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Abstract
Person re-identification plays a critical role in video surveillance and has a variety of applications. However, the body
misalignment caused by detectors or pose changes sometimes makes it challenging to match features extracted from different
images. To address the issues above, we propose a multi-branch attention and alignment network (MAAN). This approach
is based on a deep network with three main branches. One branch is used for global feature representations. Another branch
implements a multi-attention process based on keypoints, filters the practical information in the image, and then horizontally
partitions the image to extract local features. For the last branch, we create a method based on part feature alignment. We
obtain 17 keypoints from a pretrained pose estimation model, and nine local regions from the corresponding feature map
are extracted for alignment. Experimental results on various popular datasets demonstrate that our method can produce
competitive results under posture changes and body misalignment.

Keywords Person re-identification · Multi-branch deep network · Keypoints · Feature fusion

1 Introduction

Person re-identification (Re-ID) aims to detect and return
images containing the same person from an image gallery.
Re-ID is critical in intelligent surveillance systems and
has essential research influence and practical significance
because it is important in the field of public safety due
to the increasing number of surveillance cameras. Since
the scene complexity of images from surveillance videos is
high, Re-ID’s primary challenge comes from considerable
changes in the image’s subject, such as posture, viewpoint,
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occlusion, clothing, background clutter, detection/tracking
errors, and illumination changes, among others. These
factors contribute to the difficulty of identifying unique
individuals from among extensive galleries.

Among these, the crucial factor that affects the Re-ID
accuracy is misalignment. First, pedestrians will naturally
adopt a variety of postures. Changes in posture mean that the
body part’s location inside the bounding box is uncertain.
Detection errors may also cause misalignment. Pedestrians
can appear in various locations throughout the image at
varying scales. In addition, different camera viewpoints
may cause misalignment due to factors such as different
clothing characteristics. As shown in Fig. 1, we present
some misaligned images that demonstrate the above factors
from three popular Re-ID datasets.

In general, previous Re-ID methods extract features
from the entire image and use them for retrieval. These
methods either directly use global character features [1,
2] or combine local features from various parts [3–6].
However, when pedestrians are not appropriately aligned,
the Re-ID accuracy may be significantly reduced. A typical
Re-ID practice, for example, is to divide the bounding box
into horizontal stripes [3, 7–10]. This approach assumes
minor vertical misalignment. However, when vertical
misalignment occurs, a person’s head may match the
background of another picture. As a result, when extreme
misalignment occurs, the horizontal partition’s advantages
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Fig. 1 Examples of detected
pedestrian images from three
popular Re-ID datasets (from
left to right are Market-1501 [8],
CUHK03 [7], and DukeMTMC-
reID [20, 21]). The green
bounding box represents the
actual location of the pedestrian
in the image. The first row
shows the misalignment caused
by posture and camera viewpoint
changes, and the second row
shows the misalignment from
detection errors

may be diminished. In another case, the feature extractor
may incorrectly weigh the background under various
pedestrian poses, impairing subsequent matching accuracy.

To our knowledge, several previous works [11–19]
explicitly consider the misalignment problem. [11, 12]
utilize the image structure (pictorial structure), and the
extracted features are affected by noise and produce specific
errors. [14, 17, 19] segment the human body structure
into blocks using a more precise pose estimation network
and employ a particular procedure for reorganization or
feature fusion. However, its network structure is relatively
simple, and the fusion process results in some information
loss. In [87], although the PAP module is used for
part alignment, its performance primarily comes from the
image’s segmentation constraints in the target domain,
which requires impractical and complex pseudo label
generation. [13] introduced a four-stream network that
acquires global and part features based on the head, upper
body, and lower body simultaneously. It then combines
multiple features to produce a GLAD descriptor. It lacks,
however, strong robustness to changes in posture and
viewpoint. In summary, [15, 16, 18, 19] add attention
factors, [16, 18] are based on posture keypoints, and
[15, 19] are derived from similarity calculations. These
factors guide the model’s attention to the critical portion
of the input image that contributes to alignment. Although
relying solely on attention for alignment is not ideal,
the robustness is insufficient when attention modules are
not used. Unlike the above methods, the network we
built incorporates multiple branches based on attention
and alignment. Diverse attention mechanisms and feature
partitioning are used in various branches, with global
feature representations for complementation, contributing
to better feature alignment and improving the model’s
performance.

Considering the problems mentioned above and the
limitations of existing methods, we propose a multi-branch
feature fusion strategy based on pose-guided multi-attention
and feature alignment. The attention mechanism in deep
learning causes the network to pay more attention to
feature extraction of areas practical for the Re-ID task,
and the keypoints have important guiding significance for
alignment in high-level semantics. We propose a concise
but efficient multi-branch attention and alignment network
that combines the ideas mentioned above. It is divided
into three parts. Before processing the input images, they
are routed via a backbone network (ResNet-50). Following
this process, the global features are obtained and sent to
three distinct components. Part 1 is used for global feature
representations. In Part 2, we introduce a multiple attention
mechanism including spatial attention, channel attention,
and keypoint attention; then, we set a horizontal feature
partition for local feature mining. In Part 3, we introduce
an alignment method based on part features. We use a
pretrained pose estimation model to obtain 17 keypoints;
relying on these keypoints, we divide the input feature
map into nine parts to achieve alignment. In addition,
and considering the errors of attention blocks and pose
estimation, both Part 2 and Part 3 introduce a sub-branch for
feature information complementation. Notably, our feature
extraction is based on the backbone, and only extra attention
and region divisions are used in subsequent branches to
further complete feature extraction. This design minimizes
the number of network parameters and makes it easy to
train. Simultaneously, we calculate the loss function for
each minimum branch’s features. Finally, these features
are concatenated to create the final representation of the
input images; this process assists in developing the extracted
features’ discrimination and robustness, thus improving the
Re-ID accuracy.
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This paper’s main contributions are:

– We propose a simple yet effective Re-ID pipeline called
the multi-branch attention and alignment network
(MAAN). This method can simultaneously learn local
features using the attention mechanism while finding
part features partitioned according to keypoints. In
addition, to construct a global feature representation
branch, we create a separate sub-branch to maintain
the global features as supplementary before each
main branch’s feature partitioning process. We achieve
feature alignment and increase the network’s robustness
by combining features from multiple levels and
different critical locations.

– We use keypoints to partition the global features into
nine specialized parts and connect a classification loss
function to each part feature in the part alignment
branch. This process enables finer-grained mining of
part features, mitigates the effects of real factors such
as sample noise, and leads to improved alignment.

– Using MAAN, we report competitive Re-ID accu-
racy on the Market-1501 [8], CUHK03 [7], and
DukeMTMC-reID [20, 21] datasets.

2 Related work

2.1 Attentionmechanism

In the last few years, the attention mechanism has been
widely used in computer vision as a method that may
enhance convolutional neural networks (CNNs). Its primary
objective is to choose the most critical pieces of information
from a large amount of data. SENet [22] proposed a
squeeze and exception network based on the relationship
between feature channels. The interdependence between
feature channels is modelled explicitly, and the weight of
each feature channel is automatically obtained by learning.
Then, according to the weight, the model enhances the
valuable features and suppresses the useless features for
the current task. SKNet [23] inspired cortical neurons
to dynamically adjust their receptive fields according
to different stimuli, used multiscale feature information
to guide the distribution, and focused on which kernel
representation to use. To emphasize the meaningful features
in the two region and channel dimensions, CBAM [24]
combines the two channel and spatial attention modules to
achieve better feature representation.

2.2 Pose estimation

The research on pose estimation has diverged from classical
methods [11, 12] to deep learning [25–27]. In general,

this problem can be divided into four tasks: single-person
skeleton estimation, multi-person pose estimation, video
pose tracking, and 3D skeleton estimation. For single-
person skeleton estimation, a picture of the cropped person
is used as input, and then the keypoints needed in the
body area, such as the head, left hand, and right knee, are
predicted. Keypoints can be used to indicate the position
of the human body and can assist with a variety of visual
issues. In this paper, we use OpenPose [26] to produce
keypoints, including the position of keypoints on the face,
hand, and joints of the human body, since it is a multistage
pose estimator with continuous pose prediction.

