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Abstract
This paper aims to propose a novel algorithm for computing all normal parameter reductions of the soft set (#NPRS for
short). Firstly, a weight vector is assigned to objects of the soft set domain. Then, a necessary condition for a normal
parameter direction can be derived. A parameter subset is a solution only if the total value of the weighted sum of
corresponding parameter approximations is a multiple of a constant number, which is equal to the sum of weights. Based
on this necessary condition, we can figure out all potential solutions by using integer partition technique. It needs only to
screen out the right ones at last. Experimental results are listed and compared when weight vectors are UNA, BIN, TER,
OCT, DEC, DUO and HEX. Comparison results show that our method has a better performance for solving #NPRS.

Keywords Decision support · Soft set · Integer partition · Object weighting method · Normal parameter reduction

1 Introduction

0-1 valued information systems are common in our daily life
and research work. It is generally represented in a matrix
or a table, where the rows correspond to the objects in the
domain, and the columns are for the attributes or parameters.
For instances, the black and white picture, the adjacency
matrix for a graph [1], and the vote results in multi-attribute
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decision making when the parameters mean the experts,
who are supposed to choose a subset of objects on their own
opinions.

In 1999 Molodtsov brought in the concept of soft set
[2], which provided a novel mathematical tool for dealing
with uncertainties. A soft set can also be represented as a
0-1 valued information system [3]. Every column stands
for a parameter approximation of the soft set. The decision
making model is similar with that of multi-attribute decision
making. The number of parameter approximations each
object belongs to is defined as the choice value function of
the soft set. An object is an optimal solution when it belongs
to maximum number of parameter approximations. We refer
to more details in Section 2.

Many works have been made by researchers on soft set
theory and its potential applications [4–12]. Combined with
different mathematical structures, soft set has been studied
algebraically [13–18] and topologically [19–21]. Various
types of vague concepts have been combined with soft set
theory such as fuzzy soft sets [22–26, 33], soft rough sets
[27–30].

Another important direction for soft set study is the
parameter reduction problem of soft sets. Based on different
conditions, several kinds of parameter reduction problems
of soft sets or fuzzy soft sets [31, 32, 34–44] have been
defined and discussed. The parameter reduction problems
of soft sets actually deal with a kind of important structure
for the parameter domain.
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In this paper we will focus on a kind of parameter
reduction problem, which is named as normal parameter
reduction of soft sets. A normal parameter reduction is
related with a parameter subset whose sum of rows are all
equal. This means that once these parameters are deleted
from the parameter domain, the same amount of choice
values will be lost for every object, hence the same rank of
the objects will be maintained.

Different algorithms have been proposed for computing
the normal parameter reductions of a soft set in an efficient
way. A kind of parameter subset whose sum of column
values is an integral multiple of the number of rows (i.e.,
number of objects), was first given by [43]. This kind
of parameter subset plays as a necessary condition in
normal parameter reduction of soft set, i.e., the mentioned
parameter subset is a candidate for normal parameter
reduction of soft sets. Ma et al. [43] developed an algorithm
for normal parameter reduction of soft set. Unnecessary
repetition can be avoided because the sum of each column
can be calculated in advance. In [45], a hierarchical
algorithm for solving the minimal k|U | parameter subset
is studied, and then based on the minimal candidate set,
the normal parameter reduction problem of soft set can be
solved by testing the disjoint combinations of these minimal
k|U | parameter subsets.

Particle Swarm Optimization Algorithm was brought in
to solve the normal parameter reductions in soft sets [36].
However, it can’t guarantee that an optimal solution will
be found [37]. Then a 0-1 linear programming method for
finding an optimal normal parameter reduction of a soft set
has been investigated in [38]. But the problem of finding
all normal parameter solutions has not been investigated in
[38].

Recently [44] brought the integer partition technique into
the normal parameter reduction problem of soft sets. It was
based on the necessary condition pointed out in [43]. Its
main contribution is that an explicit method for computing
the candidates (i.e., k|U | parameter subsets) satisfying the
necessary condition is proposed. However, there are two
problems: (1) the number of candidates increases quickly
when the size of soft sets grows; (2) the success rate of this
method is quite low. Only a small proportion of the found
candidates become the solutions.

The motivation of this paper is as follows: we should not
be confined to the column sums. We notice that the column
sum of a parameter approximation can be represented by
each of the following expressions:

SF (e) =
n∑

i=1

F(ui, e), (1.1)

SF (e) =
n∑

i=1

(1 × F(ui, e)). (1.2)

From expression (1.2) we see that there exists a weight
vector ω = (1, 1, · · · , 1) for objects of the soft domain. So
our idea is: can we define different weight vector for objects
and achieve a potential better efficiency? For example, every
parameter approximation can be represented as a 0-1 valued
vector. So we try to connect the weight vector with Binary
system and some other systems.

It’s very interesting to investigate the efficiencies of
different weight vectors. We find that the method of [44]
can be improved.

The remainder of this paper is organized as follows.
Section 2 introduces basic concepts such as soft set, and
the problem of normal parameter reduction. The theoretical
foundation of this paper is proposed in Section 3. Section 4
develops a novel algorithm for the mentioned problem.
Experimental results showing the efficiency and success
rate of our algorithm in normal parameter reduction problem
are listed in Section 5. In Section 6 we make a short
introduction to an APP, which is based on the algorithm and
can be run as an application of our algorithm in MATLAB.
Finally, we come to a conclusion of this article and outlook
for potential future work.

2 Preliminaries

In this paper, supposeU = {u1, u2, · · · , un} is a finite set of
objects, E is a set of parameters. For example, the attributes
in information systems can be taken as parameters. ℘(U)

means the power set of U , |A| means the cardinality of set
A. By [2] and [38] we have basic concepts about soft sets
shown in Definitions 2.1 and 2.2.

