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Abstract
Time series analysis is quickly proceeding towards long and complex tasks. In recent years, fast approximate algorithms for
discord search have been proposed in order to compensate for the increasing size of the time series. It is more interesting,
however, to find quick exact solutions. In this research, we improved HOT SAX (Heuristically Ordered Time series using
Symbolic Aggregate ApproXimation) by exploiting two main ideas: the warm-up process, and the similarity between
sequences close in time. These improvements can reduce the size of the discord search space by orders of magnitude when
compared with HOT SAX. The resulting algorithm, called HOT SAX Time (HST), has been validated with real and synthetic
time series, and successfully compared with HOT SAX, RRA (Rare Rule Anomaly), SCAMP (SCAlable Matrix Profile),
and DADD (Disk Aware Discord Discovery). The complexity of a discord search has been evaluated with a new indicator,
the cost per sequence (cps), which allows one to compare searches on time series of different lengths. Numerical evidence
suggests that two conditions are involved in determining the complexity of a discord search in a non-trivial way: the length
of the discords, and the noise/signal ratio. This is the first exact discord search algorithm that has been demonstrated being
more than 100 times faster than HOT SAX.

Keywords Time series · Anomaly · Discord · Nearest neighbor distance

1 Introduction and related works

Anomaly discovery in time series is an active research field
[6, 10] where many approaches are taken into considera-
tion. One of the first steps when analysing a time series is to
reduce its dimensionality. Symbolic aggregate approxima-
tion (SAX) [15] is a successful algorithm which goes in this
direction associating each sequence to a symbolic sequence.
Later on, an improved version, called iSAX (indexable SAX),
was presented allowing for better clusterizations [23].

Discords were introduced in 2005 [13], where it was also
suggested a fast algorithm for finding them: HOT SAX.
The use of Haar wavelets [4] improved the pruning power
in respect to SAX. HOTiSAX [5] is an algorithm based
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on iSAX which is up to four times faster than HOT SAX.
Similar results were obtained with HS-Squeezer [7]. At
variance, [14] makes use of iSAX and combines it with
WAT (Wavelet and Augmented Trie) algorithm for discord
searches. Recent research works improving of SAX include
[25] and [27].

The most advanced methods for a complete character-
ization of the time series are those of the Matrix Profile
series initiated in 2016 [31]. The algorithms of the Matrix
Profile provide a quick calculation of the distance among
all the sequences and as a result they can also return dis-
cords, however given this broad nature their complexity
grows quadratically with the length of the time series. The
research state of the art has been progressing in order to take
into account for the increasing length of the time series and
complexity of the tasks. We are now in the hundred million
points era, for example regarding motif analysis [8, 35].

If the size of the time series is such that the RAM
(Random Access Memory) is not enough, one needs to keep
at least part of the data on disk, and for this purpose it was
developed the DADD [30] (this algorithm is also known
as DRAG, or Discord Range Aware Gathering), in 2020
it was proposed a variant of DADD that can be 2-3 times
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faster [24]. Discord analysis for multivariate time series has
been studied by [11] and [29]. MERLIN is a new algorithm
based on DADD which can quickly scan all the discords
within a given length range [17].

A first route to speed up the calculation regards paral-
lelizing the existing algorithms, for example in [37] it has
been developed a version of HOT SAX for Intel Many-
Core Systems. More recently, GPU approaches have shown
to be very competitive [32] for motif and discord mining.
The fastest matrix profile algorithm involving graphic card
accelerators is SCAMP [36].

Another path to speed up the calculations regards using
approximate algorithms. Rare Rule Anomaly [20], for exam-
ple, exploits the Kolmogorov complexity of the SAX sym-
bolic sequences to extract anomalies close to the definition
of discords. At variance, a recent approximate discord
search method [26], based on segmentation and clustering,
automatically suggests the size of the anomaly, and it is
faster than HOT SAX. The overlap between these anoma-
lies and discords is good, however if one searches for the
first k−anomalies there is an increasing probability to get
wrong results. All the algorithms which return approximate
discords have this common drawback: the price to pay for an
improved speed is a drop in accuracy in respect to an exact
discord search.

Although there are many articles regarding discord search,
there has not been an important attempt to understand why
the heuristics perform well on some time series, while the
results are poorer on others. It is thus desirable to obtain
a general view of the problem for better understanding
the nature of the anomalies. As a result, one could obtain
new ideas regarding time series and anomaly detection. Our
methodology was to understand in detail the mechanism at
the basis of HOT SAX and check if the neighborhood prop-
erties of the times series might help in finding shortcuts.
Once we found areas where HOT SAX could be improved,
we implemented the new functions and we checked if these
ideas were able to produce significant improvements. We
used HOT SAX as a comparison for our tests since it is a
benchmark on the subject; we also included DADD and
SCAMP, and a fast freely available approximate algorithm:
RRA. Notice that our algorithm has not yet been paral-
lelized, so all the comparisons are limited to the state of
the art serial codes. During the evaluation process, the great
diversity in computational costs between different discord
searches became particularly striking. In order to disam-
biguate the roles of the different parameters of a discord
search, we defined a quantity: the “cost per sequence” (cps)
(detailed in Section 4.2). The cps allows one to compare
discord searches on time series of different length and rate
them in terms of complexity. With the help of this indicator
we found a set of discord searches where HST is particularly

better than other algorithms. There are two important novel-
ties that make HST faster. At the beginning it calculates an
approximate nearest neighbor distance for all the sequences,
and bases the outer loop order on these quantities. The sec-
ond important idea is to exploit the similar properties of
time-close sequences. In particular, if one sequence is ruled
out of the discord search space, usually one can remove
many of its time-neighbors with a very limited computa-
tional complexity (e.g. one call to the distance function).
This dynamic process continuously reduces the size of the
search space and pushes likely discords at the beginning
of the search. Although this search space reduction is very
cheap (in terms of calls to the distance function), the results
obtained are exact.

The rest of the paper is organized as follows:

– After clarifying the notations and defining useful
quantities, Section 2 provides a brief explanation of the
brute force approach and of HOT SAX.

– Section 3 details HST and the rationale of the
modifications in respect to HOT SAX.

– Section 4 compares the execution speeds of HST and
its main available competitors. We introduce a new
indicator: the cost per sequence of a discord search and
we detail cases where HST is particularly fit for the job.

– Section 5 contains the conclusions and the future work.

2 Theoretical background

2.1 Terminology

– The points of a time series are denoted with pj , where
the subscript indicates the time.

– A sequence, containing s points, is described with
the time of its first point. For example, the points
of sequence k are: pk, pk+1, ..., pk+s−1. In this paper,
unless specifically stated, we consider z-normalized
sequences [12].

– If the number of points of a time series is denoted with
Ntot , the number of sequences of length s therein is
smaller, and denoted with the letter N = Ntot − s + 1.
The last sequences are not complete and so they are
removed from the search space.

– The Euclidean distance among two sequences k and l is:

d(k, l) =
√
√
√
√

s−1
∑

i=0

(pk+i − pl+i )
2. (1)

The process of z-normalization implies a large mem-
ory expenditure. It is possible to save memory by stor-
ing the averages and standard deviations of all of
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the sequences and proceed with the following func-
tion instead:

d(k, l) =
√
√
√
√

s−1
∑

i=0

(
pk+i − μk

σk

− pl+i − μl

σl

)2

, (2)

as pointed out by [35], the same result can be obtained
with the help of the scalar product:

d(k, l) =
√

2s

(

1 − k · l − sμkμl

sσkσl

)

, (3)

the notation k · l is associated with the scalar product
between the two sequences (vectors), s is the length of
the sequences, μk and σk are the mean and standard
deviation of sequence k.

– The nearest neighbor distance (nnd) for sequence k is
obtained as:

nnd(k) = min
j :|k−j |≥s

d(k, j). (4)

The search space for the minimization includes all the
sequences, j , of the times series, with the exception of
those that overlap (j : |k − j | ≥ s) with k. This non
self-match condition serves in order to avoid spurious
low values of nnd due to overlaps.

– The quantity ngh(i) returns the position of the nearest
neighbor of sequence i:

nnd(i) = d (i, ngh(i)) .

– The nnd profile is the set of the current nnds of all
the sequences of a time series. In practice many of the
nnds returned by HST are only approximate values.
Had these values been exact, the nnd profile would
be identical to a special case of Matrix Profile: the
self-similarity join profile [31].

– In order to highlight that some quantities are stored
in an array or variable of the code, we use typewriter
characters. For example nnd[i], or ngh[i] are the
arrays containing the information regarding the nnd(i)

and ngh(i).
– In the rest of the paper we will refer to time-distance

between two sequences i, k as |i − k|. For example the
nearest time-neighbors of sequence i are i−1 and i+1.

– In order to compare the performance of two algo-
rithms we can resort at using the distance-speedup
(D-speedup) calculated as the ratio of the number of dis-
tance calls between the algorithms. We can also use the
time-speedup (T-speedup) obtained as the ratio of the
runtimes of the two algorithms on the same dataset for
the same task.

2.2 Discord

The concept of discord follows an intuitive idea regarding
anomaly search in time series. A sequence of length s can
be considered as an s-dimensional vector (or point of an s-
dimensional space). With this view, an isolated point is an
anomaly. In practice, the discord is defined as the sequence
with the highest nnd in respect to all the other sequences of
the time series.

discord = argmax
i

(

nnd(i)
)

The second discord is defined as the sequence with the
highest nnd as long as it does not overlap the first discord.
The k-th discord is the sequence with the highest nnd as
long as it does not overlap any of the previous k−1 discords.

We will often call a sequence a good discord candidate
if it has the highest nnd after its distance has been
calculated with all the others during the execution of the
algorithm. According to this definition, the last sequence
which becomes a good discord candidate is the true discord.

2.3 Brute force approach

A brute force algorithm for discord search requires two
nested loops:

1. The external one runs on all the sequences of the time
series. It is a maximization procedure for finding the
sequence with the highest nnd .

2. The internal loop provides the minimization procedure
for obtaining the nearest neighbor distance of each
sequence. This process involves the calculation of the
distances between the selected sequence and all the
others (excluding self-matches).

