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Abstract
Knowledge graph completion(KGC) has attracted increasing attention in recent years, aiming at complementing missing
relationships between entities in a Knowledge Graph(KG). While the existing KGC approaches utilizing the knowledge
within KG could only complement a very limited number of missing relations, more and more approaches tend to study
the completion of the multi-relationship knowledge graph. However, the existing completion methods of multi-relation
knowledge graph regard knowledge graph as an undirected graph, which ignores the directionality of knowledge graph,
so that the potential characteristics of multi-relation cannot be learned. Besides, most algorithms fail to explore the local
information of knowledge because they ignore the different importance of entity adjacencies. In this paper, we propose to
use local information fusion to join the entity and its adjacency relation, to acquiring the multi-relation representation. In
addition, we try to specify distinct weights to model the direction of the relationship and apply the attention mechanism
between entity nodes to obtain local information between entity nodes. Experiments conducted on three benchmark datasets
and a medical domain knowledge graph dataset that we collect demonstrate the effectiveness of the proposed framework.

Keywords Knowledge graph completion · Graph neural networks

1 Introduction

Knowledge Graphs(KG) is a knowledge base adopted
by Google to enhance its search engine’s results with
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information gathered from an enormous variety of sources,
and it represents the knowledge bases (KBs) in the
form of a directed graph structure. In recent years,
the knowledge graph’s construction and application have
developed rapidly with the in-depth study of artificial
intelligence. There are several KGs contain abundant and
various facts of the real world, such as, DBPedia [14],
Freebase [1], YAGO [22] and the Google knowledge vault
[8]. These KGs play a significant role in a great deal of
knowledge-driven applications, such as information search
[6], question answering [3], and recommended systems
[5]. The majority of the KGs mentioned above include a
significant number of single relationships, however, a large
number of multi-relational KGs have been constructed and
applied in professional domains. Nonetheless, there are
many unresolved tasks in multi-relationship KG, the hidden
multiple relationships between a large number of entities
and the local information of entity nodes have not been fully
mined.

Compared with the knowledge graph include a lot of
single relationships, the entities of the multi-relational
knowledge graph have complicated relationships and local
structure. As illustrated in Fig. 1, this is a part of the
biomedical knowledge graph that depicts the relationship
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Fig. 1 The part of biomedical
knowledge graph

between calcium and other genes, proteins, etc. We can
observe that there have multiple directed relationships
between a pair of entities in the biomedical knowledge
graph, such as the triple (Calium, affect reaction, caspase 3)
and (Calium, affect cotreatment, caspase 3). Similarly, there
is a relationship increase phosphorytation between a pair
of entities (Calium, AKT serine kinase 1). And we need to
detect another relation decrease reaction between the pair of
entities,i.e, find the triple ((Calium, decrease reaction, AKT
serine kinase 1)). Therefore, it is necessary to put forward
a method of multi-relational knowledge graph completion
(KGC).

In recent years, a family of the Trans model has been
proposed for knowledge graph completion. These models
employ a transitional characteristic to model relationships
between entities in low dimensional vector space and
obtain excellent performance. Specifically, they utilize a
limited number of parameters and adopt some simple
operations, such as inner products, matrix multiplications
in an embedding space. In terms of the current deep neural
network model, the majority of these models are based
on convolutional neural networks (CNN), which explore
expressive features in complex relationships using a multi-
layer neural network. However, these models only learn
the triple’s information but ignore the structure features of
the knowledge graph. Therefore, some models based on
graph convolutional networks (GCN) have been proposed
that utilize graph convolution networks for mining the graph
structure features of the knowledge graph. But they treat
the knowledge graph as an undirected single relation graph
and neglect the multiple relationship characteristics and
local information of the knowledge graph. As shown in
Fig. 1, to detect the triple ((Calium, decrease reaction,
AKT serine kinase 1)), we need to learn the feature of the
directed relation decrease reaction from the fact (Calium,
decrease reaction, paraoxonase 1), and explore the local
information from the correlation degree between the four
adjacency relationships and the entity Calium. In addition,
some models incorporate external information into an entity

or relationship embedding, ignoring the graph structure
feature and directional relations in KG.