2.3 Person re-identification

Person re-identification addresses the problem of match-
ing pedestrian images across disjoint cameras. The key
challenge lies in the large intragroup and small intergroup
differences caused by different views, illumination, occlu-
sion, and poses. Existing techniques can be classified as
follows: hand-crafted descriptors [10, 30], metric learning
methods [32–34], and deep learning algorithms [2–10, 35].
The aforementioned Re-ID approaches are not robust to
changes in human pose and camera viewpoint, restricting
their applicability in real-world surveillance scenarios.

2.4 Part-based person re-identification

The part-based Re-ID methods use local descriptors
from different regions to enhance the discrimination
and robustness of the feature representation. Part-based
deep feature extraction methods can be divided into two
groups. The first group turns to the predicted keypoints,
which require the help of pretrained pose estimators.
[36] suggested a novel pose-based attention perception
synthesis network. In addition, part of the visibility is
also incorporated into the final feature representation.
[37] suggested combining the person’s fine and coarse
posture information to learn the discriminative embedding,
directly splicing the confidence map of 14 keypoints,
and the model automatically learns alignment. In [87],
under the guidance of pose estimation and semantic
segmentation, part aligned pooling and part segmentation
constraints were proposed to improve the cross-domain Re-
ID behaviour. The second group does not require keypoints
or segmentation information . A simple method is to divide
the person image or feature map into uniform partitions.
[3] divided the feature map into p horizontal stripes and
trained each embedding part independently using a non-
shared classifier. Additionally, one can extract the local
features using pose-driven RoI extraction [14], human
parsing results [38], or learning attention regions based on
appearance features [5, 6, 39]. For instance, [14] proposed
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using posture detection to generate a local area through
a manually crafted cutting method and then gradually
fusing part features. [38] extracted features of body parts
from human semantic analysis results. In [5, 6, 39], they
attempted to exploit local information using appearance-
based attention maps.

Compared with the above related Re-ID methods, we
creatively construct a more complete and robust fine-
grained feature extraction and alignment framework based
on multi-branch deep networks and multi-task learning.
We simultaneously introduced a multi-attention mechanism
and alignment method. In the former, we combine spatial
attention, channel attention, and keypoint attention while
carrying out multiple feature segmentation operations at the
appropriate scale to strengthen the information mining of
local features. In the alignment branch, we propose a new
horizontal segmentation method with reused hierarchical
information, which is different from previous work. For
example, ’upper leg’ features will appear in the ’upper leg’,’
lower body’, and ’whole body’, and they are further divided
into three sub-branches. This design is more reasonable
because each branch can provide better gradient flow during
training and alleviate the problem of the uneven gradient of
each classification loss function. When calculating feature
similarity, the feature robustness can also be improved, and
better results can be achieved.

3Method

This paper proposes a multi-branch Re-ID network consist-
ing of a global feature extraction network; a multi-attention
mechanism that incorporates channel, spatial, and keypoint
attention; and a pose-guided part feature alignment network.
We outline the proposed method’s overall framework in
Section 3.1, and the design of the global feature extraction
network is shown in Section 3.2. The pose-guided attention
mechanism and the part alignment method are discussed
separately in Sections 3.2 and 3.4. Section 3.5 summarizes
the overall structure.

3.1 The overall framework

In a Re-ID system, an input pedestrian image’s global
features can be used to achieve a reasonable Re-ID
effect. However, by learning more refined local features,
the effect is improved when compared to using only
global features. Traditional methods usually use uniform
partitioning and do not pay attention to the region around
keypoints. As a result, the change in pedestrian pose
and camera viewpoint can substantially influence the
network’s performance. To solve this problem, this paper
proposes a MAAN module. The overall structure is shown
in Fig. 2.

Fig. 2 Overview of our multi-branch attention and alignment net-
work (MAAN). ResNet50 is used as the backbone for global feature
extraction, whereas different branches adopt different pooling strides
at the last layer. Pose information is included using a keypoint atten-
tion mechanism as well as a keypoint partition operation. The MAAN

consists of three main branches, Part 1, Part 2, and Part 3. Part 1:
global feature extraction network from all input images. Part 2: multi-
attention mechanism including spatial attention, channel attention, and
keypoint attention. Part 3: part feature alignment network based on a
pose-guided feature partition operation
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3.2 Global feature extraction

As shown in Fig. 2, Part1 is a global feature extraction
branch for input images. To increase the scale of extracted
features in the network, the input image is resized to 384
× 128. We adopt ResNet-50 as the backbone to extract
feature f 1 with a size of 2048 × 12 × 4. Part1 learns
global information using global average pooling (GAP),
1 × 1 convolution(Conv1×1), BatchNorm(BN) and the
ReLU activation function. We use ResNet-50 to extract
features since it can converge quickly and reduce the
number of parameters. In addition, it can make the model
easier to train, which not only prevents the gradient from
disappearing but also prevents the loss from diverging.

The global feature f P 1
g is extracted from the input

image using this branch, and the size of f P 1
g is 256 ×

1 × 1. Through dimension reduction, f 1 can be reduced
to 256-dim from 2048-dim, which is more effective for
feature calculation. The 256-dim feature f P 1

g is used

to simultaneously calculate the softmax loss LP 1
sof tmax

and hard triple loss LP 1
triplet . Both losses are summed

for backpropagation. For feature fi , the softmax loss is
formulated as follows:

Lsof tmax = − 1

N

N∑

i=1

log
exp

(
WT

yifi

)

∑C
k=1 exp

(
WT

k fi

) (1)

WT
k is the weight vector for class k, where N denotes the

number of mini-batches in the training period, C denotes
the number of classes in the training dataset, and WT

yi

corresponds to a weight vector when input sample i is
predicted for the correct class yi. To improve the ranking
performance, the global feature f P 1

g is trained using a hard
triplet loss that consists of an anchor sample, a positive
sample, and a negative sample. The anchor and positive
samples are the most dissimilar positive sample pairs,
while the anchor and negative samples are the most similar
negative sample pairs. The following formula is used to
express the hard triplet loss function.

Ltriplet =
N∑

i

[
max

∥∥∥f i
a − f i

p

∥∥∥
2
− min

∥∥∥f i
a − f i

n

∥∥∥
2
+ margin

]

+
(2)

f i
a , f i

p, f i
n are features extracted from an anchor, a positive

sample and a negative sample respectively, and the margin

is used to control the inter-class distance.
∥∥∥f i

a − f i
p

∥∥∥
2
is

the Euclidean distance between the anchor and positive
sample, and

∥∥f i
a − f i

n

∥∥
2 is the Euclidean distance between

the anchor and negative sample. The global feature has good
performance on Re-ID tasks; however, it introduces some

interference factors such as background noises, so we use it
as a supplement to the overall feature and combine it with
other branches.

3.3 Multi-attentionmechanism

The attention mechanism is an important tool in computer
vision tasks, and it causes the network to pay more attention
to the effective part of the input image. Therefore, in the
second part of the network (Part 2), we introduced a multi-
attention mechanism combined with classic horizontal
segmentation to complete local feature extraction. The
principle of channel attention is to use different channels’
coefficient weights, and that of spatial attention is to
use different regions’ coefficient weights. Neither of the
two, however, recognize the significance of human pose
variation. Thus, following the channel and spatial attention
blocks, we introduce a keypoint attention block. This
combination causes the network to focus on valuable
parts of input images while diminishing the importance of
insignificant or even harmful regions.

As shown in Part 2 of Fig. 2, the last layer of ResNet-50
cancels the downsampling operation that extracts feature f 2

with a size of 2048× 24× 8. The last stride is changed from
2 to 1, so the size of feature f 2 is twice as large as that of
f 1. A larger feature size indicates that more information can
be obtained, which is more helpful when learning details.