Definition 2.1 (Soft set) A soft set on U is a pair S =
(F, A), where

(i) A is a subset of E;
(ii) F : A → ℘(U), ∀e ∈ A, F(e) means the subset

of U corresponding with parameter e, and F(e) is
called e−approximation of S. We also use F(u, e) = 1
(F(u, e) = 0) to mean than u is (not) an element of
F(e).

Definition 2.2 (Support set of parameters for objects) Let
S = (F, A) be a soft set over U . ∀u ∈ U , define the support
set of parameters for u as the set {e ∈ A|F(u, e) = 1},
denoted by supp(u).

Definition 2.3 (Choice value function) Let S = (F, A) be
a soft set over U . The function σS : U → N defined by
σS(u) = |supp(u)| = ∑

e∈A F(u, e) is called the choice
value function of S.

We write σS as σ for short if the underlying soft set S is
explicit.
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Definition 2.4 Let S = (F, A) be a soft set over U , B ⊆ A

define SF (e) = ∑
u∈U F(u, e); SF (B) = ∑

e∈B SF (e).

Example 2.1 Table 1 represents a soft set S = (F, E)

over objects domain U = {u1, u2, · · · , u6} and parameters
domain E = {e1, e2, · · · , e7}, where F(e1) = {u1, u4, u5},
F(e2) = {u6}, F(e3) = {u1, u2, u4, u5, u6}, F(e4) =
{u1, u2, u6}, F(e5) = {u1, u2}, F(e6) = {u2, u3, u6},
F(e7) = {u2, u3}, σS can be regarded as the choice value
function of soft set S.

According to [38], we have the following concept about
normal parameter reduction of soft sets.

Definition 2.5 (Normal parameter reduction) For soft set
S = (F, A) over U , B ⊆ A, B �= ∅, if the constraint

∑

e∈A−B

F(u1, e) = · · · =
∑

e∈A−B

F(un, e) (2.1)

is satisfied, then B is called a normal parameter reduction
of S.

Example 2.2 Take the soft set in Example 2.1 for instance.
It’s easy to check that

∑

e∈{e1,e2,e7}
F(u1, e) = · · · =

∑

e∈{e1,e2,e7}
F(u6, e) = 1,

thus A − {e1, e2, e7} is a normal parameter reduction.
Note that we don’t require the minimality condition for

normal parameter reductions as defined in [32].

Main Definition 2.1 (�NPRS) For soft set S = (F, A) over
U , compute the set of all normal parameter reductions of S,
denoted by �NPRS.

Table 1 Tabular representation of a soft set S = (F, A)

e1 e2 e3 e4 e5 e6 e7 σS

u1 1 0 1 1 1 0 0 4

u2 0 0 1 1 1 1 1 5

u3 0 0 0 0 0 1 1 2

u4 1 0 1 0 0 0 0 2

u5 1 0 1 0 0 0 0 2

u6 0 1 1 1 0 1 0 4

SF (ei) 3 1 5 3 2 3 2 SF (E) = 19

3 Theoretical foundations

3.1Weighting operation for objects in U of a soft set

Definition 3.1 Suppose S = (F, A) is a soft set over U =
{u1, u2, · · · , un}. |U | = n, |A| = m. ω = (ω1, ω2, · · · , ωn)

is a weight vector with non-negative component ωi for
ui, i = 1, 2, · · · , n. ∀ei ∈ A, define Sω

F (ei) as follows:

Sω
F (ei) =

n∑

k=1

ωkF(uk, ei). (3.1)

Definition 3.2 Suppose S = (F, A) is a soft set over U .
|U | = n, |A| = m. A1 ⊂ A. Define

Sω
F (A1) =

∑

e∈A1

Sω
F (e). (3.2)

Example 3.1 With respect to the soft set shown in Table 1,
we define different weight vectors: (i) The weight vector
ω in Table 2 is equal to (1, 1, · · · , 1). In this situation we
denote Sω

F (e) as SUNA
F (e), and we see that SUNA

F (e) is
actually equal to SF (e) defined in Definition 2.4.

(ii) When a soft set is represented in a table as
Example 2.1 does, every e−approximation F(e) can
be regarded as a 0 − 1 vector. Inspired by Binary,
we define a weight vector (20, 21, · · · , 25) for objects
ui, i = 6, 5, · · · , 1. Here we denote Sω

F (e) by
SBIN

F (e).
(iii) Similarly, if we make use of Ternary, Octal, Deci-

mal, Duodecimal, and Hexadecimal, we can define
weight vectors (30, 31, · · · , 35), (80, 81, · · · , 85),
(100, 101, · · · , 105), (120, 121, · · · , 125), (160, 161,
· · · , 165) to objects ui, i = 6, 5, · · · , 1. See
Table 3. We denote the function Sω

F (e) by ST ER
F (ei),

SOCT
F (ei), SDEC

F (ei), SDUO
F (ei) and SHEX

F (ei),
respectively. See Table 4 for more details.

Proposition 3.1 Suppose S = (F, A) is a soft set over
U . |U | = n, |A| = m. As to the function Sω

F (ei), when

Table 2 Function SUNA
F (ei) for the soft set S = (F, A) in Table 1

e1 e2 e3 e4 e5 e6 e7 ωUNA

u1 1 0 1 1 1 0 0 1

u2 0 0 1 1 1 1 1 1

u3 0 0 0 0 0 1 1 1

u4 1 0 1 0 0 0 0 1

u5 1 0 1 0 0 0 0 1

u6 0 1 1 1 0 1 0 1

SUNA
F (ei) 3 1 5 3 2 3 2 SUNA

F (E) = 19
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Table 3 Different weighting vectors for the objects of soft set S =
(F, A) in Table 1

ωUNA ωBIN ωT ER ωOCT ωDEC ωDUO ωHEX

u1 1 25 35 85 105 125 165

u2 1 24 34 84 104 124 164

u3 1 23 33 83 103 123 163

u4 1 22 32 82 102 122 162

u5 1 21 31 81 101 121 161

u6 1 20 30 80 100 120 160

ω = BIN, T ER, OCT, DEC, DUO, HEX we have the
following properties:

(i) F(ei) = F(ej ) if and only if Sω
F (ei) = Sω

F (ej ).
(ii) If F(ei) = ∅, then Sω

F (ei) = 0.
(iii) If F(ei) = U , then Sω

F (ei) = ∑n
i=1 ωi .

