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Abstract
The existing image blind deblurring methods mostly adopt the “coarse-to-fine” scheme, which always require a mass of
parameters and can not mine the blur information effectively. To tackle the above problems, we design a lightweight multi-
scale fusion coding deblurring network (MFC-Net). Specifically, we fuse the multi-resolution features in a single-scale
deblurring framework based on Wasserstein generative adversarial network (WGAN). Then we propose a feature fusion
module to replace the addition operation in each scale in the skip connection of the encoder-decoder. Besides, we propose
a regional attention module to alleviate the inconsistency in non-uniform blurry images and excavate its intrinsic blurry
features simultaneously. Plenty of experimental results show that our proposed deblurring model is simple, fast yet robust
for image motion deblurring with real-time inference of 10 ms per 720p image, outperforming the state-of-the-art methods
in terms of performance-complexity trade-off.

Keywords Single image motion blind deblurring · Multi-scale fusion coding · Wasserstein generative adversarial
networks · Regional attention module

1 Introduction

Image deblurring, that is, restoring a sharp latent image
from the blurry image, has long been a vital research for
decades. It aims to restore a sharp image with the necessary
edge details and the overall structure information in view of
the motion blurs caused by camera translation, rotation, and
other factors. Conventional deblurring approaches usually
depend on different blur kernels approximations by taking
various constrained priors (e.g., color, local smoothness,
non-local self-similarity, and sparsity) as regularization
terms to improve the effect of image deblurring [7, 18, 22–
24, 26]. However, it is a daunting task to obtain the accurate
blur kernel approximations with kernel-estimation methods,
which involve lots of fixed parameters and complicated
calculations, especially in the cases of non-uniform motion
blurs.
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Recently, with the success of deep learning techniques
on a wide variety of tasks, the deep neural network has
been increasingly applied on image deblurring. Early works
utilized Convolution Neural Network (CNN) [19] to replace
some modules or steps in traditional framework to facilitate
the deblurring process, but they are only applicable to
some specific blurry types and they have limitations on
variable ones. To this end, some representative works
explored solutions for blind motion deblurring in an end-
to-end manner without kernel estimations. Nah et al. [25]
proposed a new paradigm to tackle dynamic deblurring
caused by various sources in an end-to-end manner. They
designed a multi-scale convolution neural network to
extract features, and improved deblurring performance by
Generative adversarial network (GAN) [9]. Afterwards,
many works [20, 21, 38, 43] have designed deblurring
network based on [25], including single-scale network,
multi-scale residual network and deep multi-patch network.
In general, existing image deblurring frameworks based
on deep learning can be grouped into two categories: 1)
one way is to incorporate feature pyramid or residual
network based on the single-scale WGAN [1, 2, 20, 21],
and add the perceptual loss [16] to enhance deblurring
performance, and 2) another way is to leverage the multi-
scale residual network or the deep multi-patch network
[38, 43] for image deblurring by the deep stacking
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strategies or the “coarse-to-fine” schemes. However, these
deblurring methods still suffer from three limitations: 1)
The former enables to achieve much faster speed, while
the latter enables to achieve better performance, both of
them can not make a trade-off between the speed and the
performance, and 2) for feature fusion, it is not conducive
to make cross-scale fusion for the network learning by
simply addition or directly cascade, and 3) they can not
perform well on the blurry image with non-uniform blurs
and diverse blurs for ignoring the non-uniform nature
of blur. As we all know, it is challenging to tackle the
non-uniform blurry images due to its diversity, such as
the different blur degrees among different images, the
inconsistent blurs between different blurry regions of the
same image. Therefore, how to effectively and deeply mine
the blur characteristics of non-uniform blurred images is
very important. However, prior works restore the natural
and clear images only by optimizing the GAN-based
framework [20, 21, 25], or learning the blur characteristics
by transfering the multi-scale blur features with the long-
term short-term memory (LSTM) [38], which can’t not
produce satisfactory results, as seen in Fig. 1(b), there still
existed obvious blur in the restored image. For non-uniform

deblurring, we argue that focusing on the blur characteristics
of local regions is of vital importance for improving
deblurring performance.

Based on the above observations, we propose a multi-
scale fusion coding deblurring architecture based on
WGAN [1, 2] with its superiority of training stability.
Firstly, we design a generator by leveraging multi-sacle
coding parallel architecture, which not only fuse and
construct image information according coding different
scale features, but also avoid expensive running time caused
by the scale-iteration training. Due to the inconsistent
blurs between different blurry regions, a regional attention
model is further proposed to enhance the local deblurring
performance by focusing on blurring features of regions
in image, which strongly manifest the usefulness of
mining blurry information on deblurring performance.
Additionally, we propose a feature fusion model to make
effective fusion between different dimensional features to
facilitate the generalization ability of the model. Figure 1d
shows that the proposed MFC-Net is able to obtain
much better deblurring performance than the methods (i.e.
Figure 1b and c). The contributions of our paper can be
summarized as follows:

Fig. 1 A real deblurring example. (a) Input blurred image. (b) Result of SRN [38]. (c) Result of Gao et al. [8]. (d) Our result
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1. We propose a powerful and efficient blind image
deblurring network named multi-scale fusion coding
deblurring network (MFC-Net), which is conveniently
applied for image deblurring with different resolutions.
The multi-scale fusion coding architecture is adopted
to construct the generator by adding multi-scale
information to enhance deblurring performance with
few weight parameters and less runtime.

2. A regional attention module is introduced to tackle the
inconsistent blurs of each region in the blurry image.
The blurry images are first divided into regions, then
the blurry features of different regions are conducted
dynamical deblurring to force the network to focus on
local deblurring.