What’s more, as demonstrated in Table 1, these tech-
niques are incapable of learning local graph structure infor-
mation or directed multi-relational embedding. Therefore, it
is necessary to propose a framework that can learn different
directed multiple relationship characteristics of knowledge
graph and dig out the importance of adjacency to extract the
local information for the multi-relational knowledge graph
completion.

According to the above analysis, we propose a relation-
based Joint Graph Attention Networks (JGAN) model
that takes into account the multiple relation features of
knowledge graphs and the importance of different local
directional relationships. In our model, we joint entities and
relationships of triples to obtain the features representation
of directed relations in DKGs. Meanwhile, we focus
on the most relevant adjacency of the input entity to
make decisions and utilize the self-attention mechanism to
weigh the importance of different relationships. Finally, we
acquire the embedding of the entity and directional relation
for the multi-relational knowledge graph completion.

The main contributions of our work are the following:

– Using a joint operation from knowledge graph embed-
ding approaches, we learn the direction multiple rela-
tion feature.

– Our method extracts local information features of entity
nodes by estimating the significance of distinct multiple
adjacency relations of the entity and investigating the
graph structure in a multi-relational knowledge graph
using a graph convolutional network (GCN).

– We collect and release a medical domain knowledge
graph dataset 1 by working with companies, consisting
of 27100 entities and 41 relations, to evaluate our
proposed model.

1https://github.com/ClaireZTH/JGANdata
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Table 1 List of features learned by current mainstream methods

Methods Graph structure Local feature Entity embedding Relation embedding Direction

TransE � � �
TransD � � �
TransH � � �
ConvE � �
R-GCN � � �
W-GCN � � �
CompGCN � � � �
JGAN (our model) � � � � �

The remainder of this paper is organized as follows: we
review related work in Section 2, introduce our proposed
model in Section 3, report experiments and results in
Section 4, and finally we conclude our work with future
work in Section 5.

2 Related work

In this section, we introduce some existing work relevant
to our research. In general, our research is related to
the knowledge graph embedding and graph convolutional
network.

2.1 Knowledge graph embedding

Various kinds of knowledge graph embedding models have
been proposed to learn continuous low-dimensional vector
representations of entities and relations in the last few years.

Translating embedding models represent entities and
relationships in low dimensional vector space. TransE
[2] is the first and most representative knowledge graph
embedding model. It supposes that the representation of the
head entity plus the representation of relation should be
close to the representation of the tail entity in an irrefutable
fact. After that, more variant models of TransE [2] have been
proposed. Such as TransH [32], TransR [15], TransD [10],
TranSparse [11] and so on.

Semantic matching models exploit similarity-based
scoring functions. RESCAL [19] is a classical semantic
matching model, which associates each entity with a vector
to capture the underlying semantics of the triple. DistMult
[35] simplifies RESCAL by constraining the relation matrix
to a diagonal matrix. ComplEx [26] extends DistMult
[35] by introducing complex-valued embeddings so as to
better model asymmetric relations. RotatE [23] defines each
relation as a rotation from the head entity to the tail entity in
the complex vector space.

Besides, several models adopt convolution neural net-
works to mine the potential features of triples for knowledge

graph embedding. For example, ConvE [7] and ConKB
[18] has been proposed for knowledge graph embedding. In
ConvE [7], a one-dimensional input vector is reshaped to a
two-dimensional vector and fed into the convolution layer
for extracting features. ConKB [18] composed of a convo-
lution layer, a projection layer to the embedding dimension,
and an inner product layer.

