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Abstract
Click-through rate (CTR) prediction plays an important role in many industrial applications, feature engineering directly
influences CTR prediction performance because features are normally the multi-field type. However, the existing CTR
prediction techniques either neglect the importance of each feature or regard the feature interactions equally for feature
learning. In addition, using an inner product or a Hadamard product is too simple to effectively model the feature interactions.
These limitations lead to suboptimal performances of existing models. In this paper, we propose a framework called
Hierarchical Attention and Feature Projection neural network (HAFP) for CTR prediction, which enables the automatically
learning of more representative and efficient feature representation in an end-to-end manner. Towards this end, we employ
a feature learning layer with a hierarchical attention mechanism to jointly extract more generalized and dominant features
and feature interactions. In addition, a projective bilinear function is designed in meaningful second-order interaction
encoder to effectively learn more fine-grained and comprehensive second-order feature interactions. Taking advantages of
the hierarchical attention mechanism and the projective bilinear function, our proposed model can not only model feature
learning in a flexible fashion, but also provide an interpretable capability of the prediction results. Experimental results
on two real-world datasets demonstrate that HAFP outperforms the state-of-the-art in terms of Logloss and AUC for CTR
prediction baselines. Further analysis verifies the importance of the proposed hierarchical attention mechanism and the
projective bilinear function for modelling the feature representation, showing the rationality and effectiveness of HAFP.

Keywords CTR prediction · Feature interactions · Feature representation · Hierarchical attention mechanism ·
Projective bilinear function

1 Introduction

Click-through rate (CTR) prediction is a well-known
recommendation task that aims to predict the probability
of a user clicking on recommended items and ads [26,
30]. Since CTR prediction directly influences the revenues
of advertising platforms and the satisfaction of users,
it has become an actively investigated topic in both
industry and academic communities for recommender
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system research [5, 12]. Thus, designing an effective
and efficient model for improving the accuracy of CTR
prediction has received much attention.

The key challenge in CTR prediction is how to effec-
tively model feature engineering. In traditional methods,
Logistic Regression (LR) [1] and Factorization Machine
(FM) [24] are two popular models for feature learning. LR
is a linear model and encodes features through a linear
combination. FM utilizes factorized parameters to model
second-order feature interactions for feature learning. There
are many variants of FM for improving the performance
of CTR prediction [12, 22, 34]. However, the limitation of
these methods is that they cannot obtain high-order feature
interactions. Recently, some deep learning based models are
proposed for CTR prediction as these methods show great
improvements over traditional methods on recommender
systems. Factorization machine supported Neural Network
(FNN) [40] and Factorization-Machine based neural net-
work (deepFM) [6] combine FM and multilayer perception
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(MLP) through different aggregations. Additionally, there
are some researches focusing on modelling different fea-
ture interactions. Attentional Factorization Machine (AFM)
[34] introduces the attention mechanism [29] into second-
order feature interactions to automatically learn weights.
Feature importance and bilinear feature interaction network
(FiBiNET) [10] dynamically learns the feature importance
and fine-grained second-order feature interactions. These
methods achieve remarkable improvements and verify that
low- (first-order and second-order) and high-order feature
interactions are important for feature learning.

Several works devote to automatic feature engineering
with deep neural networks (DNNs) and discover that
the quality of low- and high-order feature interactions
directly influences the performance of CTR prediction.
However, there is not any work jointly focusing on
capturing informative feature interactions from both low-
and high-order. First, it is widely accepted that different
features have different importances for a target task. For
example, feature occupation is more important than the
feature age when predicting a user’s income. Second,
not all pair-wise feature interactions are equally useful
for prediction. For example, the interaction of feature
occupation and home address is more useful than the
interaction of feature age and gender when predicting a
user’s income. Third, high-order feature interactions are
built from low-order feature interactions, and the generated
feature space would be huge and require extremely heavy
computation. Different layer feature interactions represent
different semantic information for feature learning, and the
less useful interactions should be assigned lower weights
since their contributions are limited, which can significantly
reduce the computation. Furthermore, the data involved in
CTR prediction are typically categorical and very sparse
[28], and existing methods usually use an inner product
or a Hadamard product for modelling second-order feature
interactions. However, it may limit the feature learning and
hurt the overall performance since the inner product and
Hadamard product are too simple to effectively calculate
the interactions of feature interactions in sparse datasets.
Although FiBiNET [10] designs three kinds of bilinear
function for second-order feature interactions and gains
some improvement, it merely considers the projection from
the i-th feature to the j-th feature while ignoring the
projection from the j-th feature to the i-th feature when
building pair-wise feature interactions. We argue that the
incomplete projection has bias and crucially limits the
performance.

