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Abstract
Sketch-based image retrieval is of import practical significance in today’s world populated by smart touch screen devices.
Fine-grained sketch-based image retrieval (FG-SBIR) is particularly challenging and uses characteristic of free-hand
sketches to retrieve natural photos at the instance level. From outline and semantic perspectives, a free-hand sketch may
have many natural photos corresponding to it, we call the relationship “one-to-many”, which means that the effectiveness of
FG-SBIR mainly depends on the quality of fine-grained information extracted. Existing deep convolutional neural network
(DCNN) models for FG-SBIR commonly use coarse or first-order attention modules to focus on specific local regions, yet
cannot capture high-order or complex information and the subtle differences between sketch–photo pairs. It is widely known
that the features learned from higher layers of the network are more abstract and of a higher semantic level compared to those
learned from the lower layers, but lose some important fine-grained information. To address these limitations, this paper
proposes a three-way enhanced part-aware network (EPAN), in which a mixed high-order attention module is added after
the middle-level feature space to generate a variety of high-order attention maps and capture rich features contained in the
middle convolutional layer. An enhanced part-aware module is proposed to capture useful part cues and enhance the semantic
consistency of local regions. This allows for learning more discriminative cross-domain feature representations. A larger
number of experiments on several popular datasets demonstrate that our model is superior to state-of-the-art approaches.
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1 Introduction

The use of image retrieval has increased in social media, e-
commerce, medicine, and other fields with the prevalence
of the multimedia data on the internet. Two approaches
are commonly used for image retrieval: text-based image
retrieval (TBIR) [1] and content-based image retrieval
(CBIR) [2, 3]. The former searches for an image by
providing a text description and the latter by providing a
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similar image as a query image. In some cases, it may
be difficult to provide an accurate textual description for
the query image, and it may not always be possible to
give a real image as a query. Sketches are easy to draw
and usually convey richer and more compact information
than text in some scenarios. Therefore, sketch-based image
retrieval (SBIR) has drawn considerable attention recently
[4–15].

The goal of SBIR is to retrieve related photos from a
database for the specific query sketch. Research on SBIR
mainly occurs in two fronts: category-level sketch-based
image retrieval(c-SBIR) [11, 12, 14–17] and fine-grained
sketch-based image retrieval (FG-SBIR) [4, 5, 7, 9, 18]. As
shown in Fig. 1, the goal of c-SBIR is to find natural photos
of the same category for a query sketch, while the goal of
FG-SBIR is to find a unique corresponding natural photo
for the query sketch. The key difference between them is the
granularity of the retrieval results. Compared with c-SBIR,
the FG-SBIR fully exploits the details that can be conveyed
in sketches. This article is interested in the more challenging
FG-SBIR task.
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category-level sketch-based image retrieval

fine-grained sketch-based image retrieval

Fig. 1 Illustration of Sketch based Image Retrieval

Two major challenges for FG-SBIR are illustrated in
Fig. 2: (1) sketches and photos come from two domains,
exhibiting a large domain gap. The sketch is abstract,
mainly composed of shape and contour information, while
the photo contains rich color and texture information.
There are some differences in spatial position and contour
between the sketch and the matched photo. (2) From an
outline and semantics perspective, a query sketch may have
many similar natural photos in the database. Similarities
between different candidate photos and imperfect detail
descriptions further increase the difficulty of retrieval. To
solve the first problem, recently, deep feature learning-
based methods [4, 5, 7, 8, 19–21] have used DCNN to
learn a joint embedding representation. They usually used
triplet loss or contrastive loss for cross-domain similarity
learning. There exist several methods [4, 5, 22] that adopt
edge maps as the intermediate representations to bridge
the gap between free-hand sketches and natural photos.
Meanwhile, several researchers [23–26] have attempted to
bridge the cross-domain gap using generative adversarial
networks (GANs) [27], which translate a natural photo (or
sketch) into its corresponding sketch (natural photo). To
solve the second problem, many studies [4, 16] introduced
an attention mechanism in the network, with the purpose of
focusing representation learning on specific discriminative
local regions. Some studies [4, 28] integrated coarse and

fine features through a fusion module to obtain different
levels of semantic representation.

