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Abstract
Like traditional single-label learning, multi-label learning is also faced with the problem of dimensional disaster. Feature
selection is an effective technique for dimensionality reduction and learning efficiency improvement of high-dimensional
data. This paper combined logistic regression, manifold learning, and sparse regularization to construct a joint framework
for multi-label feature selection (LMFS). Firstly, the sparsity of the feature weight matrix is constrained by the L2,1-norm.
Secondly, the feature manifold and label manifold can constrain the feature weight matrix to fit the information of data and
label better. An iterative updating algorithm is designed, and the convergence of the algorithm is proved. Finally, the LMFS
algorithm is compared with DRMFS, SCLS, and other algorithms on eight classical multi-label data sets. The experimental
results show the effectiveness of the LMFS algorithm.
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1 Introduction

With the rapid development of the Internet and digital
acquisition equipment in recent years, the scale of data
that needs to be analyzed and processed in classification
problems has increased dramatically. These data may
contain not only single-label data but also a large number
of multi-label data. Each instance has only one label in
the single-label data, and different labels are mutually
independent. While in the multi-label data, a sample
may belong to multiple labels simultaneously, and each
label intersects with the other and is correlated. So
far, the research of multi-label learning, which includes
text classification, image annotation, video classification,
biology, etc., has attracted the attention of many scholars.
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In many practical applications mentioned above, multi-label
data usually has thousands or even more features, which
brings many problems to data analysis, decision-making,
screening, and prediction [1]. For example, redundant and
irrelevant features may affect the function of classifiers [2].
In order to solve these problems, we will select a subset
of related and optimal features. The procedure is called
feature selection. Feature selection has many advantages
in learning algorithms, including reducing measurement
cost and storage requirements, shortening training time,
avoiding dimension disaster, reducing overfitting, and so on
[3, 4]. Therefore, multi-label feature selection has become a
research hot spot.

Based on label information and search strategy, feature
selection methods are usually divided into two categories
[5]. Based on the search strategy, feature selection can
be divided into three categories: filter [6–8], wrapper [9,
10] and embedded [11, 12]. Among them, the embedded
method combines the advantages of the filter method and
wrapper method. They embed the feature selection process
in the learning process. Because they do not evaluate the
feature subset iteratively, they are more effective than the
wrapper method [1].

Through the study of advanced models, it is found that
most of them are based on linear mapping [13, 14] and
information theory. With the development of research and
the introduction of manifold learning [15–17], the multi-
label feature selection system is constantly improved.
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A multi-label feature selection method based on mutual
information and label correlation is proposed in [18]. A
newmulti-label feature selection based on label redundancy,
called (LRFS), is proposed in [19]. It divides labels into
independent labels and dependent labels and analyzes the
differences between independent and dependent labels.
Kernel alignment is introduced into multi-label learning
to measure the consistency between feature space and
label space. Moreover, a new multi-label feature selection
method, which can automatically learn and deal with the
importance of labels, is proposed in [20]. A new feature
selection method of extended adaptive minimum absolute
contraction selection operator (EALasso) is presented [21].
This method preserves the properties of determining the
correct subset model and obtaining the optimal estimation
accuracy, proposes an iterative optimization algorithm, and
gives theoretical convergence proof. Some researchers put
forward a multi-label feature selection method with multiple
regularizations (MDFS) [22].

Moreover, they calculate the correlation between the
feature and the local label and use the objective function
that includes L21-norm regularization. Through linear
mapping and combining manifold learning and L21-norm
regularization, multi-label feature selection via feature
manifold learning and sparsity regularization (MSSL) is
proposed in [23]. A robust multi-label feature selection with
dual-graph regularization (DRMFS) is proposed in [24]. In
order to improve the robustness of the algorithm, the model
uses L21-norm mapping and combines label manifold with
characteristic manifold to consider not only the correlation
between features but also the correlation between labels.
Finally, the L21-norm is used to constrain the sparsity of the
weight matrix.

To sum up, linear regression is often used in multi-label
feature selection models. However, since labels are binary, it is
not appropriate in most cases to assume a linear correlation
between the sample space and the label space. Moreover,
multi-label feature selection is used for multi-label classi-
fication. So from the perspective of classification, logistic
regression is more suitable for the multi-label feature selec-
tion model. The reasons are as follows:

1) For multi-label data, label (dependent variable) is the
discrete value (0 or 1), which is more suitable for
logistic regression.

2) Logistic regression is a generalized linear model, which
is equivalent to introducing nonlinearity into the model,
which can improve the expression ability of the model
and increase the fitting.

3) Linear regression directly analyzes the relationship
between the dependent and independent variables,
while logistic regression analyzes the relationship

between the probability of taking a particular value of
the dependent variable and the independent variable.