To address the above mentioned problems, we propose
an effective framework called Hierarchical Attention and
Feature Projection neural network (HAFP) to fully exploit
relevant information from different orders of feature
interactions and extract more fine-grained second-order

feature interactions from the comprehensive projection.
Specifically, inspired by the knowledge that the importance
of different features differs greatly for the final task,
HAFP first retrieves the salient features through the
designed attentive global-local contexts module. Next,
HAFP computes the weighted score for each second-order
feature interaction according to its contribution, which
is the second-level attention. Finally, high-order feature
interaction of each layer is selectively aggregated for feature
learning and a more meaningful and informative feature
representation can be learnt. Furthermore, as the quality
of second-order feature interactions directly influences the
performance of high-order feature interactions, a projective
bilinear function is designed to learn more fine-grained
feature interactions.

Comparing with existing methods, the proposed HAFP
is able to not only encode more informative features and
feature interactions but also capture more comprehensive
interaction information, thus facilitating the feature repre-
sentation which is built from our model owns meaning-
ful information and has good explanations. We implement
experiments on two public datasets, Criteo and Avazu. The
results indicate that HAFP is able to achieve an accurate
CTR prediction and outperforms the state-of-the-art meth-
ods for CTR prediction on the two datasets in terms of AUC
and Logloss. This work provides a new feasible way to
improve the accuracy of CTR prediction. Besides, our pro-
posed HAFP can be directly used in practice and helps to
increase the revenue of advertising platforms.

The contributions of our HAFP model can be summa-
rized as follows.

– The proposed hierarchical attention mechanism fully
exploits relevant contexts for the feature learning, and
the weights of new features can be trained in the same
way. It improves the extensibility of our model and
consistency with practice. To the best of our knowledge,
we are the first to jointly capture relevant information
from both low- and high-order feature interactions for
CTR prediction in an end-to-end manner.

– Inspired by the success of bilinear-interaction layer in
[10], we introduce a projective bilinear function which
employs an inner product to form a co-projection matrix
and a Hadamard product to generate the interaction
embedding. It dynamically learns feature interactions in
a more fine-grained way.

– An attentive global-local contexts module is designed
to adaptively select meaningful features, which can
simultaneously emphasize common information that
distributes more globally and highlight characterized
information that distributes more locally.

– We conduct comprehensive experiments on the two
public datasets. The results show that our model can
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improve the CTR prediction performance with 0.3%
and 0.2% in terms of AUC respectively, compared to
the best performance baseline.

The rest of this paper is structured as follows. Section 2
discusses some related work of CTR prediction. Section 3
presents the HAFP model in detail. We conduct comprehen-
sive experiments and present the experimental setups with
the corresponding results in Section 4. Finally, we conclude
the paper and point out some future work in Section 5.

2 Related work

CTR prediction is usually studied as a binary classification
task, and accurate feature engineering is helpful for
improving the performance of CTR prediction task [15,
32]. In order to improve the prediction performance, some
models pay attention to feature interactions[17, 36, 37],
and the other models [8, 27, 31, 35, 38] argue that
behavior sequences can benefit model learning and are
useful in performance. Since our work focuses on modelling
information from features, we briefly review traditional
methods and deep learning based methods which are related
to feature interactions.

2.1 Traditional methods

In traditional methods, LR is the foundation of many
popular models and it is widely used in both industrial
and academic areas for CTR prediction, in which the
weights corresponding to the features are considered as
their importance degree or their influence on the click rate.
However, they belong to the linear model and lack the ability
to build sophisticated feature interactions. Additionally, FM
[24] is another well-known model for CTR prediction. It
projects sparse features into low-dimensional dense vectors
and builds second-order feature interactions by using an
inner product on the dense vectors. Therefore, FM based
methods [12, 34] can deal with the problem of data sparsity
better than LR based methods. Afterwards, some variants
of FM are proposed for improving the performance of
the final task. Field-aware Factorization Machine (FFM)
[12] introduces field information into the FM model. AFM
[34] extends the FFM by adding an attention mechanism
to capture the feature interaction importance, and it owns
good interpretability. However, these traditional methods
only have the capability to model low-order feature
interactions, and they have no power to model high-order
feature interactions. In addition, a linear combination of
feature interactions limits their performances for the final
task.