(iv) ∀e ∈ A, we have 0 <= Sω
F (ei) <= ∑n

i=1 ωi .
(v) If F(ei) � F(ej ), then Sω

F (ei) < Sω
F (ej ).

(vi) If Sω
F (ei) and n are both given, then we can retrieve

F(ei).

3.2 A new necessary condition for normal parameter
reduction problems of soft set

Theorem 3.1 [43] (Necessary Condition I for normal
parameter reduction of soft sets)Given a soft set S = (F, A)

over U , B ⊆ A, B �= ∅, if B is a normal parameter
reduction of S by Definition 3.1, then

i.e.,

Theorem 3.2 (Necessary Condition II for normal parameter
reduction of soft sets) Suppose S = (F, A) is a soft set
over U = {u1, u2, · · · , un}. |U | = n, |A| = m. ω =

(ω1, ω2, · · · , ωn) is a real-valued weight vector with non-
negative component ωi for ui, i = 1, 2, · · · , n. B ⊆ A,
B �= ∅. If B is a normal parameter reduction of S by
Definition 3.1, then ∃K ∈ Z satisfying

i.e.,

Proof

∑

e∈A−B

Sω
F (e) =

∑

e∈A−B

(
n∑

i=1

F(ui, e) × ωi

)

=
n∑

i=1

(
∑

e∈A−B

F(ui, e) × ωi

)

=
n∑

i=1

((
∑

e∈A−B

F(ui, e)

)
× ωi

)

Since B is a normal parameter reduction, we have ∀i,∑
e∈A−B

F(ui, e) is constant. Denote K = ∑
e∈A−B F(ui, e).

Hence

∑

e∈A−B

Sω
F (e) =

n∑

i=1

K × ωi = K ×
n∑

i=1

ωi .

According to Example 3.1 (i) we know that Theorem
3.1 is a special situation of Theorem 3.2 where ω =
(1, 1, · · · , 1).

Corollary 3.1 (Necessary Condition II for normal parame-
ter reduction of soft set under Binary weight vector) Sup-
pose S = (F, A) is a soft set over U = {u1, u2, · · · , un}.
|U | = n, |A| = m. ω = (2n−1, 2n−2, · · · , 20) is a weight

Table 4 Function SF (ei) for the soft set S = (F, A) in Table 1
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vector.B ⊆ A,B �= ∅. IfB is a normal parameter reduction
of S by Definition 3.1, then ∃K ∈ Z satisfying

Example 3.2 Take the soft set in Example 2.1 where
|U | = 6 for instance. By Example 2.2 A − {e1, e2, e7} is
a normal parameter reduction. With respect to the matrix
representation in Table 1, by the third row which is green
colored in Table 4 we have

∑

e∈{e1,e2,e7}
SBIN

F (e) = 38 + 1 + 24 = 63 = 1 × (2|U | − 1).

It should be noticed that the order of objects doesn’t
influence our result shown in expression Nω. In Table 5,
after we change the order of objects in the matrix
representation of soft set in Table 1, we still have

∑

e∈{e1,e2,e7}
SBIN

F (e) = 28 + 2 + 33 = 63 = 1 × (2|U | − 1).

Note 3.1 (An open problem on the relations among
different weight vectors) Suppose S = (F, A) is a soft
set over U = {u1, u2, · · · , un}. |U | = n, |A| =
m. B ⊆ A. Given two arbitrary weight vectors ω1

and ω2. It’s very interesting to consider the following
question: is there any logical implication relation between
the statements

(∑
e∈A−B S

ω1
F (e)

)
mod

(∑n
i=1 ω1

) = 0
and

(∑
e∈A−B S

ω2
F (e)

)
mod

(∑n
i=1 ω2

) = 0, and in
which conditions? In this paper we will not investigate
this problem thoroughly. However, we try to give some
situations as follows:

(i) Let ω1 = (1, 1, · · · , 1), ω2 = (2n−1, 2n−2, · · · , 1).
Then we have:

NUNA �=⇒ NBIN .

Table 6 shows a soft set where A = {e1, e2, · · · , e8}.
The values SUNA

F (e) and SBIN
F (e) are listed. Note that∑5

i=1 ω1(i) = 5 and
∑5

i=1 ω2(i) = 25 − 1 = 31.

Table 5 Function SBIN
F (ei) for another representation of the soft set

S = (F, A) in Table 1

e1 e2 e3 e4 e5 e6 e7 ω

u3 0 0 0 0 0 1 1 25

u4 1 0 1 0 0 0 0 24

u5 1 0 1 0 0 0 0 23

u1 1 0 1 1 1 0 0 22

u6 0 1 1 1 0 1 0 21

u2 0 0 1 1 1 1 1 20

SBIN
F (ei) 28 2 31 7 5 35 33 SBIN

F (E) = 141

Table 6 Tabular representation of a soft set S = (F, A) for Note 3.1
(i) and (ii)

e1 e2 e3 e4 e5 e6 e7 e8

u1 1 1 1 1 1 0 1 0

u2 0 0 0 1 1 1 0 0

u3 0 1 0 1 0 1 1 0

u4 1 0 1 1 0 0 1 1

u5 1 0 1 0 1 0 1 1

SUNA
F (e) 3 2 3 4 3 2 4 2

SBIN
F (e) 19 20 19 30 25 12 23 3

In Table 7 each 0-1 row-vector means the characteristic
function of a subset A − B of A. For example, the fist
row-vector is (1 1 0 0 0 0 0 0), then the related
A − B is equal to {e1, e2}. For each yellow row-vector, the
corresponding parameter subset A − B satisfies NUNA but
does not satisfyNBIN . Notice that for any green row-vector,
the corresponding A − B satisfies both NUNA and NBIN .