As a result, the complexity of a brute force calculation as a
function of the number of sequences N is O(N2).

2.4 HOT SAX

HOT SAX is a clever heuristic modification of the brute
force approach that skips a large part of the distance
calculations, while HST adds further improvements that can
lead to speedups of more than two orders of magnitude
in respect to HOT SAX. Via the symbolic aggregate
approximation (SAX) [15] it is possible to quickly assign
every sequence to a much shorter symbolic sequence (or
SAX cluster). As a quick reminder, SAX divides each
sequence into P subsequences, and for each of these
subsequences calculates the average value. The range
of possible average values is divided into a number of
segments equal to the “alphabet” (the quantity of available
symbols). Each sub-sequence is then converted into the symbol
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corresponding to its average value. As a result, SAX turns a
s point sequence into a P symbol sequence (P<< s). This
dimensionality reduction procedure clusterizes sequences
quickly. Because of the properties of SAX, sequences
belonging to the same SAX cluster can also be Euclidean
neighbors. HOT SAX exploits the relation between these
two notions of closeness (topology) to quickly reduce the
discord search space. In the following we will see that
HST adds another topology to this picture, the one induced
by time, to further speed up discord searches. In HOT
SAX the outer and inner loops are re-arranged following
the indications obtained with SAX. The external loop is
now structured according to the size the SAX clusters:
from the smallest to the biggest ones (containing more
sequences). The order of the internal loop is dynamic,
depending on the current sequence of the external loop. At
the beginning, the algorithm calculates the distance between
the sequence defined by the external loop and all of its
SAX neighbors (the other sequences belonging to the same
SAX cluster). The remaining part of the inner loop follows
a pseudo-random order. At any point in the inner loop,
as soon as the nnd of the candidate sequence becomes
smaller than the best so far value, the rest of the inner
loop can be skipped (since the sequence under observation
cannot be a discord). The rationale of these choices is that
small clusters, containing only a few sequences, are good
candidates for finding “isolated sequences” or sequences for
which the nnd is high. Moreover, close Euclidean neighbors
are likely found in the same cluster of a sequence. If one
finds a close neighbor of a sequence, its approximate nnd

can become smaller than the current best (highest) one,
allowing one to skip the remaining distance calls of the inner
loop. Those calls, in fact, can only lower than the actual nnd

value of the sequence.

3 HOT SAX time

3.1 Themodel to be improved

In the following, we will detail how to obtain the new
algorithm from HOT SAX and the origin of these modifica-
tions.

In order to improve HOT SAX we need a model regard-
ing discords and their search. Let’s recall that a discord is
the sequence with the highest nnd value. Following this def-
inition, one can think of a discord search as a way to find the
maximum of a profile when the profile is not known before-
hand. An intuitive way to see HOT SAX is the following.
SAX provides a sort of hazy vision of the nnd profile where
one can see that there are peaks (small clusters) but it is not
possible to distinguish their height. At this point one has
an idea regarding where to search the discords. The inner

loop clarifies this view by providing a better approximate
nnd for the sequence under consideration. If the sequence
goes through the whole inner loop, its nnd is exact and the
sequence is a good discord candidate. However, the cost for
each one of these “perfect clarifications” (the number of dis-
tance calls) is close to the number of sequences the time
series. The total cost of the “clarification” process deter-
mines how difficult it is to find the discord. If one is sure that
the approximate nnds of all the other sequences are lower
than the best so far candidate, that sequence is the discord.

In the rest of the paper we will follow the same general
mechanism, but we will try to improve the “view” which
guides the search process. With the help of the similarity
between time-close sequences, we will be able to obtain a
better idea of the position of the discords with an indication
of their nnds. At this point, the search will become easier
since most of the sequences, having a low nnd , will be
discarded immediately.

3.2 Speed-up the k-th discord

Here we detail a well-known technique [4] that can be used
to diminish the number of calculations for the k-th discord
(once the first k − 1 discords have been found). We will use
it later to find a good nnd profile at a low computational
cost.

It is useful to remind the concept of k-th discord, which
is the sequence with the highest nnd non-overlapping any
of the previous k − 1 discords. During the calculation
of each discord, the code should update the approximate
nnd values for all the sequences. These quantities are
obtained by refreshing the nnds in the inner loop. The
memory cost of keeping track of the approximate nnds
is just the size of the time series O(N). Although these
approximate nnds are rough estimates of the exact ones,
they are very useful, since the real anomalies (discords) have
nnd values usually quite higher than those of the “common”
sequences. During the search for the second discord, even
before starting the inner loop for a sequence, one should
check its current approximate nnd . If the sequence under
consideration exhibits an nnd value lower than the present
best value, the whole inner loop of that sequence can be
skipped (since it is a minimization). Thanks to this simple
procedure, it is possible to skip most of the calculations for
the k-th discord. In the next section, we provide a solution to
apply the aforementioned technique also in the case of the
first discord.

3.3Warm-up

In this section we explain the first main novelty at the basis
of HST.
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It would be particularly interesting to exploit the idea
of the previous section also at the beginning of the search.
Unfortunately, at the time of the calculation of the first
discord there is no available approximate nnd value for
all the sequences. We now detail a fast procedure to build
such an approximate nnd profile. The idea is to find a new
order where similar, non overlapping sequences are one
after another. Once this new ordering has been obtained one
can perform a chain of calls to the distance function from
one sequence to the next one and so on. As a result, for each
sequence there are two distance calls to two “neighbors” and
thus it is possible to obtain a rough nnd profile. The total
number of distance calls for this procedure is essentially
equal to the number sequences of the time series.

Since the rationale of HOT SAX is that sequences belong-
ing to the same cluster can also be Euclidean neighbors,
it becomes natural to calculate the distance between two
sequences within the same cluster.

Let’s consider a situation in which all the sequences have
already been grouped in clusters by SAX. There can be
different variations regarding how to retrieve the sequences
from the SAX clusters, and for some of them, the temporal
order of the sequences is preserved. This can be a problem
since we want to obtain a chain of distance calls, and
time consecutive sequences are self-matches (for which the
distance should not be calculated). In order to avoid this
problem, it is useful to shuffle randomly the sequences.
With this simple procedure one can avoid many of the
possible self-matches and increase the number of “valid”
distance calls. Sometimes the randomization procedure
cannot avoid self-matches. For example, if a cluster contains
only 3 sequences (of length 10) beginning at time 67,
73, and 75, non-self-match distance calls among them are
impossible (independent of their order). Before the warm-
up procedure we initialize all of the nnds with a very high
value. With this choice, no possible discord candidate is
neglected. The last sequence of a cluster is coupled with the
first one of the next cluster.

To summarize, the warm-up procedure (see Fig. 1, left)
consists of 3 steps (and 2 pre-requisites: the initialization of
the nnds, and the SAX procedure):

1. Shuffle the sequences randomly.
2. Build a new order for the sequences by placing the

clusters one after the other following their size (from
the smallest to the biggest).

3. Calculate the distance between consecutive sequences
following the new order. Avoid calculating the distance
in case of self-match.

After the Warm-up, each sequence has an approximate nnd .
This procedure resembles closely the original HOT
SAX, since we are calculating distances among sequences
belonging to the same cluster. A real advantage can be obtained

only if the approximate nnds can be improved substantially
at a low computational cost.

3.4 Short range time topology

Here we detail how to exploit another property of the time
series in order to improve the approximate nnds obtained
with the warm up procedure.

Time series display a form of time correlation first
described as Consecutive Neighborhood Preserving (CNP)
Property [34]. This property can be regarded as a form
of time topology which makes possible to improve an
approximate nnd profile of a time series at a low cost
[1]. This can be summarized by noticing that there is a
high chance that the Euclidean nearest neighbors of two
time-close sequences (i.e. starting at time i and i + 1) are
also time-close, as in Fig. 1 (right). In practice, this can
be seen as a form of autocorrelation of the nnds which
is particularly noticeable regarding the ngh profile where,
often times, the following formula is true:

ngh(i + 1) = ngh(i) + 1. (5)

This property can be used to improve the low quality
nnds obtained with the warm-up, where (5) is almost never
verified. In fact, it is enough to check the following distance:
d

(

i + 1, ngh(i) + 1
)

for all of the sequences in order
to obtain a better nnd profile closer to the exact matrix
profile. Since the time ordering is irrelevant when searching
for the nearest neighbor, the opposite direction can also
be employed: d

(

i − 1, ngh(i) − 1
)

. Also in this case, the
number of distance calls is essentially identical to the size
of the time series. In order to avoid useless calculations,
before calculating the distance, it can be checked if it is
already true that the neighbor of sequence at i ± 1 is at
ngh(i)±1. This new nnd profile is much better than the one
resulting from the warm-up procedure. We can now use the
nnds to reorder the loops for the discord search. This usage
of the properties of time-close sequences adds a new kind
of topology (notion of closeness) to the original HOT SAX
idea. The new interplay between the SAX, Euclidean and
time topologies allows the code to quickly collect important
information regarding the position of the discord.

3.5 Rearranging the external loop

HOT SAX begins the external loop with likely discords,
this is implemented by selecting at first those sequences that
belong to small SAX clusters.

