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Abstract
Multi-view clustering is an important and challenging task in machine learning and data mining. In the past decade, this topic
attracted much attention and there have been many progress achieved in this field. However, in reality, due to different factors
such as machine error, sensor failure, multi-view data are mostly incomplete, thus how to deal with this problem becomes
a challenge. Some existing works mainly deal with view missing case, which means in certain view of datasets, the whole
features of some samples would be lost. In fact, missing value can occur in any position, that is, any value missing case.
In that case, there would be some values missed in any view with sheerly random way. We proposed a two-stage algorithm
involved multiple imputation and ensemble clustering to deal with multi-view clustering in any value missing case. Multiple
imputation is adopted to deal with missing values problem and weighted ensemble clustering is applied to implement
multi-view clustering. The experimental comparison on several data sets verified the effectiveness of the proposed method.
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1 Introduction

Nowadays, along with data collection techniques, multi-
view data has become ubiquitous around us in the real
world. For example, a product online can be described by a
paragraph of text introduction or several images, or even a
short video. In web page classification tasks, the words on
the web page itself and words underlying the links pointing
to the web page from other pages constitute the two views of
the web pages [4, 9, 11]. How to mine the rich information
underlying the multi-view data becomes a challenging
problem. As an important tool in machine learning and
data mining fields, multi-view learning attracted more and
more attentions during the past two decades [7, 10, 14,
16–19, 33, 40]. Relying on whether to use the labels,
multi-view learning consists of multi-view classification
and multi-view clustering. This work will focus on multi-
view clustering. Multi-view clustering aims to cluster the
subjects into several groups by integrating the multiple view
information of the subjects [24, 39].

Besides multi-view clustering, there is a similar tech-
nique named ensemble clustering (EC) to mine multi-
view information by clustering. Ensemble clustering boosts
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Fig. 1 Differences between
view missing case and any value
missing case. These two pictures
just show one view. On indicates
the n-th sample while Fm

indicates the m-th feature

the clustering performance by ensembling many cluster-
ing algorithms [1, 13, 15, 27, 34]. When each clustering
algorithm works on each view, EC becomes multi-view
clustering. Thus, EC is a way to implement multi-view clus-
tering to some degree. EC mainly consists of two steps:
generation step and consensus step [35]. Generation step
aims to generate many clustering results which are prepared
for consensus step to combine and finally obtain a con-
sistent result. When EC works for multi-view clustering,
consensus step should be emphasized to achieve a better
clustering result. In addition, ensemble strategy is highly
popular in many Kaggle competitions. In this paper, we will
adopt EC to implement multi-view clustering to take advan-
tage of ensemble learning merits. Up to date, there exist a
large number of multi-view clustering works. Most of these
works assume that all the multi-view information are avail-
able and they rarely deal with the situation where missing
values occur in the data. Unfortunately, missing values are
pretty common in real world.

Due to the errors occurring in the processes of data
collecting, data inputting, data storing and so on, missing
data problem are pretty common in multi-view data. It is
a significant challenge to cluster the multi-view data with
missing values. As for missing value handling techniques,
they can be categorized into three groups: deleting the
subjects with missing values, imputation, and no handling.
For the first group of techniques, after deleting the subjects
with missing values, all the remaining subjects have all the
information, but when most of the subjects have missing
value, the information loss is too heavy for real-world
applications. The techniques of the second group can be
further split into single imputation and multiple imputation
(MI). Single imputation methods include mean imputation,
random imputation, regression imputation, EM (expectation
maximum) imputation and so on. Compared with single
imputation, MI imputes the missing value multiple times to
take the missing value uncertainty into consideration, and
performs better in most cases. The third group no handling
is also a technique to deal with missing value. For instance,

an indication matrix is adopted to deal with the missing
views or values in some multi-view clustering works [8,
37]. Among all these missing value handling techniques, MI
performs best in most cases and becomes the most popular
strategy to deal with missing values.