Although these methods have obtained impressive
results, several difficulties and challenges remain. 1) The
structure of existing DCNN models for FG-SBIR is mostly
composed of several convolution and fully connected
layers. The joint embedding features they learned for
different domains are usually global, without considering
the importance of part-level features for fine-grained
retrieval; moreover, they do not take full advantage of the
rich features involved in the middle convolutional layer,
and the expression ability of the learned feature vector was
insufficient. 2) The common attention methods are coarse-
grained and first-order, such as spatial attention and channel
attention. They have limited ability to obtain complex high-
order information and cannot effectively capture subtle
differences between sketch–image pairs. 3) Most widely
used loss function of deep SBIR methods is triplet loss
[29]. The original triplet loss function only requires that
the feature distances between inter-class to be larger than
that of the intra-class ones, and ignoring the compactness of
intra-class (as shown in Fig. 3).

To address the above limitations, we propose a new
architecture called three-way enhanced part-aware network
in this paper. In FG-SBIR benchmark datasets, the fine-
grained sub-categories contain few samples, edge maps

10902 X. Wang et al.



Fig. 2 An illustration of
FG-SBIR challenges

can increase the semantic information available about
sub-categories. Moreover, from the perspective of visual
abstraction, edge maps are closer to sketches than natural
photos. Therefore, enabling full use of the auxiliary role
of edge maps, we design a three-way network consists
of natural photo branch, sketch branch and edge map

branch. In each branch network, the stacked convolutional
layers are first decomposed into two parts: P1 and P2.
P1 and P2 represent the mid-level and high-level encode
network, respectively. We place the mixed high-order
attention module [30] between P1 and P2 to generate
diverse high-order attention maps to capture rich features

Fig. 3 Illustration of original triplet loss, which ignores intra-class compactness of positive pairs. Two cases can acquire the same inter-class
separability, but the first case has better intra-class compactness, making it easier to choose an appropriate threshold to separate positive and
negative samples
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contained in the middle convolutional layer and produce
the discriminative attention proposals. Part-level features
offer fine-grained information and have been verified to be
beneficial for image retrieval recently, thus, an enhanced
part-aware module is designed to capture useful part cues
and integrate global structural information for an input
feature, where a self-attention module is adopted to learn
the relationship among different part features. In addition, to
increase embedding discriminability, we propose a hybrid-
loss mechanism, which consists of adversarial loss, an
improved bidirectional triplet loss and classification loss.
An adversarial learning constraint is applied to the mixed
high-order attention module to prevent the order collapse
problem, an improved bidirectional triplet loss function to
enhance the separability of inter-class and the compactness
of intra-class. Furthermore, the classification losses are
applied to reinforce semantic consistency of local parts.

Our contributions are: (1) a mixed high-order attention
module is added after the middle level feature space of
each branch network, and the higher-order relationships
among parts are established to generate powerful attention
proposal. In the FG-SBIR task, the ability to obtain
discriminative fine-grained information is improved, which
can be used as a reference for other fine-grained research.
(2)We fully consider the importance of part-level features to
fine-grained retrieval and combine self-attention to design
an enhanced part-aware module to learn the relationship
among different part features and improve the performance
of cross-domain retrieval. (3) A hybrid-loss mechanism
is designed to reduce the domain gap and facilitate the
network learning for FG-SBIR task. Experimental results
show that the superiority of our model over the state-of-the-
art approaches on three FG-SBIR popular datasets.

2 Related work

2.1 Deep Fine-grained SBIR

Compared with c-SBIR, FG-SBIR has more potential for
real-world application. The FG-SBIR problem was first
studied in [31] using graph matching on deformable part-
based models for sketches and photographs. Subsequently,
more and more DNN-based networks have been proposed
to tackle the challenges of FG-SBIR [4, 5, 7, 28, 32]. Yu
et al. [5] proposed a deep triplet-ranking model to train a
joint embedding representation for sketch domain and edge
maps domain. Then, this model was subsequently improved
by introducing coarse-fine fusion, attention modelling, and
HOLEF loss [4]. Yu et al. [28] adopted a fusion module
to obtain mid-level and high-level combined features. TC-
Net [32] added an auxiliary classification loss to a triplet

Siamese network to provide an intra-class constraint for
paired photos and sketches. Many methods [23, 24, 33] have
been exploited from an image synthesis perspective and
have achieved better performance. Inspired by the recent
BERT model [34] for natural language processing, [35] and
[36] have been exploited and significantly improved the
effect of sketch retrieval. There are also some new research
directions of FG-SBIR. For example, the cross-category
FG-SBIR generalization (CC-FG-SBIR) problem was first
proposed and solved in [37]. Bhunia et al. [38] studied a new
FG-SBIR network to tackle the problem for on-the-fly and
early sketch retrieval.