3. A feature fusion module, which can effectively mine
the correlation between features and easily transplant to
the network, is exploited to further enhance deblurring
performance almost without computational overhead.

The remainder of this paper is organized as follow.
Section 2 introduces the related work. Section 3 detaily
presents the proposed MFC-Net. In Section 4, we eval-
uate the proposed MFC-Net and make discussions. The
conclusions are given in Section 5.

2 Related work

In this section, we briefly review three main topics that
are related to our work: Image Deblurring, Wasserstein
Generative Adversarial Networks (WGAN) and Attention
mechanism.

2.1 Image Deblurring

Image deblurring can be divided into two categories: blind
and non-blind deblurring. Early works mainly focus on
non-blind deblurring, most of them utilized probabilistic
prior model to work out the regularization items for the
given blurred image and blurred core [6, 14, 31, 42].
However, these non-blind deblurring methods would yield
over-smooth details, which significantly affect the visual
result. While the Blind deblurring, of which the blur
kernel is unknown, is much more challenging to recover
both the latent sharp image and the blur kernel by only
observation, but it is crucial in practical application. With
the recent advancement of deep learning, many works
exploit deep CNN models to improve the performance
of blind image deblurring. Schuler et al. [32] proposed
a blind deblurring method by stacking multiple CNNs in
a coarse-to-fine manner to simulate iterative optimization,
kernel estimation, and the latent image estimation steps.
In addition, they applied a Gaussian Process to generate

uniform blur kernels and blurry/sharp image pairs, and
synthesized abundant blurry images. Bai et al. [4] proposed
a two phases blind deblurring method by leveraging a multi-
scale latent structure prior. They restored sharp images from
the coarsest scale to the finest scale on a blurry image
pyramid, and progressively updated the prior image by
using the newly restored sharp image. However, the blind
deblurring algorithms that estimate both the potential sharp
image and the blurring kernel for finding out the unknown
blurring function is ill-posed.

Therefore, contrary to the kernel-estimation methods for
blind deblurring, Nah et al. [25] developed a multi-scale
architecture that progressively restored the sharp images
at different resolutions without blur kernel estimation in
an end-to-end manner. They preserved fine-grained detail
information from coarser scales by training model with
multi-scale losses, and achieved better performance. Since
then, more works have been explored deep learning methods
for image deblurring without blur kernel estimation. There
are two representative frameworks on image deblurring:
single-scale network and multi-scale network.

Single-scale network A simplified single-scale network is
shown in Fig. 2a. For instance, Kupyn et al. [20] proposed
a DeblurGAN framework for blind motion deblurring based
on Conditional Adversarial Network with optimized multi-
component loss function, Firstly, they introduced multi-
layer residual blocks (ResBlock) in the deblurring network,
and made the global skip connection between the input
and the output, which reduced restoration difficulty and
ensured color consistency. Later, Kupyn et al. [21] proposed
DeblurGAN-v2 by introducing the feature pyramid network
into deblurring generator, and by adopting light-weight
backbone to speed up the deblurring process. What’s
more, a double-scale discriminator and the perceptual loss
[16] were utilized to facilitate the deblurring performance.
Similar to the deblurring framework of [20], Zhou et al. [44]
added a context module to integrate more rich hierarchical
context information, which was proved to be beneficial
to blur elimination and parallax estimation. Yuan et al.
[9] designed a spatially variant deconvolution network by
leveraging deformable convolutions to guide the network
learning blurring information, and by utilizing bi-directional
optical flows to supervise sampling points of deformable
convolution for better deblurring performance. However, it
led to complex computation and abundant inference time on
the deformable convolutions.

Multi-scale network Tao et al. [38] proposed a Scale-
Recurrent CNN (SRN), for blind motion deblurring by
sharing weights across different scales based on LSTM,
as shown in Fig. 2b. They extended the work [25] by
adopting a scale-recurrent model and a LSTM, passing the
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Fig. 2 Different CNNs for
image processing. (a) U-Net
[30] or Kupyn et al. encoder-
decoder [20] network. (b) Tao
et al. scale-recurrent network
[38]. (c) Our proposed network

hidden intermediate results and blur patterns to next scale,
so as to progressively recover the latent image from lower
resolutions to the full resolution. Zhang et al. [43] proposed
a deep hierarchical multi-patch network to restore sharp
images via a fine-to-coarse hierarchical representation.The
results showed that the training strategy of stacking image
regions had limitations: it achieved the best effect when the
depth reached (1-2-4-8), but the increase was not obvious
compared with (1-2-4), and the performance declined when
the depth deepened. Suin et al. [36] proposed a deep
patch-hierarchical attentive architecture by leveraging an
effective content-aware global-local filtering module that
significantly improved performance.

We observe that the state-of-the-art end-to-end methods
above all make full use of the blurry information by
optimizing the network strategy to enhance the nonlinear
representation, no matter in multi-scale or in patch,
which demonstrated that the full use of the blurry image
information in the blind image deblurring is more helpful
than the stacked convolution learning method. Inspired by
[14, 20, 38], but differently, we integrate the multi-scale
coding information into the encoder of the single-scale
deblurring network by layers to enhance the nonlinear
representation of the encoder, as shown in Fig. 2c. Our
proposed network can improve the deblur performance
within multi-scale inputs and multi-scale fusion coding
in a single scale network, so as to avoid the redundant
calculation cost in the multi-stage [38, 43].