2.2 Deep learning basedmethods

In deep learning based methods, DNNs are introduced into
CTR prediction since they can effectively capture high-
order feature interactions for better performances [20, 25].
FNN uses pre-trained embedding from FM and then models
high-order feature interactions via MLP. Product-based neu-
ral network (PNN) [23] takes an inner product and an outer
product for feature embedding instead of FM. Compared to
the previous methods which attribute to shallow structures,
FNN and PNN obtain better performance. However, the lim-
itation of FNN and PNN is that they focus less on low-order
feature interactions, which is insufficient to make accu-
rate feature learning. To jointly encode low- and high-order
feature interactions, Wide&Deep [4] and Deep&Cross [33]
integrate a wide/cross part and a deep part to individually
build low- and high-order feature interactions. DeepFM [6]
introduces FM into the wide part of Wide&Deep model and
introduces raw features to the deep part. Deep Field Rela-
tion Neural Network (DFRNN) [42] takes a 3-dimensional
relation tensor to model the feature interactions. The per-
formances of these works verify that jointly modelling
low-order and high-order feature interactions is beneficial
for extracting comprehensive and representative informa-
tion. However, such works cannot learn effective interac-
tions since the contributions of different feature interactions
to the CTR prediction result may be different. To allevi-
ate this problem, Interpretable CTR prediction model with
Hierarchical Attention Mechanism (InterHAt) [16] consid-
ers the interaction order and builds second-order feature
interactions through a multi-head self-attention based trans-
former on raw feature embeddings. To further automati-
cally learn indispensable feature interactions, a High-order
Attentive Factorization Machine (HoAFM) [28] method
introduces a bit-wise attention mechanism to determine the
different importance of low- and high-order feature interac-
tions. AMulti-order interactive features aware Factorization
Machine (MoFM) [37] approach integrates three different
types of prediction models to effectively capture low-order
and high-order interactive features. Attentive Capsule Net-
work (ACN) [13] uses transformers to automatically learn
the meaningful feature interaction. Cai et al. [2] propose
an effective CTR prediction method called CAN, which
explicitly exploits the benefits of attention mechanism and
DNNs in modelling low-order and high-order feature inter-
actions. Besides, since the residual module is verified to
have the capability to retrieve powerful and discriminant
representations [21], the research [18] introduces the resid-
ual network into the layer of learning high-order feature
interactions. It forms a structure of ResNet-CTR which
can explore complex feature interactions at different lay-
ers. Compared to the previous works, these approaches that
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consider the importance of each feature interaction outper-
form the previous methods. However, they still extract the
feature representation from the raw data directly and ignore
the impact of different features for CTR prediction. Thus,
there is room for improvements because unnecessary fea-
tures are modelled without considering their importance.
Recently, since not all features are equally useful for mod-
elling feature interactions and a better feature representation
makes the feature interactions easier, FiBiNET [10] con-
structs the embedding vectors of multi-field features and
feature interactions through the SENET layer and bilinear
function. In addition, Yang et al. [39] focus on improving the
feature representation and propose an embedding method
called operation-aware embedding. It can learn different
representations for each feature when taking different oper-
ations. Jiang et al. [11] divides the data into different groups
according to their important characteristics. However, they
enumerate all feature interactions equally for feature learn-
ing, which always requires large memory. In addition, use-
less feature interactions can introduce unnecessary noise
and negatively impact the prediction accuracy.

In summary, the key limitations of existing approaches
for CTR prediction, which exploit salient features, mean-
ingful second-order feature interactions, or dominant high-
order feature interactions in feature engineering, is that they
generally have difficulty to effectively build an accurate and
representative feature representation. To improve the predic-
tion performance, it is useful to jointly consider the different

contributions of features and feature interactions. Here, we
introduce a hierarchical attention mechanism to learn the
informative features and feature interactions at both low-
order and high-order feature interactions, which provide an
interpretable capability of the prediction results. Further,
we design a projective bilinear function to effectively learn
more fine-grained and comprehensive second-order feature
interactions, which can enrich the information for mod-
elling high-order feature interactions and further improve
the prediction accuracy.

3 The proposed algorithm

We aim to automatically learn the relevant low- and high-
order feature interactions in an end-to-end manner. As a
result, we propose a Hierarchical Attention and Feature
Projection neural network (HAFP) for CTR prediction.

In this section, we mainly describe the framework
of HAFP. As shown in Fig. 1, HAFP has three main
components: embedding layer, feature learning layer, and
prediction layer. First, the embedding layer is used to
convert each raw feature into a dense low-dimensional
vector. Second, in order to derive the meaningful and
representative feature representation, we employ a feature
learning layer to encode features and feature interactions
based on the output of the embedding layer. The feature
learning layer consists of three parts: salient feature

Embedding Layer

Field 1 Field 2 Field m

Salient Feature Encoder

Prediction Layer

Meaningful Second-Order Interaction Encoder

Dominant High-Order Interaction Encoder

Feature Learning 

Layer

Fig. 1 The framework of Hierarchical Attention and Feature Projection neural network (HAFP)
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encoder, meaningful second-order interaction encoder, and
dominant high-order interaction encoder. The salient feature
encoder transforms the dense low-dimensional feature
vector into salient feature embedding with the help of
an attentive global-local contexts module. This process
pays more attention to the feature importance which
dynamically places higher weights on the important features
and decreases the weights of uninformative features. The
encoder helps to boost reliability of feature embedding. The
meaningful second-order interaction encoder transforms
the interaction information of salient feature embeddings
with the help of a projective bilinear function and a self-
attention mechanism. This process not only fully explores
the information of second-order feature interactions but also
considers their importance for the target task. This encoder
has capable to build more fine-grained second-order feature
interactions and enhance interaction discriminability. The
dominant high-order interaction encoder transforms feature
interactions at different layers by using the attention
mechanism. It can select dominant and irrelevant ones
and assign weights for each layer dynamically. This
encoder can build more representative and efficient feature
representation. The prediction layer takes the output of
the feature learning layer to compute the prediction score
which represents the probability of the user clicking on
the recommended product. The following sections introduce
each part in detail.

