopted in this research are presented in Section 4 
that includes an innovative fisher vector encoding scheme 
and a novel BoTF representation method for enabling a Sup-
port Vector Machine (SVM) classifier for sematic action 
recognition. Section 5 illustrates experiments carried out in 
the research and evaluations against relevant benchmarks. 
Finally, Section 6 concludes the research with anticipated 
future works.

2 � Concepts and related works

According to the human behaviour complexity and 
their semantic definition, human actions can be classi-
fied into five categories: gestures, individual actions, 
human-object interactions, human-human interactions, 
and group activities [28]. A gesture is defined as a basic 
or atomic movement of the human body parts that car-
ries some meaning, e.g., ‘head shaking’, ‘hand waving’, 
and ‘facial expression’. An individual action is a type of 
activity that performed by a single person, where ‘walk-
ing’, ‘running’ and ‘jumping’ are cases of it. Interaction 
is performed by at least two enactors that can be divided 
into human-human interaction, e.g., handshaking, fist-
fighting, or wrestling between two persons; and human-
object interaction, e.g., a person using a phone and a per-
son accessing an ATM. Group activity is also named as 
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crowd behaviour that is the most complex type of activity 
that may combines gestures, actions, and interactions, for 
example, cheerleading and Marathons. This study con-
centrates on application scenarios involving individual 
actions and is extended to some of the human-human and 
human-object interactions.

2.1 � Human action recognition using “handcrafted” 
features

In the so-called “handcrafted” feature approach, Gaussian 
Mixture Model (GMM) is the mainstream algorithm for 
foreground detection. GMM assumes that the background is 
more stable than the foreground, though may lead to the loss 
of high-speed targets. To solve this problem, Droogenbroeck 
et al. presented the ViBe model for background subtraction 
[36]. Wu et al. proposed a Scale Invariant Feature Trans-
form (SIFT) based model to extract feature points [45]. SIFT 
can robustly extracts features from images because of its 
invariance to uniform scaling, orientation and illumination 
changes. However, SIFT fails to handle three-dimensional 
(3D) data volumes (e.g., videos). Liu et al. extended SIFT to 
3D space that can extract interest points from 3D space-time 
video volumes efficiently [18], and then the Latent Dirichlet 
Allocation (LDA) model was integrated for human action 
classification. Laptev and Lindeberg introduced space-time 
interest points by extending the Harris detector with signifi-
cantly improved detection rate [13]. Sipiran et al. improved 
the Harris operator to Harris 3D model that can extract inter-
est points from 3D data volumes effectively [31]. Generally, 
the space-time feature point approaches have shown sound 
effectiveness. Wang et al. presented a Spatial Temporal Vol-
ume (STV) based model for action detection from CCTV 
(closed-circuit television) clips [42]. STV-based approaches 
are suitable for recognizing simple gestures and actions (e.g., 
hand waving and walking), but it falls short to capture com-
plex actions (e.g., “TaiChi” action in the UCF 101 dataset), 
which is especially true when recognising multiple person-
based activities.

Trajectories based methods show reasonable results on 
several datasets [51]. Messing et al. developed a Harris 3D 
and Kanade-Lucas-Tomasi (KLT) based tracking model to 
track feature points and obtain trajectory features from vid-
eos [22]. Sun et al. developed a SIFT based tracker to obtain 
trajectories [8]. Later, Sun et al. combined the two trackers 
to increase the density of trajectories [33]. However, both 
KLT and SIFT trackers are still insufficient to handle the 
frame boundaries and describe complex motion patterns. 
Thus, Wang et al. presented a dense trajectories (DT) frame-
work to tackle this problem [40]. DT model densely sam-
ples feature points on each spatial scale, and then tracks the 
points in the next frames with a preset length l. The trajecto-
ries (P1,P2, ...,Pl) are obtained when the number of tracked 

frames is completed, where Pi indicates a feature point in 
i-th frame. Aligned with the trajectories, four features are 
extracted, including trajectory shapes (TS), histogram of ori-
ented gradients (HOG), histogram of optical flows (HOF), 
and motion boundary histogram (MBH). After that, the Bag-
of-features (BoF) concept is applied for feature assembly. 
Dense trajectories model is more robust to handle complex 
motion patterns when compared with KLT and SIFT.

Since its appearance, the DT model has been gaining 
popularity and being tested on various action datasets with 
significant improvements over the state-of-the-art at that 
time. It had drawn wide attention and optimism since [6, 24, 
41]. Wang et al. further improved their works (named iDT) 
by investigating Speeded Up Robust Features descriptor 
(SURF) and fisher vectors (FV) [41]. Jiang et al. developed 
an action prediction method based on dense trajectories and 
dynamic image models [6], which is capable of predicting 
evolutional trends of actions in videos. Peng et al. proposed 
Stacked Fisher Vectors (SFV) with multi-layer nested fisher 
vector encoding for human action recognition [24]. SFV 
can refine the representation and abstract semantic infor-
mation in a hierarchical way, which has improved capacity 
for encoding combinatory features hence improving classi-
fication accuracy. However, the BoF in DT encodes the four 
type features as an unordered set, and the spatial and tem-
poral information are largely ignored. In 2013, Bolovinou 
et al. presented the Bag of Spatio-Visual Words (BoSVW) to 
encode ordered spatial information for scene classification 
[1]. Later, Zhao et al. further improved this model by com-
bining multiscale features, and it gained better performance 
on scene classification [55]. BoSVW significantly improved 
the BoF model through integrating spatial context. Inspired 
by these achievements, this study explores a so-called bag-
of-temporal-features (BoTF) technique to encode temporal 
information, i.e., it can encapsulate the ordered motion infor-
mation (temporal features) of an action in a video clip.

In terms of action classification, SVM is a dominant 
model that has shown superior performance over others on 
most classification tasks, such as image classification and 
object detection [2]. In recent years, Neural Network (NN) 
and LDA models had emerged as effective methods for clas-
sification applications [18, 38].