From reasons 1 and 2, it can be seen that logistic
regression is more suitable for data classification than linear
regression, and it can be applied to a variety of data
distribution including the distribution of the positive and
the negative; from reason 3, it can be seen that logistic
regression is more robust than linear regression.

Based on this problem, some scholars choose logistic
regression to replace the least square regression in
the model and improve the algorithm’s function by
improving the regular term. The author puts forward a
correlation logistic regression model (CorrLog) for multi-
label image classification, which extends the traditional
logistic regression model to multi-label image classification
[25]. A feature subset selection algorithm for mixed-integer
optimal logistic regression is proposed in [26]. This paper
presents a mixed-integer linear optimization problem, which
can be solved using standard integer optimization software
to approximate the logistic loss function piecewise. A robust
logistic regression method based on the regularization of
Lq -norm q ∈ [0, 1] is proposed in [27], which is a feasible
and effective feature selection method.

However, the existing multi-label feature selection
algorithm based on logistic regression ignores the feature
manifold structure. The above multi-label feature selection
algorithm [1, 3, 4, 19, 20] ignores the fitting of label
information while paying attention to the feature manifold
structure, and the above multi-label feature selection
algorithm [21, 23] ignores the fitting of the feature manifold
structure to label information while paying attention.
Therefore, this study will combine the logistic regression
model with the regularization of the feature map, label map,
and L21-norm sparse regularization to solve the problem of
multi-label feature selection. The main contributions of this
paper are as follows:

1) The assumption of linear correlation between sample
space and label space is not applicable in most cases
to solve the problem. Therefore, this paper uses logistic
regression to construct a multi-label feature selection
model.

2) Considering that feature selection should be based
on sample and label matrices, few existing models
consider both of these matrices. Therefore, the feature
manifold and label manifold are combined into the
multi-label feature selection model constructed by
logistic regression. In addition, the L2,1-norm sparse
constraint is combined to construct “Multi-label feature
selection based on logistic regression and manifold
learning.”
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3) The model’s optimal solution is realized, the optimal
algorithm is designed, and the algorithm’s convergence
is proved.

4) A large number of experiments were designed and
carried out on eight classical multi-label data sets, com-
pared with five advanced multi-label feature selection
algorithms (DRMFS, SCLS, etc.) and baseline, and the
results prove the effectiveness of the LMFS algorithm.

The rest of this paper is organized as follows. Section 2
gives a multi-label feature selection model. In Section 3,
the model is solved, an iterative algorithm for multi-label
feature selection is proposed, and its time complexity is
analyzed. In Section 4, the comprehensive experiment on
six classical data sets shows that the algorithm proposed
in this paper is superior to other algorithms. Finally, the
conclusions and future work is presented in Section 5.

2 Problem description

2.1 Logistic regressionmodel

Suppose a multi-label data set D = {(di, yi)}ni=1 consists
of n independent samples with the same distribution. Let
X = [x1; x2; · · · ; xn] be the augmented matrix of the
data matrix, X ∈ Rn×d , where xi = [1, di]. Y =
[y1; y2; · · · ; yn] be the label matrix, Y ∈ Rn×m, m is the
number of classes. The value of yij is 0 or 1, indicating
whether the i-th sample is associated with the j -th class. In
the logistic regression, the posterior probability that sample
xi belongs to the j -th class is:

Pr(yij = 1|xi) = g(xiwj ) = exp(xiwj )

1+exp(xiwj )
(1)

Thus the posterior probability that sample xi does not
belong to the j -th class is:

Pr(yij = 0|xi) = 1 − g(xiwj ) = 1
1+exp(xiwj ) (2)

where W = [w1, w2, · · · , wm] and W ∈ Rd×m; wj is the
j -th column vector of the coefficient matrix W .

If the maximum likelihood estimation method is used to
estimate the coefficient matrix, then the likelihood function
(joint probability distribution) of the logistic regression on
the multi-label data set is:

P(W) =
m∏

j=1

n∏

i=1

g(xiwj )
yij (1 − g(xiwj ))

1−yij (3)

Since it is inconvenient to solve optimization max P(W),
the minimum value of L(W) of negative log likelihood
function for solving logistic regression is used to solve W

L(W) = −∑m
j=1

∑n
i=1[yij ln(g(xiwj ))+(1 − yij ) ln(1−g(xiwj ))]

= −∑m
j=1

∑n
i=1[yij xiwj + ln(1−g(xiwj ))] (4)

2.2 Sparse constraint

The logistic regression model may suffer from ill-posed
problems, such as overfitting, multi-collinearity, and infinite
solutions, which results in incorrect estimation of the
coefficient matrix [28]. So in order to solve this problem,
a widely used strategy is to introduce penalty terms into
L(W), which aims to achieve a stable and accurate logistic
regression model in high-dimensional data. The so-called
penalty function is usually expressed as follows, where β is
the regularization parameter.

minWL(W) + βR(W) (5)

For the i-th row vector Wi of the coefficient matrix W , it
can be regarded as a vector that measures the importance of
the i-th feature. Let fi ∈ Rn be the i-th feature vector of the
data matrix, and then the data matrix X can be expressed in
the form of X = [f1, f2, · · · , fd ].