2.2Wasserstein generative adversarial networks

In recent years, GAN networks have been widely used
in many tasks due to the superior generated performance,
such as image style transformer and deblurring. Wasserstein
GAN (WGAN) [1, 2] is one of the popular variants of
GAN. Arjovsky et al. [1] used the Wasserstein-1 distance

to replace the JS divergence as as the objective function to
tackle the training difficulties in traditional GAN. The value
function for WGAN is constructed by using Kantorovich-
Rubinstein duality:

min
G

max
D∈D E

x∼Pr

[D(x)] − E
x̃∼Pg

[D(x̃)] (1)

where D is the set of 1-Lipschitz functions and Pg is once
again the model distribution. W(Pr , Pθ ), where K is a
Lipschitz constant and W(Pr, Pθ ) is a Wasserstein distance.
Simultaneously, for improving the robustness of the model,
Arjovsky et al. [1] enforced Lipschitz constraint, and added
weighted clipping to [−c,c] in WGAN. Gulrajani et al. [10]
propose to add a gradient penalty term instead:

λ E
x̃∼Px̄

[
(‖∇x̄D(x̃)‖2 − 1)2

]
(2)

to the value function as an alternative way to enforce
the Lipschitz constraint. This approach is robust to
the choice of generator architecture and requires almost
no hyperparameter, which has been widely applied in
deblurring tasks. Based on WGAN, DeblurGAN [20]
achieved excellent results for motion deblurring, which
yielded more realistic images. Hong et al. [13] exploited
the WGAN network to restore more realistic information
of the edge and texture. Chen et al. [5] utilized the
WGAN to restore the tiny feature details of cell images,
which achieved great success. To further restore more
natural details for blurring images, DeblurGANv2 [21] and
perceptual-DualGAN [29] introduced the perceptual loss
[16] to generate high restoration quality. Thus, we also
adopted the WGAN and the perceptual loss for better
restoration performance in our work.
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2.3 Attentionmechanism

Attention mechanism plays an important role in stimulating
the deep learning of human visual perception. Bahdanau
et al. [3] first tried to apply attention mechanism to machine
translation and achieved great success. Since then, a variety
of attention models had been proposed for different tasks.
Hu et al. [15] proposed a channel attention module by
assigning different weights according to the contributions
of each feature channel to effectively exploit the inter-
channel relationship. Based on the channel attention, Woo
et al. [40] proposed a convolutional block attention module
(CBAM), which exploited both spatial and channel-wise
attention to induce the network to focus on the target
properly. For the task of blind image deblurring, Qi
et al. [28] proposed a dense feature fusion block by
joining a channel attention module and a pixel attention
module to enhance the performance of image deblurring. By
combining non-local features and local features to model
the rich context correlations, the uncertainty maps can
be learned effectively to guide the pixel loss for more
robust optimization. Purohit et al. [27] exploited a self-
attention model to capture non-local spatial relationships
and enhanced the spatially varying shifts for non-uniform
blur. Suin et al. [36] adopted the self-attention block in both
encoder and decoder at each level and the cross-attention
by combining the global dependencies and the neighboring
pixel information to help the feature propagation across
layers and levels. Different from those aforementioned
approaches, we represent the non-uniform blurry properties
by means of adaptive method, and learn the non-
uniform blurry properties in different regions effectively.
More concretely, inspired by the spatial pyramid pooling

strategy [11], we design a regional attention model to
represent blurry information by conducting features spatial
pooling and fusion, and combining the context module
which has large receptive field, so as to enhance attention to
local blur.

3 Our proposedmethod

The pipeline of the whole architecture is shown in Fig. 3. It
consists of a generator G and a discriminator D. Specifically,
we take a sequence of blurry images downsampled from
an input image at different scales, and next feeds them
to the generator G. Next the G extracts latent encodings
of the inputs by a multi-scale encoder and generates new
fake sharp images by a decoder. The discriminator D
constructed by stacked deep convolutions is trained to
distinguish between the corresponding real sharp images
and the generated fake sharp samples until the generator G
can generate the real-like sharp images that we need. To
further enhance the restoration quality, a regional attention
model and a feature fusion module are proposed for the
generator G. Finally, to obtain much higher perceptual
quality, we add a perceptual loss into the whole losses for
training.

3.1 The proposed generator G

We design a MFC-Net as the generator G, as illustrated in
Fig. 4. It contains three parts: Multi-scale Fusion Coding
Architecture, Regional Attention Module (RA) and Feature
Fusion Model (FF). We make detailed description in the
following sections.

Fig. 3 The pipeline of the whole
architecture
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Fig. 4 The proposed
generator G

3.1.1 Multi-scale fusion coding architecture

Since the seminal work of U-Net [30], skip connections
between the corresponding encoder and decoder stages
have been widely used in image/video restoration and
raindrop removal owing to its superior pixel-wise regression
ability. Benefit from this, similar U-Net architectures are
exploited as the basic image deblurring framework, which
are composed of convolution modules and multi-layer
cascaded residual blocks [12]. After deep research on the
representative deblurring works [20, 21, 25, 38], we find
that it is essential to explore the pixel mapping relationship
between the input blurry image and the output clear image
according to different blur features, and utilize the multi-
scale information of images as much as possible.

Additionally, based on the typical encoder-decoder struc-
ture [30], we need to consider the following factors for the
deblurring task: 1) It is difficult to comprehensively learn
the blur information by using only single-scale image in
the encoder. 2) More encoder-decoder modules are stacked
for large receptive field to deal with pretty blurry image,
which will lead to a sharp increase of model parameters
and the size of the intermediate feature map is too small
to maintain the spatial distribution for reconstruction infor-
mation. 3) More convolution layers at each level of the
encoder-decoder module will slow down the convergence
speed of the model and cause redundant parameters. Tak-
ing into account all these factors, we propose a multi-scale
fusion coding framework by merging the multiscale fea-
ture information of the blurry image into the single scale
deblurring network, which making full advantages of the
multi-scale feature information and fast inference time of
single scale deblurring framework. Especially, we adopt
convolutions with different dilated rates to extract features
from the 2 times and 4 times down sampled images, so as
to enhance the representation ability of the encoder layer.