3.5.1 Initial re-ordering process

The novel approach of HST is to use a better parameter
to order the external loop. Instead of using sequences
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Fig. 1 (Left) At the beginning, all the sequences are simply ordered
according to their first point. We suppose that the length of the sequences
is 5, we show here only the beginning point of each sequence. As a
first step, the SAX procedure assigns each sequence to a cluster (in the
example there are 3 clusters, defined by color: green, blue, and pink).
The sequences are then shuffled in order to avoid that many close
sequences are one after the other. The sequences are then grouped
according to the cluster size: at the beginning the green cluster con-
taining 3 sequences, then the pink one and the blue one. The final
step consists in calculating the distance between adjacent sequences

(according to this new order). Because of the self-match condition
the following distances cannot be calculated: d(8, 5), d(2, 6), and
d(13, 11). In the case of adjacent clusters, the distance is calculated
between the last sequence of one cluster and the first one the next clus-
ter. For example, the last sequence of the pink cluster, 15, is connected
with the first one of the blue cluster, 9. Notice that for sequence 11 it
is not possible to calculate any distance, and for this reason, a default
nnd high value is assigned. (Right). The time topology suggests where
to find good neighbor candidates. If we know that sequence 5 and 13
are neighbors, then 6 and 14 are likely good neighbors (also 4 and 12)

belonging to small clusters we determine the order of the
sequences of the external loop with their approximate nnd .
The combination of warm-up plus time topology returns an
approximate nnd for all the sequences that contains part of
the information of the exact matrix profile. One is sure to
make a reasonable guess by putting at the beginning of the
external loop those sequences with a high nnd value. This
choice has two important advantages in respect to picking
small SAX clusters:

– The external loop order becomes a function of the
properties of the sequences, not of the containing
clusters. The order defined by the SAX clusters involves
a lot of uncertainty since all the sequences in the cluster
are on equal footing. For example, if the cluster contains
hundreds of sequences one might have to wait a lot
before processing the sequence with the highest nnd .

– With this new approach the external loop order is no
longer fixed but it can be improved dynamically as the
algorithm proceeds its execution.

At the beginning, the nnd profile is still rough, so it is better
to smear it with a moving average. It has been shown, in
fact, that the exact nnd profile (matrix profile) displays a
“sort of smoothness” [1, 34]. A rough nnd profile is likely
to contain also spikes surrounded by dips. These spikes
correspond to “false discord candidates”. At variance, a
true good discord candidate should belong to a “peak”: it
should be surrounded by quite a few other sequences with

high nnd values. This time coherence of the nnds spans
approximately the length of a sequence [1], for this reason
the moving average takes into account s + 1 sequences:

nnd(i) = 1

s + 1

s/2
∑

j=−s/2

nnd(i + j) (6)

With this procedure, one gets rid of spikes not related to
peaks. At the borders, where the moving average cannot be
done, we simply use the approximate nnds. In summary, at
the beginning of the external loop HST puts the sequences
with the highest nnds, and at the end those with the lowest
values.

3.5.2 Dynamic external loop order

In HOT SAX, the external loop is fixed once for all. In
HST the order of the external loop changes dynamically
during the search. The approximate nnds, in fact, become
smaller and smaller converging to the exact ones during the
execution of the algorithm. Since the knowledge regarding
sequences is refined during the execution of the code, it
becomes reasonable to re-arrange the remaining parts of
external loop in order to prompt high nnd sequences at the
beginning. This procedure takes into account the increasing
information obtained as the algorithm proceeds. In this case,
using a moving average does not produce good results since
the quality of the approximation is becoming more accurate
(a moving average would just diminish its precision). Every
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time that a good discord candidate is found, there is a
distance call for (almost) all the sequences of the time series.
So it is likely that many nnds have changed during the
process. For this reason, finding a good discord candidate is
a natural point after which HST re-orders the remaining part
of the external loop.

3.6 Long range time topology

Here we introduce a new usage of the CNP property that
allows the algorithm to greatly reduce the size of the search
space.

Let’s consider what happens when a good discord candi-
date is found during the search process. This sequence has
the highest nnd so far. In general this means that it belongs
to a peak composed of many sequences with a high nnd

value due to the “pseudo-smoothness” of the matrix profile.
There are three observations regarding this peak:

1. Each of the sequences of the peak might require a large
number of distance calls of the inner loop to be ruled
out from the discord candidates.

2. The number of sequences with high nnd (the width of
the peak) is not easily determined.

3. Distance calls involving a sequence of the peak do not
contribute to the nnds of its time-neighbors since they
are self-matches. For this reason one needs to perform
independent calculations for all the sequences of the
peak.

The width of the peak (the number of sequences that
belong to it), is likely proportional to the length of the
sequences s. This is a result of the non-self-match condition,
since overlapping sequences do not contribute to each others
nnds. The time topology is very useful since it tells us that
the Euclidean neighbors of: i + 1, i − 1, i + 2, i − 2, ...
are likely time-close. This means that in many cases the
following conditions are true:

– ngh(i + 1) = ngh(i) + 1
– ngh(i − 1) = ngh(i) − 1
– ngh(i + 2) = ngh(i) + 2
– . . .

With these suggestions, it is possible to make a very limited
number of calls to the distance function and likely obtain
approximate nnds close to the exact one, thus allowing one
to disambiguate which of them is the top value. In practice,
the long range time topology functions remove peaks as
shown in Fig. 2. The computational cost for this result is
very limited (few distance calls per sequence) if compared
with the normal HOT SAX procedure that might require
O(sN) calculations (each of the ≈ s sequences of the peak
might require ≈ N distance calls). Notice that within the

 0

 2

 4

 6

 8

 10

 12

 89200  89240  89280  89320

nn
d

time

before time topology
after time topology

discord candidate exact nnd

Fig. 2 Sequence 89268 has the highest approximate nnd value (9.94)
of a time series, and it is surrounded by a peak about 30 sequences
wide. It is a good discord candidate so its distance with all the other
sequences (but self-matches) has been calculated (≈ 2 · 105 calls). As
a result its nnd drops (green arrow) to the exact value 6.97 (the green
dot). The nnds of its time neighbors (red curve) are not affected (since
they are self-matches). The long range time topology improves the
approximate nnds of many of the time neighbors of sequence 89268
(blue dashed line) with a limited number of distance calls (≤ 2 · s)

present algorithm one does not need to know the exact nnds
of the sequences of the peak. It is enough to find if these
values are lower than the current highest exact one. It is
important for these functions to be well balanced, in order
to avoid useless calculations.

A function of this kind contains a loop running on the
s time-closest sequences of the one under consideration,
exactly because they overlap (beginning at position i, see
Listing 1). If nnd[i+j] < bestDist (the highest so far
exact nnd value) there is no reason to try to improve it, since
we already know that sequence i+j cannot be a discord.
Otherwise the algorithm checks the distance between i+j

and ngh[i+j].
It can happen that: nnd[i+j] < d

(

i+j, ngh[i]+j ).
In this case, the time topology is losing coherence. It
becomes reasonable to skip the remaining part of the loop.
Going to longer ranges would simply result in useless
distance calls, i.e. slowing down the execution of the algo-
rithm. Notice that both time directions should be taken into
account. These procedures are embedded in two functions:

– Long range time topology forw (see Listing 1)
– Long range time topology back.

3.7 Pseudocode: details

Here we detail the functions of HST as described in Listing 2.
The following functions are called before the external loop:

1. SAX(), this function clusters the sequences [15].
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Listing 1
Long range time topology f orw

2. The Warm-up() procedure obtains approximate nnds
for most of the sequences, as explained in Section 3.3.
The nnds are stored in the homonym integer array
nnd[], while the neighbors (of each sequence) are
stored in the integer array ngh[].

3. The Short range time topology() function improves the
quality of the nnds (Section 3.4).

4. The Sort External(order) function creates an integer
array containing the order of the sequences of the
external loop, from the highest nnd to the lowest. This
new order is stored into the integer array order[].

Notice that no exact nnd value has been found before the
beginning of the external loop (up to line 6 of Listing 2).
The double precision variable bestDist stores the current
highest exact nnd . At the beginning, this quantity is initial-
ized to 0 (the external loop is a maximization procedure so
we initialize it with the lowest possible value). As a result
the first sequence of the external loop will become the first
good discord candidate and its exact nnd will turn into the
next bestDist. The index j denotes the external loop and
it runs from 1 to N (all the possible sequences). The order
of the sequences of the external loop follows instead the

Listing 2 HST Pseudocode
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index i=order[j]. In principle every sequence can be the
discord, so the flag can_be_discord is set to true.

The function Avoid low nnds() checks if nnd[i] is
smaller than bestDist (the highest so far exact nnd), in
that case the flag can_be_discord is set to false.

The minimization phase comprises of two functions,
scanning different parts of the search space:

1. The function Current cluster() calculates the distance
between sequence i and all the other sequences
belonging to the same SAX cluster (but for self-
matches). If the approximate nnd of sequence i drops
below the bestDist, then sequence i cannot be
a discord, the function returns control to the main
program, setting the flag can_be_discord to false.

2. The function Other clusters() calculates the distance
between sequence i and all the other sequences of the
time series. It begins scanning small clusters and then it
moves to bigger ones (but skipping the cluster already
checked in the function Current cluster). At any
point, if the approximate nnd(i) becomes smaller than
bestDist, the function sets the flag can_be_discord

to false and then returns. Instead, when this function
goes through all the remaining sequences, and the
flag can_be_discord is still true, we are sure that
nnd[i] is exact, and i is a good discord candidate.

The former two functions are almost identical to those of
the inner loop of a normal HOT SAX execution. In HST,
however, before passing to the next sequence of the external
loop there are a few more steps:

– The functions Long range time topology forw() and
Long range time topology back() improve the nnds
of the time neighbors of the sequence i (sequences
beginning at i + 1, i − 1, i + 2 ...) as explained in
Section 3.6.

– If the flag can_be_discord is still true at the end of
the inner loop, it means that nnd(i) is exact and is the
highest value so far. It is thus necessary to update the
best so far nnd value (bestDist), with the help the
function Update().

– The condition can_be_discord = true after the
minimization procedure implies that almost all the
sequences were involved in at least one distance
call. It is now a good point where to re-order the
array governing the external loop (order) as per
Section 3.5.2. The remaining sequences of the external
loop are re-arranged according to the values of their
updated nnds: from those with the highest nnds to those
with the lowest values.

4 Validation

The aim of this section is to provide comparisons with
direct competitors of HST. Since HST has not yet been
parallelized we will limit the comparisons only to serial
algorithms.

There are two major families of metrics. The first one is
related to the accuracy of the algorithm itself, i.e. to which
extent the returned anomalies are discords (approximate
algorithms do not return exact values). For example, this can
be obtained as the overlap of the discords and the anomalies
found. HOT SAX Time, on the other hand, does not need
these tests since it returns the exact discords.