The common term R(W) has various forms for different
purposes. Take L1-norm regular term and L2-norm regular
term. For example,L1-norm is often used to guided sparsity;
L2-norm is often used to guided stability. Because ‖Wi‖2
is generally used to measure the importance of feature fi ,
in order to distinguish the importance of features better,
here we take L21-norm as the standard term R(W), which
not only guides the row sparsity of the sparse matrix but
also is sensitive to singular values [29]. So the objective
optimization problem can be written as:

minWL(W) + β

2
‖W‖2,1 (6)

where, ‖W‖2,1 = ∑d
i=1 ‖Wi‖2.

2.3 Feature manifold learning

Considering that the parameter of each coefficient vector
wj in formula (6) is β, but according to the idea of binary
conversion, the regularization parameter β may not apply to
all coefficient vectors. In addition, the features are extracted
from some manifolds called the feature manifold to [2,
15, 16]. This is an important technique that can obtain the
structure of the feature weight feature manifold by exploring
the geometry. According to the problem assumption, if the
features fi and fj are closer, then their weight vectors
Wi and Wj should also be closed. Therefore, a feature
map regularization is constructed, which can adjust the
regularization parameters of the coefficient vectors wj

according to the similarity between the features fi and fj .
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Its expression is as follows:
1
2

∑d
i=1

∑d
j=1 ‖Wi − Wj‖22Sij

= 1
2

∑d
i=1

∑d
j=1(Wi − Wj)(Wi − Wj)

T Sij

= ∑d
i=1 WiW

T
i Mii − ∑d

i=1
∑d

j=1 WiW
T
j Sij

= T r(WT (M − S)W)

= T r(WT LSW)

(7)

where, M ∈ Rd×d is the diagonal matrix, and Mii =∑d
j=1 Sij is the i-th diagonal element of M . LS = M −S is

the Laplacian matrix of the feature similarity matrix S, and
Sij is the i-th row and j -th element of the feature similarity
matrix S, representing the similarity between features fi

and fj . There are many ways to construct feature similarity
matrix S,for example:

By using a kernel function, a feature association matrix
S can be constructed, where t ∈ R:

Sij=
{

exp(−‖fi−fj ‖22
t

), if fi∈NK(fj ) or fj∈NK(fi)

0, others
(8)

where NK(∗) represents the k-nearest neighbor set of ∗.
Through feature map regularization, the problem of feature
selection is optimized:

minWL(W) + λ

2
T r(WT LSW) + β

2
‖W‖2,1 (9)

2.4 Label manifold learning

In order to better fit the label information while fitting the
manifold structure. According to the problem, suppose: Let
f (xiW) = [g(xiw1), g(xiw2), · · · , g(xiwm)], f (xiW) ∈
Rm, if the labels yi and yj are closer, then the probability
f (xiW) and f (xjW) in the logistic regression model
should also be closer, and according to the positive
correlation between g(xiwj ) and xiwj , the positive
correlation between f (xiW) and xiW is deduced, thus xiW

should be closer to xjW . Therefore, a regularization of the
label graph is constructed, which can adjust the coefficient
matrix W according to the similarity between the labels yi

and yj , so that W can better fit the label information. Its
expression is as follows:

1
2

∑n
i=1

∑n
j=1 ‖xiW−xjW‖22Aij

= 1
2

∑n
i=1

∑n
j=1(xiW−xjW)(xiW − xjW)T Aij

=∑n
i=1 xiW(xiW)T Pii−∑n

i=1
∑n

j=1 xiW(xjW)T Aij

=T r(WT XT (P−A)XW)

=T r(WT XT LAXW)

= T r(WT LAW)

(10)

where, LA = XT LAX and P ∈ Rn×n are diagonal
matrices, Pii = ∑n

j=1 Aij is the i-th diagonal element of

P . LA = P − A is the Laplacian matrix of label similarity
matrix A, and Aij is the element of the i-th row and the
j -th column of label similarity matrix A, representing the
similarity between the labels yi and yj . The label similarity
matrix A can be given by many methods,as follows:

By using a kernel function, a label association matrix A

can be constructed, where t ∈ R:

Aij =
{

exp(−‖yi−yj ‖22
t

), if yi ∈ NK(yj ) or yj ∈ NK(yi)

0, others
(11)

As for several different calculation methods of feature
similarity matrix S and label similarity matrix A. The
impact on multi-label feature selection, we have made a
simple analysis on the Image and Emotion data sets, set the
parameter range as [0.001, 0.01, 0.1, 1, 10, 100, 1000] to
search and get the best result. As shown in Fig. 1 below, and
found that several methods are similar. So in the experiment
part, we use kernel function to learn the feature similarity
matrix and label similarity matrix.