We detail the attention mechanism in Fig. 3. First, f 2

passes through a global max pooling and GAP block. Both
features are then forwarded to another network, which
conducts channel attention. This network is composed of
two convolution layers and a ReLU activation function.
After adding both output features, which are based on
each element and activated by the sigmoid function, this
subsequent network generates the final channel attention
map. The channel attention map fchannel map is computed
as:

fchannel map = σ
(
W1

(
ReLU

(
W0avgpool

(
f 2

)))

+W1

(
ReLU

(
W0maxpool

(
f 2

))))
(3)

where σ denotes the sigmoid function, the convolution
weightsW0 andW1 are shared by both inputs, and the ReLU
activation function is followed by W0.

The channel attention map fchannel map and the feature
f 2 are multiplied element-wise to generate feature f 2

channel .
Then, feature f 2

channel is used as the input for the spatial
attention module. First, f 2

channel passes a global max
pooling layer and a GAP layer separately, and then we
concatenate these two features on the channel dimension.
The dimension is reduced to one channel using another
convolution layer. After that, the spatial attention map
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Fig. 3 Illustration of our
proposed multi-attention
mechanism

fspatial map is generated using a sigmoid function, and
fspatial map is computed as:

fspatial map =σ
(
W2

[
avgpool

(
f 2

channel

)
,maxpool

(
f 2

channel

)])

(4)

where σ denotes the sigmoid function, and W2 is the
convolution weight. Then, feature f 2

channel is multiplied by
fspatial map to obtain the input feature for the keypoint
attention module.

The channel and spatial attention blocks produce the
feature f 2

channel+spatial , which is then used to process
the keypoint attention. Specifically, we use OpenPose[26]
pretrained on the MS COCO2017 dataset[41] to obtain the
coordinates of 18 keypoints in the original image, including
’nose’, ’neck’, ’right shoulder’, ’right elbow’, ’right wrist’,
’left shoulder’, ’left elbow’, ’left wrist’, ’right hip’, ’right
knee’, ’right ankle’, ’left hip’, ’left knee’, ’left ankle’, ’right
eye’, ’left eye’, ’right ear’, and ’left ear’. According to our
experience, when applying the pretrained model to Re-ID
datasets, the estimation of ’neck’ has a larger deviation.
Therefore, we removed ’neck’ and used the remaining 17
keypoints for the attention calculation in Part 2 and the
partition of the global feature in Part 3. The keypoint
coordinates are modified using Gauss’s transformation and
binarization.

fkeypoint map [m ≥ 0.8] = 1

fkeypoint map [m < 0.8] = 0
(5)

where m denotes the confidence values on the keypoint
attention map fkeypoint map. The elements on this attention
map matrix that exceed 0.8 are set to 1, as we regard these
elements as belonging to the region near the keypoints,
and the remaining elements are set to 0. As shown in
Fig. 4, bright areas represent the regions near the keypoints.
The keypoint attention map focuses only on the areas

surrounding 17 keypoints, omitting other areas. After
multiplying by the corresponding features, it is possible
to emphasize significant characteristics near the keypoints
and extract more practical features for pedestrian identity
representation.

Then, f 2
channel+spatial is multiplied by the keypoint

attention map to obtain f 2
keypoint , which has a size of

2048 × 24 × 8. Next, it is sent to two branches, one
of which learns global information using GAP, a 1 ×
1 convolution(Conv1×1), BatchNorm(BN) and the ReLU
activation function. The global feature f P 2

g is extracted
from the input image using this sub-branch, and the size of

Fig. 4 Visualization of keypoint attention maps on four different
pedestrian images
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f P 2
g is 256 × 1 × 1. We retain this global feature following

the upper attention module as a complement. In another sub-
branch, feature f 2

keypoint passes through GAP and a 1 × 1
convolution layer, to obtain features with a size of 256 × 2
× 1. Using horizontal partitioning, the feature is divided into
two uniform parts, f P 2

pi |1i=0 , which have the same size of
256 × 1 × 1. We can obtain better local features by mining
after this division operation.

The softmax loss LP 2
sof tmax, L

P 2
sof tmax0, L

P 2
sof tmax1 and the

hard triplet loss LP 2
triplet are calculated after the calculation

of the above branches. All the losses are added together for
backpropagation.

In this section, only softmax loss is used for the two
local features f P 2

pi |1i=0, because if hard triplet loss is
used for the local feature mining branches, the results will
be less satisfactory. When an image is divided into two
parts from top to bottom, it is not clear whether the upper
part represents the upper body or the lower part represents
the lower body. In reality, the upper part may include the
background, while the lower part may represent the whole
body. If we choose the hard triplet loss, the distance between
the background and the upper body is meaningless, and
the training data will cause the model to learn the wrong
prediction.

3.4 Pose-guided part feature alignment

In this section, a part feature alignment network is proposed.
When matching the local features from two pedestrian
images, the identified accuracy based on the same body part
is better. Therefore, according to human parsing, we could
extract nine local regions using 17 estimated keypoints, as
mentioned in Sec. 3.2. By aligning the corresponding part
features, we can solve the offsets caused by misalignment,
thus enhancing the discrimination of extracted features and
the robustness of the entire network.

Part 3 of Fig. 2 includes one sub-branch for global
information extraction and nine sub-branches for part
information mining. The input image first passes through
the same backbone used in Part 2, and the last layer of
ResNet-50 cancels the downsampling operation to extract
the feature f 3, which has a size of 2048 × 24 × 8, the same
as f 2.

After that, we distribute the network into two branches.
One learns global information using GAP and a 1x1
convolution to obtain the global feature f P 3

g , and the other

obtains the features zP 3
pi |8i=0 using pose-guided partitioning,

as shown in Fig. 5. As mentioned in Sec. 3.2, we use
OpenPose[26], which is pretrained on the MS COCO2017

Fig. 5 Examples with 17 keypoints and nine part partitions. We used
OpenPose [26], which was pretrained on the MS COCO2017 dataset
[41], to obtain the coordinates of 18 keypoints in the original image,
including ’nose’, ’neck’, ’right shoulder’, ’right elbow’, ’right wrist’,
’left shoulder’, ’left elbow’, ’left wrist’, ’right hip’, ’right knee’, ’right
ankle’, ’left hip’, ’left knee’, ’left ankle’, ’right eye’, ’left eye’, ’right
ear’, and ’left ear’. According to our experience, when applying the
pretrained model to Re-ID datasets, the estimation of ’neck’ has a
large deviation. Therefore, we removed ’neck’ but retained the remain-
ing 17 keypoints. The yellow dots in each image represent the 17

keypoints. Nine rectangular boxes with different colours divide the
body into different parts, including the head between the top of the
skull and shoulders, the upper torso between the shoulders and chest,
the lower torso between the chest and waist, the upper leg between the
waist and knees, the lower leg between the knees and ankles, the feet
between the ankles and soles of the feet, the upper body between the
head and waist, the lower body between the waist and feet, and the
entire body between the head and feet. In addition, none of the nine
regions contain ineffective background information above the head or
under the feet
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dataset [41], to obtain 17 keypoints from the total 18
keypoints for feature partitioning; we discard the neck
keypoint. Specifically, we can obtain the coordinates of
17 keypoints in the original image and map to the feature
map using the size ratio of the original image as well as
the feature map. The vertical coordinates’ maximums for
the left eye and right eye were selected as the vertical
coordinate Y1 for the eyes, and the vertical coordinates’
minimum for the left ankle and right ankle were selected
as the vertical coordinate Y2 for the ankles. According to
the human body’s proportions, 120% of the difference M

between the vertical eye and mouth coordinates is calculated
as the distance from the eyes to the top of the head. The
vertical coordinate Y1 for the eyes plus this distance M is
used as the vertical head coordinate Y3, and the vertical
coordinate Y2 for the ankles minus this distance M is
used as the vertical coordinate Y4 for the feet. Therefore,
a person’s height is the difference |Y3 − Y4| between the
vertical coordinates for the head and the feet, and the person
image is segmented into six stripes, as shown in Fig. 5. The
average position of the symmetrical keypoints is used as the
partition boundary. The average position of the left and right
shoulders is used as the boundary between the head and
upper torso, and the area between the shoulder and waist
is divided equally into two parts: the upper torso and the
lower torso. The average position of the left and right waist
is used as the boundary between the upper body and the
lower body. The average position of the left and right knees
is used as the boundary between the upper leg and the lower
leg. The average position of the left and right ankles is used
as the boundary between the lower leg and feet. In this way,
pedestrians can be divided into six parts. In addition to the
above operations, and considering the general information,
the image can be divided into three parts. The upper body
is composed of the head, upper torso, and lower torso. The
lower body is composed of the upper leg, lower torso, and
feet, and the whole body is composed of the head to the feet.
Therefore, the feature zP 3

pi |8i=0 is finally divided into nine
different parts.