(ii) Let ω1 = (1, 1, · · · , 1), ω2 = (2n−1, 2n−2, · · · , 1).
Then we have:

NBIN �=⇒ NUNA

Similarly, in Table 8 for any yellow row-vector, the
corresponding parameter subset A − B satisfies NBIN but
does not satisfy NUNA. Notice that for any green row-
vector, the corresponding A − B satisfies both NUNA and
NBIN .

3.3 Equivalent classes of parameters set of a soft set

Definition 3.3 Suppose S = (F, A) is a soft set over U =
{u1, u2, · · · , un}. |U | = n, |A| = m. ω = (ω1, ω2, · · · , ωn)

is a real-valued weight vector with non-negative component
ωi for ui, i = 1, 2, · · · , n. Define a relation Rω on
parameters set A as follows: ∀ei, ej ∈ A,

eiRωej if and only if Sω
F (ei) = Sω

F (ej ). (3.3)

Table 7 Tabular representation for examples of Note 3.1 (i)
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Table 8 Tabular representation for examples of Note 3.1 (ii)

It is easy to get thatRω is an equivalence relation. So the
following proposition holds:

Proposition 3.2 Suppose S = (F, A) is a soft set over
U = {u1, u2, · · · , un}. |U | = n, |A| = m. ω =
(ω1, ω2, · · · , ωn) is a non-negative weight vector. Then
when ω ∈ {BIN, T ER, OCT, DEC, DUO, HEX}, we
have

eiRωej if and only if F (ei) = F(ej ). (3.4)

By using R we can divide A into different equivalent
classes. We use [ei]Rω

to denote the equivalent class
containing ei , i.e., [ei]Rω

= {e ∈ A|eRωei}.

By Proposition 3.2 we know that the number of
equivalent classes induced by Rω depends on the number
of the same parameter approximations. In other words,
the equivalence relation becomes more practical especially
when we have more parameter approximations.

Example 3.3 Consider the soft set S = (F, A) represented
in Table 9, we can see SBIN

F (e1) = 38, SBIN
F (e2) = 1,

SBIN
F (e3) = 39, SBIN

F (e4) = 48, SBIN
F (e5) = 48,

SBIN
F (e6) = 38, SBIN

F (e7) = 1. So we have [e1]RBIN
=

[e6]RBIN
= {e1, e6}, [e2]RBIN

= [e7]RBIN
= {e2, e7},

[e3]RBIN
= {e3}, [e4]RBIN

= [e5]RBIN
= {e4, e5}.

Table 9 Tabular representation of a soft set S = (F, A)

e1 e2 e3 e4 e5 e6 e7 σS

u1 1 0 1 1 1 1 0 5

u2 0 0 0 1 1 0 0 2

u3 0 0 0 0 0 0 0 0

u4 1 0 1 0 0 1 0 3

u5 1 0 1 0 0 1 0 3

u6 0 1 1 0 0 0 1 3

SBIN
F (ei) 38 1 39 48 48 38 1 SBIN

F (E) = 213

We use 2U to denote the set {0, 1, 2, · · · , 2|U | − 1}. For
example if |U | = 5, then we have 2U = {0, 1, 2, · · · , 31}.

Definition 3.4 Suppose S = (F, A) is a soft set over U =
{u1, u2, · · · , un}. |U | = n, |A| = m. ω = (ω1, ω2, · · · , ωn)

is a weight vector. Denote W = {0, 1, 2, · · · ,
∑

i ωi}.
Define a function Fω : W → {[ei]Rω

|ei ∈ A} ∪ {∅} by
Fω(k) = [ei]Rω

if and only if Sω
F (ei) = k, (3.5)

otherwise, Fω(k) = ∅.

According to Example 3.3, we have

Example 3.4 Consider the soft set S = (F, A) represented
in Table 9, we can see FBIN (1) = [e2]RBIN

= {e2, e7},
FBIN (38) = [e1]RBIN

= {e1, e6}, FBIN (39) =
[e3]RBIN

= {e3} FBIN (48) = [e4]RBIN
= {e4, e5},

FBIN (6) = ∅.

4 A novel algorithm for all normal
parameter reductions of a soft set
based on the necessary condition Nω

Now it’s time to show our algorithm for all normal
parameter reductions of a soft set based on the necessary
condition Nω (see Fig. 1 for its sketch map).

Notice that our weight vectors should not contain any
negative coordinates. If the weight vector has negative
coordinates, then it can’t be guaranteed that the sum of
the values while searching along a branch is monotone
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Fig. 1 A sketch map of Algorithm 1 for all normal parameter
reductions

increasing. Thus our pruning method would become
theoretically wrong (Fig. 2).

Example 4.1 Here we make an example with the soft set in
Table 6.

Step 1. Input the soft set S = (F, A) represented in
Table 6.

Step 2. Set up ω = (24, 23, 22, 21, 20) by BIN ,
according to Table 6 we have Sω

F (e1) = 19, Sω
F (e2) =

20, Sω
F (e3) = 19, Sω

F (e4) = 30, Sω
F (e5) = 25, Sω

F (e6) =

12, Sω
F (e7) = 23, Sω

F (e8) = 3. Sω
F (A) = 151. RBIN =

{{e1, e3}, {e2}, {e4}, {e5}, {e6}, {e7}, {e8}}.
Step 3.

∑
i ωi = 25−1 = 31, get the series of numbers to

be partitioned: k(
∑

i ωi), k = 1, 2, 3, 4 (0 can be deleted
since S

ωBIN

F (i) > 0, ∀i, 1, 2, · · · , 4), and K = 4 since
K(

∑
i ωi) = 4×31 <= Sω

F (A) = 151, 5×31 > 151. So
the series of numbers to be partitioned is 31, 62, 93, 124.