Through label map regularization, the optimization
feature selection problem is transformed into:

minW L(W)+ λ
2T r(WT LSW)+ β

2 ‖W‖2,1 + γ
2 T r(WT LAW) (12)

3 Problem solving and proof of convergence

3.1 Problem solving

Due to the non-smoothness of L21-norm, it is difficult to
find the closed solution of the optimization problem in (12)
directly. According to [29], this problem can be solved by
another method. When Wi �= 0(i = 1, 2, · · · , d), the
derivative of ‖W‖2,1 to W is:

∂(‖W‖2,1)
∂W

= 2HW (13)

where H ∈ Rd×d is the diagonal matrix and the i-th
diagonal element of H is:

Hii = 1

2‖Wi‖2 (14)

Therefore, the derivative in L21-norm can also be
regarded as the derivative of T r(WT HW). Since ‖W‖2,1 is
convex, the optimization problem of L21-norm can be used
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Fig. 1 Average precision comparison of different similarity matrix methods when ML-KNN is used as the basic classifier. (the higher the result,
the better)

to find the approximate solution of (12). Thus the objective
function is transformed into:

obj (W) = L(W) + λ
2T r(WT LSW)

+ β
2 T r(WT HW) + γ

2 T r(WT LAW)
(15)

For this problem, we can give an H , calculate W with
the current H , and then update H based on the currently
calculated W .

Since (15) is differentiable, it can be solved by the
Newton–Raphson algorithm. The first derivative of (15) to
W is:

∂(obj (W))
∂W

= −XT [Y − G(XW)]
+ λLSW + βHW + γLAW

(16)

where G(XW) = [f (x1W); f (x2W); · · · ; f (xnW)]. The
second derivative of (15) to W is:

∂2(obj (W))

∂W∂WT
= −XT UX + λLS + βH + γLA (17)

Among them:

U = diag

m∑

j=1

[(1 − g(xiwj ))g(xiwj )] (18)

where i = 1, 2, · · · , d .
The updated formula for W is:

Wt+1 = Wt − (
∂2(obj (W))

∂W∂WT
)−1 ∂(obj (W))

∂W
(19)

In LMFS algorithm, the main purpose is to calculate the

update U , ∂(obj (W))
∂W

, ∂2(obj (W))

∂W∂WT , W and H . In each iteration,

the complexity of update U is O(mn2), the complexity
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of update ∂(obj (W))
∂W

is O(d2n), the complexity of update
∂2(obj (W))

∂W∂WT isO(d2), the complexity of updateW isO(d2m),
and the complexity of update H is O(dm). The LMFS
algorithm has iterated t times in total. Therefore, the total
complexity of the LMFS algorithm is O(t(d2n + d2m +
d2 + nm2 + dm)), and the value of t is not large. Therefore,
the running time of the LMFS algorithm processing data is
greatly affected by the dimension d of data, the number of
labels m, and the number of samples n in the data set.

3.2 Proof of convergence

In this section, we prove that the iterative procedure shown
in Algorithm 1 is convergent. Therefore, in the t-th iteration,
we know:

Wt+1 = argminWL(W) + λ
2T r(WT LSW)

+ β
2 T r(WT HtW) + γ

2 T r(WT LAW)
(20)

where Ht
ii = 1

2‖Wt
i ‖2 (i = 1, 2, · · · , d), so we have:

L(Wt+1) + λ
2T r((Wt+1)T LSWt+1)

+ β
2 T r((Wt+1)T H tWt+1)

+ γ
2 T r((Wt+1)T LAWt+1) ≤ L(Wt)

+ λ
2T r((Wt )T LSWt)

+ β
2 T r((Wt)T H tWt) + γ

2 T r((Wt )T LAWt)

(21)

That is:

L(Wt+1) + λ
2T r((Wt+1)T LSWt+1)

+ γ
2 T r((Wt+1)T LAWt+1)

+ β
2

∑d
i=1

‖Wt+1
i ‖22

2‖Wt
i ‖2 ≤ L(Wt)

+ λ
2T r((Wt )T LSWt)

+ γ
2 T r((Wt )T LAWt) + β

2

∑d
i=1

‖Wt
i ‖22

2‖Wt
i ‖2

(22)