3.1 Embedding layer

In the task of CTR prediction, data is always aggregated
from different fields, and usually contains categorical and
numerical features which cannot be directly used for
numerical computations. Table 1 is an example of real-
world multi-field data which is used for CTR prediction. To
represent these kinds of features, they are often converted
into high-dimensional sparse vectors by using one-hot
encoding. However, since the embedding generated from
one-hot encoder is always sparse and is hard to be
processed, a lookup table processing approach is applied
to transform each raw feature into a corresponding dense
low-dimensional vector and form a field embedding vector.
Finally, we use E = [e1, e2, ..., em] to denote the field

Table 1 An example of multi-field data for CTR prediction. Each of
the columns is a field. Gender and Occupation are categorical features,
and age is numerical feature

User id Gender Age Occupation

291245 Male 25 Student

362589 Female 27 Teacher

391027 Male 36 Programmer

embedding vector, where m denotes the number of fields,
and ei ∈ Rd denotes the embedding of the i-th field feature,
and d is the embedding size.

3.2 Feature learning layer

3.2.1 Salient feature encoder

Squeeze and excitation network (SENET) [9] is efficient
for learning feature importance in CTR prediction as it
can effectively learn the relationships between each feature
and the global context. However, we argue that it focuses
on the common information and ignores the characterized
information of each feature. Inspired by the success of
attentional feature fusion [14] in computer vision, we
design an attentive global-local contexts module in a salient
feature encoder, which simultaneously takes global and
local contexts into consideration to build salient feature
embedding. Thus, it consists two sub-parts to separately
retrieve the influences from the global context and the
local context. The framework of the attentive global-local
contexts module is shown in Fig. 2.

Attentive global-local contexts module. Given field
embedding vector E = [e1, e2, ..., em], the feature
embedding learned from global context requires global
context information. Therefore, we apply mean pooling on
each feature embedding ei to calculate global information
ai , and form a global weight vector A = [a1, a2, ..., am].
Then, we learn the weight of each feature embedding
according to the global weight vector by using widely
used dimensionality-reduction and dimensionality-increase
method. Finally, a global feature embedding Vg is built
based on the field embedding vector and weight vector by
using a reweight method. The detailed calculations of these
steps are shown as follows.

ai = 1

d

d∑

j=1

e
j
i (1)

G = [g1, g2, ..., gi , ..., gm] = σ1(Wg1σ2(Wg2A)) (2)

V g = [vg1, vg2, ..., vgi, ..., vgm]
= [g1 · e1, g2 · e2, ...,gi · ei , ...gm · em] (3)

where ej
i denotes j-th value of the embedding of the i-th field

feature. G is the global gate, and gi denotes the global gate
of the i-th field feature. Wg1 ∈ R

m
r
×m and Wg2 ∈ Rm× m

r

are learning parameters, in which r is the scaling factor and
it is used to control the reduction and increases degree in
computing weight vector. σ1 and σ2 are nonlinear activation
functions. vgi denotes the embedding of the i-th global
feature embedding.
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Fig. 2 The attentive global-local contexts module

Additionally, in order to capture the characterized
information of each feature in modelling feature impor-
tance, we also take the local context into consid-
eration. Specifically, given a field embedding vector
E = [e1, e2, ..., em], we directly employ dimensionality-
reduction and dimensionality-increase mechanism in the
field embedding to compute the contribution of individual
feature for the target task.

L = [l1, l2, ..., li , ..., lm] = σ1(W l1σ2(W l2E)) (4)

where L is the local gate, and li denotes the local gate of the
i-th field feature. The function of Wl1 ∈ R

m
r
×m and Wl2 ∈

Rm× m
r is similar to Wg1 ∈ R

m
r
×m and Wg2 ∈ Rm× m

r , and
they are also used for dimension reduction and dimension
increase. It is noteworthy that L has the same shape as
the input field embedding vector E, which preserves and
highlights the subtle details of the local information. Then,
we form a local feature embedding Vl by assigning a local
weight on the field embedding vector.

Vl = [vl1, vl2, ..., vli , ..., vlm] = [l1 · e1, l2 · e2, ..., li · ei , ..., lm · em]
(5)

where vli denotes the embedding of the i-th local feature
embedding Vl .