To cluster the subjects with incomplete multi-view
information, there appeared some incomplete multi-view
clustering methods. They can be mainly classified into
two groups. The first group uses an indicator matrix Mij

to represent the ith subject is missing in j th view when
Mij = 1, and the ith subject appears in j th view when
Mij = 0 [26, 36, 37]. The second group imputes the missing
value first and then runs general multi-view clustering
algorithms. It is noted that the first group of methods are
intended to deal with view missing case while the second
group of methods aim to deal with any value missing case.
Examples to explain the differences between two cases of
missing value have been displayed in Fig. 1. View missing
cases refers to the situation where the whole view will
be missed for one subject while any value missing cases
refer to the situation where any feature of any view can
be missed for one subject. View missing cases can be
considered as one special form of any value missing cases
thus any value missing cases themselves are more difficult
to tackle. To date, most of the existing incomplete multi-
view clustering algorithms deal with view missing case.
In this paper, we aim to deal with clustering problems in
the general any value missing cases. We explore a two-
stage method: the first stage is used to deal with missing
values while the second stage is used to ensemble the
clustering results from multiple views. To deal with these
two problems, we adopted the popular MI to handle missing
values and we explored different MI methods to choose
the best and most stable one and then by considering the
contributions from different views are different, we adopted
a view weighting strategy [3, 20] to ensemble. We name our
incomplete multi-view clustering with Multiple Imputation
and Ensemble Clustering as MIEC. We compared it with
the existing incomplete multi-view clustering algorithms
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including state-of-the-art ones and the results verified the
effectiveness of our proposed method.

The contributions of this paper are listed as follows:

• This paper combined multiple imputation and ensemble
clustering to implement incomplete multi-view cluster-
ing for the first time.

• Compared with the existing incomplete multi-view
clustering methods those handle view missing case,
the proposed MIEC can deal with more general data
missing problem: any value missing case.

• To further boost the clustering performance, view
weights are taken into account in the proposed method.

• The experimental comparison with seven other algo-
rithms on five data sets verifies the effectiveness of the
proposed method.

The rest of this paper is organized as follows. Section 2
introduces the related works including MI and EC.
Section 3 details the proposed MIEC. Section 4 shows the
experimental setting and its results. Finally, conclusions are
given in Section 5.

2 Related works

There are closely related works to our proposed incomplete
multi-view clustering algorithm. They are MI and EC. We’ll
introduce them briefly.

2.1 Multiple imputation

MI produces m complete data sets from the incomplete data
by imputing the missing data m times with some reasonable
method. In statics, there are two techniques to implement
MI:

1. Joint Multivariate Normal Distribution MI: This tech-
nique assumes that the incomplete data follows a
multivariate normal distribution. However, this tech-
nique will be inappropriate when the incomplete dataset
doesn’t follow a multivariate normal distribution.

2. Conditional MI: Conditional MI provides many meth-
ods (different distribution models) to users and they
follow an iterative procedure to implement modeling
the conditional distribution of a certain variable given
the other variables. It allows users to be more flexible
to select appropriate distribution models assumed for
incomplete datasets. A popular package named Multi-
variate Imputation by Chained Equations (MICE) [5]
belongs to conditional MI.

The process of MICE package to MI is as follows:
At the first step, the MICE package creates several

complete datasets. It assumes that the whole dataset follows

a specific distribution selected by users, and fills in the
blank with reasonable value following the distribution.
Considering the uncertainty of the predicted values, MICE
creates multiple complete datasets.

At the second step, the Ordinary Least Squares (OLS)
regression is run and a different regression coefficient for
each dataset is obtained to reflect the effect of imputation
according to some basic value such as mean, variance, etc.
Due to the uncertainty of the imputed data, the analysis
results will be considered as the basis of selecting the most
reasonable value. The analysis results are stored in a mira
(multiply imputed repeated analysis) object class.

Finally, all the analysis results of imputed datasets
are pooled together into one complete dataset. With the
parameters in the pool() users select, means, variances, and
other baselines are calculated to obtain the final imputed
complete dataset.

2.2 Ensemble clustering

Ensemble technique was developed to boost classification
performance when it appeared in the beginning. Inspired
by this idea, we investigated the potential of implementing
ensemble technique to deal with clustering problem.
Generally, EC aims to produce a better clustering result
by combing multiple clustering models than the result
produced by individual clustering model. It can be
divided into two steps: generation step and consensus
step [35]. Generation step will generate many clustering
models to feed consensus step to combine. There are
many techniques to achieve the generation step: different
clustering algorithms, different parameters initialization,
different object representations and so on. Consensus step is
the main step in EC algorithm. How to design an appropriate
consensus function is the key to the success of EC. Thus
researchers mainly work on the consensus step. There are
also two ways to implement consensus step: objects co-
ocurrence and median partition.