This division method causes the network to pay attention
to specific human body regions; thus, the extracted features
are more specific, and the entire image is free from
interference such as background noise. For example, the
network can focus on details about the local information,
such as the logo on the clothes.

The division method also modifies a uniform partition,
such as PCB, to realize partial feature alignment. Addition-
ally, 1 × 1 convolution(Conv1×1), BatchNorm(BN) and
the ReLU activation function are used to obtain features
f P 3

pi |8i=0, and each has a size of 256 × 1 × 1.

The global feature f P 3
g and the features zP 3

pi |8i=0
from the other branch are used to learn each part

feature of an input image, and these subnetworks share
the same weights. Instead of training ten subnetworks
separately, they are trained to share weights in the con-
volution layer to avoid overfitting. The softmax losses,
LP 3

sof tmax, L
P 3
sof tmax0, L

P 3
sof tmax1, L

P 3
sof tmax2, L

P 3
sof tmax3,

LP 3
sof tmax4, L

P 3
sof tmax5, L

P 3
sof tmax6, L

P 3
sof tmax7, L

P 3
sof tmax8,

and the hard triplet losses, LP 3
triplet and LP 3

triplet0, are
calculated. Eventually, all losses are added together
for backpropagation. As f P 3

pi |i=0 means that all of
the body features belong to the global feature, features{
f P 3

g , f P 3
pi |i=0

}
are trained using the hard triplet loss to

improve the network’s performance.
In the training stage, the global feature f P 3

g and

nine part features f P 3
pi |8i=0 are calculated separately

and are then concatenated to form the entire identity
representation during the test stage. Every branch in Part
3 shares parameters during training to enhance the model’s
performance, as the concatenation of global features and
each part feature with a total size of 10 × 256 is used in
the test stage. The shared convolution kernels are forced to
learn both the global and local features, and more samples
are used during training to avoid overfitting.

This pose-guided feature partitioning method can effec-
tively focus on the critical body parts and mine the corre-
sponding information while suppressing the misalignment
caused by background noise and detection errors. Compared
with the existing partitioning methods [13, 14, 17, 19], the
features we extracted consider the representation at differ-
ent granularities; they are more informative and complete.
We also prove that this method can achieve good results in
the experiment section.

3.5 Training and inference

The entire network structure is composed of Part 1, Part
2, and Part 3. These branches include both cooperation
and division of labour. The weights of the lower layers
are shared, and those of the higher layers are independent.
Global features are the overall common representation,
and then the multi-attention mechanism and pose-guided
feature alignment focus on local features at different
levels. Combining the global and local features as the
final identity representation could strengthen the network’s
discrimination. Thus, in the training stage, the total loss
function is formulated as follows:

L =LP 1
sof tmax + LP2

sof tmax + LP3
sof tmax + LP1

triplet + LP 2
triplet + LP3

triplet

+LP 3
triplet0 +

1∑

i=0

LP2
sof tmaxi +

8∑

i=0

LP 3
sof tmaxi

(6)
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Table 1 Descriptions of the Market-1501, DukeMTMC-reID, and CUHK03 (detected) datasets

Dataset Market-1501 DukeMTMC-reID CUHK03(detected)

Release time 2015 2017 2014

Shooting location Tsinghua University Duke University The Chinese University of Hong Kong

Identities 1501 1404 1467

Identities in training set 751 702 767

Images in training set 12936 16522 7365

Identities in test set 750 702 700

Images in test set 19732 17661 5332

Cameras 6 8 2

our method realizes end-to-end learning by integrating
global information, multi-attention-based local features, and
pose-guided part feature alignment. In retrieval, as shown in
Fig. 2, there are 18 purple blocks of 256-dim vectors from
top to bottom at the end of the network. We concatenate
these to form an identity feature with the size of 18 × 256.
The Euclidean distance was used for similarity calculation.

4 Experiments

The experiments are described in nine sections. Sections 4.1
and 4.2 introduce the datasets, evaluation protocols,
experimental environments, and implementation details.
In Section 4.3, we verify the effectiveness of the global
feature extraction network. Section 4.4 demonstrates
that the accuracy is further improved by the multi-
attention mechanism. Section 4.5 proves the effectiveness
of pose-guided part feature alignment. Section 4.6 shows
the superiority of the overall network. In Section 4.7,
we conduct an additional cross-domain experiment to
demonstrate the generalization ability of this network.
Section 4.8 provides a discussion of the time and space
complexity. Finally, Section 4.9 conducts a synthesis
comparison between our method and several state-of-the-art
methods.

4.1 Dataset and evaluation protocol

We conduct experiments on three popular Re-ID datasets:
Market-1501 [8], DukeMTMC-reID (Duke) [20, 21], and
CUHK03 [7]. The Market-1501 dataset was collected
on the Tsinghua University campus, and the images are
from six non-overlapping cameras, including one with
low resolution. The images are automatically detected and
cut by the detector. This dataset includes pose changes,
illumination variations, and occlusion, which are similar to
an actual scene. The DukeMTMC-reID dataset is the largest
person Re-ID dataset and was collected at Duke University.
It also provides the annotation of pedestrian attributes such

as gender and sleeve length, among others. The CUHK03
dataset was collected at the Chinese University of Hong
Kong and contains some detection errors. The details of
these datasets are described in Table 1.

In our experiments, to evaluate the performances
of Re-ID methods, we report the cumulative matching
characteristics (CMC) at Rank-1, Rank-3, Rank-5, Rank-10
and the mean average precision (mAP) on all the candidate
datasets.

4.2 Experimental environment and implementation
details

Our model is trained on PyTorch, and the details of the
experimental environment are shown in Table 2.

During the training process, the backbone network
adopts the ResNet-50 model, which was pretrained on
ImageNet. Pretraining was been completed before network
initialization, to reduce the training time. To increase the
scale of feature extraction, the input image is resized to
384 × 128. We use random flipping and random erasing to
augment the data. The ADAM optimizer and smooth label
are used to train the network for 500 epochs, and the first-
order momentum coefficient and second-order momentum
coefficient are 0.9 and 0.999, respectively. The weight decay
is set to 5e-4. The initial learning rate is set to 2e-4, which
decays by 0.1 at epochs 300 and 400 to avoid overfitting.
The mini-batch is composed of 16 samples, and the batch
size for every sample is set to 4. The margin in the triplet
loss is set to 1.2.