Given the global feature embedding Vg and the local
feature embedding Vl , the salient feature embedding V can
be obtained as follows:

V = [v1, v2, ..., vi , ..., vm] = (E ⊗ σ(Vl ⊕ Vg)) ⊕ E (6)

where vi denotes the i-th salient feature embedding. ⊗ and
⊕ denote the element-wise multiplication and addition. σ is
nonlinear activation function. Comparing Eq. (2) with Eq.
(4), we can observe that the global context can emphasize
common information that distributes more globally, and the
local context can highlight characterized information that
distributes more locally. Thus, with the help of the attentive
global-local contexts module, the salient feature encoder
comprehensively emphasizes the features that distribute
globally and locally, and the weight of each feature is
dynamically adjusted according to its contribution.

3.2.2 Meaningful second-order interaction encoder

The meaningful second-order interaction encoder in our
manuscript models the second-order feature interactions in a

precise and effective way. An inner product and a Hadamard
product are commonly used in existing works for modelling
the second-order feature interactions. However, they are too
simple to effectively calculate the feature interactions in
sparse datasets [10]. To alleviate this limitation, FiBiNET
proposes a field-interaction type for modelling second-order
feature interactions by integrating an inner product and
a Hadamard product, and it achieves good performance.
However, we argue that it does not fully consider the
relationships between pair-wise features. Specifically, the
field-interaction type transforms the i-th feature into the
j-th feature through an inner product and then models
the interaction via a Hadamard product, which ignores
the mapping relation from the j-th feature to the i-
th feature. Therefore, we propose a more fine-grained
approach called projective bilinear function which takes
the overall mapping relations between two features through
two inner products and obtains interaction relations on
mapping features via the Hadamard product. Compared to
the widely used inner product and Hadamard product, the
projective bilinear function can encode more informative
and inherent relations between different features. In
addition, it facilitates the following encoder to learn
meaningful information. The structure of the projective
bilinear function is shown in Fig. 3, taking the i-th salient
feature embedding vi and the j-th salient feature embedding
vj as an example, their feature interaction p′

ij is calculated
by:

p′
ij = (vi · Wpi) � (vj · Wpj ) (7)

where � is the element-wise product of vectors. Wpi ∈
Rd×d and Wpj ∈ Rd×d are learning parameters. The
ranges of i and j are 1 ≤ i ≤ m and i < j ≤ m. Compared
to the field-interaction type, it has a stronger expression
in modelling second-order feature interactions and forms a
more fine-grained interaction.

Generally, not all of the feature interactions are
relevant to the final task. Irrelevant feature interactions
are considered as noise and may deteriorate the model
generalization performance. Therefore, we introduce the
attention mechanism to compute corresponding attention
score with an MLP. The input is the vector of feature
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Fig. 3 The projective bilinear function for feature interaction

interaction. Formally, the attention score α
p
ij and weighted

feature interaction pij are defined as:

α
p
ij = exp(hT

pReLU(Wp
ijp

′
ij + bp))

∑
i,j

hT
pReLU(Wp

ijp
′
ij + bp)

(8)

pij = α
p
ijp

′
ij (9)

where Wp
ij ∈ Rd×d , hp, bp ∈ Rd are learning parameters,

and hT
p is the transposition of hp. Inspired by the success

of Densely connected convolutional Networks (DenseNet)
[19], the residual network [41] has the capability to
provide more comprehensive deep features and to alleviate
vanishing-gradient problems. Thus, we also implement
our proposed second-order feature interaction method on
the field embedding vector to strengthen and enrich
interactions. Besides, we also compute attention scores
for each feature interaction with an MLP to distinguish
its importance. Namely, taking ei and ej as an example,
the result of weighted field feature interaction qij can be
computed as follows:

q′
ij = (ei · W qi) � (ej · W qj ) (10)

α
q
ij = exp(hT

q ReLU(Wq
ijq

′
ij + bq))

∑
i,j

hT
q ReLU(Wq

ijq
′
ij + bq)

(11)

qij = α
q
ijq

′
ij (12)

where q′
ij is the feature interaction of the i-th feature ei

and the j-th feature ej . α
q
ij is attention score of ei and

ej . Wqi , Wqj , W
q
ij ∈ Rd×d , hq, bq ∈ Rd are learning

parameters, and hT
q is the transposition of hq . Finally, we

also employ concatenation and fully-connected layers to
learn the comprehensive second-order feature interactions
hs and endow them with a richer expressive ability.

hs = [h1, h2, ...,hi , ...,hn]
= FC(Concat (p1, p2, ...,pi , ...,pn, q1, q2, ..., q i , ..., qn)W f c)

(13)

where hi is the i-th embedding of the hs. pi and qi are
vectors. FC(·) is fully-connected layers, and Wf c is linear
matrix, and n is the number of feature interactions and
is equal to m(m−1)

2 . Figure 4 shows the processing of
meaningful second-order interaction encoder.