For the objects co-ocurrence way, Fred and Jain [21,
22] encode the information of the base clusterings as a co-
association matrix whose each entry indicates the frequency
according to which two objects are clustered together and
then treat the co-association matrix as a similarity or
distance matrix to compute the final clustering. Based on co-
association matrix, one graph-based EC method is proposed
in [32] and in the same paper, two other graph-based EC
ideas are figured out. In addition, relabeling and voting are
also popular methods to implement consensus function.

Median partition is defined as the partition that maxi-
mizes the similarity with all partitions in the cluster ensem-
ble, thus it is generally formulated as an optimization
problem. The difficulty of median partition is to define
the similarity measure, thus many similarity measurement
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functions or distance functions are proposed to solve the
problem, such as Mirkin distance [28], rand index [29],
Jaccard coefficient [2] and so on.

Among all these successful EC algorithms, works [3,
20] took into account the different contributions of many
base clustering models to the final results and eventually
demonstrated superior performance. Although they lack the
ability to deal with missing values directly, it can be an
appropriate candidate to implement multi-view clustering in
complete data settings.

2.3 Combination of MI and EC

One of the most significant advantage of multiple imputa-
tion is that it can recover the incomplete datasets without
caring about the form of incompleteness. Given that most
of existing multi-view clustering algorithms are confined to
deal with view missing datasets, the introduction of mul-
tiple imputation to clustering could bring about a great
improvement of the performance of algorithms. Further-
more, multiple imputation yields multitude of datasets and
ensemble clustering is exactly good at processing large-
scale datasets simultaneously. Therefore, combination of
multiple imputation and ensemble clustering would be a
brand-new and effective approach to implement clustering
on incomplete multi-view datasets.

3 Incomplete multi-view clustering with
multiple imputation and ensemble
clustering

In this section, we present our MIEC method in detail. It is
split into two stages: MI and EC. We utilize MI to fill the
incomplete datasets to obtain a set of complete datasets, and
then perform the EC algorithm on the complete datasets to
accomplish the clustering.

3.1 Multiple imputation

Compared with single imputation, MI takes the uncertainty
of the missing value into consideration and fill in more
robust missing values. Especially in statistics, MI has
become the most popular and effective technique to deal
with missing values. Just as we introduced in Section 2.1,
there are many algorithms to implement MI. In the
popular R package MICE [5], there are some common
algorithms: Sample, RF(Rondom Forest), Cart, Misdatouch,
et al.

These algorithms’ performance vary on different
datasets, thus it is necessary to select the most effective
algorithms roughly. We donot need to identify the most
effective one precisely, because its performance will also

depend on the EC strategy. The selection of the algorithms
of MI can be found in Section 4.6.2

3.2 Ensemble clustering

As we have known that EC consists of two stages:
generation and consensus function. In generation step, after
we obtained the set of complete datasets derived from
performing MI on one incomplete dataset, we could choose
some clustering algorithms such as k-means to perform on
each view of the complete datasets, respectively. Finally,
each view of each complete dataset corresponds to one
result which is a co-association matrix [23].

Xv = {Xv
1 , X

v
2 , · · · , XV

nv
} ∈ Rdv∗nvdenotes the data

matrix of the v-th view where dv is the number of the
features and nv is the number of samples. The ground
truth Y (i) = {1, 2, · · · , k} denotes which cluster the i-
th sample belongs to. After generation step, we obtained
many clustering results from each imputation completion
of each view. Let V1, V2, ..., VM be the M cluster model
for M views and Ym be a cluster number assigned to a :
Vm(a) = Ym, where Ym belongs to 1, 2, ..., k, and k denotes
the number of clusters assigned by this result. Each cell of
co-association matrix has the value:

hm(i, j) = δ(Vm(i), Vm(j))

where δ(a, b) is 1, if a = b, 0 otherwise.
For any pair of object(a, b), the true value of the matrix

is:

Z = δ(Y (a), Y (b))

In order to gather the information of all the results, we
introduce a weighted method proposed by [3].