Some researchers consider adding some external infor-
mation for the KGC task. The external data, including
entity attribute information, entity description information,
and relation description information. The most represen-
tative model is DKRL [33] that adding entity description
information to the model. Other than this, TEKE [31] also
merges external context information to represent learning
for knowledge graph embedding.

These methods and models mentioned above only deal
with triples separately, ignoring the local graph structure
information and the directional multiple relations of the
knowledge graph. Therefore, we need to provide a technique
for extracting directional properties of multiple relations as
well as local graph structure features for multi-relational
knowledge graph completion.

2.2 Graph convolutional network

GCNs [4] have been first proposed for image and audio
recognition tasks, which consider possible generalizations
of CNNs to signals defined on more general domains
without the action of a translation group [4]. After that,
GCNs were proposed for semi-supervised learning on
graph-structured data based on an efficient variant of
convolutional neural networks that operate directly on
graphs, and they motivate the choice of our convolutional
architecture via a localized first-order approximation of
spectral graph convolutions [13]. In recent years, with the
rise of graph convolutional network and its ability to deal
graph structure data, more varients of GCNs have been
proposed, such as GraphSAGE [9], GAT [29], ConfGCN
[28], LCNs [34] and so on. GraphSAGE leverages node
feature information to efficiently generate node embeddings
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for previously unseen data [9]. It learns a function that
generates embeddings by sampling and aggregating features
from a node’s local neighborhood. GAN presents graph
attention networks (GATs), neural network architectures
that operate on graph-structured data, leveraging masked
self-attentional layers to learn relation embedding [29].
ConfGCN estimates label scores along with confidences
jointly in a GCN-based setting [28]. LCNs use the
embeddings of nodes that arise from Lovász’s orthogonal
representations as an implicit regularizer [34].

What’s more, the methods based on GCNs for relational
graphs have been proposed. The most representative
model is R-GCN [20], it is related to a recent class of
neural networks operating on graphs, and were developed
specifically to handle the highly multi-relational data
characteristic of realistic knowledge bases [20]. WGCN
[21] has been proposed, it has learnable weights that adapt
the amount of information from neighbors used in local
aggregation, leading to more accurate embeddings of graph
nodes [21]. However, these GCN-based models ignore the
multiple relationships of the graph.

3 Proposedmethod

In this section, we introduce the related notations and
problem definition we will use in this work, followed by a
detailed description of our model, as shown in Fig. 2. We
take into account the complexity of local graph structure
and the multi-relational of knowledge graph in our method.
In order to obtain more expressive entities and relationship
embedding, our JGAN module based on GCNs extracts
local graph structure features and the multiple relationship
characteristic at the same time, so as to further complete the
knowledge graph.

As illustrated in Fig. 2, for a triplet (h1, r1, h2) in the
given knowledge graph, the model combines tail entity h2
and its corresponding relationship r1 into vector represen-
tation with relation features by combining operations. At
the same time, it combines tail entity with h4, and its
corresponding relationship r4 is fused to get vector repre-
sentation. The embedded representation of neighborhood
information is then obtained by combining the vector repre-
sentation of two different neighborhood relations of entity
h1, and the importance of different neighbor nodes of
entity h1 is calculated, namely:α12, α14, α21, α23. Next,
combining the neighborhood relationship features of enti-
ties, the entity representation including neighborhood rela-
tions and multiple repetitive complex relations features is
obtained. Finally, the vector representation of entities and
relationships is input into the target function to calculate
scores.

3.1 Notations and problem definition

In this part, we formally introduce some notations as
below. For the given domain knowledge graph G =
{V, R, E,X ,Z}, where V represents the set of all vertices,
E represents the set of all entities and R represents the set
of all relationships. What’s more, X ∈ R

|V |×d0 denotes the
initial entity embedding, Z ∈ R

|R|×d0 denotes the initial
relation embedding.