2.2 � Human action recognition by deep learning 
models

Deep learning models extract features automatically from 
the input data. Of this “unsupervised” style, it has gained 
tremendous popularity in many applications. For example, 
image classification tasks have experienced almost a com-
plete overhaul through varied forms of CNN implementa-
tions. Object detection and facial recognition have also 
achieved encouraging results [7, 46].

12773Hybrid handcrafted and learned feature framework for human action recognition
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Recently, deep learning based human action recogni-
tion has seen major breakthroughs, including the dual-
stream CNN model proposed by Simonyan et al. [29], and 
the improved dual-stream models, e.g., hidden two-stream 
[56], two-stream with LSTM models [4], and the two-in-
one stream model proposed by Zhao in 2019 [53]. To tackle 
the disadvantage of lacking of time-scale diversity in the 
temporal domain, Wan et al. developed a dual-stream con-
volutional network with the long-short-term spatiotempo-
ral features (LSF CNN) [39] which indicates a promising 
direction for consistently handling motion features in both 
spatial and temporal domains. Another line of interesting 
work focused on tackling three-dimensional (3D) data (e.g., 
videos) using 3D CNN. For instance, Ji et al. developed a 3D 
CNN model for surveillance video analysis [5]. Tran et al. 
presented a C3D (Convolutional 3D) feature learning model 
with 3 × 3 × 3 convolutional kernels in all layers [35]. CNN, 
especially 3D CNN, shows sound performance in general on 
visual classification tasks. However, this design only tracks 
a short time period for the temporal features in video clips, 
e.g., 16 frames, that leads to difficulty when dealing with 
“longer” event sequences. Another significant drawback 
of current CNN implementation is its limitation in dealing 
with sequential temporal information such as plots in mov-
ies. In 2017, Li et al. introduced a Recurrent Neural Network 
(RNN) based Long-short Term Memory (LSTM) model for 
handing spatial-temporal features [16]. Shortly after, Majd 
et al. presented a correlational convolutional LSTM (C2

LSTM) to handle both the spatial and motion structure of 
surveillance video data [21]. Wang et al. presented a so-call 
trajectory-pooled deep-convolutional descriptor (TDD) that 
embeds the features from both handcrafted and deep-learn-
ing models [43]. Motivated by TDD, Lu et al. developed a 
multi-scale trajectory-pooled 3D convolutional descriptor 
(MTC3D) by combining dense trajectories and 3D CNN 
[20]. TDD and MTC3D are capable of automated learning 
of temporal features from motion trajectories. However, they 
have fallen short to capture long-term temporal informa-
tion. To alleviate this major problem, this study proposed 
an innovative technique to integrate time information with 
motion features extracted from trajectories, so that “longer” 
temporal events can be annotated explicitly (refer to BoTF 
event representation in Section 4.2).

3 � Motion feature extraction

The process pipeline of the proposed human action recog-
nition model is shown in Fig. 1, in which an input video 
is pre-processed for feature point extraction and tracked by 
the DWT enabled DT model. The outputs are a series of 
low-level handcrafted features (see Fig. 2) describing the 
trajectory patterns inherited from the STV data. Then, the 

STV data feeds into the pre-trained dual-stream CNN-RNN 
and 3D CNN model for extracting the learned spatial-tem-
poral features. Both handcrafted and learned features are 
then encoded into Fisher Vectors annotated by the proposed 
BoTF representation scheme (detailed in Section 4). Finally, 
all video features are fused into a holistic video event repre-
sentation scheme. It will then be classified by a SVM clas-
sifier for action recognition. Sub-sections below explain the 
relevant operations in detail.

3.1 � DWT‑based decomposition

Traditional DT-based approaches extract feature points 
and then track them in video frames, which lacks detail 
and interpretable information on separable frequency and 
movement orientation. Wavelet transform has the ability 
of recording coarse-to-fine presentation of spatial features. 
It has been demonstrated that DWT models can not only 
dissecting an image in the form of multi-resolution repre-
sentations but also extracting textural features representing 
motion characteristics, hence contributing to semantic fea-
ture representation such as the Bag-of-Words models [54]. 
Inspired by the pilot work, the proposed technique decom-
poses video frames into different frequencies and orienta-
tions of multiple scales through applying the DWT filter 
as shown in Fig. 2. The single level 2D DWT is applied 
to decompose a video frame into A, H, V and D parts as 
shown in Fig. 3, where A is the approximation coefficients 
and H, V and D donate detailed coefficients along horizon-
tal, vertical and diagonal orientations respectively. Com-
pared with the original video frame, these four compo-
nents are of lower total size, and A contains information of 
overall context. In contrast, H, V and D possess dominant 
movement information along varied orientations. Hence 
this approach enables a more effective feature extraction 
and tracking model.

3.2 � Dense trajectory formation

This study samples feature points densely on a grid of 
5 × 5 for the input frames. In this process, the first spatial 
scale data (I) is the input frame itself. Then its spatial scale 
increases by a factor of 1∕

√
2 . To reduce the amount of 

trivial and redundant feature points in homogeneous areas, 
a threshold T is deployed on the eigenvalues for each scale 
as shown in the following equation:

where (�1
i
, �2

i
) are the eigenvalues of i-th point in the spatial 

scale data I and its corresponding DWT coefficients. The k 
is taken as 0.001 for A, H and V of the original spatial scale 
data, while k is set as 0.01 for D. Dense sampling across 

(1)T = k × max
i∈I

min(�1
i
, �2

i
)
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all spatial scales ensures the comprehensiveness of feature 
points extracted and their motion potentials. For example, 
Fig. 4 demonstrates the feature points extracted from the 
original (first) spatial scale, while Fig. 5 illustrates the fea-
ture points extracted from the downward scales.

Feature points from continuous input frames are then batch 
processed and tracked on each spatial scale respectively before 
median filtering are performed on the dense optical flow fields 
mt . The feature point tracking strategy is shown as following:

where Pt+1 is a tracked point in the consecutive frames, M 
is a median filtering kernel with the size of 3 × 3 , and (xt, yt) 
indicates a feature point in t-th frame, and mt is the dense 
optical flow.