2.2 Attentionmechanism

Most recent researches on the attention mechanism of deep
learning have focused on using masks to form attention and
made the model biased to the region with the most abundant
information. The mask re-weights the input feature map
through a new layer to obtain an attended feature map and
feed it to the next layer of the network. Attention can be
grouped in terms of calculation regions: hard attention [40]
and soft attention [39]. Soft-attention mechanism focus on
the global, which assigns different weights to each pixel
of the source image while hard-attention mechanism is
a random process that only focus on a small region at
each time. For instance, Li et al. [41] designed a hard
attention mechanism locates latent regions to extract and
exploited these regional features for ReID. A channel
attention model was proposed in [42] to assign different
weights to each channel, which effectively improves the
classification performance. A soft attention spatial model
was proposed in [4], which use a weight mask to reweight
the different spatial regions of the feature map. This model
effectively enhances the ability to discriminate fine-grained
features and achieves good retrieval performance. However,
the attention mechanisms for fine-grained SBIR task are
coarse and do not have the ability to acquire high-order
relationships among different regions. To address these,
a mixed high-order attention module [30] is adopt in
this paper for FG-SBIR task to capture more fine-grained
information. Most previous FG-SBIR models typically
added the attention modules after the last convolutional
layer. However, such models cannot take full advantage of
the rich features contained in the middle convolutional layer.
Thus, we divide the convolutional layer of the base network
into two parts and add this attention module between them.

2.3 Loss function

The loss functions extensively used in the field of FG-SBIR
are triplet loss, contrastive loss, and their variants.
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Triplet loss The basic target of triplet loss is that the
distance between the negative pairs should be larger than
the positive pairs by a pre-defined margin [29]. For a given
triplet t = (s, p+, p−), s, p+, p− denote a sketch, a positive
photo, and a negative photo respectively. A conventional
triplet loss is computed as:

Ltri(s, p) = [D(f t (s), f t (p+))−D(f t (s), f t (p−))+Δ]+
(1)

where f t (·) denotes the feature function. D(·) denotes a
distance between two features, Δ is a margin parameter and
[θ ]+ = max(θ; 0). TheD(·) can be represented by different
distance functions, such as Euclidean distance [5, 32] and a
higher-order energy function [4].

Triplet loss is greatly affected by the sample triplets:
if the training triplets contain a lot of easy triplets, the
discriminability of the model will be limited; Using an
appropriate distance threshold is critical for triplet loss: if
the margin value is set too small, the loss can approach 0,
making it difficult to distinguish between similar images.
Otherwise, the network will not converge. To address these,
various methods have been proposed [43–45].

Contrastive loss The training input pairs consists of sketch
si and photo pj , and define the label Y (i, j), for which
the value is zero or one. When pj is the positive sample
of sketch si , the label Y (i, j) = 1. Conversely, if pj is a
negative sample, Y (i, j) = 0. The contrastive loss [46] that
acts on non-matching and matching sketch-photo pairs to
further constrain the relationship between them is defined
as:

L(i, j) = 1

2
Y (i, j) · D(f t (si), f

t (pj ))

+1

2
(1−Y (i, j))·max(0, Δ1−D(f t (si), f

t (pj )))

(2)

where Δ1 is a margin parameter.
Combination of classification loss and triplet loss can

improve the feature representation ability of the FG-SBIR
model. Lin et at. [32] added an auxiliary classification
loss to force the matched pairs closer to each other in the
embedding space. In this paper, we also use classification
loss to reinforce the semantic consistency of local parts.

3 Proposedmethod

3.1 Overall framework

Free-hand sketches are usually abstract, monotonous, and
ambiguous. The processing efficiency of sketches depends
not only on the global structure but also on the local
details. For example, when the contour of the input sketch