It can be further transformed into:

L(Wt+1) + λ
2T r((Wt+1)T LSWt+1)

+ γ
2 T r((Wt+1)T LAWt+1)

+ β
2 ‖Wt+1‖2,1 − β

2 (‖Wt+1‖2,1
− ∑d

i=1
‖Wt+1

i ‖22
2‖Wt

i ‖2 ) ≤ L(Wt)

+ λ
2T r((Wt)T LSWt) + γ

2 T r((Wt )T LAWt)

+ β
2 ‖Wt‖2,1 − β

2 (‖Wt‖2,1 − ∑d
i=1

‖Wt
i ‖22

2‖Wt
i ‖2 )

(23)

According to the inequality
√

a − a

2
√

b
≤ √

b − b

2
√

b
for

any positive numbers a and b, we have:

‖Wt+1
i ‖2,1 − ‖Wt+1

i ‖22
2‖Wt

i ‖2
≤ ‖Wt

i ‖2,1 − ‖Wt
i ‖22

2‖Wt
i ‖2

(24)

Which sums, we get:

d∑

i=1

(
‖Wt+1

i ‖2,1−‖Wt+1
i ‖22

2‖Wt
i ‖2

)
≤

d∑

i=1

(
‖Wt

i ‖2,1 − ‖Wt
i ‖22

2‖Wt
i ‖2

)
(25)

Which implies:

‖Wt+1‖2,1 −
d∑

i=1

‖Wt+1
i ‖22

2‖Wt
i ‖2

≤ ‖Wt‖2,1 −
d∑

i=1

‖Wt
i ‖22

2‖Wt
i ‖2

(26)

In summary, the convergence of Algorithm 1 is proved.

4 Experiments and results

In order to verify the effectiveness of the LMFS algorithm,
the experiment uses eight public data sets and compares
its performance with some of the most advanced methods
and baselines. At the same time, the experiment selects
ML-KNN [30] as the representative of the multi-label
classification algorithm for evaluation.

Table 1 Dataset information

data sample features label training test species

Image 600 294 5 400 200 image

Emotion 593 72 6 391 202 music

Enron 1702 1001 53 1123 579 text

Business 5000 438 30 2000 3000 text

Computers 5000 681 33 2000 3000 text

Health 5000 612 32 2000 3000 text

Scene 2407 294 6 1211 1196 image

Yeast 2417 103 14 1500 917 biological
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Table 2 Hamming loss comparison of different algorithms under each data set

algorithms LMFS DRMFS SCLS MDMR PMU FIMF Baseline

Business 0.0264 0.0280 0.0274 0.0273 0.0284 0.0274 0.0269

Image 0.1950 0.2020 0.2110 0.2240 0.2270 0.2340 0.2130

Emotion 0.2063 0.2244 0.2500 0.2409 0.2673 0.2252 0.2937

Health 0.0370 0.0391 0.0389 0.0391 0.0457 0.0407 0.0458

Computers 0.0381 0.0393 0.0398 0.0398 0.0416 0.0409 0.0412

Enron 0.0486 0.0478 0.0495 0.0505 0.0505 0.0501 0.0520

Scene 0.1006 0.1126 0.1073 0.1348 0.1137 0.1587 0.0989

Yeast 0.1943 0.1938 0.2006 0.1999 0.2006 0.2021 0.1980

4.1 Dataset and experimental setup

The experiment uses eight public data sets from four
different areas. The specific parameters of each data set are
shown in Table 1:

In terms of experimental environment, all experimental
related environments are: Microsoft Windows7 system, pro-
cessor: Intel (R) Core (TM) i5-4210U CUP @ 1.70GHz
2.40GHz, memory: 4.00GB, programming software: Mat-
lab R2016a.

To verify the effectiveness of the proposed feature
selection method, the following most advanced state-of-the-
art feature selection algorithms are compared:

1) Baseline: The results on various evaluation indicators
after learning the data set directly with ML-KNN
without any feature selection.

2) DRMFS [24]: A robust multi-label feature selection
with dual-graph regularization was constructed by
using feature graph and label graph to guide the sparsity
between rows and within rows of the weight matrix, and
L2,1 norm to guide its global properties and robust.

3) SCLS [31]: Multi-label feature selection method based
on scalable standards.

4) MDMR [32]: Multi-label feature selection through an
evaluation metric that combines mutual information
with maximum dependency and minimum redundancy.

5) PMU [33]: A multi-label feature selection algorithm
based on mutual information. Multi-label feature
selection is performed by selecting the dependency
between the selected feature and the label.

6) FIMF [34]: A fast multi-label feature selection method
based on information theory feature ranking. Based on
information theory, a scoring function that evaluates the
importance of features is derived, and its calculation
cost is analyzed.