3.2.3 Dominant high-order interaction encoder

Deep learning networks with several fully-connected layers
are widely used in various works to extract high-order
feature interactions, and a hierarchical structure has the
capability to build more representative and efficient
features. Normally, existing works merely take the output
of the last layer as a dense real-value feature vector to
make predictions. However, we argue that these methods
ignore the relations among layers. Intuitively, features
from different layers have different information for feature
learning. Thus, we introduce an attention mechanism into
the layers, and try to select dominant and irrelevant
ones and assign weights for each layer dynamically,
which can improve the feature extraction and is less
costly.

The structure of the dominant high-order interaction
encoder is shown in Fig. 5. Firstly, the comprehensive
second-order feature interactions hs is fed into a feed-

Fig. 4 The meaningful second-order interaction encoder
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Fig. 5 The dominant high-order interaction encoder

forward neural network in which hidden layers have the
same units. It is denoted as:

H 1 = σ(W 0H 0 + b0) (14)

HL = σ(WL−1HL−1 + bL−1) (15)

where W0 and b0 are the weight matrix and bias vector of
the 0-th layer. Similarly, WL−1 and bL−1 are the weight
matrix and bias vector of the L-1th layer. H0 = hs , and
the L denotes the hidden layer depth and σ is the activation
function. H1 is the output of the 1-th layer. HL is the output
of the L-th layer. Thus, compared to the 0-th layer, the output
of the L-th layer contains more comprehensive information.
Then, in order to build more detailed and useful information,
we take attention mechanism to aggregate these high-order
features into a dense real-value feature vector h.

αk = exp(hkReLU(W kH k + bk))

L∑
k=0

exp(hkReLU(W kH k + bk))

(16)

h = [α0H0, α1H1, ..., αLHL] (17)

where αk is the weight of k-th layer, which represents
the different relations among hierarchical layers. Hk is
the output of the k-th layer. Wk , hk , and bk are learning
parameters. Through Eq. (16) and Eq. (17), hierarchical
features are not equally aggregated for feature learning.

3.3 Prediction layer

Finally, h is fed into the sigmoid function for CTR
prediction. It is formulated as:

ŷ = σ(WL+1h + bL+1) (18)

where WL+1 and bL+1 are the model weight and the
bias vector respectively. ŷ ∈ (0, 1) is the predicted value.
Furthermore, we use the widely used cross-entropy loss
function to train our proposed HAFP model:

loss =
∑

j∈N

(yj log(ŷj ) + (1 − yj ) log(1 − ŷj )) + λ‖θ‖2

(19)

where N and θ are the total number of samples and
parameter set of the model, respectively. yj is the ground
truth of the j-th instance. Additionally, we introduce L2

regularization weighted by λ to prevent overfitting, and we
use Adam gradient descent optimizer to optimize Eq. (19).

4 Experiments and analysis

4.1 Research questions

We conduct experiments which aim to answer the following
research questions:

(RQ1) What is the performance of HAFP in CTR
prediction? Does it outperform the state-of-the-art
models in terms of Logloss and AUC? (See Section
4.3)

(RQ2) Howwell does HAFP performwith the hierarchical
attention mechanism? (See Section 4.4)

(RQ3) How well does HAFP perform with different types
of bilinear interactions? (See Section 4.5)

(RQ4) How well does HAFP perform with single context
instead of global-local contexts in the salient
feature encoder? (See Section 4.6)

Before implementing extensive experiments, we first
present the experimental settings including datasets, evalu-
ation metrics, baselines, and parameter settings.

4.2 Experiment settings

4.2.1 Datasets

We use two datasets which are commonly adopted in CTR
prediction, Criteo1 and Avazu2, to evaluate the efficiency
of the proposed model. The first dataset is released by

1http://labs.criteo.com/2014/02/download-dataset/
2http://www.kaggle.com/c/avazu-ctr-prediction
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the Display Advertising Challenge 2014. It contains 39
anonymous fields about displayed ads which consist of
26 categorical fields and 13 continuous fields. The second
dataset is released by the Feature Prediction Competition
2014. Its data relates to users’ click behaviors on displayed
mobile ads, and it has 24 fields about user/device features
and ad attributes. In experiments, we split each dataset into
three parts: 80% for training, 10% for validation, and 10%
for testing.

4.2.2 Evaluation metrics

To evaluate the performance of the HAFP in CTR
prediction, we take Area Under Curve (AUC) and Logloss
as evaluation strategies which have been widely adopted
in related works. Please note that an improvement of 1%
in AUC or Logloss brings a large increase of revenue for
advertising platforms [3, 4].

AUC: AUC is the primary evaluation, and is used to
reflect the ranking performance between clicked and non-
click instances. The upper bound of AUC is 1, and a
higher value of AUC represents a better performance.

Logloss: Logloss measures the overall likelihood of test
data. It has been widely used in the classification
tasks, and a lower value of Logloss represents a better
performance.

4.2.3 Baselines

We compare our model HAFP with different baseline
methods for CTR prediction. The baselines include:

LR: LR employs linear combination with each feature to
compute CTR prediction.

FM: [24] FM uses inner products on first-order and
second-order feature interactions to compute CTR
prediction.