H =
M∑

m=1

αm

1

Lm

Lm∑

l=1

hm (1)

where αm ≥ 0 is weight of the mth view, M denotes the
number of views, Lm denotes the number of iteration.

Let’s introduce a probability model to accomplish the
optimization of H.

The clustering accuracy can be represented as a
probability:

P [hm = 1|Z = 1] = qm (2)

According to the Bayesian estimate of partitioning
probability

P̃ B
m =

∑
l h̄l,m + 1

Lm + 2
(3)

q̃B
m = max(P̃ B

m , 1 − P̃ B
m ), m = 1, 2, ..., M . (4)

For a pair of sample (a, b), considering the margin of
clustering ensemble :
mg = {weighted number of vote of Z−weighted number of against of Z}
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which equals to

mg =
∑

m

αm

1

Lm

∑

l

I [hm = Z] − I [hm �= Z]. (5)

whereZ ∈ 0, 1, it is proven that [3] the probability of wrong
prediction of Z:

Perr <
V ar[mg(H, Z)]
(E[mg(H, Z)])2 (6)

where E[mg(H, Z)]) is the expectation, and V ar[mg(H,

Z)] is the variance of margin.

E[mg(H, Z)]) = 2
∑

m

αmqm − 1

V ar[mg(H, Z)] = 4
∑

m

α2
m

Lm

qm(1 − qm)

The optimization is altered to find the αm when Perr is
minimized. The final solution is

αm =
Lm

qm(1−qm)∑
m

Lm

qm(1−qm)

, m = 1, 2, ..., M (7)

Given that we obtained the optimal H as co-association
matrix, we perform the hierarchical agglomerative cluster-
ing to get the final cluster result. Hierarchical agglomerative
clustering is a bottom-up clustering algorithm and we select
“distance” criterion in our experiments. The algorithm treats
each sample as a singleton cluster and then merge pairs of
cluster to form flat cluster so that the original observations
in each cluster have no greater cophenetic distance than
“threshold” which is a parameter needed to be tuned.

4 Experiment

4.1 Datasets

We choose five complete datasets to perform our algorithm
and make comparisons with seven other algorithms. The
brief descriptions of the datasets are as follows:

– LEAVES1 consists of 1600 samples containing 100
features in each of three views. This dataset is derived
from UCI Machine Learning Repository. 16 leaf
samples for each of 100 plant species are collected, and
for each sample, a shape descriptor, fine scale margin
and texture histogram are given as three different views.

– ORL2 is the data set of the face images from 40 distinct
subjects in AT&T Lab. There are ten different images
for each of 40 subjects. Each image is 92×112 pixels,
with 256 grey levels per pixel. We used a subset with 10
subjects.

– COIL10 is subsampled from Columbia Object Image
Libary (COIL100) [6, 30], which contains 32×32 gray
scale images of 100 objects viewed from varying
angles. The objects are placed on a motorized turntable
against a black background. The turntable is rotated
through 360 degrees to vary object pose with respect to
a fixed color camera. Images of the objects are taken
at pose intervals of 5 degrees. This corresponds to 72
poses per object.

– YALE [25] consists of 165 samples. Each of them
contains 4096, 3304, 6075 features in the three
views. This dataset includes 165 images of raw pixel,
with different conditions, lighting conditions, facial
expression, illumination, etc.

– UCIDIGIT3 consists of 2000 samples with 64,76,216
features in each of three views. This dataset is derived
from UCI Machine Learning Repository. It represents
features of handwritten numerals extracted from a
collection of Dutch utility maps. There are 200 samples
for each of 10 classes in the dataset. In the case of
our experiment, we only choose three feature sets: 76
Fourier coefficients of the character shapes, 216 profile
correlations, 64 Karhunen-Love coefficients as three
views.

Considering that some of these datasets contain too
many features for each view, we perform PCA (principal
component analysis) on YALE, UCIdigit and ORL to pick
up a group of the most important features in order to keep
as much information as possible. These processed datasets

1https://archive.ics.uci.edu/ml/datasets/
One-hundred+plant+species+leaves+data+set
2www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
3http://archive.ics.uci.edu/ml/datasets/Multiple+Features
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Table 1 Summary of the complete datasets

dataset # samples # views # features in each view # clusters

LEAVES 1600 3 100,100,100 100

YALE 165 3 125,125,125 6

COIL 1440 3 30,19,30 10

UCIDIGIT 2000 3 64,76,80 20

ORL 400 4 125,125,125,125 40

kept over 95% information via PCA. The details of datasets
are listed in Table 1.