Since the Batch Normalization layer will disrupt the dis-
tribution among feature maps [25], we remove the Batch
Normalization layer of the resblock of the encoder-decoder
to make the model fit for our deblurring task. The proposed
framework consists of convolution module and ResBlock.
We construct the convolution module by cascading convolu-
tion layer and LeakyReLU activation functions. ResBlock is
cascaded by convolution layer, LeakyReLU activation func-
tion, and convolution layer. Figure 5 illustrates the proposed
multi-scale fusion coding network in detail. Firstly, we
adopt twice subsamplings by residual learning to enhance
the restoration quality. Then, we add multi-scale feature
information for fusion coding to obtain large receptive field
for deblurring. Meanwhile, we apply dilated convolutions
with different dilated rates (i.e.,2 and 3) to 1/2 and 1/4 of the
input image respectively.

3.1.2 Regional attention module

For most image deblurring tasks [21, 25, 38], lots of weights
usually are utilized to learn the mapping relationship
between the blurred image and the real image, which
leads to heavy learning burden. So, we propose a regional
attention module to adjust the feature weights dynamically
according to the blurry representation of different regions,
as illustrated in Fig. 6. Concretely, we train our model
in patch manner. Firstly, the feature maps are sliced into
patches closed to the size of the patch. Then, each patch
is sent to our RA module for inference. Finally, we
concatenate all the inference results. The whole RA model
can be described as:

Uout = Conv[ C
i=1,2,3,4

(FSi(S(fx))·dConvi(fx))]+fx (3)

Where fx represents the feature map of the output of the
Encoder in Fig. 4, denoting the spatial pooling operation,
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Fig. 5 Our Multi-scale Fusion Coding Architecture. Including the
input blurred image on the left (1, 1/2, 1/4 scale), the output deblurring
image on the right (output), convolution modules, deconvolution mod-
ules, Resblocks. The four numbers of each module represent the chan-
nels of the input feature maps, the channels of output feature maps, the

convolution/deconvolution strides and the convolution/deconvolution
dilated rates respectively. We set the size as 3 for all convolution
kernels.

⊕
represents element-wise summation, and the dotted lines

represent skip connections with element-wise summation

C(.) denotes the concatenation operation, Conv denotes
the convolution operation. Inspired by SPPNet [11], we
divide the feature map fx into 1×1 and 2×2 regions with a
total of five groups of feature maps followed by the global
average pooling and the concatenation operation to form the
representation information. FSi represents the i-th group of
full connection (FC) layer and sigmoid function. dConvi(.)
represents the i-th parallel of dilated convolutions with the

i-th dilated rates (i.e., i=1,2,3 and 4), which can effectively
cover different surrounding receptive field. FSi outputs the
i-th blurry attention value, and then weight it to the output
feature vector of dConvi(.). The weighted feature vectors
are concatenated and fused through the Conv. We introduce
skip connection between the inputs and outputs of fused
features to conduct residual learning, which is capable of
improving deblurring performance effectively. In general,

Fig. 6 The structure of Regional
Attention Module
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the proposed RA module allows the network to focus on the
blur information of local regions, which can significantly
improve the performance of local deblurring.

3.1.3 Feature fusion module

Recently, multi-scale blurry feature information are utilized
to restore more details via different structures in deblurring
tasks, which yielded more accurate results. Prior works
in [9, 25] aggregated multi-scale feature information by
connecting the shallow features with the global skip
connection to obtain sufficient feature information to
get better restored images. In [21], authors exploited
feature pyramid for integrating multi-scale feature coding
information to obtain clear images with more local textures
and colors. Scale-recurrent network [38] restored sharp
images from blurring images by using the “coarse-to-fine”
scheme in mutiple scales. Deep hierarchical multi-patch
network [43] restored sharp images from fine-to-coarse by
stacking multi-patch. Although these methods are effective
by making full use of multi-scale feature information of
blurry images, most of them only adopt simple fused
methods by concatenation or addition. In other words,
they do not find out the correlation between features
only through a simple way to integrate the high-level
semantic information and low skip-level feature information
in essence. To tackle these limitations above, we proposed
an effective feature fusion model, as illustrated in Fig. 7. fs

represents the skip feature map of the encoder, fc represents
the high-level semantic feature map, fs, fc ∈ RH×W×C .
We first merge fs and fc as the input of the FF model, as
shown in formula (4). Then we obtain the outputU of the FF
model. can be calculated by formula (5),where . represents
element-wise product.

f = fs + fc (4)

U = Fsq(f ) · f + f (5)

In our FF model, the channel average response is
generated by the global average pool, then it is weighted
by convolution and sigmoid activation function, finally, the
residual connection is added to make effective fusion of
channel features. By this way, our proposed network is
capable of improving the generalization ability with FF
model without increased parameters.

3.2 Discriminator

The discriminator D is used to distinguish the generated
clear image from the real clear image. It can not only judge
whether the image is real or not, but also help to generate a
clear image closer to the real image. If it is a real image, the
output is a clear image generated by the generation network,
otherwise, the output is 0. In both cases, for the image that
cannot be judged, the generated image is very similar to the
real image, and then the network model stops training. All
convolution layers in the network are identified, followed
by the InstanceNorm layer layer and LeakyRelu activation
layer. In order to avoid the output of LeakyRelu function
being 0, sigmoid function is used in the last layer.

Figure 8 illustrates the framework of our discriminator,
where Conv, LeakyRelu, INorm, Fully Connect and
Sigmoid refer to convolution layer, leaky correction,
Instance Norm, full-connected layer and Sigmoid active
function, respectively. All of them use a convolution layer
with a step size of 2, a filter size of 4×4, and a leaky
correction linear unit with a slope of 0.2.