AFM: [34] AFM extends FM by introducing an attention
mechanism which distinguishes different weights of
second-order feature interactions.

NFM: [7] Neural FactorizationMachine(NFM) builds the
feature interactions via a bi-interaction pooling layer
before DNNs.

DeepFM: [6] DeepFM extracts feature interactions by
combining an FM part and a deep MLP part.

InterHAt: [16] InterHAt models feature interactions
by using a multi-head transformer and a hierarchical
attention layers.

FiBiNET: [10] FiBiNET employs a squeeze-and-
excitation network layer and a bilinear-interaction layer
to explore salient features and feature interactions for
CTR prediction.

4.2.4 Implementation details

We implement HAFP and baselines with Tensorflow on a
GPU Tesla T4. In the embedding layer, the dimension of
each feature in our work is set to 8 for the Avazu dataset
and to 10 for the Criteo dataset. The scaling factor r in
the salient feature encoder is set to 3, and the activation
functions in the attentive global-local contexts module is
RELU. In the dominant high-order interaction encoder, the
hidden layer depth L is set to 4, and the activation functions
in this encoder are RELU. Additionally, for optimizing the
HAFP model, we use Adam to update parameters in the
training stage with a mini-batch size of 512 for Criteo and
Avazu datasets, and we set the learning rate to 0.0001 on the
two datasets. Additionally, to ensure the reliability of model
performances, reported results are the average value of 5
iterations of the experiments. Moreover, the parameters of
all of the baseline models follow the experimental settings
reported in their works for fair comparisons.

4.3 Performance comparison

The results for CTR prediction between HAFP and
baselines on Criteo and Avazu datasets are shown in Table 2.
From the table, we can find the following observations:

LR performs worse than other methods, which indeed
shows the power of feature interactions in feature learning.
AFM achieves a significantly better performance than FM,
which demonstrates the benefits of an attention mechanism
in learning the weights of feature interactions. Furthermore,
LR and FM based methods perform worse than the
methods which incorporate a deep learning network in
CTR prediction. It demonstrates the effectiveness of non-
linear transformation and deep neural network in modelling
feature interactions. InterHAt benefits from second-order
feature interactions more than NFM and DeepFM, and it

Table 2 Performance comparison on two datasets for Logloss and
AUC, respectively. The statistical significance between each pair of
our proposed HAFP and the best baseline at p<0.05 level

Method Criteo Avazu

Logloss AUC Logloss AUC

LR 0.5133 0.7308 0.4378 0.7276

FM 0.5040 0.7397 0.4352 0.7355

AFM 0.4964 0.7441 0.4337 0.7362

NFM 0.4897 0.7483 0.4310 0.7387

DeepFM 0.4892 0.7491 0.4283 0.7398

InterHAt 0.4842 0.7580 0.3931 0.7549

FiBiNET 0.4843 0.7585 0.3979 0.7583

HAFP 0.4824 0.7608 0.3903 0.7600
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achieves better performance. Capturing feature importance
is important for feature learning because different features
have various contributions for the final task. InterHAt
represents second-order feature interactions with a multi-
head transformer, but it neglects to consider the feature
importance in feature embedding. FiBiNET performs better
than InterHAt. That is mainly due to the salient features
with a SENET structure which captures more accurate
embeddings of each feature.

Compared to InterHAt and FiBiNET, HAFP further
builds feature learning from the hierarchical attention mech-
anism, which captures the real-value feature vector from
both low- and high-order feature interactions simultane-
ously. HAFP takes full account of relevant information
and outperforms the baselines. Generally, HAFP obtains
improvements of 0.3% and 0.2% in AUC on two datasets
over the best baseline FiBiNET, respectively.

Furthermore, to verify whether the relative improvement
rates of HAFP are statistically significant, we conduct a
paired t-test here and results of the p-values are shown
in Table 2 with different markers. In this table, the p-
value refers to the comparison between HAFP and the best
baseline. The p-values in Table 2 are all less than 0.05,
which validates the improvements of HAFP are statistically
significant.

4.4 Influence of hierarchical attentionmechanism

To illustrate the influence of the hierarchical attention mech-
anism for CTR prediction, we compare the performance of
HAFP and three variants of HAFP. FP-0 refers to HAFP
without the salient feature encoder and without the atten-
tion mechanism in the meaningful second-order interaction
encoder and the dominant high-order interaction encoder.
FP-1 refers to HAFP without the attention mechanism in the
meaningful second-order interaction encoder and the dom-
inant high-order interaction encoder. FP-12 refers to HAFP
without the attention mechanism in the dominant high-order
interaction encoder. The results on Criteo and Avazu are
summarized in Table 3.