The length of a typical action tracked is set at 15 frames 
(roughly two thirds of a second) based on human behavioural 
studies [40]. Once a tracked action is completed, a trajectory 

(2)Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ mt)

Videos
DWT driven 

DT

STV data
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Vector

Pre-trained 
dual-stream

Low-level 

featrues
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Feature 
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SVM

Motion feature extraction Video event representationPreprocessing Event classification

Actions

Fig. 1   The process pipeline of the human action recognition model. 
It contains four stages. The raw pixel data are pre-processed by 
DWT and DT. After getting the low-level and learned features by 

the motion feature exactions from training videos, Fisher Vector and 
BoTF schemes are applied to generate the codebook. At the end of 
the pipeline, SVM is used for action recognition
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Fig. 2   The processing steps of DWT driven DT based feature extractor. This study decomposes the original video frames into four coefficients. 
Along with the original frame, DT method is applied to generate the trajectories (red and blue curves) and the low-level features
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will be obtained in the form of (Pt,Pt+1,Pt+2, ..., Pt+14) . For 
storing feature trajectories, this study has devised a STV (Spa-
tial Temporal Volume) structure for encapsulating motions 
denoted by tracked features from all 15 frames as shown in 
Fig. 6. The design ensures a compact and comprehensive rep-
resentation of motion and context information inherited from 
a video event (human action) under study.

3.3 � Low‑level feature extraction

Four handcrafted motion and contextual features:
Trajectory Shapes (TS) are denoted by a vec-

tor (ΔPt,ΔPt+1,ΔPt+2, ..., ΔPt+14) based on a trajectory 
(Pt,Pt+1,Pt+2, ...,Pt+14) , in which

TS records the normalized derivative of the trajectory ten-
dency that can be calculated as the following:

(3)ΔPt = (Δxt,Δyt) = Pt+1 − Pt

(4)TS =
(ΔPt,ΔPt+1,ΔPt+2, ...,ΔPt+14)

∑t+14

i=t
��ΔPi��

where ||x|| indicates the L2-norm. TS calculation is rooted 
into the tracked point coordinates, so it reflects the shape 
information of a trajectory representing movements at each 
spatial scale and orientation. As the length of a trajectory 
is fixed at 15 frames and each point contains 2-dimensional 
coordinates, so a single TS descriptor is a 30-component 
vector.

Histogram of Oriented Gradients (HOG) formulates 
motion and appearance information from a STV block. This 
study computes HOG [14] based on the encapsulated STV 
data holding neighbourhood feature points. A complete STV 
block is subdivided into a (nx, ny, nt) grid of cuboids, where 
nx = ny = 2 , and nt = 3 , and the green cell in Fig. 6 is one 
of the subdivided cuboid, which is inspired by the work 
reported earlier [40]. For each cuboid, this study computes 
HOG by applying the algorithm of Laptev [14], and sets the 
number of bins to 8, so the final HOG descriptor will output 
a 96-component vector.

Histogram of Optical Flow (HOF) descriptor is simi-
lar to HOG except that the input data is populated by the 
extracted dense optical flow. Optical flow is a significant 
feature for video processing. It tracks the motion informa-
tion between two sequential frames, such that the HOF can 
encode the movements efficiently. This study computes HOF 
of each cuboid and the number of bins has been increased 
to 9 to accommodate the zero bin often occur in practice. 
Unlike Wang’s work [40] that inherits the optical flow algo-
rithm from Farnebäck, this study applies the so-called Sim-
pleFlow [34] because of its compactness and efficiency. The 
HOF descriptor outputs a 108-component vector.

Motion Boundary Histogram (MBH) is proposed here 
to correct the camera motion that often occurs in real life 
videos. In the MBH, local constant camera motions are 
removed while preserving human motions through comput-
ing derivatives of optical flows, as show in the following:

(5)

{
wx

� = dwt|(xt, yt)dx =
�wt|(xt ,yt)

�x

wy
� = dwt|(xt, yt)dy =

�wt|(xt ,yt)
�y

Fig. 3   A demonstration of 
DWT pre-processing for a video 
frame coming from UCF 101 
action dataset. (a) illustrates a 
video frame from a “TaiChi” 
action video clip, while (b) 
shows the corresponding DWT 
coefficients

A H

V D

Fig. 4   Feature points extracted from original spatial scale
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where w′ is the motion boundary defined by differential coef-
ficient of dense optical flow. This study sets an 8-bin histo-
gram along x- ( MBHx ) and y-axis ( MBHy ) for each cuboid. 
The MBH descriptor generates a 192-component vector.

All those low-level feature descriptors are normalized by 
L2-norm and combined into 426-component feature repre-
sentation vector v, as shown in the following:

(6)v = (�TS, �HOG, �HOF, �MBH)

where � , � , � and � indicate the weights of each feature 
respectively. This study treats all features with equal weight 
initially, and future work will see these weights being 
“learned” based on application scenarios dynamically. Com-
pared with classic DT approaches, this study has validated a 
more comprehensive and robust feature vector for extracting 
important trajectory features from the multiple spatial scales.