4 Experiments and discussions

In this section, we first report the databases and the
implementation details in Section 4.1. Then, we make
extensive qualitative and quantitative evaluations of the
proposed MFC-Net and the representative non-uniform
blind image deblurring works in Section 4.2. Next, we

Fig. 7 The structure of Feature
fusion Module
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Fig. 8 Our discriminator D

conduct ablation studies to verify the effectiveness of the
different proposed components in Section 4.3. Finally, we
conduct model analysis in Section 4.4.

4.1 Datasets and implementation details

4.1.1 Datasets

The GoPro dataset [25] is the large realistic blurred image
benchmark by averaging consecutive frames in a high-
speed video. It contains 3,214 blurry/clear image pairs with
1280×720 resolutions. We adopted 2,103 pairs of pixel-
aligned blurry/clear images for training and the rest 1,111
pairs for evaluation in our work.

The DVD dataset [35] contains 71 videos, each with 3-5s
average running time,which are split into 61 training videos
and 10 testing videos. All of them are captured at 240fps
with multiple devices, such as iPhone 6s, GoPro Hero 4
Black and Nexus 5x mobile phone for well generalization
avoiding bias towards specific capturing device. In total,
71 videos are generated 6,708 synthetic blurry/clear pairs
according average continuous short exposure frames [39],
of which 5,708 blurry/clear pairs are used for training and
the remaining 1,000 pairs were used for testing in our work.

Remote Sensing dataset [34]. The Remote Sensing
dataset contains 800 remote sensing images. We adopt
DeblurGAN [20] to generate random motion blur kernel
to generate the blurry/clear pairs of the test dataset of the
Remote Sensing dataset for direct test without training,
aimed to evaluate the generalization ability of the proposed
model in different scenarios.

In order to improve the generalization ability of image
deblurring during training, we conducted training by com-
bining the training sets of the GoPro dataset and the
DVD dataset, and then tested and evaluated them respec-
tively. In addition,we enhanced the datasets by applying
data augmentation, including random flippings and rota-
tions (0◦,45◦,90◦,135◦,180◦). We randomly cropped each

original image to a 256×256 pixels as the input of the
training in each iteration.

4.1.2 Implementation details

We trained our MFC-Net by utilizing PyTorch framework
on a PC equipped with Ubuntu 16.04 system, an GTX
2080Ti GPU and Intel Xeon(R) Gold 6152 CPU. We
conducted comprehensive evaluations on different network
structures and models. In order to quantitatively evaluate
the performance of our proposed model, we adopted
the commonly used evaluation indicators, namely, Peak
Signal to Noise Ratio (PSNR), Structural Similarity(SSIM),
runtime(i.e.,the average inference time on a single GPU)
and model parameter. Note that, a higher SSIM value
implies a deblurred image that is closer to the sharp image
in terms of structural similarity, while a higher PSNR value
indicates the similarity in terms of pixel-wise values. For all
compared models, which have provided their source codes,
to compare testing runtime of different models ran under
different deep learning framework for fairness.

In this paper, we adopted the Adam optimizer with β1=
0.9, β2= 0.999 to train the proposed model. We set the batch
size as 16, initial learning rate as 10−4, which degraded
by multiplying by 0.5 after every 150K iterations, and
the whole training process continued to 1000K iterations.
To be fair, we reproduced these methods by conducting
their official implementations with default settings and
parameters.

The loss function LG of our proposed MFC-Net consists
of content loss [36] Lcontent , perception loss [21, 29]
Lperceptual and WGAN loss [5] LWGAN , while we adopted
the loss function LD of the discriminative network in
WGAN-GP, we need to minimize the objective function as
below:

LG
min

= α
1

2CHW

∥∥Xsharp − Xg

∥∥2 + β‖V GG5−3
(
Xsharp

)

−V GG5−3
(
Xg

) ‖ + γ
[−E

[
D

(
Xg

)]
(6)

LD
min

= E
[
D

(
Xg

)] − E
[
D

(
Xsharp

)]

+λE
[(∇D(X̂)2−1

)2]
, where X̂ = εXsharp + (1−ε)Xg

(7)

Where Xg and Xsharp represent the image generated
by the generator and the real image respectively, C, H ,
and W are dimensions, V GG5−3 represents the output of
the active layer (ReLU) of the third convolutional layer
of the fifth convolutional block in the pre-trained VGG-
16 network [33]. E denotes expectations, and D denotes
discriminator, ∇ denotes the gradient, X̂ denotes random
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Table 1 Deblurring results on
GoPro dataset Method type Method PSNR/SSIM Size Runtime

Machine Learning Kim et al. [17] 23.64/0.8239 - 3600

Xu et al. [24] 25.10/0.8300 - 3800

Sun et al. [37] 24.61/0.8129 54.1 1500

Deep Learning Nah et al. [25] 28.49/0.8543 303 3.09

DeblurGAN [20] 28.70/0.8419 37 0.05

Tao et al. [38] 30.19/0.9024 80 0.72

Zhou et al. [44] 30.55/0.9072 18 0.06

DeblurGANv2 [21] 29.55/0.9010 238 0.35

Zhang et al. [43] 30.25/0.9051 29 0.03

Gao et al. [8] 30.92/0.9153 50 0.83

Qi et al. [28] 28.81/0.8664 32 1.3

Ye et al. [41] 30.22/0.9052 25 0.25

Ours 31.04/0.9160 16 0.01

Size and Runtime are expressed in MB and second. The Best Performance is shown in Red and the
Second-Best is in Blue. A “-” indicates that the result is not available

difference sampling on Xsharp and Xg . The trade-off
parameters of α, β, γ , and λ are set to be 0.5, 0.005, 0.001
and 10, respectively.