is circular, we can classify it roughly (e.g., as the moon,
an alarm clock, a hot air balloon), but more details are
needed for accurate classification. We propose a new three-
way enhanced part-aware network is illustrated in Fig. 4.
It consists of the sketch branch FBst , the natural photo
branchFBim, and the edgemap branch FBem, the weights of
FBim, FBst and FBem are completely share. Each branch
includes the following distinct parts: a CNN base network
(blue box), a mixed high-order attention module (orange
box), a part-aware module (red box), a semantic embedding
module (green box) and a hybrid loss module (black box).
Specifically, The Alexnet architecture without the fully
connected layers is adopted by us as the base network. All
the convolutional layers are decomposed into two parts:
P1 (from conv1 to conv2) and P2 (from conv3 to conv5).
These parts are used to encode the input feature to mid-level
or high-level feature space. A mixed high-order attention
module is constituted by four different high-order attention
(HOA)modules, which placed between P1 and P2 to capture
rich features contained in the middle convolutional layer
and produce the diverse high-order attention maps. Given a
high-level feature, a part-aware module can produce part-
level features that contain more information that is detailed.
Then, a self-attention module can capture enhanced feature
vectors. The enhanced features from different domains
are embedded in a common high-level semantic space by
a semantic embedding module. Based on the high-level
semantic features, three types of losses (i.e., classification
loss, improved bidirectional triplet loss, adversarial loss)
are proposed to acquire more discriminative cross-domain
feature representations. Detailed configuration of these
modules can be found in the following sections.

3.2 Mixed high-order attentionmodule

Attention acts as a tool to support more available resources
to be allocated to the most important information region
of an input. In most FG-SBIR models, attention is
adopted to reweight the feature maps to highlight specific
discriminative local regions. However, most previous
attention models for FG-SBIR are coarse and cannot
effectively capture the high-order relationships among parts.
In this study, the mixed HOA module is adopted to establish
the higher-order relationships among parts and to enhance
the richness of attention. For take full advantage of the
rich features contained in the middle convolutional layer,
we place it between P1 and P2. The mixed HOA module
consists of four HOA modules with different orders (i.e.
{R = 1, 2, 3, 4}) which can model and use the diverse
high-order information.

We denote the output of mid-level feature space P1 as
Fconv2 ∈ RH×W×C . Fconv2 is first processed by a set of
1×1 convolution layers with weightsWr

s to generate a set of
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Fig. 4 Architecture of the proposed model

feature maps Zr
s with channel C

z , which can be formulated
as Eq. 3:

Zr
s = Wr

s ∗ Fconv2 (3)

where r = 1, · · · , R contains all the orders less than or
equal to R, s = 1, · · · , r ,and ∗ denotes the convolution
operator.

Then, a set of element-wise product operations � is
performed on feature maps {Zr

s }s=1,··· ,r to obtain Zr :

Zr = Zr
1 � · · · � Zr

r , r = 1, · · · , R (4)

An r-th order feature map Zr is processed by non-linear
activation function to improve the representation ability of
high-order attention. Then a new set of 1 × 1 convolution
layers with weights Wr

α are applied to produce R attention
map Ar :

Ar = Wr
α ∗ (σ (Zr), r = 1, · · · , R (5)

where σ is ReLU function. Finally {Ar }r=1,··· ,R are
combined by sum operation and apply a sigmoid function to
obtain the final high-order attention map A:

A = sigmoid(

R∑

r=1

Ar) (6)

To overcome the loss of useful information in the feature
map Fconv2 by the final high-order attention map A due to
corruption by noise, we use a shortcut connection structure,
which combines the input feature Fconv2 and the output
of the HOA module with an element–wise sum. The final
output of HOA module is computed as:

Fa = A � Fconv2 + Fconv2 (7)

The fourth-order HOA module is shown in Fig. 5.

3.3 Part-awaremodule

Existing FG-SBIR models usually capture a global feature
that contains information (e.g., structure, line, position of
inflection point), making it easy to ignore small visual clues,
such as a bowknot on high heels. However, these details
can be useful for inputs with small inter-class variations.
Part-level features offer fine-grained information and have
been verified as beneficial for image retrieval in very recent
literature [47]. Therefore, we design an enhanced part-aware
module to obtain more discriminative cross-domain feature
representations.

The enhanced part-aware module is shown in Fig. 4.
Tensor Fh is the output of the high-level feature space
P2. We replace the top original max-pooling layer with a
learnable generalized-mean (GeM) pooling layer [48]. We
first vertically spilt it into M = 6 part to obtain part features
Fp = [Fp

1 , F
p

2 , · · · , F
p
M ], and then flatten it to obtain M

local part-level feature vectors f p = [f p

1 , f
p

2 , · · · , f
p
M ].

Then we apply a self-attention mechanism [49] on these
M part-level feature vectors to learn the relationship
among different parts and enhance part specific information
contained in each part vectors. This can be formulated as:

Q = WQ
Tf p

K = WK
Tf p

V = WV
Tf p

f s = sof tmax(
Q × KT

s
)V

(8)
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Fig. 5 Illustration of R = 4
HOA module

where WQ, WK , WV are weight matrix of the three FC layer
respectively, s is scale factor.