Step 4. With factors {Sω
F (i)} = {3, 12, 19, 20, 23, 25,

30}, it becomes a question to perform integer partition
operation to integers 1 × 31, 2 × 31, 3 × 31 and
4 × 31. Pay attention to the constraint that the times
of factor Sω

F (ei) appears should not be bigger that
|[e]BIN |, where Sω

F (e) = Sω
F (ei). In Fig. 2, we give

a sketch map for the integer partition process when
k(

∑
i ωi) = 93. Then transform the integer partition

results to tuples (p1, p2, · · · , pm). See Table 10 where
ω = (24, 23, 22, 21, 20) for ui, i = 1, 2, · · · , 5.

Step 5. Screen out all the normal parameter reductions
B from the set of integer partitions (p1, p2, · · · , pm)

satisfying Nω. See the tuples labeled with 1 in the last
column of Table 10.

As a comparison, we also set up other kinds of ω.
Similar with Table 10, we list the solutions when ω ∈
{T ER, OCT, DEC, DUO, HEX} (See Table 11), ω =
UNA (See Table 12).

For each ω ∈ {T ER, OCT, DEC, DUO, HEX}, the
corresponding set of all integer partitions is the same.
What’s more, each of the three integer partitions relates to a
normal parameter reduction B. That’s 100 percent accuracy.
When ω = UNA, we have 45 integer partitions (See
Table 12), and only three of them correspond to the normal
parameter reduction solutions. The success rate is equal to
0.066. Hence as to this example, we can see that our new
algorithm is much more efficient.

5 Experimental results
for the proposed algorithm

In this section we introduce our experimental results of the
proposed Algorithm 1. Particularly, when ω = UNA, it

Fig. 2 A sketch map of the
integer partition technique in
Algorithm 1
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Table 10 The solutions of Example 4.1 when ω = BIN

is actually the same with the method proposed in [43]. So
we do give a comparison between the existing method by
setting up ω = UNA and other kinds of weighting vectors.

Our experiments perform on a PC with an AMD Ryzen
5 3500U 2.10GHz CPU, 8GB RAM and the Win10
professional operating system. Our data is generated in
the following way: first, we use the rand function of
MATLAB to generate a uniformly distributed matrix of
random numbers in the [0,1] interval. Numbers less than or
equal to N in the matrix are then changed to 1, and the rest
of the numbers are changed to 0.We can thus obtain a matrix
with a ratio of 1 as N .

The controlling parameters in our experiments are as
follows:

(i) The number of rows, i.e., the number of objects |U |.
(ii) The number of columns, i.e., the number of parame-

ters |A|.
(iii) The ratio of value 1, i.e., the proportion of 1 values of

the generated data.

For every combination of the above controlling parameters,
the running times of our algorithm are set up as 100. In
the following subsections we list our experimental results
with respect to the time efficiency, success rate, the rate
of variance of these corresponding rows in the initial soft
set, the average number of total integer partitions and the
average number of normal parameter reductions.

5.1 Experimental results of the time cost

(i) Let |A| = 16, |U | = 8, 10, · · · , 16. The ratio of 1 is
equal to 0.3. The results of the time cost are shown

at the top-level of Fig. 3 (In Fig. 3, the subfigure on
the right side of each level is the partial enlargement
of the corresponding left one). With respect to ω =
UNA, the time cost decreases when |U | increases.
When ω = BIN, T ER, OCT, DEC, DUO, HEX,
the time cost is much lower when compared with
ω = UNA.

(ii) Let |U | = 8, |A| = 10, 12, · · · , 20. The ratio of
1 is equal to 0.3. The results of the time cost are
shown at the middle-level of Fig. 3. With respect to
|A|, the time cost increases when |A| increases. When
ω = BIN, T ER, OCT, DEC, DUO, HEX, the
time cost is much lower than ω = UNA particularly
when |A| is lager than 14.

(iii) Let |U | = 8, |A| = 16. The ratio of 1 is
from 0.1 to 0.5. The results of the time cost are
shown at the bottom-level of Fig. 3. The time
cost increases when the ratio of 1 increases. When
ω = BIN, T ER, OCT, DEC, DUO, HEX, the
time cost is much lower than the situation when ω =
UNA.

5.2 Experimental results of the success rate

(i) Let |A| = 12, |U | = 8, 10, · · · , 14. The ratio of 1
is equal to 0.3. The results of success rate are shown
at the left subfigure of the top-level of Fig. 4. As far
as to our experiments, we see that the success rate
increases whenω changes fromUNA toHEX (in the
order of BIN, T ER, OCT, DEC, DUO, HEX).
The success rate is equal to 1 when ω =
OCT, DEC, DUO, HEX. When |A| = 18, we see

Table 11 The solutions of Example 4.1 when ω = T ER, OCT, DEC, DUO, HEX
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Table 12 The solutions of Example 4.1 when ω = UNA
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Fig. 3 The time efficiency of
Algorithm 1

that the success rate is not equal to 1 when ω =
HEX.

(ii) Let |U | = 10, |A| = 10, · · · , 16. The ratio of 1 is
equal to 0.3. The results of success rate are shown
at the left subfigure of the middle-level of Fig. 4. As
far as to our experiments, we see that the success rate
increases whenω changes fromUNA toHEX (in the
order of BIN, T ER, OCT, DEC, DUO, HEX).
The success rate is equal to 1 when ω =
OCT, DEC, DUO, HEX. When |U | = 14, we
have similar results (see the right subfigure of the
middle-level of Fig. 4). Take T ER for example,
we see that when |A| increases, the rate of success
deceases.

(iii) Let |U | = 8, |A| = 16, the ratio of 1 is
from 0.1 to 0.5. The results of success rate are
shown at the left subfigure of the bottom-level of
Fig. 4. As far as to our experiments, for each
ratio of 1, we see that the success rate increases
when ω changes from UNA to HEX (in the
order of BIN, T ER, OCT, DEC, DUO, HEX).
The success rate is equal to 1 when ω =
OCT, DEC, DUO, HEX. Let |U | = 14, |A| = 20,

we see that the success rate is not equal to 1 when
ω = HEX and the ratio of 1 is equal to 0.2 and 0.3
(see the right subfigure of the bottom-level of Fig. 4).