4.2 Dataset processing

Since we aim to deal with incomplete multi-view clustering,
with the complete datasets, we will miss some values
to obtain the incomplete datasets to work with. As
aforementioned in Introduction, there are two missing value
cases: any value missing and view missing. Accordingly,
two missing mechanisms are designed to produce them. In
the first mechanism, datsets are processed to miss some
data in completely random way. In the second mechanism,
datasets are processed in the following rules that a specific
ratio of samples will lose all the features in some views
while other views will be complete. We conduct this
procedure in each view separately. The detailed procedure
of the two mechanisms are as follows:

For the first mechanism, we generated each indicator
matrix with the same size of dataset matrix Xv(v indicates
v-th view), each entry is generated from an uniform
distribution on (0,1), and then we replaced those elements
below the threshold 0.05 ( 0.1 or 0.2) with NAN and other
elements with 1. In this way, an indicator matrix Av is
obtained for each view. Element-wise product of the original
dataset matrix Xv and the indicator matrix Av gets the
incomplete multi-view dataset. It is noted that the threshold
represents the ratio of missed elements.

For the second mechanism, we firstly generated a random
vector with the length of N (N indicates number of samples)
from an uniform distribution on (0,1), and then we replaced
those elements below the threshold 0.05 (0.1 or 0.2) with
NAN and other elements with 1. In this way, a random
vector bv is obtained from each view, and then a diagonal
matrix Bv with diagonal vector as bv is obtained. If the
original dataset is Xv , Bv × Xv will generate the view
missing datasets.

4.3 Comparedmethods

Corresponding to two missing value cases: view missing
and any value missing, we name our method MICE to deal

with them as MICE VM and MICE AM. To demonstrate
the effectiveness ofMICE VM andMICE AM, we compare
them with the following algorithms.

– Incomplete Multiview Spectral Clustering with
Adaptive Graph Learning (IMSC) [13]: IMSC
combines graph learning with spectral clustering to
propose a framework to deal with incomplete multi-
view clustering. It uses low-rank representation to
construct the graph for each view and then conduct
multi-view clustering in co-regularization way. It can
only deal with view missing datasets.

– View Variation and View Heredity for Incomplete
Multi-view Clustering (V3H) [15]: V3H introduces
the concept of variation and heredity of genetics to
exploit the multi-view data information. It decom-
poses the subspace of data into variation matrix
and heredity matrix and then integrates unique infor-
mation of different views to recover incomplete
datasets.

– Perturbation-oriented Incomplete multi-view Clus-
tering (PIC) [36]: The method aims to tackle the prob-
lem of incomplete multi-view clustering. It presents a
link between perturbation risk bounds and incomplete
multi-view clustering and transfers the missing problem
of incomplete datasets to similarity matrix comput-
ing and finds the minimization of perturbation risk
bounds. However, it can only deal with view missing
case.

– Doubly Aligned Incomplete Multi-view Clustering
(DAIMC) [26]: DAIMC solves the incomplete multi-
view clustering problem by introducing a weighted
matrix to indicate whether the value in corresponding
position is lost in each view and learning a consensus
matrix to combine the information from multiple
views.

– Multiple Incomplete Views Clustering(MIC) [37]:
MIC performs weighted nonnegative matrix factoriza-
tion on each incomplete view and then utilizes the
co-regularized way to get the consensus matrix obtained
from the process of learning the latent feature matrix
of all views, which minimizes the influence of missing
data.

– Partial Multi-View Clustering (PVC) [31]: PVC
could solve the problem of missing data in a
dataset, however, it can only handle two-view datasets.
According to the method [26], with all the two-
view combination of multi-view datasets, PVC is
performed and the best result is selected as the final
result.