The other usual metric is a measure of the speed.
Although one is interested in the amount of seconds
required to find the anomaly, the actual calculation time can
be masked by many factors (e.g. programming language,
hardware, compilation flags...). As a result, the speed is
often calculated as the number of calls to the distance
function between sequences [13] (lower number of calls is
better). In the past, more than 99% of the calculation time
was spent within this function. However, if one uses the
distance function based on the scalar product as suggested
by [35] (which is faster than the explicit distance among z-
normalized sequences), this condition might no longer be
true. Although the time spent in the distance function is
still most of the total, other functions add a non-negligible
contribution to the total calculation time. In these cases both
the number of distance calls and the running times might
be needed. In order to compare HST with other algorithms
we use the ratio of the distance calls (D-speedup) or the
ratio of the running times (T-speedup) (see Section 2). If the
calculation times are long enough (at least tens of seconds)
the two indicators are expected to be close (within 20%-
30%). At variance, when the running times are short (≈ 1s),
the T-speedup is not particularly a good indicator since it is
affected by other functions that require tenths of seconds.

If the number of distance calls is either not available
or not accurate, like in the case of SCAMP and DADD,
we will consider only the execution times. Notice that
the available implementations of these two algorithms are
written in C/C++. HST instead, has been implemented
in Fortran. This is not an important problem since these
programming languages have very similar performances,
as it can be seen for example at The Computer Language
Benchmarks Game, [3]. In the case of RRA the available
implementation is written in JAVA, this can slow down the
execution times and for this algorithm, the comparisons are
limited to the number of distance calls. The datasets used
to validate RRA [21, 22] are a heterogeneous collection of
time series often used in literature, ranging from ECG to
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breathing time series. Their length goes from few thousand
to a few hundred thousand points. For this reason, we used
them also in the present article. Some of these time series
are extracts of longer datasets, for example those of the
Physionet repository [9, 16]. In order to provide a uniform
comparison with RRA we stick with the ones already used
for its validation.

HOT SAX, RRA, and HST use an underlying SAX
clustering. If we use the same SAX parameters among
different algorithms we are sure to provide a fair comparison
of the results. In the present case we choose to use a
set of SAX parameters that is very close (see Section 4.3
for details) to the ones used to validate RRA for each
dataset, to compare our results with theirs. These parameters
are listed in Table 1 as s (length of the sequences), P
(number of segments for the each SAX cluster), and the
alphabet (amount of available symbols). Unless otherwise
specified we will keep those parameters for the rest of the
calculations.

We added a real dataset containing more than 108 points
[28]. We also used synthetic time series since they allow us
to have full control of their properties.

It is important to say that all these algorithms (but
SCAMP) include pseudo random processes, so the number
of distance calls for a given dataset fluctuates. Determining
the speed of the algorithm with a single test might be
misleading.We overcome this problem by averaging 10 runs
on each dataset.

4.1 HOT SAX and HST

At the beginning, we compare HOT SAX and HST. The
reference HOT SAX code (written by us) has many simi-
larities with its HST counterpart, it is written in the same
language and many of the subroutines are essentially identi-
cal. We consider the same datasets and conditions that were
used to compare RRA and HOT SAX (Table 1). In 8 cases
out of 14, HST is more than 5 times faster than HOT SAX,
reaching D-speedup peaks of 13 for two datasets.

For these calculations, it is not particularly meaningful
to consider the T-speedup. The reason is that the execution
times for the first discords are very short. As a result,
an important percentage of the running time is spent in
functions other than the distance one, The time added by
these functions would be negligible in the case of more
complex searches but have an important impact for very
short calculations. We keep these tests since they have the
same structure as those used for the evaluation of RRA [21].
The mean D-speedup obtained when searching 1 discord is
6.26 while the maximum is 13.65.

Since HST has been built to have good performances
on complex searches, we increase the difficulty of the
calculations of Table 1 by expanding the search on 10
discords in Table 2. This is legitimate since both HOT SAX
and HST report exact values. Notice that the “non self-
match condition” implies that the total number of discords
in a dataset is limited. At most, there can be (N/s) + 1

Table 1 The first column contains the names of the datasets, then we include the lengths of the sequences (s), the SAX parameters (P, alphabet)
and the length of the time series

# of distance calls Runtimes [s]

File s, P, alphabet Length HOT SAX HST D-speedup HST

Daily commute 345, 15, 4 17 175 819 802 260 615 3.14 0.18

Dutch Power 750, 6, 3 35 040 3 428 728 259 820 13.19 0.32

ECG 0606 120, 4, 4 2 299 20 621 8 166 2.52 0.017

ECG 308 300, 4, 4 5 400 149 329 25 959 5.75 0.039

ECG 15 300, 4, 4 15 000 215 928 91 970 2.35 0.088

ECG 108 300, 4, 4 21 600 1 456 777 106 737 13.65 0.22

ECG 300 300, 4, 4 536 976 46 382 574 6 547 211 7.08 4.18

ECG 318 300, 4, 4 586 086 46 827 423 4 426 685 10.58 3.21

NPRS 43 128, 4, 4 4 000 79 340 35 466 2.23 0.02

NPRS 44 128, 4, 4 24 125 398 471 136 658 2.91 0.10

Video 150, 5, 3 11 251 210 089 91 397 2.30 0.056

Shuttle, TEK 14 128, 4, 4 5 000 490 342 65 353 7.50 0.06

Shuttle, TEK 16 128, 4, 4 5 000 546 369 69 912 7.81 0.055

Shuttle, TEK 17 128, 4, 4 5 000 476 616 71 436 6.67 0.057

The number of distance calls for the first discord for HOT SAX and HST (lower is better) are in the columns with the names of the two algorithms.
The D-speedup shows that in all the cases under observation HST is at least two times faster than HOT SAX, on four occasions it is more than 5
times faster and for three datasets it is more than 9 times faster. The last column shows the running times for HST in seconds. For these calculations
the min and max D-speedups are 2.23 and 13.65, while the mean D-speedup is 6.26, while the standard deviation i 4.00
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Table 2 The number of distance calls and running times for the first 10 discords for HOT SAX and HST

# of distance calls Runtimes [s]

File HOT SAX HST D-speedup HOT SAX HST T-speedup

Daily commute 4 373 481 819 880 5.33 1.78 0.45 3.97

Dutch Power 20 326 437 1 043 572 19.48 14.40 0.94 15.29

ECG 15 10 947 552 705 152 15.53 3.64 0.30 12.26

ECG 108 10 194 725 856 132 11.91 4.07 0.73 5.59

ECG 300 447 184 547 44 697 489 10.00 147.49 17.14 8.60

ECG 318 269 580 847 37 740 624 7.14 90.99 14.54 6.26

NPRS 43 1 005 254 187 478 5.36 0.20 0.056 3.64

NPRS 44 6 748 679 1 666 487 4.05 1.13 0.45 2.52

Video 2 742 811 481 800 5.69 0.62 0.15 4.05

Shuttle, TEK 14 1 500 550 265 364 5.65 0.34 0.086 3.98

Shuttle, TEK 16 1 613 129 274 172 5.88 0.38 0.095 3.98

Shuttle, TEK 17 1 460 009 276 351 5.28 0.33 0.096 3.50

Statistics for the D-speedup: Max = 19.48, Min = 4.05, Mean = 8.44. Std. Dev. = 4.85. Statistics for the T-speedup: Max = 15.29, Min = 2.52,
Mean = 6.14, Std. Dev. = 3.96. Although for 10 out of 12 of these calculations the execution time for HST requires less than 1s (and so the
beginning functions play an important role in determining the total execution speed), the values of the mean T-speedup (8.44) and D-Speedup
(6.14) are rather close

discords. For these reasons, we excluded ECG 308 and ECG
0606. In Table 2 we can see that HST is substantially faster
than HOT SAX. The runtimes for HST are still short and
so there is an important impact from other functions. Only
for the longer time series (EGG 300 and ECG 318), HST
requires more than 1 second for calculating the first 10
discords. In those cases, the D-speedup and T-speedup are
within 20% of each other, while for shorter calculations the
gap can be wider. Although for quick calculations the T-
speedup is not very accurate we can use the D-speedup as
a guide to better understand the kind of problems where
HST is faster. When the task becomes more demanding (10
discords instead of 1), HST becomes from 4 to 19 times
faster than HOT SAX, in terms of distance calls and 3 to
15 times faster in terms of runtimes. We point out that,
for these datasets, even when searching 10 discords, HST
cannot express at best since the total execution times are
very small. Its execution times are in fact less than 1 second
in 10 out of 12 calculations (thus the parts of the code that
take tenths of seconds play an important role in the overall
execution time). Nonetheless we can observe that the gap
between HOT SAX and HST increases since the maximum
D-speedup is now 19.48 and the mean is 8.44. At this point,
one might be interested in understanding the characteristics
of the discord search which determine this variety of results.

4.2 The complexity of a search: cost per sequence

In this section, we provide an analysis that will lead to the
characterization of complex searches. There are two main

approaches regarding algorithms and the problems to be
solved:

– One can study the asymptotic complexity of the algo-
rithm, as a function of some parameters of the problem,
for example the size of the dataset. This approach is
particularly useful when the algorithms do not depend
on the data to be analyzed (like the Matrix Profile
ones), since it allows to precisely compare different
algorithms.

– If the execution is sensitive to the specific dataset
under investigation, one can use the execution prop-
erties (time, space required,...) to characterize specific
instances of the problem. For example, one can order
the problems in terms of difficulty.

In this section, we take the second point of view since
we want to characterize the problems. A discord search is
influenced by:

– the content of the time series under investigation.
– the length of the time series N .
– the length of the sequences s.
– the number of discords to be found k.

In the following, we will define an indicator to measure
the difficulty of discord searches. As a benchmark, we will
use the results of HOT SAX, since it is popular, easy to
implement, and it is not optimized on a specific kind of time
series. Moreover, both HST and HOT SAX are based on
SAX, so it is safe to compare two searches when the SAX
parameters are identical. For some searches, HOT SAX
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already represents a valid solution, while we are interested
in understating in which instances HST is much better.