The triple of knowledge graph be denoted as (h, r, t),
where h ∈ E is the head entities, t ∈ E is the tail
entities, and r ∈ R is a relation corresponding to an edge
in the KG. KGC task aims to find missing triple in the
KG, it is to answer queries (h, r, ?) or (?, r, t). In our
model, the score for the triple is defined as f (h, r, t),
and the score determines whether the triple is valid
or not.

Fig. 2 The overall architecture
of our model. For a triple
(h1, r1, h2), tail entity h2 and
relation r1 are combined into
entity representation that include
feature of the relation r1 by a φ

operation, then compute the
importance α12, α14, α21 and
α23. Last, the entity and relation
embedding are inputted into the
score function to get the score
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3.2 Attention-based relation conjunction

Our method is inspired by the GCNs that is a scalable
approach for semi-supervised learning on graph-structured
data, and it is based on an efficient variant of convolutional
neural networks that operate directly on graphs [13]. Unlike
other graph-structured data, edges in the knowledge graph
represent relationships and have directions. Hence, we allow
information to spread in the directed relation like Syntactic
GCN [17]. We extend a reverse relationship and a self-
loop relationship between the two entities, i.e., E′ = E ∪
{(j, i, r−1

) | (i, j, r) ∈
E} ∪ {(i, i, L) | i ∈ V )}, R′ = R ∪ Rinv ∪ {L}. Where
Rinv = {

r−1 | r ∈ R
}
denotes the inverse edges and L

denotes the self loop.
The same pair of entities may have different relationships

in the DKG. Therefore, our method extract the relation
characteristic Z as the initial embedding to require the
relation embedding gr ∈ R

d , ∀r ∈ R and the entity
representation gv ∈ R

d , ∀v ∈ E. In order for GCN to
obtain the characteristics embedding of a relationship, we
conjunct relationships with their corresponding entities by
operations that utilizing in knowledge embedding methods
[2] as shown in Fig. 3. The formula is as follows:

eh = φ (et , er ) (1)

Where φ : R
d × R

d → R
d denotes the conjunction

operate, eh ∈ R
d indicates head entity embedding, et ∈ R

d

indicates tail entity embedding, er ∈ R
d indicates relation

embedding.
However, the importance of different neighborhood

nodes of each entity is different, motivated by the attention
mechanism, we assign different scores to different adjacent
nodes. Given a entity h, we denote the set of adjacency
nodes of h as N = {

h1, h2, . . . , hj , . . . , hN

}
, hi ∈

Fig. 3 The JGAN module of our structure

R
d , then computing the attention coefficients through the

formula:

e
ij
r = LeakyReLU

(
aT

[
W�hi‖W�hj

])
(2)

Where e
ij
r represent the importance of node j to node i, the

W is a weight matrix, a: Rd × R
d → R denotes a single-

layer feedforward neural network, ‖ denotes the concatenate
operation. Therefore, we can compute the attention score by
the following formula:

αij = softmaxj

(
e
ij
r

)
=

exp
(
e
ij
r

)

∑
k∈Ni

exp
(
eik
r

) (3)

Thus, our entity embedding acquires the information of the
corresponding relationship, and relation representation has
a different attention score.

3.3 Joint graph attention network

The R-GCNs show that the GCN framework can be applied
to modeling relational data [20], and its update formula like
the following:

hi = f

⎛

⎝
∑

(j,r)∈N (i)

W rhj

⎞

⎠ (4)

WhereN (i) is the set of adjacent nodes of node h. However,
the formula can not acquire the relation feature of the
DKGs. As shown in Fig. 3, our JGAN module combines
the relationship with its corresponding adjacent nodes by
jointing operations,i.e. φ

(
et1 , er1

)
, and computes different

importance score to the edges of each pair of adjacent nodes,
i.e. α1 denotes the αt1h. Therefore, the update formula of our
JGAN module is as follows:

eh = f

⎛

⎝
∑

(j,r)∈N (i)

W d(r)φ
(
xj , zr

)
⎞

⎠ (5)

Where xj denotes the initial embedding of entity j, zr is
the initial embedding of relation r, eh represents the updated
representation of entity i, and W d(r) is a parameter rely on
relation.