– Best Single View (BSV): It performs non-negative
matrix factorization on each single view respectively and
then pick the best clustering result as the final result.
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4.4 Evaluationmetrics

To evaluate the clustering performance, We use four
evaluation metrics: accuracy (ACC), Normalized Mutual
Information (NMI), Adjusted Rand Index (ARI) and F-
Scores [12, 38]. Their definitions are given as follows:

– Accuracy (ACC). Accuracy discovers the one-to-one
relationship between clusters and classes and measures
the extent to which each cluster contained data points
from the corresponding class. It sums up the whole
matching degree between all pair class-clusters.

ACC = 1

N
max(

∑

Xi,Yj

N(Xi, Yj )) (8)

where Xi denotes the i-th cluster in the final results,
and Yj is the true j -th class. N(Xi, Yj ) is the number of
samples which belong to class j are assigned to cluster
i. Accuracy computes the maximum sum of N(Xi, Yj )

for all pairs of clusters and classes, and these pairs have
no overlaps.The greater clustering accuracy means the
better clustering performance.

• Normalized Mutual Information (NMI). For two
random variables X and Y, the NMI is defined as:

NMI(X, Y ) = I (X, Y )√
H(X)H(Y )

(9)

where I (X, Y ) is the mutual information between X

and Y , while H(X) and H(Y ) are the entropies of X

and Y , respectively. Clearly, NMI takes the value from
[0, 1], the higher NMI means the better the clustering
performance.

• Adjusted Rand Index. Adjusted Rand index(ARI) is
a corrected-for-chance version of the rand index. ARI
assumes the generalized hypergeometric distribution as
the model of randomness to deal with the problem
of rand index, which is the effect of random labels
to evaluation results. Both ARI and random index are
calculated by the following four values.

A true positive (TP) decision assigns two similar
documents to the same cluster, a true negative (TN)
decision assigns two dissimilar documents to different
clusters. There are two types of errors we can commit.
A false positive (FP) decision assigns two dissimilar
documents to the same cluster. A false negative (FN)
decision assigns two similar documents to different
clusters. Rand index measures the percentage of
decisions that are correct.

ARI = 2 × (T P · T N − FN · FP)

(T P + FN)(T N + FN) + (T P + FP)(FP + T N)

(10)

Table 2 Clustering results of nine methods on five datasets with 10%
missing ratio. The best one is emphasized with bold font and the
second best one is shown underlined

Dataset Method ACC NMI F ARI

MIEC VM 0.688 0.888 0.624 0.620

MIEC AM 0.853 0.955 0.832 0.833
PIC 0.821 0.910 0.750 0.748

IMSC 0.788 0.901 0.719 0.716

100LEAVES V3H 0.759 0.874 0.637 0.633

DAIMC 0.590 0.792 0.470 0.464

MIC 0.576 0.775 0.396 0.389

PVC 0.247 0.562 0.129 0.118

BSV 0.230 0.536 0.093 0.079

MIEC VM 0.661 0.802 0.563 0.543

MIEC AM 0.649 0.799 0.577 0.557
PIC 0.642 0.663 0.454 0.416

IMSC 0.660 0.671 0.485 0.450

YALE V3H 0.437 0.453 0.223 0.170

DAIMC 0.612 0.646 0.436 0.396

MIC 0.079 0.183 0.122 0.010

PVC 0.388 0.450 0.235 0.177

BSV 0.271 0.408 0.154 0.068

MIEC VM 0.715 0.877 0.663 0.655
MIEC AM 0.668 0.831 0.536 0.523

PIC 0.735 0.860 0.647 0.637

IMSC 0.670 0.847 0.600 0.590

ORL V3H 0.475 0.661 0.280 0.260

DAIMC 0.645 0.812 0.544 0.532

MIC 0.035 0.205 0.049 0.010

PVC 0.410 0.614 0.241 0.222

BSV 0.291 0.531 0.129 0.105

MIEC VM 0.880 0.854 0.846 0.831

MIEC AM 0.866 0.906 0.862 0.845
PIC 0.827 0.863 0.809 0.787

IMSC 0.959 0.918 0.850 0.825

UCIDIGIT V3H 0.758 0.789 0.719 0.677

DAIMC 0.781 0.742 0.694 0.660

MIC 0.100 0.009 0.181 0.001

PVC 0.467 0.409 0.349 0.271

BSV 0.380 0.254 0.262 0.179

MIEC VM 1 1 1 1
MIEC AM 1 1 1 1

PIC 1 1 1 1

IMSC 0.535 0.702 0.440 0.407

COIL V3H 0.950 0.934 0.885 0.879

DAIMC 0.869 0.963 0.856 0.848

MIC 0.051 0.026 0.094 0.010

PVC 0.883 0.952 0.876 0.869

BSV 0.869 0.893 0.799 0.788
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Fig. 2 Clustering performance
of nine algorithms on five
datasets with 10% missing ratio

– F-score The F-score is a way of combining precision
and recall of the model, it is defined as the harmonic
mean of precision and recall.