Fig. 5   Feature points extracted 
from DWT coefficients

Fig. 6   The encapsulated STV 
block for storing feature trajec-
tories. The left red curve is a 
trajectory that is constructed by 
15 tracked points

A trajectory (pt, pt+1, pt+2, , pt+L-1)

STV data block 

N

N = 32 pixels

nt

nx

ny

N = 32 pixels

nt

nx

ny

HOG HOF MBH

Trajectory descriptors
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3.4 � Pre‑trained feature adaptation

Deep feature methods have shown outstanding performance 
on image classification and video analysis. However, train-
ing a CNN model is very time-consuming and requires a 
great deal of labelled data, which limits the applications of 
CNN models. This study considers the pre-trained CNN 
models as general feature extractors. A CNN architecture 
can be depicted as the follows:

where w and w′ are learnable weights belonging to CNN ker-
nels and the fully-connected layers respectively, b and b′ are 
learnable bias, I indicates an image or a video frame, f (∗) 
is a learnable function which presents the CNN layers of a 
deep learning architecture, while g(∗) indicates the fully-
connected layers. According to the literatures [50], f (∗) is 
more generic and it extracts features such as interest points, 
lines and edges in different CNN layers, so it is reasonable 
to apply the pre-trained CNN models to extract features. 
In practice, this study extracts the vector values from the 
fully-connected layer of the networks and removes the rest 
layers since only the specified features from CNN models 
are of interest. In this study, only the first ( fc1 ) and second 
( fc2 ) fully-connected layers of G in (7) are kept. Here, it 
is worth noting that various pre-trained networks and fully 
connected layers can be integrated, which will be evaluated 
in Section 5.4

From a given video clip, the trajectory encapsulated 
in the STV block can be formulized as V = {Ii|i ∈ [1, L]} . 
This study firstly extracts the learned image feature hi 
from each frame Ii by the pre-trained CNN model, here 
fi is a 2049-dimensional feature vector. A series of 
image feature vectors H = {hi|i ∈ [1, L]} of the trajectory 
can be obtained, and then the feature fusion method is 
applied by averaging the series of feature vectors, which 
outputs a trajectory-level feature p, where:

In principle, any type of CNN architecture can be adopted 
for action feature extraction, such as AlexNet [11] and 
VGG networks [30]. Both of them were pre-trained on the 
ImageNet ILSVRC-2014 classification dataset. This study 
explores a dual-stream CNN architecture due to its distinc-
tive capacity of encoding visual (RGB) and motion (optical 
flow) features simultaneously in the spatial and temporal 
domains. The dual-stream CNN model has achieved reason-
able results on human action recognition at the accuracy of 
88.0% and 59.4% on UCF 101 and HMDB51 respectively 

(7)
{

F = f (wI, b)

G = g(w�F, b�)

(8)p =
1

N

N∑

i=1

hi,N = L

[29], and the performance achieves the benchmark level 
of the improved DT method in pre-DL era. However, 
the dual-stream CNN model neglects the intrinsic differ-
ences between temporal and spatial domains. To alleviate 
this shortcoming, the devised framework incorporates the 
strengths of both the 3D CNN in spatial domain and the 
RNN for handling the temporal features, the whole network 
design is shown in Fig. 7.

The visual (RGB) stream is comprised of by two compo-
nents: the 3D CNN-based “appearance” feature extractor and 
the RNN-based sequential descriptor. In practice, this study 
applies the C3D model as the CNN component. C3D uses 
3D convolution and 3D pooling operations on each layer. 
This study uses 3 × 3 × 3 convolution kernel for convolution 
layers and all pooling layers are max pooling with kernel 
size 2 × 2 × 2 . With this configuration, C3D is trained on 15 
consecutive frames (STV) with the input size of 3 (channel) 
× 15 (frames) × 112 (pixel) × 112 (pixel) and outputs 2049 
units in the last fully-connected layer, which is followed by 
a RNN structure for sequential modelling. The RNN units 
support the sequential learning, i.e., learning connections 
between inputs and the corresponding previous states con-
tinuously, which is ideal for extracting temporal information 
in videos. A LSTM model has been applied in this design 
instead of the traditional RNN model for its unique abil-
ity in remembering “states” over a long period of time by 
using the “forget” mechanism. The devised RNN structure 
has two LSTM layers, and each of them has 1024 hidden 
states, so the RNN component outputs a 1024-component 
feature vector.

The motion (optical flow) stream is also constructed by 
the CNN and RNN components. Different from the visual 
stream, the motion stream mainly extracts temporal event 
features from the successive flow fields. This study adapts 
the VGG-16 network as the CNN component. With this 
configuration, VGG-16 is trained on a stacked optical flow 
computed from the STV block, so the input size is 2 (chan-
nel) × 15 (frames) × 112 (pixel) × 112 (pixel) and the output 
is a 2049-component vector in the last fully connected layer 
that is followed by a RNN for sequential modelling.

4 � Video event representation

4.1 � Fisher vector encoding

Let X = {xi, i ∈ [1, T]} be the series of low-level features 
extracted and formulated as shown earlier. Noted that xi can 
be various of features such as a single feature e.g., TS, HOG, 
HOF, MBH or a learned feature, or a hybrid one through 
combination. Fisher vector assumes the generation process 
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of X can be modelled by a probability density function p(u;�) 
with parameters � , the X is described by the gradient vector:

The length of the gradient vector is fixed, which only 
depends on the number of parameters (i.e., the dimensional-
ity of � ), but not the actual number of low-level features. The 
probability density function is widely used by models such 
as GMM: p(u;�) =

∑
wiui(x) , and � = {�i, ui, �i, i ∈ [1,K]} , 

where �i , ui and �i are the mixture weights, mean vector and 
diagonal GMM respectively, K denotes the mixture number 
of GMM. Then the fisher vector is formulated as follows:

where �t(k) indicates the weight of low-level feature xi for the 
j-th Gaussian function, as shown in the following:

where �j(xj) is D-dimensional Gaussian distribution, then the 
fisher vector of the set of features is given by the concatena-
tion of gx

u,k
 and gx

�,k
 , shown as the follows:

Fisher vector encodes the average first and second order dif-
ferences between the features and the centres of a GMM, 
which can be considered as a soft visual vocabulary demon-
strating better performance than the bag of feature method 
for classification. To optimize the runtime performance 
of the design, the Principal Component Analysis (PCA) 

(9)GX
�
=

1

T
∇� log p(X;�)

(10)
gX
u,k

=
1

T
√
�k

T∑
t=1

�t(k)(
Xt−�k

�k
)

gX
�,k

=
1

T
√
2�k

T∑
t=1

�t(k)[
(Xt−�k)

2

�2
k

− 1]

(11)
�t(k) =

�k�k(xt)

K∑
j=1

�j�j(xj)

(12)fFisher = [(gx
u,k
)T, (gx

�,k
)T]T, k ∈ [1,K]

technique was first applied to reduce the low-level feature 
dimensionality. The number of Gaussians was set at K = 512 
to train and estimate the GMM. Therefore a single video 
event can be represented by a 2DK dimensional fisher vector 
(see (12)) before a L2-normalization.