Since the number of distance calls grows with the length
of the time series, one might think that also the speedup
between HST and HOT SAX might grow with N . The
experiments, however, do not confirm this hypothesis. In
Table 1, the best results of HST have been obtained with
ECG 108 whose length is 21600 (speedup of 13 in respect
to HOT SAX). At variance ECG 300 is more than 24 times
longer than ECG 108 but the speedup is about 7. Since
the length of the time series is not the main parameter
determining the speedup, we will now try to find other
quantities with a more clear impact. The performance
difference is likely related to both the structure of the
signal and the length of the sequences. The total number
of distance calls naturally grows with the length of the
time series since each sequence must be checked. For this
reason, it is meaningless to rank the discord searches of two
time series having very different lengths, for example one
containing 106 points and the other 108 points. However,
some discord searches are clearly easier than others (even
if the number of points is large). For example, if one time
series is constant but for a single bump, even a person at
first glance can identify the anomaly with the bump. On
the opposite side, there are discord searches on “short”
time series which require lengthy computations even on
fast machines. For these reasons, we define the cost per
sequence (cps) as the number of distance calls needed to
find the first k-discords divided by the total number of
sequences N and by the number of discords k:

cost per sequence = cps = # of distance calls

Nk
.

The cps can be used to compare searches on time series of
different lengths and to order them in terms of difficulty. In
general, there are two complementary interpretations of the
cps:

– It is the average number of distance calls per sequence
and per discord.

– If the exact nnd profile (matrix profile) has a few big
“bumps” (or anomalies), and if it is possible to identify
with little computational cost (1 distance call each)
those sequences which are “normal” (the background
with low nnd values), then the cps can be considered
as a hint regarding the quantity of “good discord
candidates” (anomalies) encountered during the search
process, since each them requires about N distance
calls.

Let’s recall that HOT SAX is based on a “magic” ordering
of the loops which allows one to skip most of the calls of a
brute force approach. From this perspective, the cps can be
seen as the inverse of the “magic”: a low cps is an indication

that the “magic” ordering is working well, while if the cps

is high, more distance calls are needed and the “magic” is
less effective. Let’s consider two opposite cases. If one has
access to a “perfect magic” all the sequences which are not
the discord require just one distance call to a close neighbor
to be discarded, while only for the discord it is required to
calculate the distance with all of the N − 1 sequences. In
this case, the total number of calls is 2(N − 1), and the cps
≈ 2. In an unfortunate event where the “magic” ordering
fails completely, one re-obtains a brute force approach that
returns the maximum possible cps ≈ N .

Although the cps is a rather intuitive concept, as far as
the authors know, it has never been formalized or explicitly
used to classify the complexity of discord searches.

We will now use HOT SAX cps for defining complex
discord searches.

It is possible to notice that HOT SAX cps can exhibit
strong variations, while HST cps is more stable. For better
visualizing this fact we set at the beginning of Table 3
those datasets of Table 1 where HOT SAX performs better,
and at the end those requiring more calculations. For these
problems, HST cps is in between 4 and 15 (the mean cps

is 9, and standard deviation is 3.84). The cps obtained for

Table 3 The second column shows the “cost per sequence” (k = 1)
expressed as the number of distance calls over the time series length
(for HOT SAX) rounded to the first integer value

Cost per sequence

File HS HST D-speedup

ECG 0606 9 4 2.52

ECG 15 14 6 2.35

NPRS 44 16 6 2.91

Video 19 8 2.30

NPRS 43 20 9 2.23

ECG 308 28 5 5.75

Daily Com. 48 15 3.14

ECG 108 67 5 13.65

ECG 318 80 8 10.58

ECG 300 87 12 7.08

Shuttle, TEK 17 95 14 6.67

Dutch Power 98 7 13.19

Shuttle, TEK 14 98 13 7.50

Shuttle, TEK 16 109 14 7.81

The third column contains the same quantity but referred to HST.
The fourth column contains the D-speedup. In this table, the files
are ordered according to an increasing HOT SAX cost per sequence.
Statistics for Hot Sax cps: Max = 109, Min = 9, Mean = 56, Std. Dev. =
37.83 Statistics for HST cps: Max = 15, Min = 4, Mean = 9, Std. Dev.
= 3.84 The standard deviation of the cps for HOT SAX is one order of
magnitude higher (37.83 vs 3.84) than that of HST, showing that this
former algorithm is more subject to the nature of the time series
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HOT SAX shows much more variation (mean cps 56, and
std. dev. = 37.83), indicating that the performance of this
algorithm depends strongly on the underlying data, while
HST is less affected by the kind of data to be analyzed.
These calculations are in general much easier for HST since
its average cps is about 6 times smaller than the one of HOT
SAX.

Notice that theWarm-up() and Short range time topology()
procedures already account for about 2 distance calls per
sequence. Even in the case in which the first sequence to be
analysed turns out to be the discord, HST should require at
least cps∼ 3. For less “complex searches” (those for which
HOT SAX needs less than 20 distance calls per sequence),
the maximum speedup obtainable by HST is limited by the
structure of the algorithm itself. For example, HOT SAX
requires just 9 distance calls per sequence for ECG 0606.
The maximum theoretical D-speedup attainable in this case
is ∼ 3; while the actual D-speedup is 2.52. In fact, we
can notice that for none of the time series with low cps
(less than 20) the D-speedup is higher than 3. In the case
of “easy searches” HOT SAX has already near to optimal
performances and it is not possible to improve it very much.
While for all the sequences with a cost per sequence equal to
or higher than 67 the D-speedup is greater than 6, reaching
peaks of 13 in two cases.

4.2.1 Cost per sequence and ”easy-looking” time series

It is interesting to notice that HOT SAX requires a lot of
distance calls on many time series which look “easier” from
a human point of view. For example, the Shuttle Marotta
Valve time series, TEK14, TEK 16, and TEK 17, appear
simpler if compared with the respiration time series NPRS
43 and NPRS 44. As a comparison, we report NPRS 43
and TEK 14 in Fig. 3 (right) since they have approximately
the same length: TEK 14 shows 5 main patterns, while
the interpretation of NPRS 43 is less easy. We can further
investigate this anti-intuitive behavior with the help of
synthetic time series. In the following, we consider a very
simple function consisting of a re-scaled sine function plus
a uniform random noise:

pi = sin(0.1 · i) + Eε + 1

2.5
(7)

By changing the amplitude E of the random noise, ε ∼
U(0, 1), one can obtain a smoother or more ragged time
series (Fig. 3, left). We found that HST performs much
better than HOT SAX when the noise is very low. When
the amplitude of the noise E is 0.0001, HST is about 104
times faster than HOT SAX (see Fig. 5), in terms of distance
calls (and 82 times faster in terms of runtimes). In particular,
this is due to the fact that the HST performances are not
so much affected by low noise, (Table 4), while HOT SAX

Table 4 Number of distance calls and cps (for one discord, k = 1) as
a function of the noise amplitude E for the two algorithms, HOT SAX
and HST

# of distance calls cps

E HOT SAX HST HS HST

0.0001 24 527 170 234 707 1 226 12

0.001 19 560 251 329 397 978 16

0.01 5 183 885 313 363 259 16

0.1 1 912 774 207 881 96 10

0.5 1 331 203 165 142 67 8

1.0 1 564 755 219 777 78 11

5.0 3 310 974 685 889 165 34

10.0 20 395 837 3 105 995 1 020 155

Statistics for Hot Sax cps: Max = 1226, Min = 67, Mean = 486, Std.
Dev. = 496.20. Statistics for HST cps: Max = 155, Min = 8, Mean =
32, Std. Dev. = 50.06. The max cps value for HST is reached for very
noisy time series (where the amplitude of the noise is 10 times the
amplitude of the signal), nonetheless the cps for HOT SAX is still one
order of magnitude worse than that of HST (1020 vs 155). For very
low noise time series, where disambiguating the peaks of the matrix
profile becomes difficult, HST (cps=12) is two orders of magnitude
faster than HOT SAX (cps=1226)

degrades significantly. In the cases of very low noise/signal
ratios, HOT SAX cps exceeds 1200, while it is about 12
for HST. On the other side of the spectrum, when the
noise is much higher than the signal, both HOT SAX and
HST performances degrade (but HST keeps on being much
faster). The mean cps for HOT SAX is 486, while for HST
it is 32. For both of the algorithms the cps has a minimum
when the amplitude of the noise is 0.5. In summary, the
maximum D-speedup of HST over HOT SAX is 104 for
ECG 300 for very low noise time series where E= 0.0001
(we use the same SAX parameters of Table 1, a part for the
sequence length).

We make here an educated guess on the reason why HOT
SAX struggles to analyse “apparently easy” time series.
When there are many similar sequences and patterns, the
matrix profile is likely to have a large number of peaks
with very similar heights. For this reason, HOT SAX needs
a lot of calculations to disambiguate which of them is the
highest one, while HST is quicker due to its better “aiming
mechanism”.

HST is still an excellent choice when the noise is as
high as the signal itself, while it is less effective when the
noise level is much higher than the signal. This is not a
surprise: when the noise is 10 times higher than the signal,
it dominates the time series. As a result, the time topology
(linked to autocorrelation) ceases to be helpful in finding
discords. HST remains about 6-7 times faster than HOT
SAX also in this condition. An anomaly search, however,
is useful when most of the sequences are expected to be
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Fig. 3 (Left) Extracts of synthetic time series with different levels of noise E. In order to avoid overlaps, they have been shifted vertically. (Right)
NPRS 43 and TEK 14 time series in arbitrary units. TEK 14 looks simpler and smoother, but it has a higher cost per sequence than NPRS 43

“normal”, and this condition is not satisfied when the noise
is 10 times higher than the signal itself.

As far as the authors know these are the first results
regarding an exact discord algorithm capable of being more
than two orders of magnitude faster than HOT SAX.