In order to ensure the fairness of the experiment, in terms
of parameter setting:

The number of nearest neighbors K for the multi-label
classification algorithm ML-KNN is set to 10, and the value
of smooth S is set to 1. For MDMR, PMU, and FIMF,
we discretize the data set using the equal-width intervals
[35]. For FIMF, we set Q = 10 and b = 2. For DRMFS

Table 3 Ranking loss comparison of different algorithms under each data set

algorithms LMFS DRMFS SCLS MDMR PMU FIMF Baseline

Business 0.0382 0.0443 0.0405 0.0404 0.0444 0.0423 0.0374

Image 0.2000 0.2213 0.2167 0.2550 0.2483 0.2662 0.2333

Emotion 0.1662 0.1687 0.2056 0.1994 0.2570 0.2012 0.2829

Health 0.0530 0.0577 0.0562 0.0566 0.0679 0.0578 0.0605

Computers 0.0844 0.0934 0.0909 0.0903 0.0980 0.0955 0.0922

Enron 0.0885 0.0896 0.0921 0.0944 0.0949 0.0935 0.0938

Scene 0.1014 0.1087 0.1129 0.1444 0.1290 0.1994 0.0931

Yeast 0.1677 0.1656 0.1745 0.1710 0.1723 0.1747 0.1715
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Table 4 One-error comparison of different algorithms under each data set

algorithms LMFS DRMFS SCLS MDMR PMU FIMF Baseline

Business 0.1177 0.1303 0.1240 0.1237 0.1320 0.1260 0.1213

Image 0.3650 0.3950 0.4000 0.4450 0.4700 0.5000 0.4350

Emotion 0.2426 0.2772 0.3614 0.3564 0.3614 0.3515 0.4059

Health 0.3197 0.3333 0.3410 0.3373 0.4403 0.3723 0.4207

Computers 0.4150 0.4340 0.4580 0.4543 0.4700 0.4627 0.4367

Enron 0.2297 0.2124 0.2470 0.2435 0.2694 0.2453 0.3040

Scene 0.2651 0.2968 0.2977 0.3905 0.3904 0.4983 0.2425

Yeast 0.2094 0.2137 0.2268 0.2366 0.2366 0.2366 0.2345

and LMFS, we use (8) to calculate the similarity matrix
between features. The above settings are the default set-
tings of the algorithms. In addition, For DRMFS and other
comparative algorithms, the experiment adjusts the regu-
larization parameters of all methods by the “grid search”
strategy from [0.001, 0.01, 0.1, 1, 10, 100, 1000]. For the
feature dimension, we set the number of selected features
as [10, 15, 20, 25, 30, 35, 40, 45, 50]. The maximum num-
ber of iterations for alliterative algorithms is fixed as 50. At
the same time, the size of neighborhood K is set as 5. For
all multi-label feature selection algorithms, the experiments
show the best results from the optimal parameters.

4.2 Evaluationmetrics

The performance evaluation of the multi-label learning
systems is different from the single-label learning systems.
The evaluation criteria of the multi-label learning system
are more complicated. The experiment uses five evaluation
criteria: Hamming loss, Ranking loss, One-error, Coverage,
and Average precision in ML-KNN. The specific contents
of the five evaluation criteria are as follows:

Suppose there is a test data set D = {(xi, yi)}ni=1, where
n is the number of test samples. Given test sample xi ,
the binary label vector that is predicted by the multi-label
classifier is denoted as h(xi), and the rank of the l-th label
prediction is dennoted as ranki(l).

1) Hamming loss: evaluates the percentage of mislabeled
labels, i.e., a label belonging to the instance is not predicted
or a label not belonging to the instance is predicted. The
smaller the value, the better the performance.

HL(D) = 1

n

n∑

i=1

1

m
‖h(xi) � yi‖1 (27)

where � represents the symmetric difference between the
two sets, and returns those values that appear only in one of
the sets, HL(D) ∈ [0, 1].

2) Ranking loss: evaluates the proportion of reverse-order
label pairs, that is, the case where unrelated labels are more
relevant than related labels. The smaller the value, the better
the performance.