4.2 � BOF‑based representation

Bag of Feature (BOF) was inspired by the Bag of Words 
(BOW) model, and it is often referred as bag-of-visual-
words (BOVW) in computer vision studies. In this case, 
a feature of an image or a video frame is considered as a 
“visual word”.

The first stage of BOF implementation is to train the 
codebook. All low-level features extracted from training vid-
eos are clustered into N categories by the K-means clustering 
scheme. Such that each centre of a quantized area of a cat-
egory becomes a visual word, and all visual words (cluster 
centres) construct the corresponding codebook. Thus, the 
length of a codebook is equal to the number of visual words 
in this codebook.

In the histogram calculating stage, the low-level features 
extracted from a video are represented as the histograms of 
visual words, denoted as:

where ci indicates the value of i-th visual word in the code-
book. The value of ci is normalized by the maximum-min-
imum functions:

Hence, a video event can be represented as the following 
histogram of visual words:

(13)C = (c1, c2, ..., cn)

(14)ni =
ci −min(C)

max(C) −min(C)

(15)V = (n1, n2, ..., nN)

Fig. 7   The improved CNN-
RNN based dual-stream 
network architecture. The visual 
stream (on top) is design by 
combing 3D CNN and LSTM 
to extract “appearance” context 
from raw pixels of STV data, 
while the motion (optical flow) 
stream (on bottom) learns 
motion information from opti-
cal flows by the CNN-LSTM 
scheme

C3D 

(3D CNN)

VGG-16

Aligned STV

Compute 
optical flow

Stacked optical flow

Visual stream

Motion stream

Spatial-temporal 
feature

LSTM
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BOF directly assigns a feature to one of the nearest visual 
words. This “hard” assignment is rigid and inaccurate. It 
is more flexible to assign a feature to different visual word 
bins when the distances between the feature and these vis-
ual words can be “weighted”. Moreover, a feature may be 
assigned into different visual words when the scale of code-
books can be varied.

This study has applied a “soft-assignment” approach 
to rectify the aforementioned disadvantages based on the 
multi-assignment (MA) technique that can “split” a feature 
into multiple visual words [1]. In this case, a top-N nearest 
visual words method is devised for computing the weights 
for each visual word, and then the weights for a complete 
video sequence can be calculated as:

where uk indicates the weight of k-th visual word, Mi 
describes the number of features whose i-th nearest neigh-
bour is the visual word k, and function sim(j, k) calculates 
the similarity between the feature j and visual word k. Gen-
erally speaking, N = 4 achieves a good result based on the 
previous work [1]. Finally, a video event can be represented 
by the vector TV = [u1, u2, ..., uK].

4.3 � BoTF formulation

As stated earlier, a BOF encodes a video event as a set of 
unordered local features. As a result, it struggles to deal 
with the temporal sequences of features, which could lead 
to problems in distinguishing “longer” or varied actions 
that constituting similar atomic components (but in differ-
ent orders such as the motions of stand up and sit down). 
To address this issue, this study has devised a new feature 
representation method: Bag-of-Temporal-Features (BoTF) 
that embeds temporal information into BoF representation 
by employing the visual word correlograms and a co-occur-
rence transaction (CoTrans) scheme [10]. A correlogram 
not only contains the global spatial feature distribution of 
a video frame, but also has the corresponding spatial and 
temporal information encapsulated together [1]. Moreover, 
in this design, the CoTrans template has been applied to form 
feature patterns and to calculate the BoTF instances.

As a live implementation strategy, DT produces a set of 
low-level feature vectors V = vi , where v represents a low-
level feature of a video event (see Section 3). To explore the 
temporal information, this study introduced the time infor-
mation into v so the feature is extended as [t, v] , where t 
indicates the time coordinate. In particularly, t is the time 
centre belonging to its trajectory. All features of a video 
event are ordered by temporal sequences (frame indexes), 
see Fig. 8 . Under the proposed system, the sequence for an 
event in a given time range l is denoted as: PT = [tc, l, ori, v] , 

(16)uk =
∑N

i=1

∑Mi

j=1

1

2i−1
sim(j, k), k ∈ [1,K]

where tc is the time centre, l = 30 denotes the number of 
frames in time-axis for the corresponding patch, ori = ±1 
represents the orientation of polar axis, so a patch is defined 
as:

And then, the CoTrans template is applied to calculate the 
BoTF instances based on all defined feature patches. The 
histogram h(tc, l, ori) encodes features in a feature patch PT 
through calculating the number of every visual word in PT. 
It is defined as the following:

where k is the length of the codebook and ci is the number 
of features in patch PT(tc, l, d) belonging to the i-th visual 
word.

In this step, similar to BoF, all low-level features extracted 
from a training dataset are clustered by using K-means for 
generating the codebook (a visual word set) of BoTF, and 
the vector length of h(tc, l) is equal to the length of the code-
book generated by BoF. Moreover, the radial axis (R) is 
divided into Nr = 4 bins ( Nr is equal to the number of fea-
ture patches on a quadrant of radial axis), the length of R is 
60 frames and the polar axis ( ±th ) is divided into N±th = 2 
bins ( N±th is equal to the number of orientations of the polar 
axis), see Fig. 8 . Finally, the BoTF descriptor in accordance 
with CoTrans template can be formulated as the following:

The set of CoTrans reference time centre is denoted as 
C = {t1, t2, ..., tn} that are sampled from time-axis by the 
successive 30 frames. With the BoTF descriptor, input live 
video streams can be represented as a set of BoTFtc descrip-
tor instances. In conclusion, a video event is first described 
as a histogram of BoTF based visual words, and then (16) 
will be applied to assign a BoTFtc into multiple visual words.