Precision = T P

T P + FP
(11)

Recall = T P

T P + FN
(12)

F-score = 2
Precision · Recall

P recision + Recall
(13)

For all these four evaluation metrics, the higher value
means better performance.

4.5 Experimental results

We perform our MIEC VM,MIEC AM and seven baselines
on five datasets with 10% missing ratio to compare their
performance. Table 2 and Fig. 2 report the performance in
four evaluation metrics ACC, NMI, ARI and F-score.

According to Table 2 and Fig. 2 , we get the following
analysis:

– Outstanding performance to handle datasets with
view missing: Since other compared algorithms can
only deal with view missing case, here we compare
our MIEC VM with other algorithms on the five
datasets with 10% missing ratio. According to Fig. 2,
our algorithm MIEC VM outperforms the baselines

on all the datasets except IMSC on UCIDIGIT
dataset. One reason why our algorithm shows the
best performance is that the method adopts multiple
imputation to deal with missing values, which can take
the uncertainty of missing value into consideration.
These baselines (DAIMC, PVC, BSV) complete the
incomplete datasets with the average features, which
renders huge deviations. The PIC utilizes a subtle
method to transform the incomplete features into
incomplete similarity entries which makes use of the
values in all views, as a result, PIC performs better than
the other baselines. For our algorithms, we use multiple
imputation to get many sets of the complete datasets,
and then perform k-means clustering algorithm on those
imputed datasets. Finally, we get the weighted results
in co-association matrix which makes full use of all
the existing data as well as lots of imputed data from
multiple imputation.

– Handling the datasets with any value missing:
The significant advantage of our algorithm is that
it is capable of handling with the datasets with
any missing values (MIEC AM). By contrast, the
baselines could only deal with the datasets with
view missing. Meanwhile, according to Table 2, the
performance of MIEC AM is always the best among
all the algorithms, which indicates that our MIEC AM
could tackle the datasets with any value missing
successfully.
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Table 3 The performance of MIEC VM with different missing ratio.
The best one is emphasized with bold font

Dataset ratio ACC NMI F ARI

5% 0.683 0.896 0.628 0.624

100LEAVES 10% 0.688 0.888 0.624 0.620

20% 0.683 0.893 0.628 0.624

5% 0.673 0.815 0.604 0.588

YALE 10% 0.661 0.802 0.563 0.543

20% 0.697 0.796 0.607 0.589

5% 0.733 0.882 0.666 0.659

ORL 10% 0.715 0.877 0.663 0.655

20% 0.690 0.872 0.668 0.662

5% 0.828 0.869 0.815 0.794

UCIDIGIT 10% 0.880 0.854 0.846 0.831

20% 0.768 0.792 0.725 0.692

5% 1 1 1 1

COIL 10% 1 1 1 1

20% 1 1 1 1

4.6 Parameter analysis

4.6.1 The effect of missing ratio

In the above experiments, the parameter missing ratio is
fixed to 10%. Herein, we will explore the effect of missing
ratio. Tables 3 and 4 present the four metrics of MIEC VM

Table 4 The performance of MIEC AM with different missing ratio.
The best one is emphasized with bold font

Dataset ratio ACC NMI F ARI

5% 0.849 0.956 0.833 0.831

100LEAVES 10% 0.853 0.955 0.832 0.830

20% 0.822 0.954 0.821 0.819

5% 0.673 0.790 0.582 0.559

YALE 10% 0.649 0.799 0.577 0.557

20% 0.521 0.746 0.456 0.428

5% 0.675 0.849 0.582 0.572

ORL 10% 0.668 0.831 0.536 0.523

20% 0.573 0.784 0.461 0.449

5% 0.856 0.892 0.845 0.827

UCIDIGIT 10% 0.866 0.910 0.862 0.845

20% 0.860 0.889 0.783 0.825

5% 1 1 1 1

COIL 10% 1 1 1 1

20% 0.988 0.990 0.987 0.986

Table 5 The performance of MIEC VM obtained with different
methods of MI. The best one is emphasized with bold font