4.2 Quantitative evaluations

4.2.1 Quantitative evaluation on GoPro dataset

We compare our proposed model with several state-of-the-
art works: Kim et al. [17], Xu et al. [24], Sun et al. [37],
Nah et al. [25], DeblurGAN [20], Tao et al. [38], Zhou et al.
[44], DeblurGANv2 [21], Zhang et al. [43], Gao et al. [8],
Qi et al. [28]and Ye et al. [41] on GoPro dataset. Unless
otherwise noted, all images we evaluated in the experiment
are RGB images.

As illustrated in Table 1, our proposed model achieves
better performance compared with the methods listed in
Table 1,including the machine learning based methods and
the end-to-end deep learning based methods. Compared
with the machine learning algorithms with Kim et al. [17],
Xu et al. [24] and Sun et al. [37], our proposed method
achieves the best result with improvements of 7.4dB/0.0921,
5.94dB/0.086, and 6.43dB/0.1031, respectively. Compared
with the end-to-end deep learning methods, our MFC-Net

again achieves the best PSNR/SSIM results, which is
improved by 4.11dB/0.0741, 1.49dB/0.0150, 0.49dB/0.0088
and 2.23dB/0.0496 compared with the single scale deblur-
ring network DeblurGAN [20], DeblurGANv2 [21], Zhang
et al. [43], Ye et al. [41] and Qi et al. [28], respectively.
We can observe that, our MFC-Net also outperforms the
the multi-scale images or stacked images based models,
including Nah et al. [25], Tao et al. [38], Ye et al. [41]
and Zhang et al. [43], with increases of 2.25dB/0.0617,
0.85dB/0.0136, 0.82dB/0.0108 and 0.79dB/0.0109, respec-
tively. Although our proposed MFC-Net achieves compa-
rable PSNR/SSIM result with Gao et al. [8] with only an
increase of 0.12dB/0.0007, we have absolute advantages in
terms of running speed and model size. To further verify the
comparision results in Table 1 and compare performances,
we obtain the performance for various test subsets chosen
randomly in GoPro dataset, and perform statistical tests on
the results. Specifically, we randomly split the GoPro test
set into 5 subsets of the same size for testing with our pro-
posed MFC-Net and methods of Gao et al. [8], Zhang et
al. [43], Ye et al. [41] and DeblurGANv2 [21], respectively.
The results are shown in Table 2. Moreover, we conduct
T-test, as shown in Table 3. It is obviously to see that
our proposed MFC-Net outperforms the methods including

Table 2 PSNR results of
GoPro test set Test dataset Our Gao et al. [8] DeblurGANv2 [21] Zhang et al. [43] Ye et al. [41]

Test set subset 1 32.54 32.23 31.58 31.71 31.88

Test set subset 2 32.16 31.98 31.15 31.33 31.46

Test set subset 3 29.68 29.51 28.02 29.00 28.79

Test set subset 4 29.49 29.58 27.60 28.58 28.65

Test set subset 5 31.32 31.29 29.44 30.62 30.30
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Table 3 T-test results of Table 2

Pairing number Method Mean Standard deviation Mean difference t p

1 Our vs DeblurGANv2 31.04 vs 29.56 1.4 vs 1.79 1.48 7.171 0.002

2 Our vs Zhang et al. 31.04 vs 30.25 1.4 vs 1.4 0.79 18.172 0.000

3 Our vs Gao et al. 31.04 vs 30.92 1.4 vs 1.3 0.12 1.747 0.156

4 Our vs Ye et al. 31.04 vs 30.22 1.4 vs 1.48 0.82 12.588 0.000

Fig. 9 Visual comparisons on
testing dataset from the GoPro
dataset. From top to down are
the blurry input , deblurring
results of Kupyn et al. [21], Tao
et al. [38], Zhang et al. [43], Gao
et al. [8] and our results
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Zhang et al. [43], Ye et al. [41] and DeblurGANv2 [21]
with p<0.05, which indicates that there is significant dif-
ferences. Our proposed MFC-Net achieves PSNR of 31.04,
while Gao et al. [8] achieves PSNR of 30.92, in terms of
the indicator of PSNR, the performance of the both is com-
parable (p>0.05). Although our model has a similar result
on PSNR/SSIM with Gao’s but achieves running time with
0.1s, which is more faster than Gao’s with 83 times and
34 MB reduction of the model parameters. Compared to
Zhang et al. [43], our model has a similar result on run-
ningtime with 0.1s, but it has advantage in PSRN indicator
(p<0.05), and it is more faster than Zhang et al with 3
times and 13MB reduction of the model parameters. On the
whole, our proposed method makes trade-off in terms of
performance-complexity, achieving the effect of real-time
use. In general, most of the deep learning based methods
have great advantages over the traditional machine learning
based methods for image deblurring. And we find that the
performance of the proposed MFC-Net is greatly improved
compared with the same single-scale networks, including
DeblurGAN [20], DeblurGANv2 [21] and Qi et al. [28],
which verifies the effectiveness of MFC-Net. Zhou et al.
[44] adopted the traditional U-net framework and removed
the Batch Normalization layer, which greatly improved the
performance(PSNR = 30.55). However, even if we adopted
the same strategy by removing the Batch Normalization
layer, the MFC-Net still achieves better performance. Dif-
ferently from Zhou et al. [44], Gao et al. [8] utilized the
cyclic parameter sharing network to learn blur informa-
tion repeatedly to obtain good performance, but the cyclic
scheme would caused serious time-consuming. While we
carefully design the regional attention module, multi-scale
fusion coding architecture and feature fusion module, with-
out cyclic parameter, which still achieve better performance
than the former and make balance between performance and
speed.