4.4 � Human action classification

The feature fusion strategy developed in this work enabled 
robust human action classification through a SVM based 
classifier. Three feature vectors ( fFisher , BOF and BoTF) 
derived from the aforementioned models are fused into a 
final holistic video representation:

where �i (i = 1, 2, 3) indicates the weight of each feature 
vector. This study considers all feature representations of 
equally weighting with a normalized �i = 1 , so a video event 
can be represented as the holistic feature vector in real-time: 
[fFisher,BoF,BoTF].

(17)PT(tc, l, ori, v) = {[tc, l, ori, vi]}, vi ∈ V

(18)h(tc, l, ori) = (c1, c2, ..., ck)

(19)
BoTFtc = [h(tc, l, 1)1, h(tc, l,−1)1, ..., h(tc, l, 1)4, h(tc, l,−1)4]

(20)fv = [�1fFisher,�2BOF, �3BoTF]
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SVM is the optimal choice for dealing with relatively 
small sizes of handcrafted feature datasets. Thus, in order 
to test and evaluate the validity and efficiency of the devised 
framework, this study investigated SVM based classifier by 
comparing its performance when handling handcrafted, 
learned, and the combined features respectively. To classify 
multiple categories of actions, multi-SVM units have been 
generated, and each of them performs the “one-versus-the-
rest” multi-class evaluation.

5 � Experimental setup and evaluation

5.1 � Dataset

The proposed human action analysis framework and its cor-
responding components and processes have been tested on 
6 public benchmarking datasets, i.e., UCF 11, UCF 50, UCF 
101, HMDB51, JHMDB51 and UT-Interaction datasets. 
Samples from those datasets are shown in Fig. 9.

The UCF 11 dataset is an annotated version of You-
Tube clip collections [17]. It includes 11 individual actions 
namely, basketball shooting, cycling, diving, golf swinging, 
horse riding, soccer juggling, swinging, tennis swinging, 
trampoline jumping, volleyball spiking, and walking with 
a dog. UCF 50 is an extension of UCF 11 that contains 50 
action categories collected from YouTube, while UCF 101 
is also an extension of UCF 11 that has 13,320 videos from 
101 action categories.

The HMDB51 dataset [12] has been collected from 
movies and YouTube videos, and there are up to 51 action 
classes, while JHMDB51 is a sub-dataset based on 928 
video clips from HMDB51 comprising 21 action categories.

The UT-Interaction [27] contains six types of human-
human interactions: shake-hands, point, hug, push, kick 
and punch. The videos are divided into two sets of different 
environment settings.

5.2 � Training strategy

Deep learning models require huge amount of labelled data 
for moulding the neural networks. However, many popular 
online action datasets are not adequate for this task. It is 
especially a challenge when handling real applications where 
datasets are often referring to noisy and untrimmed surveil-
lance videos. As a result, many deep learning methods only 
achieved a low performance that even worse than the shal-
low handcrafted representations. Transfer learning suggests 
a significant advancement to utilise and be benefitted from 
small datasets [49], i.e., through training an initial network 
from scratch on a very large dataset (e.g., an ImageNet-like 
dataset) and then fine-turning the model on a task-specific 
dataset. However, the datasets used in this study are dif-
ferent from ImageNet. Directly applying transfer learning 
in this case will cause the underfitting problem. Motivated 
by this analysis, this study developed a multi-stage training 
strategy based on transfer learning. A public CNN model 
(e.g., VGG-16) pre-trained on the ImageNet ILSVRC-2014 
dataset was adopted as the initial network. This pre-trained 
VGG models can be derived from online model repositories 
such as PyTorch Hub [32]. Then the model is fine-tuned on 
a relatively large dataset (UCF 101 action dataset) to ensure 
the robustness of the trained network. UCF 101 dataset sup-
plies sufficient videos to fine-tune the entire network from 
image classification to motion analysis.

For training 3D CNN model, this study applied the same 
parameter settings in accordance with [35], and the C3D 
network was trained directly by using UCF 101 video clips. 

Fig. 8   Producing BoTF
t
c 

instances based on the BoF and 
the CoTrans templates

tc

a BoF codebook with length
K=5 (5 visual words):

a low-level feature 
belonging to a 
visual word 

a trajectory

h(tc, l, 1)1=[2, 0, 1, 1, 0]

h(tc, l, -1)1=[0, 1, 0, 0, 0]

h(tc, l, 1)2=[0, 0, 0, 1, 0]

h(tc, l, -1)2=[0, 0, 0, 0, 0]

h(tc, l, 1)3=[0, 0, 0, 0, 1]...

TimeRR (tc, 1) (tc, 2) (tc, 3)(tc, -1)(tc, -2)

Radial axis

a feature
patch (tc, -4)

(tc, -3) (tc, 4)

+-
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The developed CNN models (i.e., VGG and C3D) are used 
as general feature extractors, whilst temporal features are 
identified through trained LSTM-based sequence models. 
In practice, the features from the last fully-connected layer 
are fed into LSTM units with M inputs < x1, x2, ..., xM > 
and M outputs < y1, y2, ..., yM > , where xi presents a fea-
ture vector and yi is the corresponding action label. The 
learnable weights (WR) of the LSTM-based sequence com-
ponents can then be optimized by maximizing the likeli-
hood of the ground truth outputs yt calculated on the input 
data and the action labels. For a given training sequence (
xm, ym

)M
m=1

 , this study minimizes the negative log likeli-
hood: L(WR) = −

∑M

m=1
logPWR(ym�x1∶m, y1∶m−1) by using 

SGD (stochastic gradient descent) with backpropagation 
algorithm to compute the gradient of the objective L with 
respect to the weights (WR).

Handcrafted feature extractors are not trainable methods, 
so the approaches discussed in Sections 3.1 - 3.3 to extract 
low-level handcrafted features were implemented. In this 
study, a dataset splits into three parts, i.e., the training sub-
set (70%), the validation subset (10%) and the test subset 
(20%). Cross-validation strategy has been applied to train 
the SVM-based classifier to ensure the experiment accuracy 
and repeatability.