RL(D) = 1

n

n∑

i=1

1

1T
myi1T

myi

∑

l:yl
i=1

∑

l′:yl′
i =0

(δ(ranki(l) ≥ ranki(l
′))) (28)

where yi is the complement of yi in Y . RL(D) ∈ [0, 1].
3) One-error: evaluates the proportion of samples that

“the most relevant label is not” in “real labels”. The smaller

Table 5 Coverage comparison of different algorithms under each data set

algorithms LMFS DRMFS SCLS MDMR PMU FIMF Baseline

Business 2.1990 2.4123 2.3050 2.2917 2.4020 2.3600 2.1847

Image 1.0800 1.1600 1.1650 1.3200 1.2900 1.3550 1.2150

Emotion 1.8911 1.9158 2.1139 2.0891 2.3614 2.0545 2.4901

Health 3.0053 3.2060 3.1350 3.1647 3.5690 3.1780 3.3047

Computers 4.1187 4.4987 4.3697 4.3480 4.6520 4.5580 4.4160

Enron 12.6790 12.8450 13.0415 13.1606 13.4128 13.2038 13.2055

Scene 0.6104 0.6421 0.6681 0.8253 0.7492 1.0953 0.5686

Yeast 6.2955 6.2857 6.4482 6.3642 6.3708 6.3740 6.4144
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Table 6 Average precision comparison of different algorithms under each data set

algorithms LMFS DRMFS SCLS MDMR PMU FIMF Baseline

Business 0.8809 0.8689 0.8758 0.8757 0.8690 0.8730 0.8798

Image 0.7642 0.7434 0.7437 0.7058 0.7002 0.6791 0.7214

Emotion 0.8104 0.7917 0.7496 0.7551 0.7143 0.7510 0.6938

Health 0.7429 0.7245 0.7159 0.7256 0.6593 0.7090 0.6812

Computers 0.6590 0.6344 0.6317 0.6304 0.6093 0.6203 0.6334

Enron 0.6742 0.6704 0.6589 0.6566 0.6483 0.6548 0.6232

Scene 0.8359 0.8158 0.8163 0.7633 0.8034 0.6906 0.8512

Yeast 0.7667 0.7653 0.7563 0.7579 0.7562 0.7552 0.7585

the value, the better the performance.

OE(D) = 1

n

n∑

i=1

δ(y
li
i = 0) (29)

where li = argminl∈[1,m]ranki(l) and B are indicator
functions, OE(D) ∈ [0, 1].

4) Coverage: evaluates how many steps the ”sorted label
list” needs to move, on the average, to cover the true related
label set. The smaller the value, the better the performance.

CV (D) = 1

n

n∑

i=1

argmaxl:yl
i=1ranki(l) − 1 (30)

where CV (D) ∈ [1, m − 1].
5) Average precision: evaluates the proportion of those

labels that are more relevant than particular labels. The
larger the value, the better the performance.

AP(D) = 1

n

n∑

i=1

1

1T
myi

∑

l:yl
i=1

preci(l)

ranki(l)
(31)

where preci(l) = ∑
l′:yl′

i =1 δ(ranki(l) ≥ ranki(l
′)) and

AP(D) ∈ [0, 1].

4.3 Experimental results

The proposed multi-label feature selection algorithm has
been tested in six public data sets with extensive experi-

ments. Comparing with several state-of-the-art algorithms,
we consider evaluation metrics of Hamming loss, Ranking
loss, One-error, Coverage, and Average precision to evaluate
the performance of the above multi-label feature selection
methods. Tables 2, 3, 4, 5 and 6 show the best results of
all the feature selection methods from the optimal param-
eters. The best performance is indicated in bold font in
these tables, and the second-best performance is underlined.
Tables 2, 3, 4, 5 and 6 report Hamming loss, Ranking loss,
One-error, Coverage, and Average precision comparison of
different algorithms in each data set.

First of all, feature selection is adequate. It reduces the
number of features, shortens the classifier’s running time,
and improves the performance of the classification algorithm.
Secondly, as shown in Tables 2, 3, 4, 5 and 6, although
the performance of the LMFS algorithm on data sets
Business, Scene and Yeast is slightly inadequate, the
performance of the LMFS algorithm on data sets Business
and Scene is second only to the Baseline. In addition, the
LMFS algorithm has the best performance on other data
sets.

In order to visually show the relative performance of the
LMFS algorithm and other comparing algorithms, Figs. 2,
3, 4, 5 and 6 shows the performance of all multi-label
feature selection algorithms. As the number of selected
features changes, the value of the metrics will also change.
Therefore the x-axis represents the number of features
selected by each feature selection algorithm, and the y-axis
represents the performance of the evaluation metrics after
classification feature selection. These results show that the
proposed LMFS algorithm is superior to the previous ones
among almost all data sets in most cases.