Method ACC NMI F ARI

PMM 0.688 0.888 0.624 0.620

RF 0.355 0.666 0.237 0.226

Cart 0.609 0.854 0.513 0.507

Sample 0.645 0.869 0.552 0.547

Midastouch 0.362 0.670 0.251 0.241

and MIEC AM on all the datasets when the missing ratio
is set to 5%, 10%, 20%. We could see that the performance
decreases with missing ratio increasing, while the extent
of decline is becoming smaller, which means that our
algorithm is not sensitive to the missing ratio when missing
ratio is less than 20%.

4.6.2 The effect of methods of multiple imputation

In order to explore the effect of the method of MI, we
select some popular methods including PMM, Sample,
RF, Misdatouch to perform MICE VM and MICE AM on
dataset LEAVES. Tables 5 and 6 present the results with
four clustering metrics ACC, NMI, F, ARI.

It turns out that MIEC VM performs the best with the
method of “PMM”, while MIEC AM performs the best with
the method of “Cart”. Comprehensively, we select “PMM”
as our imputation method in all the experiments.

4.6.3 The effect of weighted process

When it comes to ensemble clustering, MIEC AM and
MIEC VM assign the weights to the co-association matrix
according to the correctness of the clustering results
obtained from co-association matrix of each single view,
and then calculate the weighted average co-association
matrix of all the views to perform consensus function.
To check the effectiveness of the weighting process,
we conduct the comparison experiments on two datasets
100LEAVES and YALE with or without weighting process.
The results are shown in Table 7.

Table 6 The performance of MIEC AM obatined with different
methods of MI. The best one is emphasized with bold font and the
second best one is shown underlined

Method ACC NMI F ARI

PMM 0.785 0.929 0.750 0.748

RF 0.438 0.719 0.327 0.319

Cart 0.802 0.937 0.772 0.770

Sample 0.716 0.908 0.677 0.674

Midastouch 0.466 0.729 0.348 0.340
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Table 7 The Performance of MIEC with or without Weighting Process. The best one is emphasized with bold font

Dataset Algorithm Weighted or not ACC NMI F ARI

100LEAVES= MIEC AM Without 0.794 0.929 0.753 0.751

MIEC AM With 0.853 0.955 0.832 0.830

100LEAVES= MIEC VM Without 0.626 0.859 0.527 0.522

MIEC VM With 0.688 0.888 0.624 0.620

YALE= MIEC AM Without 0.612 0.743 0.516 0.489

MIEC AM With 0.649 0.799 0.577 0.557

YALE= MIEC VM Without 0.649 0.776 0.561 0.539

MIEC VM With 0.661 0.802 0.563 0.543

In Table 7, we have made a comparison between
weighted process and average process. Through the
observation, we can find that both MIEC VM and
MIEC AM with weighting process perform better than
those without weighting process, which indicates that
the weight assignment improves the performance of our
algorithm on all the evaluation metrics.

5 Conclusion

In this paper, we proposed an incomplete multi-view clus-
tering method named MIEC. This method is a two stage
algorithm, the first stage adopts the most popular missing
value handling technique multiple imputation to complete
the multi-view data, the second stage designs a weighted
ensemble clustering algorithm to implement multi-view
clustering considering the different contributions of multi-
ple views. As far as we know, this is the first time to combine
multiple imputation and ensemble clustering to conduct
incomplete multi-view clustering. Compared with many
existing incomplete multi-view clustering methods who just
tackle view missing case, our proposed MIEC can deal
with more general case any value missing. Additionally,
the experiments on several datasets demonstrated that our
proposed methods obtained better performance than exist-
ing incomplete multi-view clustering algorithms in terms of
four evaluation metrics ACC, NMI, F, ARI. Considering that
splitting the method into two stages may result in some gaps,
in future work, we are interested in proposing an incom-
plete multi-view clustering method by conducting multiple
imputation and ensemble clustering simultaneously.
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