5.3 � Hybrid feature descriptor efficiency

To evaluate the effectiveness of different feature strategies, 
this study compared various combinatory feature descriptors 
involving TS, HOG, HOF, MBH, and the learned features. 
Low-level features were extracted using techniques dis-
cussed in Section 3.3. The improved dual-stream CNN-RNN 
model that assembles C3D, VGG-16 and LSTM networks 
were adopted to extract learned features as highlighted in 
Section 3.4. The combined video representation based on 
the FV and BoTF methods was applied to encode a video 
event as a holistic feature vector that was then gone through 
a SVM classifier for action classification.

In this experiment, the UCF 50 dataset was used, and 
the result is shown in Table 1. It can be seen that a single 
TS feature generally shows weaker performance, while the 
MBH achieves the best accuracy rate among those individ-
ual features due to the MBH descriptor focuses on tracking 
human foreground motions, whilst the camera motions and 
background change are removed. Learned features, on the 
other hand, gains better performance than TS and HOG but 
not levelling with HOF and MBH, which is explainable due 
to the nature of a pre-trained generic deep feature model 

 basketball shooting cycling diving juggling golf swinging horse back riding basketball shooting cycling diving juggling golf swinging horse back riding

baseball pitch basketball diving playing guitar golf swinging skiingbaseball pitch basketball diving playing guitar golf swinging skiing

Kick ball Kiss Laugh Pick Pour HugPersonPullupKick ball Kiss Laugh Pick Pour HugPersonPullup

Hand Shaking Hugging Kicking Pointing Punching PushingHand Shaking Hugging Kicking Pointing Punching Pushing

Fig. 9   Sample video clips from the four action datasets used in this study. From top to bottom: UCF11, UCF50, HMDB51 and UT-Interaction
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- not a specifically trained one - was adopted in this work. 
Unsurprisingly, the hybrid feature descriptor demonstrates 
the best performance by harnessing the advantages from 
underlying feature types with the recognition rate reaching 
95.68%. It is observed that the overall performance of the 
hybrid model increased by over 5% when compared with 
MBH and the original dual-stream framework, respectively. 
One possible reason is that certain actions in UCF 50 videos 
have more salient motion information (e.g., TaiChi and High 
Jump actions) while other actions possess less distinctive 
motions within different scenes, e.g., biking and horse-rid-
ing. An individual feature descriptor (e.g., MBH) can extract 
motion information on the former type of action, it often 
falls short in handling actions of the latter type and resulting 
the loss of the overall accuracy. In contrast, when applying 
the hybrid model, both motion and scene information can 
be extracted more thoroughly, so as to improve recognition 
rates for wider spectrum of action types.

As shown in Table 1, the performance of the combined 
handcrafted features (i.e., the combinations of TS, HOG, 
HOF and MBH) is better than any individual one, which 
indicates the relevance of all aspects of handcrafted features 
towards the final prediction results. Based on this observa-
tion, this study integrated the combined handcrafted features 
for the rest of the work. Moreover, this study also tested the 
performance of handcrafted and learned features separately 
to gain insight of their respective impacts to the outcome. 
The hybrid model has further demonstrated its superiority 
over the single-stream-based approach on all tested bench-
marks drawn from ablation studies.

5.4 � Dual‑stream architecture comparison

This study also examined different CNN architectures 
in dual-stream deep learning models (see the CNN com-
ponents in Fig. 7, which can be implemented by different 
CNN architectures) to identify a suitable one for the devised 
framework. Four popular CNN models for image classifi-
cation were implemented to extract video features, namely, 
AlexNet [11], VGG-16, VGG-19 and the C3D network. 
The former three CNN models are pre-trained by ImageNet 

image classification dataset [11] and the C3D was trained by 
UCF 101 dataset. Then, the optimized FV and BoTF video 
representation scheme were applied. In this experiment, the 
UCF 50 dataset was used to test these implementations. It 
is clearly shown in Table 2 that the accuracies of AlexNet 
for both streams are lower than the VGG model, while the 
performance of VGG-16 is identical to VGG-19. However, 
VGG-19 requires more computational resources than VGG-
16 due to its the extra network depth. Hence, parameters from 
the pre-trained VGG-16 are inherited as the generic learned 
feature extractor to archives the best accuracy-cost trade-offs. 
It is worth noting that the performance improvement is sig-
nificant when adapting C3D network in the visual stream, 
and the main reason is that the 3D CNN used in C3D is more 
effective when extracting spatial-temporal features from STV 
data. However, the accuracy does not improve significantly 
when adopting the C3D network in the motion stream, one 
of the main factors is that C3D mainly focuses on capturing 
high level abstract and semantic information from RGB video 
clips, while optical flow only abstracts motion information. 
According to the performance comparison including process-
ing time, this study has adopted the C3D and VGG-16 net-
works to implement the transferred feature extractors.

This experiment compared the dual-stream model with the 
individual stream settings (i.e., using either visual or motion 
stream), and the result is shown in Table 2. Unsurprisingly, 
the dual-stream model performed consistently better than the 
singe-stream settings. According to the experimental result, 
this study adopted the C3D and VGG-16 configurations in 
the dual-stream network for the further experiments.