4.2.2 Cost per sequence and length of the discords

An important challenge regarding anomaly detection is
related to the increasing length of time series. This can be
due to the longer data collection times, but also to improved
accuracy of the sensors that are able to sample more fre-
quently. The same phenomenon can thus be described with
a larger number of points (more detail). It becomes desir-
able to understand to which extent the calculation speed is
affected by the length of the discords. Of course, we can
expect an increase of the execution time when searching for
longer sequences. This is a direct consequence of the fact
that most of the time is spent calculating distances, and the
execution time of a single distance call is approximately
proportional to the length of the sequences. On the other
hand, there is no obvious reason why the number of distance
calls should increase. Actually, the search space shrinks as s

increases, because of the non self-match condition. Accord-
ing to our model, the cost per sequence is connected with
the peaks of the nnd profile. A large peak includes many
sequences with high nnd value which are difficult to anal-
yse from HOT SAX. The width of a peak, depending on the
non self-match condition, should grow with the length of
the sequences, and consequently also the number of good
discord candidates. Since the long range time topology pro-
cedure helps in leveling the peaks, HST should suffer this
problem less than HOT SAX. As a result, one can expect
high speedups when searching long discords. We tested this

fact with the two longest datasets of Table 1, ECG 300 and
ECG 318, by increasing the length of the sequences s.

The values of Table 5 confirm that the cost per sequence
for HOT SAX is strongly dependent on the length of the
sequences. Even in the case of sequences of length 920,
the speedup can exceed 50, reaching peaks of more than
100 for longer discords. This is another example where
HST can outperform HOT SAX by more than 2 orders
of magnitude, moreover this specific condition (longer
sequences) is expected to be more relevant in the future.
In detail, the maximum D-speedup (101) has been obtained
for ECG 318 in the case of 2340 points sequences, while
the mean D-speedup is 56. In the case of ECG 300, the
maximum D-speedup is 83 (obtained for sequences of 1880
points) and the mean D-speedup is 51.

In summary, by using the cps we gained insights
regarding problems that are particularly difficult to treat
with HOT SAX, and can greatly benefit from using HST. In
those cases, HST can be more than 2 orders of magnitude
faster than HOT SAX. In particular, searches related to long
discords become more complex. This is due to the fact that
one should not look at the time series but rather at the
structure of the search space, i.e. the set of all the sequences
involved in the calculation. This set depends strongly on the
length of the sequences.

4.3 RRA and HST

RRA is freely available on the internet [21, 22], it is fast and
so it represents an ideal comparison test for HST. RRA finds
anomalies by exploiting the Kolmogorov complexity of the
SAX words. At variance in respect to HOT SAX, the length
of the discord is not required as an input parameter but it
is obtained as a result of the calculation. The anomalies
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Table 5 Cost per sequence and speedup as a function of the length of
the sequences s for HOT SAX and HST, for the dataset ECG 300 (left)
and for ECG 318 (right)

ECG 300

Cost per sequence

s HOT SAX HST D-speedup

300 87 12 7

460 201 11 17

920 494 10 50

1380 1 553 19 82

1880 857 10 83

2340 750 10 71

ECG 318

300 80 7 11

460 113 6 18

920 510 9 56

1380 703 12 59

1880 2 026 21 94

2340 3 137 31 101

The other SAX parameters are P = 4, and alphabet=4. Statistics
regarding the D-speedup as a function of the sequence length s for the
time series ECG 300: Max = 83, Min = 7, Mean = 51, Std. Dev. =
33.09. In this case the D-speedup reaches its maximum for s = 1880.
Both HOT SAX and HST experience the highest cps for s = 1380,
this is an indication that the signal has becomes particularly complex
for this sequence length. Statistics regarding the D-speedup for ECG
318: Max = 101, Min = 11, Mean = 56, Std. Dev. = 37.27. For this
dataset the D-speedup increases with increasing s and the maximum is
obtained with the longest sequences

found with RRA, however, do not coincide with discords.
Although there is a good overlap between the first discord
of a time series and the anomaly found with RRA, the
probability that they coincide is less than 1. Multiple
applications of the algorithm in order to find the k-th
discord, provide less and less correspondence with the exact
solutions. For this reason, at the time of the comparison
between HST and RRA we will limit the calculations to the
first discord. It is also interesting to notice that the SAX
parameters affect only the speed of the algorithm in the
case of HST, while they modify also the position of RRA
anomalies.

The results reported for RRA [19, 21] are substantially
different in respect to the numerical experiments we
obtained with their code (Table 6). This might be due to
the choice of the --strategy parameter (the available
choices are NONE, EXACT, and MINDIST). This parameter is
used to further reduce the search space and it can improve
significantly the speed of the algorithm. For some datasets,
one can obtain essentially the same anomaly with different
flags. In many cases, however, the precision loss is not
acceptable. As an example, the position of the exact discord

of length 128 for the time series TEK 14 is 3852. The
position of the RRA anomaly with --strategy EXACT

is 4717, with --strategy MINDIST is 4320 (this time
series contains 5000 points, as explained in Table 6). Since
a user cannot know in advance if one strategy provides
enough accuracy, a valid comparison should be limited to
the execution flag --strategy NONE. Other strategies can
provide faster executions but one needs to check afterward
if the result is comparable with the discord (thus nullifying
the improved speed).

Following this choice, the advantage of RRA in respect
to HOT SAX becomes more limited. According to our
numerical experiments (Tables 6 and 1) in some cases,
RRA is even slower than our version of HOT SAX. Notice
however that it is always faster than the version of HOT
SAX released by one of the authors of RRA, available in the
same suite Grammarviz 3.0 [19] and not reported here. We
utilize the last version of RRA present in the Grammarviz
3.0 suite on GitHub dating the 27th of October 2016. For
completeness, Listing 3 contains the script used to produce
RRA results for the time series TEK 14. When possible we
keep the same SAX parametrization used for the validation
of RRA. They correspond to optimal solutions where the
lengths of the sequences are close to the values returned
automatically by RRA. Our code, however, requires that the
number of letters describing one SAX cluster (the quantity P
in Table 1) is an exact divisor of the length of the sequences.
If the parameters used for the validation of RRA do not
comply with this condition we use values of P which are as
close as possible (and they are listed in Table 6).

The results of Table 6 show that HST outperforms RRA.
In the case of ECG 300, HST is about 30 times faster
than RRA, while in the worst-case scenario, for the Daily
Communications time series it is only 49% faster. These
improvements are calculated as the ratio of the number of
distance calls of RRA and HST, and denoted as D-speedup.
Calculating the ratio of the run times for the two algorithms
(T-speedup), does not provide useful information since RRA
has been developed in a substantially slower programming
language: JAVA (while HST has been developed in Fortran).
The mean D-speedup (6.61) shows that HST is not only
exact, but also generally much faster than RRA.

4.4 Disk-aware discord discovery

DADD (or DRAG) is known to be a very fast algorithm for
discord search aimed at those cases where the whole time
series cannot reside on the RAM and requires to be stored
on a disk. For completeness, we report here some running
time comparisons with HST (although the nature of the
two algorithms is rather different). The version of DADD
used for these tests is a freely available C++ code by [30].
This code is expected to process non-overlapping sequences
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Table 6 Details of the calculations: “s” is the length of the sequences (also referred to as “window”), “P” is the number of letters in which the
sequence is divided, while the total number of available letters is the parameter “alphabet”

# of distance calls

File s, P, alphabet Length RRA HST D-speedup

Daily commute 345, 15, 4 17 175 388 504 260 615 1.49

Dutch Power 750, 6, 3 35 040 1 801 971 259 820 6.93

ECG 0606 120, 4, 4 2 299 35 464 8 166 4.34

ECG 308 300, 4, 4 5 400 101 850 25 959 3.92

ECG 15 300, 4, 4 15 000 352 331 91 970 3.83

ECG 108 300, 4, 4 21 600 532 476 106 737 4.99

ECG 300 300, 4, 4 536 976 199 865 375 6 547 211 30.52

ECG 318 300, 4, 4 586 086 58 462 005 4 426 685 13.2

NPRS 43 128, 4, 4 4 000 89 620 35 466 2.52

NPRS 44 128, 4, 4 24 125 438 957 136 658 3.21

Video 150, 5, 3 11 251 165 758 91 397 1.81

Shuttle, TEK 14 128, 4, 4 5 000 326 981 65 353 5.00

Shuttle, TEK 16 128, 4, 4 5 000 341 405 69 912 4.88

Shuttle, TEK 17 128, 4, 4 5 000 417 860 71 436 5.84

“Length” refers to the number of points in the time series under observation. The values of s, P, and alphabet follow those of [21]. The minor
differences are due to the fact that, for our algorithm, P must divide exactly s (while this is not the case for the algorithm implemented in
Grammarviz 3.0). Columns 3 and 4 show the average number of distance calls needed by RRA and HST for finding the first discord. The number
of distance calls has been averaged over 10 runs for each dataset and algorithm. The distance-speedup (or D-speedup) has been calculated as the
ratio between the number of distance calls of RRA over those of HST. Statistics regarding the D-speedup: Max = 30.52, Min = 1.49, Mean = 6.61,
Std. Dev. = 7.45 All these datasets can be downloaded from GitHub [19]

arranged in pages one after another. For this reason, the
concept of self match becomes irrelevant and it has not
been implemented. The algorithm computes the Euclidean
distance between sequences, without Z-normalization (but
the sequences can be z-normalized before being processed
by DADD). Each page contains 104 sequences of length 512
points. Given the different data formats processed by HST
and DADD, we had to re-arrange the time series we used for
the comparison in order to obtain coinciding results. From
the datasets of Table 6 we selected those with more than
10511 points, and we created one page of 10000 sequences
for each of them (the datasets that did not contain enough
points to create one page and were discarded). The pages
thus formed contain overlapping sequences, however the
aim of these experiments is to pinpoint the execution speed
only and to obtain coinciding results.