Later, we repeat each part vector into the same
spatial shape as F

p
i to obtain part-aware features Fa =

[Fa
1 , F a

2 , · · · , F a
M ]. Finally, we fuse these part-aware

features and original part-level features Fp by channel-wise
concatenation to generate the enhanced part-aware features
Fe = [Fe

1 , F e
2 , · · · , F e

M ], which serve as the input to the
next layer of the network.

3.4 Hybrid-loss mechanism

We hope that the learned feature vector contains not only the
visual information that can express the shape and contour

changes but also the semantic information that can express
the sub-category of the image. We introduce a hybrid-loss
mechanism which contains improved bidirectional triplet
loss, classification loss, and adversarial loss to optimize the
network, while achieving a more discriminative embedding.
[50] proved that if we use classification loss and triplet loss
to optimize in the same feature space, their goals may be
inconsistent. Therefore, two fully connected layers(FCa and
FCb ) are used as a semantic embedding part to develop a
features FC layer and a classifier FC layer, and add a BN
layer [51] between them. The feature before the BN layers
is denoted as f t , the feature after the classifier FC layers is
denoted as f c. In the training phase, f t and f c are used to
calculate triplet loss and classification loss, respectively. As
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for prevent the order collapse problem, the adversarial loss
is introduced to the mixed high-order attention module.

Classification Loss In order to reinforce semantic consis-
tency of local parts, we establish a class label mapping
relationship among different domains. Give sketch sample
{si}Ni=1 and photo sample {pj }Nj=1, we use the method of

[52] to get edgemap sample {ej }Nj=1. We assign the indexes
for the sketches as the class labels. For example, the class
label for the sketch si is yi = i. The positive photos (or
edge maps) have the same class labels as their correspond-
ing sketches. In this paper, we employ classification loss to
emphasize the semantic consistency of each part. For each
branch, a softmax cross-entropy loss is exploited as part
classifier as follows:

Lcls(f
c) = −

K∑

k=1

yk log(
exp(f c

k)∑K
j=1 exp(f

c
j )

) (9)

where K represents the number of categories, the f c
j is the

j -element of the prediction score f c.
The final classification loss is the sum of part classifier is

defined as:

Lcls =
M∑

i=1

R∑

j=1

Lcls(f
c(ij)) (10)

where f c(ij) denotes the prediction score of ij part. In this
way, the positive samples and sketches are aligned in the
high-level semantic space.

ImprovedBidirectional Triplet Loss The conventional triplet
loss approach only that the distance between matched
pairs is smaller than that of non-matched pairs by at
least a predefined margin, but it does not specify how
close the positive pairs should be. For instance, when
D(f t (s), f t (p+)) = 0.4, D(f t (s), f t (p−)) = 0.6 and
D(f t (s), f t (p+)) = 1.2, D(f t (s), f t (p−)) = 1.4, the
triplet loss are both 0.1, although the ranking results are the
same. The latter case may result in a relatively large average
intra-class distance. In addition, the commonly used triplet
loss only emphasizes the unidirectional constraint for two
modalities, and ignores the constraint relationships among
triplets (p, s+, s−).

To overcome these limitations, an improved bidirectional
triplet loss function is proposed to enhances the inter-class
separability and the intra-class compactness. It is formulated
as follows:

Ltri (s, p) =[D(f t (s), f t (p+)) − D(f t (s), f t (p−)) + Δ1]+
+ [D(f t (p), f t (s+)) − D(f t (p), f t (s−)) + Δ1]+
+ β[D(f t (s), f t (p+)) − Δ2]+

(11)

where β is the hyper-parameter, the third term ensures that
the intra-class distance D(f t (s), f t (p+)) is less than a
second margin Δ2, and that Δ2 is much smaller than Δ1.
The formulation effectively pulls the positive pairs closer,
and pushes the negative pairs farther and at the same time
increases intra-class compactness.