As illustrated in Fig. 9, our MFC-Net also achieves
the best visual restoration quality, and generates more
explicit details and sharper structures in terms of restoration
quality. The visual restoration results from Gao et al. still
suffer from artifacts, as illustrated in Fig. 9a, artifacts
appear near the person’s hand, and also artifacts appear
near the woman’s glasses in Fig. 9b. Similar to the basic
framework of Tao et al. [38], but differently, Gao et al.
[39] adopted a nested skip connection structure for the
nonlinear transformation modules to enhance the sharp
details. However, it may result in magnifying the tiny
blurry information in the blurry image and creating artifacts
around it. Differs from Gao et.al, the proposed MFC-Net
can effectively transfer the main features information avoid
paying too much attention to the local details by exploiting
the ResBlocks in Fig. 5. Simultaneously, the adversarial
training, the adversarial loss and the perceived loss all

Table 4 Deblurring results on DVD dataset

Method PSNR/SSIM

DVD(single) [35] 25.44/0.8412

MoblieNet [21] 28.54/0.8654

Qi et al. [28] 28.72/0.8702

Tao et al. [38] 29.55/0.8822

Zhang et al. [43] 29.01/0.8732

Ye et al. [41] 30.81/0.9045

Ours 30.92/0.9057

The Best Performance is shown in Red and the Second-Best is in Blue

help to generate more natural images. Compared to the
DeBlurGANv2, the proposed MFC-Net produces excellent
deblur performance, which benefits from the proposed
multi-scale fusion coding framework, the feature fusion
module and the regional attention module.

4.2.2 Quantitative evaluation on DVD dataset

Table 4 shows the comparison results on DVD dataset.
Among all the results, our MFC-Net again achieves
the best PSNR/MSSIM result, with improvements of
5.48dB/0.0645, 2.38dB/0.0103, 2.20dB/0.0355, 1.37dB/
0.0235, 1.91dB/0.0325 and 0.11dB/0.0012 compared with
DVD [35], MoblieNet [21], Qi et al. [28], Tao et al. [38],
Zhang et al. [43] and Ye et al. [41], respectively. All
these results furtherly demonstrates that our proposed model
has better generalization in different scenarios. The visual
examples is shown in Fig. 10. Obviously, the deblurring
performance of the proposed MFC-Net is far more superior
to the existing methods. In addition, the proposed MFC-Net
is capable of restoring better local details, such as the car,
boat pole and leaves in Fig. 10. Consequently, all the images
shown for visual comparisons strongly demonstrate that the
proposed light-weight MFC-Net can generatemore explicit
details and sharper structures.

4.2.3 Quantitative evaluation on remote sensing dataset

The comparison results on the Remote Sensing dataset are
shown in Table 5, which further verify the generalization
ability of our model. We can observe that our MFC-Net
again achieves the best PSNR/SSIM result, with improve-
ments of 2.66dB/0.0523, 0.57dB/0.0102 and 0.42dB/0.0085
compared DeblurGAN [20], Gao et al. [8] and Zhang
et al. [43], respectively. DeblurGAN [20] adopts a single-
scale scheme, and Zhang et al. [43] and Gao et al. [8]
employed multistage parameter sharing schemes respec-
tively in building their deep networks. Visual comparison is
shown in Fig. 11. Obviously, our model generally produces
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Fig. 10 Visual comparisons on
DVD dataset. From top to
bottom are the blurry input,
deblurring results of Zhang et al.
[43], Ye et al. [41], and our
results

better results than those of [20, 43] and [8]. For example, the
clarity of houses and edges is restored better, the deblurring
effect of grass is more natural, as can be seen from Fig. 11a,
b and c, respectively.

4.3 Ablation study and analysis

Finally, we conduct ablation experiments on GoPro dataset
to verify the effectiveness of different components in our

proposed MFC-Net, including baseline, RA module and
FF module. It is note that, for all experiments, we also
train these networks using the identical training strategy and
parameters as in Sections 4.1 and 4.2.

Validation on Basic Network Architecture We set our multi-
scale fusion coding network(i.e.,removed the FF ans RA
models) as the baseline, and make comparison with its
incomplete versions,i.e., the single-scale network with only
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Table 5 Deblurring results on remote sensing dataset

Method PSNR/SSIM

blurred images 19.85/0.6042

Kupyn et al. [20] 20.64/0.6285

Gao et al. [8] 21.94/0.6463

Zhang et al. [43] 22.09/0.6480

Ours 22.51/0.6565

The Best Performance is shown in Red and the Second-Best is in Blue

the original input, as reported in Table 6. From the results,
our baseline model exhibits significant superiority over
its single-scale network, surpassing by 0.63dB/0.0048 in
terms of PSNR/MSSIM indicators. It is evident that the

Table 6 Evaluation of the basic network architecture on GoPro dataset

Method PSNR/SSIM

Sigle-scale network 29.54/0.8952

Baseline 31.17/0.9010

multi-scale fusion coding framework boosts the deblurring
performance significantly.

Validation on FF and RA Models For further testing and
verifying the effectiveness of our FF model and RA model,
each of them was added gradually to the baseline network.
As shown in Table 7, compared with the baseline, a
increase of 0.23dB/0.0030 is achieved with the addition
of the FF module, almost without any extra computation.

Fig. 11 Visual comparisons on
Remote Sensing dataset. From
top to bottom are the blurry
input, deblurring results of
Kupyn et al. [20], Zhang et al.
[43], and our results
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Table 7 Ablation analysis of FF and RA models on GoPro dataset

Method PSNR/SSIM

Baseline 30.17/0.9010

Baseline+FF model 30.40/0.9040

Baseline+FF+RA model 31.04/0.9160

Additionally, it only needs 0.008s for image deblurring
with 1280×720 pixels in testing stage,which indicates that
our FF model is beneficial to real-time deblurring while
maintaining good performance. Afterwards, we add the RA
model based on the FF model, the PSNR/MSSIM again
improves with 0.64dB/0.0120, which demonstrates that our
proposed FF model is effective for deblurring. All these
results demonstrate that our proposed FF and RA model is
prone to enhance the deblurring performance.