Because of the different relationship directions and
the importance of varying adjacency relations, we define
different weights W d(r) for different relationship directions
in our JGAN module, for example, r is the relationship
between node i and node j, then W d(r) are defined as
follows:

W d(r) =
⎧
⎨

⎩

αijWS, r ∈ R
αjiWO, r ∈ Rinv

αiiWL, r = L (self-loop)
(6)
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After that, we can acquire the relation embedding update
formula:

er = W d(r)zr (7)

In this way, we can obtain the embedding of all entities and
relationships.

3.4 Score computing

Through the JGAN module, could get a representation of an
entity eh and its connection er . In our structure, we select
the ConvE [7] as the score function:

ψr (eh, et ) = f (vec (f ([eh; er ] ∗ ω))W) et (8)

Where eh is the reshaped two-dimensional representation of
eh, er is the reshaped two-dimensional representation of er ,
W denotes the parameter matrix.

4 Experiment

We start this section by introducing our Medical KG, the
biomedical KG dataset, and two standard datasets, followed
by the experimental settings, including evaluation protocol
and baselines. At last, we present the experiment results in
Medical KG and the biomedical KG dataset. What’s more,
in order to study the Variability and Generality of our JGAN
model, we present and analyze experiment results on two
standard datasets.

4.1 Knowledge graph datasets

In order to evaluate our proposed model, we select four
knowledge graph datasets as follows:

We collect and release a Medical knowledge graph
dataset by working with companies, which describes the
relationship between disease, drugs, and symptoms. It
covers 27100 entities and 41 relation types.

Paper reading dataset is a biomedical knowledge graph,
which has been proposed by [30]. The dataset extracted
from biomedical papers describes the relationship between
disease, chemicals, and genes. It covers 14858 entities and
134 relation types.

WN18RR [7] is a benchmark dataset that removes the
reversible relations of WN18, and it contains 40943 entities
and 11 relation types. For WN18 [2] dataset, is an English
dictionary that includes semantic information and extracted
from wordnet, which covers 40943 entities and 18 relation
types. Each entity corresponds to a different meaning, and
there is a relationship between different senses.

FB15K-237 [25] also is a benchmark dataset of FB15K
[2], and it includes 14541 entities and 237 relation types.
With respect to FB15K dataset, it is a large collaborative
knowledge base composed of metadata that preserved
general knowledge about the world and sub-sampling from
the FreeBase dataset, which is composed of 14951 entities
and 1345 relation types.

Table 2 presents the statistics of four datasets.

4.2 Experimental setup

Cross-validation The datasets are uniformly divided into
training, validation, and test sets. We conducted a 10-fold
cross-validation experiment for all datasets to ensure an
unbiased evaluation.

Evaluation protocol In the knowledge graph completion
and link prediction task, the target is to identify the
missing entity for a given entity and relation. i.e., for each
fact (h, r, ?), predict the tail entity. Similarly, for each fact
(?, r, t), predict the head entity. Following the evaluation
criteria of existing models, we apply the popular
evaluation criteria: Mean Rank(MR), Mean Reciprocal
Ranking(MRR) and Hits@k, Mean Rank(MR) means the
objective function score ranking of the entities that need
to be predicted in test triples. As the name suggests, Mean
Reciprocal Ranking (MRR) refers to that reciprocal of
Mean Rank. Calculation of Hits@k demand to arrange
the f function values according to MR, and then check
whether the correct answer for each testing triple is
ranked in the first k of the sequence, and if so, count plus
one.

Therefore, lower Mean Rank(MR), higher Mean
Reciprocal Ranking(MRR), or higher Hits@k show
better performance.