5.3 Experimental results: the rate of variance
for these corresponding rows in initial soft set,
the average number of total integer partitions
and the average number of normal
parameter reductions

(i) For an input soft set S, we denote the number of all
normal parameter reductions as NNPRS , and we also
use Nω

IPS to mean the number of all integer partitions
with weight vector ω. Then we define

success ratei = NNPRS

Nω
IPS

. (5.1)

According to the experimental results success ratei,

i = 1, 2, · · · , 100, we have the average rate of
success as follows:

100∑

i=1

success ratei

100
. (5.2)
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Fig. 4 Experimental results of
the success rate for Algorithm 1

See the experimental results in the fifth column of
both Tables 13 and 14.

It should be noticed that when NNPRS = 0 we
always get success ratei = 0. But it doesn’t mean
our algorithm is inefficient. This is because there
doesn’t exist any normal parameter reduction.

As far as to our experiments, the rate of success
becomes larger when weight vectors change from
UNA to HEX in general. However, we couldn’t
prove it theoretically. We also get a counterexample
in the last row of Table 14.

(ii) Although not all the integer partitions are the normal
parameter reductions of the input soft set, we can
use statistical method to describe the extent in which
it can be taken as a normal parameter reduction.
In other words, we choose analysis of variance to
characterize how far an integer partition is from a
normal parameter reduction.

Suppose the jth integer partition we get in the ith
experiment for the same size and the same weight vec-
tor is equal to (p1, p2, · · · , pm). Denote V ω

IPS(i, j) =
var .(

∑
pj =1 F(u1, ej ), · · · ,

∑
pj =1 F(un, ej )), here

n = |U |.

Assume the number of integer partition solutions
we get in the ith experiment for the same size and the
same weight vector is equal to N(i), then define

V ω
IPS(i) =

∑
j V ω

IPS(i, j)

N(i)
, (5.3)

So we can compute the average degree of variance
by

∑100
i=1 V ω

IPS(i)

100
. (5.4)

See the experimental results in Tables 13 and 14.
Generally, the larger the average rate of success is, the
lower the average degree of variance is.

(iii) The number of normal parameter reductions of a soft
set is determined by its own data, and has nothing
to do with our weight vectors. The last columns in
Tables 13 and 14 give the experimental results in
the average sense. Notice that the number of normal
parameter reductions of a soft set is quite different
when its size and the ratio of 1 are different.
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Table 13 Experimental results for the proposed algorithm (to be continued)

|U | |A| Weight Average
time(s)

Rate of
success

Average
degree of
variance

Average
number of
total integer
partitions

Average number
of normal param-
eter reduction

8 10 1 0.0018 0.16 0.87 66.93 1.64

8 10 2 0.00049 0.53 1.00 3.02 1.64

8 10 3 0.00039 0.93 1.23 1.73 1.64

8 10 8 0.00035 1.00 0.00 1.64 1.64

8 10 10 0.00038 1.00 0.00 1.64 1.64

8 10 12 0.00034 1.00 0.00 1.64 1.64

8 10 16 0.00036 1.00 0.00 1.64 1.64

12 10 1 0.00096 0.08 0.83 32.8 0.13

12 10 2 0.00016 0.65 0.98 0.21 0.13

12 10 3 0.00016 1.00 0.00 0.13 0.13

12 10 8 0.00014 1.00 0.00 0.13 0.13

12 10 10 0.00014 1.00 0.00 0.13 0.13

12 10 12 0.00015 1.00 0.00 0.13 0.13

12 10 16 0.00015 1.00 0.00 0.13 0.13

16 10 1 0.00084 0.03 0.84 23.18 0.04

16 10 2 0.00012 0.83 0.56 0.06 0.04

16 10 3 0.00011 1.00 0.00 0.04 0.04

16 10 8 0.00014 1.00 0.00 0.04 0.04

16 10 10 0.00011 1.00 0.00 0.04 0.04

16 10 12 0.00014 1.00 0.00 0.04 0.04

16 10 16 0.00011 1.00 0.00 0.04 0.04

8 14 1 0.02076 0.04 1.06 1352.05 5.18

8 14 2 0.00217 0.19 1.14 42.46 5.18

8 14 3 0.00103 0.76 1.31 6.91 5.18

8 14 8 0.00099 1.00 0.00 5.18 5.18

8 14 10 0.00098 1.00 0.00 5.18 5.18

8 14 12 0.00098 1.00 0.00 5.18 5.18

8 14 16 0.00104 1.00 0.00 5.18 5.18

5.4 Experiments compared with other algorithms
designed for #NPR

Firstly, we need to collect the algorithms right designed for
the #NPRS. Before this we list and analysis the references
which are closely related to normal parameter reduction
problems. See Table 15 where the reference numbers
for this paper, their excellent idea and the corresponding
contribution are given.

Based on the above preparation, we decide to choose the
recent published algorithms from references [38], [43] and
[44] as comparative ones with our method. As mentioned in
the Table 15, [38] didn’t propose an explicit algorithm for
#NPRS, we need at first to revise the 0-1 linear method of
optimal normal parameter reduction for suiting the #NPRS
problems. For self-contained we cite an example in [38]
here to show how we do this based on the work of [38].

Example 5.1 Table 16 represents a soft set S = (F, E)

over objects domain U = {u1, u2, · · · , u6} and parameters
domain E = {e1, e2, · · · , e8}. According to [38], we have
the elements Di←i+1 and Di+1←i , i = 1, 2, · · · , 5 in
the matrix of dominant support parameters as shown in
Table 17.