Table 2 Experimental environment

Configuration Parameter

Operating System Ubuntu 16.04

CPU Intel(R) Core(TM) i5-6500 CPU@3.20GHz

GPU Nvidia GeForce RTX 2080Ti

Cudnn 7.1.4

Software Platform Pytorch 1.4.0
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Table 3 Results of the methods ”ResNet-50” and ”Part1” on the Market-1501, DukeMTMC-reID and CUHK03 (detected) datasets

Dataset Method Rank1 Rank3 Rank5 Rank10 mAP

Market-1501 ResNet-50 87.6 94.99 96.71 98.23 71.02

Part1 90.56 95.75 96.91 98.07 77.6

DukeMTMC-reID ResNet-50 81.04 88.89 91.05 94.06 64.63

Part1 82.63 89.45 90.98 93.31 68.4

CUHK03 ResNet-50 45.14 60.07 68.14 77.29 43.3

Part1 63.36 75.64 80.86 88.29 59.07

4.3 Effectiveness of the global feature extraction
branch

As shown in Part 1 of Fig. 2, the global feature extraction
branch is used separately for Re-ID research. The softmax
loss and hard triple loss are introduced for training.
This method is represented by ”Part1”. We continue
to experiment on the ResNet-50 network and only use
the softmax loss to calculate the loss. This method is
represented by ”ResNet-50”, and we compare Part 1’s
performance with ResNet-50. The results of ”Part1” and
”ResNet-50” are recorded in Table 3.

Table 3 shows that after adding the global feature,
when compared with ResNet-50, the Rank1/mAP rises
from 87.6%/71.02% to 90.56%/ 77.6% (+2.96%/ 6.58%)
on Market-1501, from 81.04%/64.63% to 82.63%/68.4%
(+1.59%/3.77%) on DukeMTMC-reID, and from
45.14%/43.3% to 63.36%/59.07% (+18.22%/ 15.77%) on
CUHK03. The global network leads to better Re-ID accu-
racy. In addition, from Table 4, we can see that ”Part1”
is superior to other popular methods based on the global
feature. Nevertheless, the global feature does not focus on
detailed information. Combining the local features from
Part2 and Part3 can improve the network.

4.4 Effectiveness of multi-attentionmechanism
branch

As shown in Part2 of Fig. 2, in this section, we use
this branch separately for Re-ID research. Specifically, the

softmax and hard triple loss are used for training, and we
concatenate the output features from the three sub-branches
of Part 2 to create the final representation of the input
images during retrieval. This method is denoted by ”Part2”
in the table. For this multi-attention mechanism branch,
Fig. 6 shows the feature response maps of two query images.
The feature response map can filter background information
and focus on the valuable information in the pedestrian
images, and highlights only the fields surrounding the head,
shoulders, waist, limbs, and feet near 17 keypoints.

To verify the effect of the multi-attention mechanism,
we designed three other network structures for comparison.
The first removes all attention modules, but the network
structure is the same as Part 2 and includes the same
feature segmentation method. This method is denoted as
”Base”. The second network structure uses only the spatial
and channel attention modules. This method is denoted as
”Spatial+Channel”. the third network structure uses only
the keypoint attention modules. This method is denoted as
”Keypoint”. The results of this comparative experiment are
shown in Table 5.

Table 5 shows that after adding the channel, spatial,
and keypoint attention blocks, the model performance
is significantly improved. Compared with ”Base”, the
results of Rank1/mAP increase from 91.95%/77.59% to
92.67%/82.99%(+0.72%/5.4%) on Market-1501, from
83.17% /68.93% to 86.0%/ 73.52%(+2.83%/4.59%)
on DukeMTMC-reID, and from 54.36% /51.5% to
73.57%/70.61%(+19.21%/19.11%) on CUHK03. In addi-
tion, combining spatial and channel attention with keypoint

Table 4 Comparison with several global-feature-based SOTA methods on the Market-1501 and DukeMTMC-reID datasets

Method Market-1501 DukeMTMC-reID

Rank1 mAP Rank1 mAP

IDE [40] 79.5 59.9 - -

SVDNet [1] 82.3 62.1 76.7 56.8

TriNet [41] 84.9 69.1 - -

AWTL [42] 89.5 75.7 79.8 63.4

Part1(Ours) 90.56 77.6 82.63 68.4
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Fig. 6 Feature response maps
from the pose-guided attention
network in the query set and
gallery set. The left side of the
arrow denotes an original
pedestrian image from the query
set and its feature response map
from the pose-guided attention
network; the right side of the
arrow denotes the feature
response maps produced by the
pose-guided attention network
for four pedestrian images from
the gallery set, in which the ID
is the same as the query image
on the left. The bright fields
indicate the positions near the
keypoints of the human pose,
which are more valuable than
other areas

attention results in better performance than when they
are used separately. Different attention mechanisms affect
the model’s performance from different aspects. Channel
attention represents global information, spatial attention
represents local information, and keypoint attention focuses
on the information near human body keypoints. In addition,
following the multi-attention mechanism, Part 2 is divided
into a global feature and two local features so that the net-
work can better learn the local features. Thus, in Table 6,
we find that the multi-attention mechanism branch achieves
better performance than some common attention-based
SOTA methods.

4.5 Effectiveness of the pose-guided part feature
alignment branch

As shown in Part 3 of Fig. 2, the pose-guided part feature
alignment branch partitions the global features into nine
different parts according to the 17 keypoints and then
outputs features including the global feature f P 3

g , the

head f P 3
pi |i=1, the upper torso f P 3

pi |i=2, the lower

torso f P 3
pi |i=3, the upper leg f P 3

pi |i=4, the lower leg

f P 3
pi |i=5, the feet f P 3

pi |i=6, the upper body f P 3
pi |i=7,

the lower body f P 3
pi |i=8, and the entire body f P 3

pi |i=0.

Table 5 Results with different Part 2 settings on the Market-1501, DukeMTMC-reID and CUHK03 (detected) datasets

Dataset Method Rank1 Rank3 Rank5 Rank10 mAP

Market-1501 base 91.95 96.23 97.09 98.22 77.59

spatial+channel 92.58 96.24 97.12 98.27 80.09

keypoint 92.43 96.00 97.19 98.12 81.82

Part2 92.67 96.17 97.24 98.19 82.99

DukeMTMC-reID base 83.17 89.18 91.74 93.9 68.93

spatial+channel 84.76 90.38 92.31 94.68 71.50

keypoint 85.28 90.40 92.42 94.86 72.55

Part2 86.0 90.57 92.55 94.66 73.52

CUHK03 base 54.36 67.29 74.21 82.86 51.5

spatial+channel 71.79 82.14 86.86 92.14 69.58

keypoint 72.93 82.71 87.21 92.36 69.95

Part2 73.57 82.79 88.14 92.43 70.61

”Base” refers to the single network that removes all the attention blocks from Part 2. ”Spatial+Channel” refers to using only the spatial attention
and channel attention modules from Part 2 while removing the keypoint attention block. ”Keypoint” refers to using only the keypoint attention
module from Part 2 while removing the other attention blocks. ”Part2” refers to this main branch’s complete structure
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Table 6 Comparison with several attention-based SOTA Re-ID methods on the Market-1501, DukeMTMC-reID and CUHK03 (detected) datasets

Method Market-1501 DukeMTMC-reID CUHK03(detected)

Rank1 mAP Rank1 mAP Rank1 mAP

DLPAP [43] 81.0 63.4 - - - -

HA-CNN [39] 91.2 75.7 80.5 63.8 41.7 38.6

Mancs [44] 93.1 82.3 84.9 71.8 65.5 60.5

PAN [45] 82.8 63.4 71.6 51.5 36.3 34.0

PPA [46] 92.3 79.3 85.1 70.2 64.6 62.0

DuATM [47] 91.4 76.6 81.8 64.6 41.7 38.6

Part2(Ours) 92.67 82.99 86.0 73.52 73.57 70.61

In this section, we use this branch separately for Re-ID
research and conduct experiments using various feature
fusion and training strategies on Market-1501. The detailed
experimental results are recorded in Table 7.

As seen from Fig. 7, we divided the global feature
of the corresponding position in the input image into
the following parts using the keypoints: the upper body,
the lower body, the head, the upper torso, the lower
torso, the upper leg, the lower leg, and the feet. These
corresponding parts may be located in different positions
in different images, and the original sizes vary; however,
the last features extracted represent the same semantic
information. Therefore, through this partition operation,

when we calculate the distance between different features,
the results are more accurate and can align the same features
in different images.