Additionally, considering the one-to-one correlation
between a photo and its corresponding edge map, sketches
and edge maps should satisfy the triplet constraint. The final
improved bidirectional triplet loss is formulated as follows:

Ltri = Ltri(s, p) + Ltri(s, e)

= [D(f t (s), f t (p+)) − D(f t (s), f t (p−)) + Δ1]+
+ [D(f t (p), f t (s+)) − D(f t (p), f t (s−)) + Δ1]+
+ β[D(f t (s), f t (p+)) − Δ2]+
+ [D(f t (s), f t (e+)) − D(f t (s), f t (e−)) + Δ1]+
+ [D(f t (e), f t (s+)) − D(f t (e), f t (s−)) + Δ1]+
+ β[D(f t (s), f t (e+)) − Δ2]+

(12)

Adversarial Loss The biased learning behavior of the deep
model may cause a high-order HOA module to collapse
into a relatively low-order module, so that the mixed high-
order attention module cannot capture the expected diverse
higher-order attention information and cannot achieve
optimal performance. The adversary constraint [30] adjusts
the order of HOA to be different, which can be formulated
as:

max
HOA|R=K

R=1

min
F

(Ladv) = max
HOA|R=K

R=1

min
F

(

k∑

j,j ‘,j �=j ‘

D(F(fj ), F (fj ‘ )))

(13)

where HOA|R=K
R=1 denotes k HOA modules from first-order

to k-th order. F(·) is an encoding function composed of two
fully-connected layers. fj is the output of the HOA module
with R = j . By playing the max–min game as in [27], the
problem of order collapse can be suppressed.

In summary, the overall objective function of our network
can be formulated as:

min(Lcls + λ1Ltri) + λ2 max
HOA|R=K

R=1

min
F

(Ladv) (14)

where λ1, λ2 represent the hyper-parameters.

4 Experiments

4.1 Dataset and evaluation protocol

Datasets We choose several popular FG-SBIR bench-
marks: QMUL-Shoe, QMUL-Chair, and QMUL-Handbag,
QMUL-Shoes-V2 and Sketchy as our experimental datasets.
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Table 1 The training/testing
splits of FG-SBIR datasets Datasets Training Testing

Photos/Sketches Photos/Sketches

QMUL-Shoe 304/304 115/115

QMUL-Chair 200/200 97/97

QMUL-Handbag 400/400 168/168

QMUL-Shoes-V2 1800/5982 200/666

Sketchy 11250/68113 1250/6312

The first three datasets contain only one category of sketch-
photo pairs, that is, shoe/chair/handbag category respec-
tively. QMUL-Shoes-V2 dataset is an extension of the
QMUL-Shoe dataset that includes more sketches and pho-
tos. Sketchy is a large-scale dataset that contains sketch–
photo data span 125 categories, each photo corresponds to
5-20 sketches. In these datasets, our training triplets are
automatically generated: for each anchor sketch, the true
matching natural photo form the positive pair, while the neg-
ative pair is randomly sampled from all other images. We
split the samples in each dataset for training and testing
according to Table 1.

Evaluation Protocols For FG-SBIR task, the evaluation
metrics we used is the same recall @K as in [5]. Give one
query sketch, if the correct photo is ranked in the top K, the
recall @K is one, otherwise it is zero. acc@K is the average
of all query results.

4.2 Implementation details

Our model is performed on Pytorch using a single NVIDIA
1080Ti GPU. During training, the size of input photos
is adjusted to 225 × 225. Data augmentation methods
used were: random cropping, random flipping, and random
erasing [53], where the probability of dropout is set to 0.4.
We use SGD as optimizer with a batch size of 30, the initial
learning rate is set as 0.005 for AlexNet base layers and 0.05
for the others in the first 300 epochs, and further decreased

to 10−4 for another 500 epochs. We set hyper-parameters
λ1 = 1, λ2 = 1, β = 0.1, Δ1 = 0.3, Δ2 = 0.05.

4.3 Comparative results

Baselines we choose four baseline models for compari-
son. (1)TripletSN [5] used the Sketch-a-Net [19] to form
a three branches Siamese network to learn features of
both edge maps and sketches, and used the traditional
first-order Euclidean triplet loss to optimize. (2)DSSA [4]
made the following improvements on the TripletSN to
improve the performance: added an attention mechanism, built
a coarse-fine fusion block, and used higher-order HOELF loss
to replace conventional first-order energy function.
(3)EdgeMAC [22] turned images into edge maps first, and
then captured a global image descriptor by a fully convolu-
tional network for training.(4)DeepTCNet [32] employed
DenseNet-169 as the feature extractor in the Siamese net-
work and adopted the triplet loss and classification loss to
optimize. (5)GNTriplet [54] is a triplet network based on
GoogLeNet and trained with Triplet and Classification loss.
Results Table 2 lists the results of comparing the
performance of our method to those of the baseline networks
on the three benchmark datasets. We highlight the best
results in bold, and the bolds in the table below have the
same effect. As can be seen from the table: (1) overall, the
performance of our network over the three datasets is better
than all baseline models. The improvement is especially
obvious on the handbag dataset—an approximately 13%