5.5 � Event representation validation

The performance of iDT (based on fisher vector) [41], 
stacked fisher vector (SFV) [24], BoTF, and the proposed 
approach (a combination of FV and BoTF) had been applied 
on the UCF11 and UCF50 datasets for evaluation. Table 3 

Table 1   The recognition accuracy rate of different feature sets on 
UCF 50

Features Accuracy (%)

TS 76.5
HOG 83.6
HOF 87.5
MBH 90.3
Handcrafted (TS+HOG+HOF+MBH) 92.5
Dual-stream (VGG-16 & C3D) 89.6
Hybrid Model 95.68

Table 2   The recognition accuracy rates of different network architec-
tures for the CNN components of the dual-stream deep learning mod-
els on UCF 50 dataset

Deep feature model

Spatial stream Temporal stream Accuracy (%)

AlexNet AlexNet 76.4
VGG-16 VGG-16 85.6
VGG-19 VGG-19 85.8
C3D VGG-16 89.6
C3D VGG-19 89.8
C3D C3D 86.4
C3D - 85.2
- VGG-16 79.5
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illustrates the recognition accuracy variation of these four 
models. It is shown that the performance of SFV is supe-
rior to the traditional iDT model since the SFV encodes the 
sematic information in a hierarchical structure. It is worth 
mentioning that pure BoTF implementation is also slightly 
better than iDT but does not gain extra over SFV. One possible 
reason is that the BoTF representation encodes the features 
in different time patches, and it can describe the temporal 
sequences of features, so as to handle the “longer” and varied 
actions. However, the BoTF mainly focuses on temporal infor-
mation and containing less spatial information than FV and 
SFV. Unsurprisingly, when combined with FV, it achieves the 
best performance on tested UCF11 and UCF50 instances. The 
superiority is rooted in the presence of both local and global 
features over the spatial and temporal domains.

5.6 � Comparison with the state‑of‑the‑art in action 
recognition

This study has compared the proposed hybrid model with 
other state-of-the-art methods on UCF 101, HMDB51 and 
JHMDB51 datasets, including iDT [41], SFV [24], the 
dual-stream model proposed by Simonyan et al. [29], and 
its improved versions, namely a few, the hidden two-stream 
[56], two-stream with LSTM models [4], the two-in-one 
stream model [53], the long-term convolution networks 

(LTC) [37], the C3D model [35], the C 2LSTM model [21], 
and the most recent LSF CNN model [39]. Evaluations have 
also been carried out in comparison with the hybrid hand-
crafted and learning-based methods, such as the trajectory-
pooled deep convolutional descriptors (TDD) [43], and 
the MTC3D model released in 2019 [20]. HMDB51 and 
JHMDB51 datasets are more complex than UCF datasets in 
terms of action types, video quality, and background. Experi-
ments show a superior output from the devised hybrid model 
in this research as highlighted in Table 4. The configurations 
of the testbed are detailed in Section 5.3. The performance of 
the devised hybrid model is consistently level up or surpass 
current benchmark approaches. The superior performance 
stems into the trajectory-based (handcrafted) features among 
multiple scales, separable frequency bands and directions, 
and the fine-grained deep learned spatial-temporal features.

5.7 � Applicability and extensibility

To investigate and evaluate the generalization of the pro-
posed hybrid model, this study also tested extended human 
action categories such as those depicted in UT-Interaction 
dataset that mainly focuses on human-human interactions. 
The same configuration settings as described in Section 5.3 
has been adopted for the test. Since videos in this series (set1 
and set2) contain combinatory actions, segmented datasets 
were deployed in this experiment. Comparing to the BoF 
[26] with the deep representation proposed by Lee et al. 
in 2019 [15], the devised framework demonstrated robust-
ness and greatly extended applicability on complex human 
interactions evidenced by the state-of-the-art performances 
shown in Table 5. Overall, with the holistic features, the pro-
posed model has gained significant performance advance-
ments on both human actions and interactions with convinc-
ing promise on crowd action understanding.

Table 3   Accuracy rates of individual actions using different trajec-
tory models

Method UCF11/YouTube (%) UCF50 (%)

iDT (FV) 90.69 90.5
SFV 93.38 NA
BoTF 92.5 91.3
FV+BoTF (Hybrid Model) 95.40 95.68

Table 4   Performance 
comparison to the state-of-the-
art approaches on UCF 101, 
HMDB51 and JHMDB51

Method UCF101 (%) HMDB51 (%) JHMDB51 (%)

iDT (2013) 87.9 57.2 62.8
SFV (2014) NA 66.79 69.03
C3D (2015) 85.2 NA NA
TDD (2015) 90.3 63.2 NA
LTC (2018) 91.7 64.8 NA
Dual-stream CNN (2014) 88.0 59.4 NA
Two-stream + LSTM (2017) 88.6 NA NA
Hidden Two-stream (2019) 90.3 60.5 NA
Two-in-one (2019) 92.0 NA 45.01
C2LSTM (2020) 92.8 61.3 NA
MTC3D (2019) 90.1 65.0 NA
SLF CNN (2020) 94.8 70.2 NA
Hybrid Model 95.1 70.8 72.5
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6 � Conclusions and future work

To tackle the shortfalls of lacking orientations and separa-
ble frequencies in multiple scales of traditional DT-based 
action classification models, this study has developed an 
innovative DT model by integrating the DWT technique. 
2D DWT method is employed to decompose the video 
frame into separable frequency and orientation compo-
nents for abstracting motion information. Dense trajecto-
ries method is applied to extract feature points for tracking 
through consecutive frames. A hybrid framework integrates 
both handcrafted and learned features for harnessing their 
distinctive characteristics over the spatial and temporal 
spaces. Fisher vector and a novel handcrafted feature rep-
resentation - BoTF, have been developed to encode video 
events. The holistic representation of video-based events 
over time, specifically human actions in this research, ena-
bles efficient and accurate analysis through classification. 
Experiments show that the proposed hybrid model has 
superior recall, robustness, and extensibility performance 
over benchmarked systems and approaches.

Both handcrafted and deep learning methods were thor-
oughly examined in this study, which open up a significant 
research direction through harnessing advantages from dif-
ferent feature engineering paradigms. This study also tested 
traditional feature fusion solutions such as the score-based 
model, which was proven inefficient. Currently, the multi-
kernel learning and the metric-based learning approaches 
are the most popular ones to fuse features, which reveal the 
potential of internal network fusion through and at CNN 
feature maps. One limitation of this study is that the devised 
human action recognition system can only process trimmed 
video clips with clear action boundaries, such as those from 
the UCF and HMDB datasets. A number of aspects have 
been explored as a preparation for the follow ups includ-
ing tailored deep learning networks and adaptive feature 
weighting to better handle varied lengths of ambiguous 
crowd behavioural events.
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