In Table 5, the effect of the ”Part3” fusion strategy is
the best. The network performance with weight sharing is
better than that which does not share parameters because
sharing convolution kernels results in better training and
avoids overfitting. The performance of the global feature
is better than that of the local features because the
global feature contains complete information, which results
in better discrimination. Because the head, upper torso,
lower torso, upper leg, lower leg, and feet are hard to
recognize, the performance of the fusion strategy ”head

Table 7 Results of different feature fusion strategies on Market-1501

Training Strategy Fusion Strategy Rank1 mAP

No Weight Sharing global 90.11 77.25

upper body 85.15 68.01

lower body 83.79 65.63

whole body 90.54 77.48

head + upper torso + lower torso + upper leg + lower leg + feet 82.4 63.38

global + head + upper torso + lower torso + upper leg + lower leg + feet 91.33 75.51

global + upper body 91.48 75.82

global + lower body 91.26 79.62

global + whole body 91.46 79.43

Part3 92.16 81.07

Weight Sharing head + upper torso + lower torso + upper leg + lower leg + feet 85.38 68.26

global + head + upper torso + lower torso + upper leg + lower leg + feet 92.19 81.36

global + upper body 92.56 81.62

global + lower body 92.24 81.83

global + whole body 92.97 82.35

Part3 93.3 83.23

Note that the fusion strategy ”head + upper torso + lower torso + upper leg + lower leg + feet + global + upper body + lower body + whole body”
is denoted by ”Part 3”. ”Global” denotes using only the global feature extraction branch and discarding the pose-guided feature alignment parts.
”No weight sharing” means that all of the last convolution layers in Part 3 are trained separately, ”Weight sharing” refers to sharing parameters
between the last convolution layers (including the sub-branch for extracting global feature f P 3

g ). Please refer to the schematic in Fig. 7 for details
about other descriptors, such as ”upper body” and ”lower body”
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Fig. 7 Schematic of part feature alignment with the same ID between
a query image and a gallery image. The left side of the arrow denotes
the parts of a query image; the right side of the arrow denotes the
corresponding parts of the gallery image. The parts of the human body
enclosed by the different-coloured bounding boxes are illustrated in
boxes of the same colour on the left side. The same part features can be
matched one by one using a part alignment network that also calculates
the distance between different input images

+ upper torso + lower torso + upper leg + lower
leg + feet” is worse than that of the fusion strategy
”upper body”, ”lower body” and ”whole body”. However,
these six parts can still focus on detailed information.
The performance of ”Part3”, which adds these parts,
is the best and rises from Rank1/mAP=91.11%/77.25%
to 93.3%/83.23%(+2.19%/5.98%). When comparing this
result to ”global” on Market-1501, it is clear that the head,
upper torso, lower torso, upper leg, lower leg, and feet
features are helpful for Re-ID because they are easy to align
across images.

Therefore, we conduct experiments using ”Part3” on
the Market1501, DukeMTMC-reID, and CUHK03 datasets.
The results are recorded in Table 8. In Table 9, we further
compare ”Part3” with other popular SOTAmethods that aim
to solve the alignment problem to prove its effectiveness.
We can see that ”Part3” demonstrates the best performance,
which verifies its alignment effectiveness.

4.6 Effectiveness of MAAN

This section combines the global feature extraction branch,
the multi-attention mechanism branch, and the pose-guided
part feature alignment branch for Re-ID. The experiments
are conducted on the Market-1501, DukeMTMC-reID, and
CUHK03 datasets. ”Part2+Part3” denotes that the network
consists of only Part 2 and Part 3, and ”MAAN” denotes that
the network consists of all sub-branches, i.e., the complete
method proposed in this paper. In addition, we include the
results of ”MAAN (rerank)”, which denotes using MAAN
as well as the reranking tricks for Re-ID. The results are
recorded in Table 10.

By reviewing the data in Table 10, it is clear that when
the global feature, the pose-guided attention mechanism,
and the part feature alignment network are combined,
the Re-ID accuracy is increased in comparison with
”Part2+Part3” as well as the results in Sections 4.3, 4.4, 4.5,
demonstrating the effectiveness of our proposed MAAN
method. Rank1 and the mAP for the ”Part2 + Part3” method
are 96.07%and 87.44%, respectively, on Market-1501, and
the effect is good. In addition, the MAAN structure is
more reasonable, with Rank1 and mAP values of 96.97%
and 88.38%, respectively, on Market-1501. This result is
obtained because different branches encourage each other
or share valuable information. Hence, the MAAN effect is
better than the ”Part2 + Part3” method. When rearranging
the test results, Rank1 is 97.16%, and mAP is 94.66% on the
Market-1501 dataset. The method ”MAAN (rerank)” uses
the information from the test set itself. In a practical sense,
the test set is likely to be open. Thus, there is no way to use
the information from the test set, and this method therefore
cannot be achieved, making the original Rank1 and mAP are
more valuable. However, for some known test sets, rerank
technology can be used to improve network accuracy. In our
experiment, mAP is improved from 88.38% to 94.66% on
Market-1501 using ”rerank”, which is very significant.

Table 8 Results of ”Part3” method on the Market-1501, DukeMTMC-reID, and CUHK03 (detected) datasets

Dataset Method Rank1 Rank3 Rank5 Rank10 mAP

Market-1501 Part3 93.3 96.48 97.87 99.03 83.23

DukeMTMC-reID Part3 86.63 91.82 93.98 95.82 73.82

CUHK03 Part3 74.11 84.07 89.29 92.51 71.34
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Table 9 Comparison with several alignment-oriented SOTA methods on the Market-1501, DukeMTMC-reID, and CUHK03 (detected) datasets

Method Market-1501 DukeMTMC-reID CUHK03(detected)

Rank1 mAP Rank1 mAP Rank1 mAP

Spindle [14] 76.9 - - - - -

SVDNet [1] 82.3 62.1 76.7 56.8 41.5 37.3

PDC [17] 84.1 63.4 - - - -

GLAD [7] 89.9 73.9 - - - -

Pose Transfer [48] 87.7 68.9 68.6 48.1 30.1 28.2

PN-GAN [49] 89.4 72.6 73.6 53.2 - -

PSE [37] 87.7 69.0 79.8 62.0 30.2 27.3

MSCAN [50] 80.8 57.5 - - - -

PIE [19] 78.7 53.9 - - - -

Part-Aligned [51] 91.7 79.6 84.4 69.3 - -

SPReID [38] 92.5 81.3 84.4 71.0 - -

Part3(Ours) 93.3 83.23 86.63 73.82 74.11 71.34

To briefly summarize, the proposed MAAN learns the
feature information from different perspectives. The global
branch has a larger receptive field, which captures full
and sparse features. The multi-attention branch focuses on
the critical location of features while suppressing useless
feature information such as background noise, and the pose-
guided part alignment branch causes the model to compare
the same semantic parts from different images, leading
to alignment. What different branches have learned from
different perspectives can complement each other. Under
the same network settings, the synthesis MAAN method
behaves much better than any single method.

To analyse the experimental results, we draw the
Cumulative Match Characteristic (CMC) curve for the
proposed MAAN, as shown in Fig. 8. This experiment has
a duration of 500 training epochs and tests every 50 epochs.
The network is jointly trained by three branches, and every
branch is responsible for different tasks, including global
feature extraction, the multi-attention mechanism and part

feature extraction. Therefore, the branches have many
different loss functions. Owing to the reasonable settings,
the network is not difficult to train and can converge to a
good effect after 100 epochs. Due to the richness of the
feature extraction, the gradients of the losses can maintain
their updates after 100 epochs, and the network can continue
to converge better and obtain a better effect of feature
extraction. From Fig. 8, it can be seen that mAP and Rankn
are further improved at 350 epochs because the model jumps
out of the local minimum under continuous training. The
CMC curve gradually becomes stable between 400 and
500 epochs, and the best convergence effect is obtained at
500 epochs. After 500 epochs, the CMC curve no longer
fluctuates. Therefore, the network’s training potential is
relatively large. By training for 500 epochs, the network’s
different losses and gradients can be better matched.