Then by [38] we have the set of constraints for a normal
parameter reduction:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C1,2 : e2 = e5 + e6
C2,3 : e3 + e7 + e8 = 0
C3,4 : e5 + e6 = e2 + e7
C4,5 : 0 = 0
C5,6 : e2 = e1 + e3 + e5

Based on these constraints, we can give the revised
algorithm for #NPRS by using implicit enumeration. We
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Table 14 Experimental results for the proposed algorithm ( the continuation of Table 13)

|U | |A| Weight Average
time(s)

Rate of
success

Average
degree of
variance

Average
number of
total integer
partitions

Average number
of normal param-
eter reduction

12 14 1 0.01181 0.01 1.04 724.28 0.17

12 14 2 0.00103 0.10 1.11 2.05 0.17

12 14 3 0.00092 0.94 0.94 0.18 0.17

12 14 8 0.00107 1.00 0.00 0.17 0.17

12 14 10 0.00095 1.00 0.00 0.17 0.17

12 14 12 0.00096 1.00 0.00 0.17 0.17

12 14 16 0.00099 1.00 0.00 0.17 0.17

16 14 1 0.00803 0.00 0.99 424.1 0.02

16 14 2 0.00069 0.20 1.11 0.1 0.02

16 14 3 0.00071 1.00 0.00 0.02 0.02

16 14 8 0.00083 1.00 0.00 0.02 0.02

16 14 10 0.00083 1.00 0.00 0.02 0.02

16 14 12 0.00093 1.00 0.00 0.02 0.02

16 14 16 0.00077 0.67 0.58 0.03 0.02

8 18 1 0.32876 0.00 1.27 22485.25 23.87

8 18 2 0.02961 0.04 1.32 680.99 23.87

8 18 3 0.01057 0.35 1.42 63.5 23.87

8 18 8 0.00949 1.00 0.00 23.87 23.87

8 18 10 0.00969 1.00 0.00 23.87 23.87

8 18 12 0.00952 1.00 0.00 23.87 23.87

8 18 16 0.00958 1.00 0.00 23.87 23.87

12 18 1 0.17816 0.02 1.19 11847.37 0.76

12 18 2 0.01272 0.05 1.28 36.6 0.76

12 18 3 0.01232 0.58 1.26 1.31 0.76

12 18 8 0.01327 1.00 0.00 0.76 0.76

12 18 10 0.01292 1.00 0.00 0.76 0.76

12 18 12 0.01307 1.00 0.00 0.76 0.76

12 18 16 0.01303 1.00 0.00 0.76 0.76

16 18 1 0.14966 0.00 1.21 9092.54 0.06

16 18 2 0.01474 0.04 1.29 2.15 0.06

16 18 3 0.01659 0.57 1.09 0.09 0.06

16 18 8 0.01672 1.00 0.00 0.06 0.06

16 18 10 0.01686 1.00 0.00 0.06 0.06

16 18 12 0.01744 1.00 0.00 0.06 0.06

16 18 16 0.01715 0.80 1.01 0.07 0.06

Table 15 Diagram of references for #NPRS

Ref. No. [32] [43] [36] [37] [38] [44]

Author Kong et al. Ma et al. Kong et al. B.H. Han Han et al. Geng et al.

Pub. Year 2008 2011 2015 2016 2017 2020

Main Con-
tribution

Definition
with
heuristic
techniques

Column-
sum
oriented
heuristic
techniques

Particle
swarm
opti-
mization
algorithm

0-1 linear
program-
ming

0-1 linear
program-
ming

Integer
partition

Suitability
for #NPR

YES YES No No YES (after
revisement)

YES
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Table 16 Tabular representation of a soft set S = (F, A)

e1 e2 e3 e4 e5 e6 e7 e8

u1 0 1 1 1 0 0 1 1

u2 0 0 1 1 1 1 1 1

u3 0 0 0 1 1 1 0 0

u4 0 1 0 1 0 0 1 0

u5 0 1 0 1 0 0 1 0

u6 1 0 1 1 1 0 1 0

choose to use the width-first searching method, with
which we prune the searching branches once we find any
contradiction with these constraints.

With Algorithm 2 we get all the normal parameter
reductions B4 = A − {e4}, B2 = A − {e2, e4, e5}, B3 =
A − {e1, e2, e4, e6}, B1 = A, B5 = A − {e1, e2, e6}, B6 =
A − {e2, e5} for Example 5.1.

Figures 5 and 6 are sketch maps for comparison results.
It is clearly implied that the proposed method in this paper
by integer partition and object weighting is better than the
mentioned methods above as far as to the data simulated in
the experiments.

6 Operational system based onMATLAB

In order to show the potential application of our algorithm,
we integrate our Algorithm 1 into an APP, which can be
installed in MATLAB 2019a or newer versions. Figure 7 is

Table 17 Dominant parameter subsets of adjacent objects for
generating constraints in the linear programming models

i = 1 i = 2 i = 3 i = 4 i = 5

Di←i+1 {e2} {e3, e7, e8} {e5, e6} ∅ {e2}
Di+1←i {e5, e6} ∅ {e2, e7} ∅ {e1, e3, e5}

the interface after running an example. We would like to
make a brief introduction to it as follows:

As can be seen from Fig. 7, the interface of this APP is
divided into several functional parts and marked with serial
numbers.

Area is where we input the data. The soft set data
can be generated randomly. The controlling parameters for
the size of soft set data and the ratio of 1 can be set up
there. As far as to the example shown in Fig. 7, there are
5 objects in the soft set object domain and 7 parameters in
the soft set parameter domain. And the ratio of 1 represents
the proportion of 1 in the data, the number 0.5 in the figure
means that 50% of the numbers in this soft set data matrix
are equal to 1, which are randomly distributed in the matrix.
The soft set data can be uploaded by the button marked with
“ Open excel”. The generated or uploaded data is shown in
area .

In area we can choose or enter the weight vectors. As
instances, we list UNA, BIN, TER, OCT, DEC, DUO, HEX
over there.

Since we want to make comparison among different
weight vectors, we list the current results in area , while
the best result is kept in area . In each of these two areas
we can see the running results such as the time cost, weight
vector, the factors involved in integer partition process, the
number of all integer partitions satisfying the condition Nω.
The number “3” in the local area labeled with “ Success ”
means there are 3 partitions which correspond to the normal
parameter reductions of the input soft set. The number “6”
in the local area labeled with “ All solutions ” means there
are 6 partitions in total. That’s why we see the Success rate
is equal to 0.5 there. Area contains all the integer partition
results over there, and the solutions of the soft set are labeled
with number 1 in the last column. All the maximal normal
parameter reduction solutions can be easily got and are
listed in area .