DADD is a two-step algorithm, the first step is aimed at
building a restricted pool of sequences with an nnd higher
than a certain threshold r (discord defining range). During
the second phase, the discords are searched among the
sequences selected in the first phase. The value r needs to be

imputed at the beginning of the calculation and it affects the
calculation time. For example, if one selects a low r value,
the first phase will return many sequences, slowing down
the second phase. The opposite can also happen, selecting
a high r value might lead to a restricted pool that does not
contain all the required discords (those with a nnd > r). In
such a scenario these discords cannot be found and require
another calculation with a smaller r value. The value of r is
usually obtained by sampling a subset of all of the sequences
(for example 1/100 of the sequences). The first k-discords
are then obtained from the sample (for the calculations of
this section case we choose k = 10) with the help of a
fast discord algorithm. The nearest neighbor distance for the
10th discord from the sample is used as the r parameter
for DADD. One does not expect to obtain the exact nnd of
the k-th discord but just an approximation. Unfortunately,
this sampling procedure does not work particularly well for
the datasets under consideration. The returned r-parameters
are usually too big and require manual adjustments. As a
solution, we performed a full calculation on the whole page
and we obtained the exact nnd value of the 10th discord.

Listing 3 RRA script for TEK
14
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We performed two kinds of calculations, in one case using
the exact value and in the second 99% of it. The reason
is that the r-parameter affects the computational times for
DADD, in general the more distant it is from the exact
nnd of the k-th discord, the slower the code. In particular,
even a small modification from the exact r to 0.99r can
have a non-negligible impact on the calculation times. For
example, on one dataset (ECG 15) a 1% difference of r leads
to a 77% increase of the runtime. Although obtaining this
quantity has a computational cost we do not include it in the
total computational time for the experiments we performed,
focusing on the algorithm only.

We first verified the correspondence of the results (we
turned off z-normalization in the HST code and we forced
the distance calls between overlapping sequences to be
allowed). With these modifications, the two codes produced
identical results and we could compare the runtimes. In
all the tests, HST is 12-25 times faster than DADD (see
Table 7). In particular, when we use 0.99r the max T-
speedup obtained is 25.37 while the mean T-speedup is
18.61. In the case when we input the exact r value the max
T-speedup is 24.8 and the mean T-speedup is 15.98. All
these results show that HST perform faster than DADD (we
use the same SAX parameters as reported in Table 1)

4.5 SCAMP

SCAMP is the fastest algorithm of the Matrix Profile series.
This algorithm has a broad purpose and it not specialized
for discord search, however one of its peculiarities is that
it is insensitive in respect to the length of the sequences.
Another interesting feature is that looking for many discords

is computationally inexpensive once the matrix profile
is known. It is difficult to compare an exact algorithm
(SCAMP) with a heuristic one (HST), however we provide
here some running conditions which can help in deciding
when to use one or the other. For the tests of this section,
we use a C++ code released by the authors of the algorithm,
available on GitHub [18]. This implementation is capable
of exploiting multiple cores and graphic cards, however
for a fair comparison with HST we report here the values
obtained for a single core (in this case it is very similar to
another matrix profile algorithm: STOMP [33]). SCAMP
running times scale quadratically with the length of the
time series, but do not depend on the underlying data.
At variance, the running times for HST are affected by
the characteristics of the specific dataset. For an indicative
comparison we consider parts of the time series ECG 300.
The calculations of Fig. 4 refer to the dataset truncated at
different lengths (we used the same parameters of Table 1).
The slices contain 105, 2 · 105, 3 · 105, 4 · 105, and 536976
points (the full time series); for each of these slices we
check the running times for HST for 1, 10, 40, 70 and 100
discords. The SAX parameters are those reported in Table 1.
The timings for SCAMP refer only to the calculation of the
matrix profile we do not include the time spent for the search
of the discords. For all of the above tests, HST is (much)
faster than SCAMP (Fig. 4, left) . Moreover since HST
scales linearly with the size of the time series, its advantage
over SCAMP grows for the longer runs.

For very short time series, SCAMP can become faster
than HST.We performed experiments with ECG 0606 (2299
points). In this case, the advantage of SCAMP over HST
is so small that the total execution time is dominated by

Table 7 The second and third columns show the calculation times (seconds) for 10 discords for DADD and HST

0.99 r exact r

Runtimes [s] Runtimes [s]

Dataset DADD HST T-speedup DADD HST T-speedup

Daily commute 10.29 0.69 14.91 10.20 0.69 14.80

Dutch Power 7.42 0.59 12.60 7.02 0.59 11.92

ECG 15 17.10 0.72 23.84 9.63 0.72 13.43

ECG 108 11.81 0.61 19.51 8.76 0.61 14.47

ECG 300 8.05 0.43 18.76 6.72 0.43 15.66

ECG 318 6.65 0.47 14.20 6.22 0.47 13.29

NPRS 44 10.82 0.55 19.71 10.71 0.55 19.50

Video 15.25 0.60 25.37 14.91 0.60 24.80

The fourth column displays the time-speedup calculated as the ratio of the DADD and HST running times. The page to be analysed has been
built by taking the first 10000 sequences of length 512 of each dataset of column 1. DADD calculations depend on the r parameter, the timings of
column 2 refer to an r value equivalent to 99% of the nnd of the 10th discord, while the timings of column 5 are associated with the exact value
(100%). Statistics regarding the T-speedup for 0.99 of the exact r: Max = 25.37, Min = 12.6, Mean = 18.61, Std. Dev. = 4.54 Statistics regarding
the T-speedup for the exact r: Max = 24.8, Min = 11.92, Mean = 15.98, Std. Dev. = 4.21. The mean T-speedup of HST is between 16 and 19 (and
these timings do not include the cost of obtaining r)
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Fig. 4 The T-speedup and D-speedup of HST as a function of the noise
amplitude E in the case of a synthetic time series. All the time series
comprise 20 000 points, s = 120, P = 4, and alphabet=4

writing the results on the disc. For a slightly longer time
series (TEK 14, 5000 points) the two algorithms show
comparable times. HST has been designed to be useful for
long and complex tasks, since for times series of comprising
only a few thousand points even a brute force approach
would execute in a matter of seconds. We also notice that
short time series can have only a few discords, because of
the non-overlap condition.

SCAMP can become faster than HST if one is interested
in finding hundreds of (long) discords. However, only
longer time series can contain so many discords, so the
advantage due to the insensitivity to the number of discords
is hindered by the quadratic nature of SCAMP. Moreover,
one should take into account that only a few of the discords
are expected to be “real” anomalies. Some time series do
not contain anomalies, while all of them contain many
discords: O(N/s). The reason is simple: discords are just
maxima of the matrix profile. Some of these maxima might
be abnormally higher than the rest of the matrix profile, thus
being anomalies. Others might be just random fluctuations.
One is most likely interested only in those discords which
are also outliers, this corresponds to a modification of the
discord concept more closely related to anomalies, called:
significant discord, [2]. For example, ECG 300 has only
5 significant discords of length s = 300. In this case,
it would be useless to calculate the position of the first
100 discords.

It should be noted that there is an approximate algorithm
of the Matrix Profile series called preSCRIMP [34] which
produces an approximate version of the matrix profile and
which can be used for approximate discords search. Since
its results depend on the quality of the approximation and
it displays a quadratic complexity with the number of

sequences and it is not a direct competitor of HST which is
exact.

4.6 More than a hundredmillion points time series

As an example, we performed a calculation on a time
series consisting of 170 326 411 points associated with
the research on insect vector feeding by [28]. The total
computational time for the first 10 discords on an Intel(R)
Xeon(R) CPU E5-2640 v3@ 2.60GHz has been: 96288.93
s (less than 1 day and 3 hours). The parameters in use were
s = 512, P = 128, alphabet = 4.

This timing is comparable with the fastest exact Matrix
Profile parallel implementations exploiting graphic cards
[34, 36], while the serial implementations would be hun-
dreds of times slower. One can also compare the perfor-
mance of HST and HOT SAX. In this case, we limit the
calculations to k = 1. We obtain a D-speedup = 21, while
the T-speedup is 16. For HST the cps is 79, while for HOT
SAX it is 1547.

4.7 HST scaling

In this section, we provide indications regarding how HST
scales as a function of the parameters, in many “normal”
conditions. The datasets of Table 6 include biological data
(the ECG cardiograms and NPRS respiration time series),
data regarding human activities (Daily commute, Dutch
power and Video), and sensor data (the Shuttle TEK series).
They also span a couple of orders of magnitude in terms of
length (ranging from 2299 to 586086 points). This diversity
can be used to gain insights regarding the costs of the
calculations as a function of their parameters on “typical”
time series. In the beginning, we checked the speed as a
function of the quantity of discords to be found. Since the
running times span a couple of orders of magnitude we
normalized the results of each dataset with the running time
for the first discord. In Fig. 5 (left) it is possible to notice
that in all the cases the curves associated with each dataset
are almost linear.

The dependence of the running times as a function of
the length of the sequences is displayed in Fig. 5 (right),
for this graph we normalize the values according to the
calculations for discords of length 200. Also in this case the
scaling is limited and roughly proportional to the length of
the sequences s (Fig. 6).

The last factor determining the runtimes is the length of
the time series. The experiments on ECG 300 show (Fig. 4,
left) that HST runtimes are approximately proportional also
to this quantity. In summary, HST scales approximately
linearly with:
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– the number of discords searched (k)
– the length of the sequences (s)
– the length of the time series (N)

These scaling properties suggest a rule of thumb that can
be used when facing a very long time series. It is enough
to first perform a check on a short extract (e.g. 106 points)
and then extrapolate the total running times multiplying the
cps, the length of the time series and the number of discords
searched, to obtain a rough estimate of the total number
of calls. Although this recipe is very dependent on the
premise that the mechanism producing the time series does
not change significantly with time (a non-trivial condition),
the results of Fig. 4 (left) seem to indicate that it can be
useful.

4.8 Analysis

The numerical results of the previous sections show that
HST performs very well if compared to the other discord
search algorithms. In this section we provide a theoretical
analysis, taking into account the heuristic nature of HST and
the fact that most of the other algorithms used for these tests
are based on very different ideas.

HST and RRA have two completely different approaches.
RRA are based on the grammar rules obtained from the
SAX words. If one uses different SAX parameters, this
leads to different words and as a consequence the returned
anomalies can change. This implies that RRA results are

not exact and they also depend on the choice of grammar
algorithms. It might be useful to notice that also HST is
based on SAX, but HST removes sequences from the search
space only when their nnd becomes smaller than the actual
best value. The results are exact and the search space reduc-
tion is based on quickly finding close neighbors for all the
sequences. This reduction phase improves as the algorithm
proceeds and it is not fixed once for all.