Table 2 Comparative results against baselines on QMUL-Shoe-Chair-Handbag dataset

Models QMUL-Shoe QMUL-Chair QMUL-Handbag

(%) (%) (%)

acc@1 acc@10 acc@1 acc@10 acc@1 acc@10

TripletSN 52.17 92.17 72.16 98.96 39.88 82.14

DSSA 61.74 94.78 81.44 95.88 49.40 82.74

EdgeMAC 54.78 92.17 85.57 97.94 51.19 85.71

DeepTCNet 63.48 95.65 95.88 100 - -

Ours 68.70 98.26 95.88 100 64.88 89.88
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Table 3 Comparative results
on QMUL-Shoes-V2 and
Sketchy dataset

Models QMUL-Shoes-V2 Sketchy

acc@1 (%) acc@1(%)

TripletSN 30.93 21.63

DSSA 33.63 -

DeepTCNet 40.02 40.81

GNTriplet 21.62 37.10

Ours 36.79 38.98

increase in top-1 accuracy against the second-best model.
Each sketch may have several visually similar photos, the
excellent performances of our model at acc@1 show that
the model can identify fine-grained differences between
candidate photos. (2) Compared with the sketches of shoes
and handbags, the improvement in the identification of
chair sketches is less prominent. The reason for this is
clear. With its enhanced part-aware module, our model
can focus on discriminative local parts; chairs contain
relatively few local visual cues compared to shoes and

handbags. (3) Both DeepTCNet and our model adopt triplet
loss and classification loss to optimize together, and their
performances are better than the other three baselines. This
demonstrates that the combination of the two losses can lead
to better learning of feature representations in FG-SBIR.

We additionally evaluate them on QMUL-Shoes-V2 and
Sketchy datasets, results in Table 3. We can know that: (1)
The results of our model are superior to edgemap-based
methods such as TripletSN and DSSA. The input images of
DSSA and TripletSN are edgemaps rather than RGB photos.

Fig. 6 Examples of photo-sketch pairs in QMUL-Shoes-V2 and Sketchy datasets. Detail parts are circled by red rectangle. We can see that
sketches corresponding to the same photo have different descriptions of details
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Fig. 7 Examples of photos in
Sketchy dataset

To some extent, extracting edge images can effectively
reduce the gap between photo domain and sketch domain
and improve the retrieval effect. However, the conversion
from RGB photos to edge maps may lose some important
details for fine-grained retrieval, which makes it difficult
to further improve the retrieval results. We added the
photo branch to expand the network into three-way, further
improving the performance of fine-grained retrieval. (2)
Compared with GNTriplet, the improvement of the results
indicates that the mixed high-order attention module and
the part-aware module added in our network have achieved
certain results. (3) The performance of our model is slightly
lower than DeepTCNet, which takes into account not only
the constraints of feature vector in European space but also
in angular space.

From Tables 2 and 3, we find that the performance of
our network on QMUL-Shoes-V2 and Sketchy datasets is
weaker than that on QMUL-Shoe-Chair-Handbag datasets.

This is because: (1) there are multiple sketches correspond-
ing to one photo in the Shoes-V2 and Sketchy datasets. For
the same detail part in the photo, the descriptions of mul-
tiple sketches are different due to different painting habits
and skills of painters, which increases the difficulty of our
retrieval. As shown in the Fig. 6. (2) The photos in Sketchy
dataset contain many backgrounds (as shown in Fig. 7.),
and edge maps extracted by edge detection method also
has some irrelevant backgrounds, which will bring some
interference and affect the retrieval performance. Overall,
the results verify the fine-grained retrieval capability of our
model.