Figure 9 shows the retrieval results of four different
query images. The first two query images are all identified
accurately whether the pedestrians are sideways or shown

Table 10 Results of the methods ”Part2+Part3”, ”MAAN”, and ”MAAN (rerank)” on the Market-1501, DukeMTMC-reID, and CUHK03
(detected) datasets

Dataset Method Rank1 Rank3 Rank5 Rank10 mAP

Market-1501 Part2+Part3 96.07 97.67 98.94 99.5 87.44

MAAN 96.97 98.31 99.29 99.5 88.38

MAAN(rerank) 97.16 98.47 99.31 99.5 94.66

DukeMTMC-reID Part2+Part3 88.52 94.26 95.92 97.74 78.19

MAAN 89.47 95.22 96.1 98.17 78.89

MAAN(rerank) 91.11 96.02 97.15 98.63 88.92

CUHK03 Part2+Part3 75.0 86.14 90.29 94.79 73.52

MAAN 76.29 86.36 91.57 95.36 74.64

MAAN(rerank) 77.64 87.93 92.26 95.64 85.62
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Fig. 8 CMC curve of MAAN on the Market-1501, DukeMTMC-reID and CUHK03 (detected) datasets. The abscissa represents epochs, and the
ordinate represents mAP/Rank-n. Five curves with different colours in each image, from top to bottom, represent mAP, Rank1, Rank2, Rank3,
Rank5, and Rank10

from the back. The first query pedestrian has his back to
the camera, and his front face is found in the retrieval
result. There is considerable background information above
these gallery images corresponding to the first query image,
which can still be identified accurately using the pose-
guided part feature alignment branch of MAAN. The
fifth and tenth vague gallery images corresponding to the
second query pedestrian were also identified accurately,
reflecting the robustness of MAAN. For the seventh
gallery image with a red dotted box corresponding to the
third query pedestrian, the person’s clothes and looks are
nearly identical to the correct one, which leads to errors.
For the ninth gallery image with a red dotted bounding
box corresponding to the fourth query image, the head
information is missing due to an extreme detection error,
while its other appearance is nearly the same as the query’s,
leading to a mistake.

4.7 Cross-Domain Re-ID

This section conducts cross-domain Re-ID experiments on
the ”Part2+ Part3” and ”MAAN” methods. We first use the
model trained on Market1501 to test on DukeMTMC-reID.
In addition, we also use the model trained on DukeMTMC-
reID to test on Market-1501. The results are recorded in
Table 11.

From the results of the cross-domain experiment, it is
clear that the MAAN method can achieve competitive accu-
racy when compared with the state-of-the-art unsupervised
domain adaptation (UDA) methods, even though it does not
use any unlabelled source data. The MAAN performance on
the Duke target dataset is better than most UDA methods
in Table 11, and on target dataset Market-1501, MAAN’s
performance is better than SPGAN, TJ-AIDL, and ATNet,
which verifies its generalization ability. Some of the com-
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Fig. 9 Top 10 ranking list from four query images from the Market-1501 dataset by MAAN. The retrieved images are all from in the gallery set.
The images with green numbers belong to the same identity, and those with red numbers belong to a different identity

Table 11 Cross-domain Re-ID results

Method Source Targe Rank1 Rank5 Rank10 mAP

MMFA [52] Market+ Duke (U) Duke 45.3 59.8 66.3 24.7

SPGAN [53] Market+ Duke (U) Duke 46.4 62.3 68.0 26.2

CamStyle [54] Market+ Duke (U) Duke 48.4 62.5 68.9 25.1

TJ-AIDL [55] Market+ Duke (U) Duke 44.3 59.6 65.0 23.0

ATNet [56] Market+ Duke (U) Duke 45.1 59.5 64.2 24.9

HHL [57] Market+ Duke (U) Duke 46.9 61.0 66.7 27.2

ECN [58] Market+ Duke (U) Duke 63.3 75.8 80.4 40.4

Part2+Part3 Market Duke 45.47 60.0 65.17 25.31

MAAN(ours) Market Duke 46.16 61.31 66.40 25.85

MMFA [52] Duke + Market (U) Market 56.7 75.0 81.8 27.4

SPGAN [53] Duke + Market (U) Market 57.7 75.8 82.4 26.7

CamStyle [54] Duke + Market (U) Market 58.8 78.2 84.3 27.4

TJ-AIDL [55] Duke + Market (U) Market 58.2 74.8 81.1 26.5

ATNet [56] Duke + Market (U) Market 55.7 73.2 79.4 25.6

HHL [57] Duke + Market (U) Market 62.2 78.8 84.0 31.4

ECN [58] Duke + Market (U) Market 75.1 87.6 91.6 43.0

Part2+Part3 Duke Market 57.06 75.3 81.96 26.02

MAAN(ours) Duke Market 57.72 75.96 82.51 26.73

”Market” denotes the Market-1501 dataset, and ”Duke” denotes the DukeMTMC-reID dataset. The MAAN method (highlighted rows) does not
use any unlabelled data from the target domain. (U: Unlabelled)
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Table 12 Time complexity, space complexity and top-1 accuracy (%) on Market-1501

Method Params MACs Top-1

ResNet-50 25.56M 4.028G 87.6
Part1 24.23M 4.026G 90.56
Part2 26.19M 6.108G 92.67
Part3 30.69M 6.112G 93.3
MAAN 33.17M 8.856G 96.97

M: Million; G: Gillion

Table 13 Comparison with state-of-the-art methods on the Market-1501 dataset

Type Method Rank1 mAP Reference

Stripe-based AlignedReID [15] 90.6 77.7 Arxiv2017
Deep-Person [59] 92.3 79.6 PR2017
SCPNet [60] 91.2 75.2 ACCV2018
BFE [61] 94.5 85.0 Arxiv2018
PCB+RPP [3] 93.8 81.6 ECCV2018
MGN [62] 95.7 86.9 CVPR2018

Attention-based HA-CNN [39] 91.2 75.7 CVPR2018
Mancs [44] 93.1 82.3 ECCV2018
PAN [45] 82.8 63.4 TCSVT2018
PPA [46] 92.3 79.3 CVIU2021
DuATM [47] 91.4 76.6 CVPR2018
Attention-Driven [63] 95.0 86.5 PR2019
ABD-Net [64] 95.6 88.3 ICCV2019
PAT [29] 95.4 88.0 CVPR2021

Pose-guided MSCAN [50] 80.8 57.5 CVPR17
SVDNet [1] 82.3 62.1 ICCV2017
PDC [17] 84.1 63.4 ICCV17
Pose Transfer [48] 87.7 68.9 CVPR2018
PN-GAN [49] 89.4 72.6 ECCV2018
PSE [37] 87.7 69.0 CVPR2018
Part-Aligned [51] 91.7 79.6 ECCV2018
SPReID [38] 92.5 81.3 CVPR2018
PGFA [69] 91.2 76.8 ICCV2019
HOReID [28] 94.2 84.9 CVPR2020

Others HAP2S [65] 84.59 69.43 ECCV2018
PABR [66] 90.2 76 ECCV2018
KPM [67] 90.1 75.3 CVPR2018
VPM [68] 91.3 77.8 CVPR2019
DistributionNet [70] 87.26 70.82 ICCV2019
DRAL [71] 84.2 66.26 ICCV2019
PL-Net [72] 88.2 69.3 TIP2019
APR [73] 87.04 66.89 PR2019
MuDeep (SL) [31] 95.34 84.66 TPAMI2019
SMGAN [74] 92.13 76.48 Appl Intell2020
DUNet [75] 91.6 75.9 Appl Intell2020
Ensemble [76] 91.9 79.5 PR2020
Multi-Scale & Multi-Patch [77] 93.7 81.2 Neurocomputing2020
UnityStyle [78] 91.8 76.5 CVPR2020
IRN+ARN [79] 92.8 79.5 Appl Intell2020

Ours MAAN 96.97 88.38
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pared methods in the cross-domain experiment are better
than the proposed MAAN method, such as ECN. These are
used for domain adaptation based on UDA methods and
not general architectures. The proposed method is a super-
vised and general architecture, not a network specially used
for migration. In addition, the proposed network extracts
detailed features based on three branches, so the fusion
effect can achieve competitive migration performance. The
proposed MAAN method can achieve better results in both
the original domain and the cross domain, while the other
methods are only better in the cross domain. Their accu-
racy in the original domain is not as good as our method.