First, although FP-0 is the worst method for CTR
prediction in the variants of HAFP, compared to the similar

Table 3 Performance comparison of HAFP with different encoders

Models Criteo Avazu

Logloss AUC Logloss AUC

FP-0 0.4837 0.7592 0.3922 0.7584

FP-1 0.4835 0.7593 0.3918 0.7588

FP-12 0.4832 0.7597 0.3912 0.7592

HAFP 0.4824 0.7608 0.3903 0.7600

structure of FiBiNET, FP-0 gains a better performance.
Considering the difference between FP-0 and FiBiNET, the
results show that the projective bilinear function plays an
important role for feature learning, and the performance
verifies the effectiveness of the designed projective bilinear
function. Second, compared to FP-0, FP-1 obtains some
improvements, which indicates the effect of considering
feature importance in feature learning, and the performance
verifies that building accurate feature embedding has
the capability to improve CTR prediction. Third, FP-12
achieves a better performance than FP-0 and FP-1 in terms
of Logloss and AUC on the two datasets. This confirms
that using the attention mechanism in the second-order
interaction encoder can capture the relevant contexts for
the feature learning. In addition, it means that not all
pair-wise feature interactions are equally useful for CTR
prediction tasks. Finally, compared to the above three
variants of HAFP, HAFP receives the best performance,
which indicates that the hierarchical attention mechanism
contributes to our model. Additionally, HAFP outperforms
FP-0 with 0.2% and 0.2% respectively for AUC on the two
datasets. The results demonstrate our hierarchical attention
mechanism can capture the positive features and feature
interactions for CTR prediction tasks, which verify the
rationality and feasibility of our contribution in this work.
In summary, the performance comparison of HAFP with
different encoders demonstrates that with the designed
strategy, better feature representation can be achieved and
further help CTR prediction.

4.5 Influence of bilinear function

To study the effectiveness of our projective bilinear
function for learning the second-order feature interactions,
we conduct the ablation experiments in this section to
study the impact of the projective bilinear function in
HAFP. HAFI refers to that field-interaction type is used to
encode the feature interaction in the meaningful second-
order interaction encoder. HAT refers to that multi-head
transformer is used to encode the feature interaction in
the meaningful second-order interaction encoder. As Fig. 6
shows, HAFI obtains a better performance in both AUC
and Logloss than HAT on the two datasets. Additionally,
the computation of HAT is heavier than HAFI since
HAT owns more parameters and requires more time for
training. Thus, bilinear interaction function with attention
mechanism is beneficial and suitable for modelling second-
order feature interactions. Furthermore, HAFP outperforms
HAFI and HAT in both the datasets, which verifies
the effectiveness of the projective bilinear function. The
main reason is that it fully considers mapping relation
between two features and the interaction results are more
comprehensive.
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Fig. 6 Performance comparison of HAFP with different bilinear functions

4.6 Influence of attentive global-local context
module

To study the impact of our attentive global-local module
(AGLM), we construct its two ablation modules, attentive
global module (AGM) and attentive local module (ALM),
in which the other parts of HAFP are set the same. The
only difference in these three modules is the contextual
information used in building feature importance. The
comparison results are shown in Fig. 7. It can be seen that:

(1) HAFP with AGM perform slightly better than HAFP
with ALM in Logloss, while the latter gains better
performance in terms of AUC on Avazu. Since the
global context is used to extract common information
and the local context is used to retrieve characterized
information, we argue that both global information and
local information play an important role for building
feature importance.

(2) HAFP with AGLM achieves better performance than
AGM and ALM in all settings. It suggests that
merely focusing on global or local information is too
biased and weakens the effect of feature learning. In
summary, integrating global and local information is
vital for dynamically assigning feature weight and is
an effective way for improving CTR prediction.

5 Conclusion

In this paper, we highlight the relevant information in
different order feature interactions for CTR prediction.
We propose a novel Hierarchical Attention and Feature
Projection (HAFP) neural network. There are two major
parts in HAFP: 1) It employs a three-level attention
mechanism to strengthen the weight of relevant features
and decrease the weight of irrelevant features. 2) It
designs a projective bilinear function to learn more
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Fig. 7 Performance comparison of HAFP with different contexts in attentive global-local module
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fine-grained second-order feature interactions. Compared
to the existing methods, our model fully utilizes the
interactions of different field pairs and automatically
selects dominant features and feature interactions for
feature learning. We conduct extensive experiments on two
public datasets. The results show that HAFP outperforms
state-of-the-art baselines for CTR prediction, and ablation
experiments which analyze the effect of hierarchical
attention, the bilinear function, and the attentive global-
local context module demonstrate the rationality and
effectiveness of our contributions.

Although the prediction performance is improved in
our proposed method, it models the feature interactions in
an implicit way, and unstructured combination of features
will inevitably limit the capability to model sophisticated
interactions among different features in a sufficiently
flexible fashion. This limitation opens up new research
possibilities. In future work, we plan to build sophisticated
interactions among different features in an explicit manner.
Moreover, inspired by the power of graph neural network
(GNN), we are going to attempt to extend our work with
GNN to further improve the performance.
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