Specifically, Figs. 2 to 6 show the Hamming loss,
Ranking loss, One-error, Coverage, and Average precision
comparison of different feature selection methods when
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Fig. 2 Hamming loss comparison of different feature selection methods when ML-KNN is used as the basic classifier. (the lower the result, the better)
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Fig. 3 Ranking loss comparison of different feature selection methods when ML-KNN is used as the basic classifier. (the lower the result, the
better)
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Fig. 4 One-error comparison of different feature selection methods when ML-KNN is used as the basic classifier. (the lower the result, the better)
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Fig. 5 Coverage comparison of different feature selection methods when ML-KNN is used as the basic classifier. (the lower the result, the better)
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Fig. 6 Average precision comparison of different feature selection methods when ML-KNN is used as the basic classifier. (the higher the result,
the better)
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Fig. 7 The change of Average precision with parameters in Enron and Scene data set

using ML-KNN as the primary classifier. From a, b, c, e,
f and g in Fig. 2a, b, e, f and g in Fig. 3a, b, e, f and g
in Fig. 4; and a, b, c, d, e, f and g in Fig. 5, we can see
that the curve of LMFS algorithm is lower than that of all
comparison algorithms, even for the other images in Figs. 2
to 5. The curves of the LMFS algorithm are significantly
lower than those of the SCLS algorithm, MDMR algorithm,
PMU algorithm, and FIMF algorithm. Even in the subfigure
of Figs. 2 and 4, only the LMFS algorithm’s curves are
below the baseline. From a, b, c, e, f, and g in Fig. 6, we
can see that the curve of LMFS is significantly higher than
that of all comparison algorithms, even in a and f, only the
LMFS algorithm’s curves were above the baseline. Thus, it
can be seen that the proposed LMFS algorithm can reduce
irrelevant or redundant features.

In addition, to explore the influence of parameters on the
performance of the LMFS algorithm, we choose two differ-
ent kinds of data sets: music data set Scene and biological
data set Yeast. For parameters λ, β and γ , we fix two of
them as 1. The influence of another parameter on the perfor-
mance of the LMFS algorithm is discussed under the selec-
tion of a different number of features. The parameter range
is set as [0.001, 0.01, 0.1, 1, 10, 100, 1000], the number of
feature selection is set to [10, 15, 20, 25, 30, 35, 40, 45, 50].
The experimental results are shown in Fig. 7.

Specifically, the performance of the algorithm will
change with the change of parameters. As shown in Fig. 7,
for different data sets, the optimal range of parameters
is different. For example, on the Scene data set the
optimal range of parameter β is [10, 100], the optimal
range of parameter λ is [10, 1000], and the optimal range
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Fig. 8 The influence of the nearest neighbor parameter k on the performance of the algorithm
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Fig. 9 Bonferroni-Dunn test results in the form of average rank diagrams. Groups of feature selection algorithms that are not significantly different
(at p = 0.1) are connected

of parameter γ is [0.01, 0.1]. Due to the different basic
structures of different data sets, the parameters in the
Yeast data set are more sensitive, but the parameters in
the Scene data set are not sensitive. At the same time,
in order to explore the influence of the nearest neighbor
parameter K on the performance of the algorithm, let
K = [5, 6, 7, 8, 9, 10], Experiments were carried out on
three data sets, Business, Emotion and Computers, the
experimental results are shown in Fig. 8, we can see that the
performance of the algorithm is sensitive to K .

As shown in Fig. 9, the horizontal axis represents the
sorting of multi-label feature selection algorithms under
each index; from left to right, the algorithm’s performance
is getting better and better, the best performing algorithm
is on the far right side. At the same time, we report
the results of the Bonferroni-Dunn test in the form of
an average rank graph, the algorithm groups with no
significant difference (P < 0.1) were connected, if
the difference of average ranking reaches the critical
value of the difference (CD), then there is significant
difference [36]. Although the LMFS algorithm has no
significant difference with the DRMFS algorithm, SCLS
algorithm, and MDMR algorithm in all indicators, the
LMFS algorithm always has a significant difference with
PMU and FIFM algorithm, and the LMFS algorithm
consistently ranks on the right side. Therefore, compared
with other methods, the LMFS algorithm shows better
performance.

5 Conclusions and outlook

In this paper, logistic regression is combined with feature
manifold learning, sparse regularization, and label map
regularization to study the multi-label feature selection
problem. Sparseness has been widely used in regression-
based feature selection methods. In order to overcome
the shortcomings that when dealing with the regression

coefficient of features, the existing feature selection method
based on logistic regression fails to consider the geometric
structure of the feature manifold; and that the existing linear
regression feature selection method fails to consider the
relevant label information between the geometric structure
of the feature manifold and the manifold feature coefficient,
we embed feature map regularization method and label
map regularization method into the multi-label feature
selection problem based on logistic regression to obtain the
regression coefficients, so that the regression coefficients
are smooth relative to the feature manifold without losing
the relevant label information. We also design an iterative
update algorithm to prove the convergence of the LMFS
algorithm. Another direction in the future is to extend this
method to study the semi-supervised feature selection.
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