By button we can start the computation. The final
results can be restored in an excel form and downloaded by
button . If we click button , we can clear the data for the
next round.

7 Conclusion and future work

7.1 Aims fulfilled and novelty

The main contributions of this paper are as follows:

(i) We have solved #NPRS problem of a soft set (i.e.,
all of the normal parameter reductions of a soft set).
Weight vectors for objects in the soft set domain are
firstly brought in. As a result, we come up to a new
necessary condition for a normal parameter reduction
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Fig. 5 The time efficiency comparison results when |A| = 10 and 16

Nω. That’s the principal theoretical foundation of our
algorithm.

(ii) Upon the derived necessary condition, the #NPRS
problems can be solved by using integer partition
technique. Different weight vectors result in different
efficiency of the proposed algorithm. It is very

interesting to investigate these differences among
different weight vectors. Experimental results have
been achieved with respect to the time cost, success
rate and the mean variance of partitions.

(iii) All maximal solutions or optimal ones can be filtered
out in sequence right after �NPRS.

Fig. 6 The time efficiency comparison results when |U | = 12 and 16
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Fig. 7 The interface of our APP performing Algorithm 1 in MATLAB

7.2 Limitations of the proposedmethod

(i) When |A| grows, the proposed algorithm has to
confront with larger workload for the integer partition.
This is determined by the nature of the problem.

(ii) Although from our experimental results we do have
100 percent success rate under some situations, this
paper doesn’t give the conditions under which Nω

becomes a sufficient condition for a normal parameter
reduction theoretically.

7.3 Amuchmore precise description for the idea
of soft set and potential application of normal
parameter reduction in datamining

7.3.1 Explanation of soft set as soft decisionmaking scheme

Suppose U = {u1, u2, · · · , un} is a finite set of objects. In
this paper we assume that a decision making on the set U

of objects means to choose a subset of U . A soft set S =
(F, A) over U defines a function from A to the power set of
U , i.e., ∀e ∈ A, F(e) ⊆ U . Inspired by the assumption for
what a decision making is, a soft set is actually a decision
making strategy. That is “A decision making should be
made upon different parameters or situations. Just like a soft

material which is easy to deform, a decision making should
be flexible to different situations.” As the saying goes, the
benevolent see benevolence and the wise see the wisdom.
Different people may have different opinions. So we can
say that soft set is a kind of soft decision making scheme.
Table 18 shows an example where different job hunters are
searching for the same job. These hunters have to be judged
by different interviewers or different criterions. It’s normal
that there may exist different decisions for who should be
hired by different experts. For instance, job hunter 4 and job
hunter 5 would be hired according to interviewer 1, while
job hunter 3 and job hunter 4 should be hired by the opinion
of interviewer 2.

Table 18 An example of soft set taken as a soft decision making
scheme

Interviewer Interviewer Interviewer Interviewer

1 2 3 4

Job hunter 1 0 0 0 1

Job hunter 2 0 0 0 0

Job hunter 3 0 1 1 1

Job hunter 4 1 1 0 0

Job hunter 5 1 0 1 1
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Table 19 Basic data for 2016 US presidential election

7.3.2 Potential application of normal parameter reduction
in data mining

In big data era it becomes much more important to
mine useful and valuable information from data generated
in various ways. Our normal parameter reduction idea
and skills can be applied as an useful model for data
mining. To be more precise, here we take the 2016
US Presidential Election as an example. Table 19 shows
basic information [46], where we can see which states
TRUMP won or Hillary did. The numbers of electoral
votes for each state are also listed. In this paper we make
an assumption that once a candidate take an advantage
in popular vote count of a state, he would win all the
electoral votes. We make notations as follows: denote the
set of objects as U = {T RUMP, Hillary}, parameter
set E = {state1, state2, · · · , state51} (i.e., E =
{AK, AL, · · · , WY } ), the number of electoral votes for
each state ( the third row in Table 19) is modeled as the
weight ω(e) for each parameter e. Now we get a weighted
soft set S = (F, E), where for each parameter e in E, F(e)

is equal to single-element set containing the candidate who
won in state e. So now for a subset B of E, E − B is called

Table 20 Subset B of states that TRUMP and Hillary are completely
evenly matched over E − B

No. of State 1 2 3 4 10 11 13

States AK AL AR AZ FL GA IA

Electoral votes 3 9 6 11 29 16 6

TRUMP 1 1 1 1 1 1 1

Hillary 0 0 0 0 0 0 0

a normal parameter reduction if and only if TRUMP and
Hillary are completely evenly matched over B, i.e.,
∑

e∈B

ω(e)F (T RUMP, e) =
∑

e∈B

ω(e)F (Hillary, e),

where F(T RUMP, e) = 1 means TRUMP won in the state
e, similarly for F(Hillary, e) = 1. We figure out a normal
parameter reduction E−B, where B is shown in Table 20 as
follows. Table 20 tells us that the mainly reason for the lose
of Hillary lies in the subset of states {1, 2, 3, 4, 10, 11, 13}
(i.e., {AK, AL, AR, AZ, FL, GA, IA}). Because under
our assumption the two candidates would get the same
number of electoral votes which is equal to 229.

7.4 Future work

(i) A useful way for solving the problem mentioned in
Section 7.2 (i) is to divide the parameter set into
different parts. Then the proposed algorithm can be
solved in an approximate way.

(ii) What if we have weighted parameters, how can we
extend our method for the normal parameter reduction
problems in such a situation.

(iii) It is very interesting to combine our theory of 0-
1 valued information systems with other kinds of
information systems, such as hypergraphs.

(iv) There are some intelligent methods which could
be useful for improving the efficiency of integer
factorization. We will come into the potential
combination with our algorithms.
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