4.4 Ablation study

Contributions of key Components We compare our full
model with three variants to investigate the contribution of
each key component in the former. The experimental results

Table 4 Contributions of the
key components Datasets Models acc@1 acc@10

Base 55.65 93.04

w/o MHA 66.09 97.39

w/o PAM 60.00 95.65

Full model 68.70 98.26

QMUL-Chair Base 85.57 98.97

w/o MHA 92.78 100

w/o PAM 88.66 100

Full model 95.88 100

QMUL-Handbag Base 52.98 83.33

w/o MHA 61.31 89.88

w/o PAM 57.74 89.29

Full model 64.88 89.88
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Table 5 Results of Improved bidirectional triplet loss and convolutional triplet loss

(%) QMUL-Shoe QMUL-Chair QMUL-Handbag

acc@1 acc@10 acc@1 acc@10 acc@1 acc@10

Full model with convolutional triplet loss 66.09 97.39 93.81 100 62.50 89.29

Full model with improved triplet loss 68.70 98.26 95.88 100 64.88 89.88

are presented in Table 4. Base refers to the base network,
which is optimized by triplet loss and classification loss.
“w/o MHA” and “w/o PAM” denote the model without a
mixed high-order attention module and without a part-aware
module, respectively. Table 4 shows clearly that: (1) The
full model outperforms the other three variants on all three
datasets, which indicates that the mixed high-order attention
module and the part-aware module are complementary to
each other. (2) The mixed high-order attention module
and the part-aware module both improve the results of
base model, demonstrating the contribution of the two
components to the overall performance. (3) It is clear that
the part-aware module plays a more important role than the
mixed high-order attention module for a retrieval task.

Effectiveness of Improved bidirectional triplet loss To fur-
ther confirm the usefulness of the improved bidirectional
triplet loss, we compared it with the traditional triplet
loss. Table 5 shows that using the improved bidirectional
triplet loss function to train the model, the performance
is improved by about 2% over the same model using the
conventional triplet loss function.

Further analysis In order to support the theory that the
features of the middle convolutional layer play an important
role in fine-grained retrieval, we compare the results of
the mixed high-order attention module, which placed after
different convolutional layers. “MHA-middle” and “MHA-
high” denote that the mixed high-order attention module is
placed after the middle feature space and the high feature
space, respectively. From Table 6, we can see that the
accuracy of “MHA-middle” has increased by about 3%
compared to the “MHA-high” model. It suggests that for the
FG-SBIR task, features contained in the middle convolution
layer are indeed important and placing the mixed high-order
attention module after the second convolutional layer is the
correct choice.

Table 6 Results of placing the mixed high-order attention module at
different convolution layer

QMUL-Shoe acc@1 acc@10

MHA-middle 68.70 98.26

MHA-high 66.09 98.26

We plot recall @ K for K = 1 to 10 on QMUL-Shoe-
Chair-Handbag datasets. The data in Fig. 8 are the average
results of 10 tests. It can be found that when the value of
K is relatively small, our network can still achieve good
results, which suggests that given a query sketch, our model
can find a matched image as quickly as possible. This also
verifies the great capability of our network on extracting
representative and discriminative features.

4.5 Qualitative visualization

For an intuitive understanding of our retrieval results, we
present some qualitative examples in Fig. 9. We highlight
the correct retrieval results with red rectangles. It can be
seen that our model has an obvious advantage in finding
fine-grained similarities between sketches and photos. For
example, on the first shoe example, when given a shoe with
a shoelace as the query sketch, our model can find similar
images with a shoelace detail and bring the correct shoe
to Rank 1. These qualitative results demonstrate that our
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Fig. 8 Evaluation on QMUL-Shoe-Chair-Handbag datasets at Top K.
We measure acc@1 whether or not the network can retrieve target
image within Top K nearest neighbors
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Fig. 9 The top 5 retrieval results
of our method. For each
example, the first column is
query sketch, and the correct
retrieval result is highlighted in
red rectangle
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model can learn more fine-grained features and has better
discriminability for the FG-SBIR task.

5 Conclusion

FG-SBIR is a particularly challenging task due to the “one-
to-many” mapping relationship between free-hand sketches
and natural photos, we propose a novel three-way enhanced
part-aware network to address the problem of sketch-based
image retrieval, which is of great practical significance
in today’s world populated by smart touch-screen devices.
The main contribution is the introduction of a mixed
high-order module and part-aware module in each branch
network, which can capture more useful fine-grained cues
and enhance the semantic consistency of local regions. The
architecture was optimized by a hybrid-loss and learned
more discriminative features. Experimental results on three
baseline datasets validated the effectiveness of our model.

However, our model is only able to study sketches from
a static pixel space and does not make full use of the
timing of sketches. In future research, we will focus our
attention on dynamic stroke-coordinate spaces to design a
sketch-specific data augmentation approach and model.
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