DADD uses a two step procedure where the first step is
aimed at quickly discarding sequences that cannot be the
discord. This reduces the size of the search space but it is
based on the knowledge of the r-parameter, i.e. the nnd of
the first discord. An accurate knowledge of this quantity is
essential and requires pre-processing, while HST does not
need it. The search space reduction is essentially limited
to the first phase, while in the second phase the algorithm
needs to perform many more distance calls to disambiguate
which sequence of the restricted pool of sequences is the
discord. At variance HST keeps on reducing the discord
search space during its execution and it also dynamically
improves the guess regarding the best discord candidates
(without needing an initial parameter).

SCAMP is an exact algorithm of the Matrix profile, its
complexity is not dependent on the underlying time series
and it is quadratic with the number of points.

Let’s now consider in detail the difference between HOT
SAX and HST. They are both heuristics but they share many
common features and it becomes easier to understand why
HST performs better.
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Fig. 5 (Left) Calculations performed on sections of the ECG 300
dataset. HST has been run using the same SAX parameters presented
in Table 6l; for each slice of the time series five calculations were per-
formed, for: 1, 10, 40, 70, and 100 discords. The runtimes on the same

datasets for SCAMP include only the calculation of the matrix profile.
(Right) HST runtimes as a function of the number of discords searched
for different slices of the ECG 300 time series
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order of the outer loop based on: SAX cluster sizes (static) warm-up + CNP nnds (dynamic)
order of the inner loop based on: SAX + random SAX
search space reduction after inner loop absent based on CNP
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HOT SAX bases its heuristic on the fact that discords
should be found in small SAX clusters. The SAX procedure
determines once for all the size of the clusters and thus the
order of the outer loop. HST, instead, provides immediately
an approximate nnd for all of the sequences (with the
warm-up) and bases the order of the outer loop on this
quantity. Since the nnds improve during the execution of the
program, the order of the outer loop changes accordingly. As
the algorithm proceeds the system keeps track of the added
information. The new order of the external loop becomes
more and more accurate during the execution, while HOT
SAX does not take into account this information. The inner
loops of the two algorithms are very similar, and follow the
idea that they can be skipped as soon as the approximate
nnds of the sequences under scrutiny drop below the best
so far discord candidate. At the beginning one searches
in the SAX cluster containing the sequence, and then the
other clusters. The second important difference between
HST and HOT SAX is the following: after each inner
loop, HST performs inexpensive search space reductions
(the long range time topology). If one sequence can be
excluded from the discord search space, most of its time
neighbors can likely be ruled out with just one distance call
each. In the case of good discord candidates this can save a
number of distance calls proportional to the product of the
length of the sequences s and the total size of the search
space N if compared to HOT SAX. Each peak contains
approximately s sequences and each of them might need
to be compared to most of the other sequences of the time
series N .

4.9 Summary of the results

The tests that we performed show that HST can be an
important resource at the time of finding discords when the
task is long and complex:

– it is 2-100+ times faster than HOT SAX, it is partic-
ularly faster when looking for longer discords or for
“simple looking” time series.

– it is from 50% to 30 times faster than RRA (and HST
returns exact discords).

– it is 12-25 times faster than DADD (DRAG).
– HST, in practical cases, is much faster than SCAMP and

it can produce results comparable to GPU accelerated
Matrix Profile algorithms on longer time series.

5 Conclusions and future works

In the present paper, we detail a new algorithm for exact
discord search in time series, called HOT SAX Time. HST
can be obtained from HOT SAX with rather easy modifica-
tions. In HST the external and inner loops are re-arranged
following good quality approximate nnds. At the begin-
ning these quantities are obtained with the warm-up process.
Later, the algorithm uses the CNP property to quickly
improve the nnds and consequently reduce the discord search
space. During the execution of the algorithm, the order of
the sequences of the external loop is rearranged every time
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that a good discord candidate is found: sequences with a
high approximate nnds are positioned at the beginning.

The performance of HST has been validated with real-life
and synthetic time series and compared with the results of
HOT SAX, RRA, DADD. HST has shown to be faster than
these algorithms for all of the datasets under consideration.
The only serial competitor for HST is SCAMP (running on
a single core) in very special cases. The quadratic nature of
the matrix profile codes hinders their performance on long
time series. For more common cases, HST is many times
faster than SCAMP. For long time series (>100 million
points) the present serial HST code is essentially as fast as
the parallel implementation of SCAMP exploiting graphic
cards.

Since HOT SAX can be considered as a benchmark
algorithm we used it to understand under which condition
a discord search becomes complex. For this purpose, we
defined a complexity indicator, the cost per sequence,
which allows one to compare searches on time series of
different lengths. We singled out two main parameters
that render discord searches particularly complex for HOT
SAX. The first one is a counter-intuitive property: low
noise/signal ratios. The second parameter with a strong
influence on the cost per sequence is the length of the
discords. For searches involving long sequences, HST tends
to be much faster than HOT SAX; in light of the fact
that the technological improvements lead to sensors capable
of producing higher sampling frequencies, the advantage
provided by HST should grow with time. In particular, to the
best knowledge of the authors, HST is the first exact discord
algorithm that can be more than 100 times faster than HOT
SAX.

Future developments of this research include more exten-
sive tests in order to better define the characteristics of time
series. It could also be interesting to use alternatives to SAX
in order to improve the warm-up phase. Parallelizing HST
is also a natural follow up of the present work.

Acknowledgments PA would like to thank Prof. M. Zymbler for
suggestions regarding DADD, and Prof. E. Keogh for providing the
dataset used for Section 4.6 and for the useful information regarding
the Matrix Profile.

References

1. Avogadro P, Dominoni MA (2020) An approximate high quality
nearest neighbor distance profile. In: Communications in Computer
and Information Science, Springer International Publishing, pp 158–
182. https://doi.org/10.1007/978-3-030-66196-0 8

2. Avogadro P, Palonca L, Dominoni MA (2020) Online anomaly
search in time series: significant online discords. Knowledge
and Information Systems. https://doi.org/10.1007/s10115-020-
01453-4

3. Benchmarksgame-team (2020) The computer language bench-
marks game. https://benchmarksgame-team.pages.debian.net/
benchmarksgame/

4. Bu Y, Leung TW, Fu AWC, Keogh E, Pei J, Meshkin S
(2007) Wat: Finding Top-k discords in time series database. In:
Proceedings of the 2007 SIAM International Conference on Data
Mining

5. Buu HTQ, Anh DT (2011) Time series discord discovery based
on isax symbolic representation. In: 2011 Third International
Conference on Knowledge and Systems Engineering, pp 11–18.
https://doi.org/10.1109/KSE.2011.11

6. Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a
survey. ACM Comput Surv 41(3):15:1–15:58. https://doi.org/10.
1145/1541880.1541882

7. Chau PM, Duc BM, Anh DT (2018) Discord discovery in
streaming time series based on an improved HOT SAX algorithm.
In: Proceedings of the Ninth International Symposium on
Information and Communication Technology - SoICT 2018, ACM
Press. https://doi.org/10.1145/3287921.3287929

8. Gao Y, Lin J (2018) Exploring variable-length time series motifs
in one hundred million length scale. Data Min Knowl Disc
32(5):1200–1228. https://doi.org/10.1007/s10618-018-0570-1

9. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov
PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley
HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: Com-
ponents of a new research resource for complex physiologic
signals. Circulation 101(23):e215–e220. circulation Electronic
Pages: http://circ.ahajournals.org/content/101/23/e215.fullPMID:
1085218; https://doi.org/10.1161/01.CIR.101.23.e215

10. Gupta M, Gao J, Aggarwal C, Han J (2014) Outlier detection for
temporal data: a survey. IEEE Trans Knowl Data Eng 26(9):2250–
2267. https://doi.org/10.1109/TKDE.2013.184

11. Hu M, Feng X, Ji Z, Yan K, Zhou S (2019) A novel
computational approach for discord search with local recur-
rence rates in multivariate time series. Inf Sci 477:220–233.
https://doi.org/10.1016/j.ins.2018.10.047

12. Keogh E, Kasetty S (2003) On the need for time series data
mining benchmarks: A survey and empirical demonstration.
Data Min Knowl Discov 7(4):349–371. https://doi.org/10.1023/
A:1024988512476

13. Keogh E, Lin J, Fu A (2005) Hot sax: efficiently finding the
most unusual time series subsequence. In: Proceedings of the
Fifth IEEE International Conference on Data Mining (ICDM’05),
pp 226–233

14. Khanh NDK, Anh DT (2012) Time series discord discovery
using WAT algorithm and iSAX representation. In: Proceed-
ings of the Third Symposium on Information and Communica-
tion Technology - SoICT. ACM Press. https://doi.org/10.1145/
2350716.2350748

15. Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic
representation of time series, with implications for stream-
ing algorithms. In: Proceedings of the 8th ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowl-
edge Discovery, DMKD ’03. ACM, New York, pp 2–11.
https://doi.org/10.1145/882082.882086

16. Moody GB, Mark RG (2001) The impact of the mit-bih
arrhythmia database. IEEE Eng Med Biol Mag 20(3):45–50.
https://doi.org/10.1109/51.932724

17. Nakamura T, Imamura M, Mercer R, Keogh EJ (2020) (2020)
Merlin: Parameter-Free discovery of arbitrary length anomalies in
massive time series archives. In: ICDM

18. SCAMP (2020) Matrix profile on github. https://github.com/
zpzim/SCAMP

19. Senin P (2019) Grammarviz 3.0. https://github.com/GrammarViz2/
grammarviz2 src/

10080



A fast algorithm for complex discord searches in time series: HOT SAX Time

20. Senin P, Lin J, Wang X, Oates T, Gandhi S, Boedihardjo AP,
Chen C, Frankenstein S, Lerner M (2014) Grammarviz 2.0: a tool
for grammar-based pattern discovery in time series. In: Calders
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