Validation on Regional Feature Weighting Strategy We
further verify the effectiveness on focusing the local blurry
feature of the regional feature weighting strategy in RA
module. It is noted that, in training stage, we trained
images cropped randomly with size of 256×256. After
twice subsampling by the network encoder, we obtained
feature maps with size of 64×64, and then sent them into
the RA module.In test stage, the resolution of the test
images is 1280×720, so we need to divide each test image
into sub-regions firstly, and then send each sub-region into
the RA module one by one. We adopt six methods for
regional division,i.e, 1×1, 2×2, 3×3, 5×3, 4×4 and 5×5.
As shown in Table 8, the PSNR/SSIM result improves along
with the increasing sub-regions. Especially the PSNR/SSIM
achieves the best result with the size of 64×60 pixels when
adopt 5×3 regional division method, which is close to the
training size of 64×64 pixels. After that, as the number
of sub-regions increase, that is, the smaller the size of
the feature map sent into RA module, the performance of
PSNR/SSIM gradually decreases. These results show that
the weight value obtained by the RA module of different
regional sizes can effectively focus on the local blurring

Table 8 Evaluation of the proposed regional feature weighting strategy
on GoPro dataset

Regionalization Size of input module PSNR/SSIM

1×1 320×180 30.79/0.9119

2×2 160×90 30.85/0.9127

3×3 106×60 30.95/0.9142

5×3 64×60 31.04/0.9160

4×4 80×45 31.00/0.9148

5×5 64×36 30.73/0.9115

features by weighting the regional features, which helps to
improve the deblurring performance.

4.4 Model analysis

From the above quantitative and qualitative results, we can
clearly observe the effectiveness of MFC-Net. Here we
make a deeper discussion on MFC-Net.

Performance As illustrated in Tables 1, 4 and 5, our
MFC-Net is superior to other competitive methods without
exploiting complex computation and multi-stage network
structure. Moreover, as illustrated in Table 5 and Fig. 11,
we show the advantages of our model when evaluated
in different scenarios. It is obviously to see more clearer
details in different scenarios produced by our MFC-Net
compared with other methods. Combined with the analysis
of the experimental results, we think that the performance
obtained by proposed MFC-Net is mainly attributed to
three points: 1) removing the Batch Normalization layer.
Intuitively, the essential task for image deblurring is to
learn the direct absolute difference between the input and
the output. Batch normalization layer changes the data
distribution, which is not conducive low-level task learning.
2) proposing a multi-scale fusion coding framework. It
is difficult for the single-scale network to learn blurry
image information, while the multi-scale network is able
to pay more attention to learn the blur information.
Consequently, we adopt the multi-scale coding fusion
strategy to make balance for the speed and performance. 3)
proposing a regional attention module. The stacked residual
blocks can not effectively learn and reconstruct the sharp
image information. So, we expolite the fusion of blur
representation and atrus spatial pyramid pooling to make the
network learn the image blur information independently, so
as to achieve better deblurring performance.

Runtime In addition to the excellent generalization per-
formance and lightweight characteristic, it only takes 10
milliseconds to process a 720×1280 image by MFC-Net.
Compared with other models [8, 38, 43], the following fac-
tors may be contributed to the rapid operation of our MFC-
Net: 1) multi-scale fusion coding network helps to avoid the
unnecessary computation cost at the multi-stage; 2) adopt-
ing smal-size convolutional filters(kernel size equals 3); 3)
adopting simple residual structure to reduce the unnecessary
complex calculation process.

Deblurring method Different from the existing similar
Unet [30] networks and multi-scale networks [8, 38, 43],
our proposed MFC-Net adopts simple mul-scale fusion
coding method. As shown in Table 1, the mainstream
multi-scale patch network [8, 43] and multi-scale recursive
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network [38] achieve excellent deblurring performance
at the cost of time due to the multi-scale information
of the input image. Differently, we fuse the multi-scale
information in a single-scale network to achieve excellent
deblurring performance under the premise of ensuring
fast speed. Ablation experiments can be proved that
our proposed RAM can independently learn the blurry
features of different regions, which helps to enhance
the interpretability of model deblurring and improve the
generalization ability of the model. Although our MFC-Net
has a much better overall performance, we believe there is
still room for it to make improvements. A possible solution
is to further deeply mining the blurry information of blurry
image, such as edge information, spatial transformation, etc,
which will be explored in our future work. Another possible
solution is to design network that is able to disentangle
the blur information, and take the fusion results of the blur
information with the shrap image as the training data to
enhance effectively training.

5 Conclusions

In this paper,we propose a novel powerful MFC-Net
for image deblurring with kernel-free in an end to end
manner. The proposed framework can obtain enhanced
blurry feature representation essentially by encoding the
multi-scale information of the blurring image, aiming to
improve deblurring ability of the network. Furthermore,
we propose regional attention model by adopting regional
representation weighting to focus on the local blurry
information so as to induce the network to learn better.We
also design a special feature fusion model to mining
correlations between multi-scale features. Additionally,
for making the deblurred image as close as possible to
the real one, we introduce context loss and perceptual
loss to enhance the model’s recovery at local texture,
color, edge and other details, effectively, avoiding ringing
artifacts while preserving details. Extensive experiments
demonstrate that our proposed network outperforms those
existing methods with fewer parameters and high restoration
quality.
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