Therefore, in terms of overall performance, the MAAN
method is better than other methods and has a compara-
ble cross-domain ability. Without the global feature branch,
the performance of ”Part2 + Part3” is slightly worse. In
summary, our proposed MAAN can be used as a backbone
model for cross-domain Re-ID.

4.8 Complexity analysis

The proposed approach is based on a deep network with
three branches, but the time and space complexity are
not high. Notably, our feature extraction is based on

Table 14 Comparison with state-of-the-art methods on the DukeMTMC-reID dataset

Type Method Rank1 mAP Reference

Stripe-based AlignedReID [15] 81.2 67.4 Arxiv2017

Deep-Person [59] 80.9 64.8 PR2017

SCPNet [60] 80.3 62.6 ACCV2018

BFE [61] 88.7 75.8 Arxiv2018

PCB+RPP[3] 83.3 69.2 ECCV2018

MGN [62] 88.7 78.4 CVPR2018

Attention-based HA-CNN [39] 80.5 63.8 CVPR2018

Mancs [44] 84.9 71.8 ECCV2018

PAN [45] 71.6 51.5 TCSVT2018

PPA [46] 85.1 70.2 CVIU2021

DuATM [47] 81.8 64.6 CVPR2018

Attention-Driven [63] 86.0 74.6 PR2019

ABD-Net [64] 89.0 78.6 ICCV2019

PAT [29] 88.8 78.2 CVPR2021

Pose-guided SVDNet[1] 76.7 56.8 ICCV2017

Pose Transfer [48] 68.6 48.1 CVPR2018

PN-GAN [49] 73.6 53.2 ECCV2018

PSE [37] 79.8 62.0 CVPR2018

Part-Aligned [51] 84.4 69.3 ECCV2018

SPReID [38] 84.4 71.0 CVPR2018

PGFA [69] 82.6 65.5 ICCV2019

HOReID [28] 86.9 75.6 CVPR2020

Others HAP2S [65] 75.94 60.64 ECCV2018

KPM [67] 80.3 63.2 CVPR2018

DistributionNet [70] 74.73 55.98 ICCV2019

DRAL [71] 74.28 56 ICCV2019

APR [73] 73.92 55.56 PR2019

MuDeep (SL) [31] 88.19 75.63 TPAMI2019

SMGAN [74] 84.82 64.89 Appl Intell2020

DUNet [75] 82.1 66.5 Appl Intell2020

Ensemble [76] 84.8 70.3 PR2020

Multi-Scale & Multi-Patch [77] 84.4 70.4 Neurocomputing2020

UnityStyle [78] 82.1 65.2 CVPR2020

IRN+ARN [79] 82.7 66.4 Appl Intell2020

Ours MAAN 89.47 78.89
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Table 15 Comparison with state-of-the-art methods on the CUHK03(detected) dataset

Type Method Rank1 mAP Reference

Stripe-based PCB+RPP [3] 63.7 57.5 ECCV2018

MGN [62] 66.8 66.0 CVPR2018

Attention-based HA-CNN [39] 41.7 38.6 CVPR2018

Mancs [44] 65.5 60.5 ECCV2018

PAN [45] 36.3 34.0 TCSVT2018

PPA [46] 64.6 62.0 CVIU2021

Pose-guided SVDNet [1] 41.5 37.3 ICCV2017

Pose Transfer [48] 30.1 28.2 CVPR2018

PSE [37] 30.2 27.3 CVPR2018

Others MultiScale [80] 40.7 37.0 ICCV2017

MLFN [82] 52.8 47.8 CVPR2018

MuDeep (SL) [31] 71.93 67.21 TPAMI2019

TriNet+Era [81] 55.5 50.7 AAAI2020

SMGAN [74] 50.16 47.12 Appl Intell2020

DUNet [75] 51.6 49.9 Appl Intell2020

Ensemble [76] 62.9 57.6 PR2020

Multi-Scale & Multi-Patch [77] 70.1 67.2 Neurocomputing2020

Ours MAAN 76.29 74.64

the backbone (ResNet-50), and only extra attention and
region divisions are used in subsequent branches to further
complete feature extraction. The function of the multi-
branch network is to perform post-processing without
introducing too many complex operations. Specifically, Part
1 extracts the global feature. For Part 2, the parameters
used for the channel and spatial attention are small, and
the keypoint attention does not require parameters that do
not occupy space. For Part 3, the part feature is calculated
based on keypoints, so the amount of calculation is small,
and no parameters are introduced. After every branch,
GAP does not introduce parameters, and the parameters
for Conv1×1 are small. Although the network has multiple
branches, we introduce fewer parameters and computations.
As shown in Table 12, Macs and Params denote the time
complexity. Compared with ResNet-50, the network does
not substantially increase the computational burden, and the
accuracy is greatly improved. Therefore, the computational
efficiency is excellent. This design minimizes the number
of network parameters and makes it easy to train.

4.9 Comparison with state-of-the-art methods

We compare the MAAN method with several state-of-the-
art methods on the Market-1501, DukeMTMC-reID, and
CUHK03 datasets to verify its performance. These methods
are divided into four classes: stripe-based, attention-based,
pose-guided, and others. MAAN belongs to the Pose-guided
class. The detailed results for different datasets are provided
in Tables 13, 14, and 15.

From Tables 13, 14, and 15, we find that MAAN’s Rank1
and mAP are 96.97% and 88.38% on Market-1501, 89.47%
and 78.89% on DukeMTMC-reID, and 76.29% and 74.64%
on CUHK03, respectively, which are much higher than other
methods such as MGN. MGN is a powerful Re-ID method
based on multi-branch and horizontal feature partitioning,
and it is the nearest competitor on the Market-1501 and
CUHK03 datasets. MAAN’s Rank1 and mAP surpass MGN
by 1.27% and 1.48% on Market-1501, and 9.49% and
8.64% on CUHK03(detected). In addition, ABD-Net is
the nearest competitor on the DukeMTMC-reID dataset.
MAAN’s Rank1 and mAP surpass ABD-Net by 0.47% and
0.29% on DukeMTMC-reID. Comparing the above results
demonstrates that MAAN has a comparative performance to
state-of-the-art Re-ID methods on several commonly used
person Re-ID benchmarks.

The proposed MAAN can achieve excellent performance
because the global feature extraction branch, the multi-
attention mechanism branch, and the pose-guided part
feature alignment branch mine more valuable and more
substantial information from complete perspectives, thus
broadly enhancing the discrimination and robustness of the
final feature representation.

5 Conclusion

In this paper, we propose a robust person re-identification
algorithm called MAAN. By integrating different functional
branches, MAAN can complete mining of both the global
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features and valuable local features while performing part
feature alignment. Specifically, MAAN extracts complete
and detailed identity information using global feature
extraction and a multi-attention mechanism. MAAN also
suppresses the misalignment caused by pose changes
and camera viewpoint changes using pose-guided part
feature partitioning. Extensive experiments have shown that
our method outperforms several state-of-the-art methods
on three mainstream Re-ID benchmarks and has good
discrimination, robustness, and generalization ability. In
the future, we will also extend our idea and network to
other intelligent computing, such as 3D mesh simplification
with feature preservation [83], social representation learning
[84], training detection networks [85] and deep residual
convolutional dehazing networks [86].
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