Baselines In the knowledge graph completion task, we
compare our model with the following baseline models:
TransE [2], TransD [10], TransH [32], SimplE [12],

Table 2 Dataset description

Dataset |E| |R| train valid test

Medical 27100 41 54719 18240 18239

Paper reading 14858 134 375698 20462 20462

WN18RR 40943 11 86835 3034 3134

FB15K237 14541 237 272115 17535 20466

7990 J. Huang et al.



Table 3 Knowledge Graph Completion performance of JGAN and eleven baselines models on Paper reading and Medical datasets. Note that the
best results are typeset in bold and the second bests are highlighted with underline

Paper reading Medical

MR MRR Hit@10 Hit@3 Hit@1 MR MRR Hit@10 Hit@3 Hit@1

TransE 1018 0.097 0.203 0.113 0.035 2585 0.150 0.273 0.183 0.082

TransD 1031 0.108 0.264 0.147 0.015 2586 0.117 0.252 0.153 0.043

TransH 1056 0.107 0.264 0.145 0.016 2681 0.120 0.259 0.162 0.043

DistMult 780 0.112 0.221 0.113 0.058 2985 0.098 0.178 0.100 0.059

ComplEx 812 0.202 0.352 0.225 0.127 3065 0.100 0.173 0.105 0.062

SimplE 778 0.114 0.229 0.117 0.058 2913 0.103 0.187 0.106 0.062

RotatE 548 0.320 0.387 0.346 0.264 3190 0.187 0.303 0.196 0.114

Analogy 919 0.254 0.391 0.287 0.180 3289 0.097 0.173 0.097 0.059

ConvE 984 0.235 0.375 0.257 0.163 2601 0.163 0.283 0.195 0.124

CompGCN 524 0.292 0.369 0.310 0.227 2508 0.179 0.292 0.201 0.148

SACN 431 0.205 0.333 0.217 0.142 2786 0.152 0.267 0.182 0.136

JGAN (our model) 388
±1.32%

0.317
±0.003

0.403
±0.002

0.363
±0.003

0.271
±0.002

2381
±0.20%

0.188
±0.002

0.293
±0.002

0.203
±0.001

0.132
±0.001

RotatE [24], ComplEx [26], DistMult [35], Analogy [16],
ConvE [7] , CompGCN [27], and SACN [21].

4.3 Experimental results and analysis

In this part, we show the experimental results in Tables 3
and 4. In addition, we analyze the Variability and Generality
of our JGAN model.

Experimental Results In order to compare with baseline
models, we experiment with the paper reading dataset
on these models. Table 3 reports Hits@10, Hits@3,

Hits@1, MR, and MRR results of eleven different
baseline models and our models on our medical dataset
and the biomedical knowledge graphs datasets. From
the table, we can see that our JGAN model achieves
the best performance on MR, Hits@10, Hits@3, and
Hits@1. Specifically, our JGAN model improves upon
the best SACN’s MR by a margin of 43, upon Rotate’s
Hits@3 by a margin of 2.6 % for the test. What’s more,
our model’s performance is similar to the best baseline
in MRR, Hits@10, and Hits@1. At the same time, our
model obtains a relatively good result and the best MR,
Hits@k on our medical dataset. Concretely, the MR value

Table 4 Knowledge Graph Completion performance of JGAN and eleven baseline models on WN18RR and FB15K237 datasets

WN18RR FB15k237

MR MRR Hit@10 Hit@3 Hit@1 MR MRR Hit@10 Hit@3 Hit@1

TransE 4878 0.194 0.454 0.370 0.002 226 0.288 0.480 0.328 0.191

TransD 5515 0.187 0.432 0.362 0.002 245 0.285 0.487 0.328 0.181

TransH 5868 0.187 0.420 0.361 0.001 254 0.284 0.483 0.327 0.183

DistMult 5510 0.43 0.49 0.44 0.39 254 0.241 0.419 0.263 0.155

ComplEx 5261 0.44 0.51 0.46 0.41 339 0.247 0.428 0.275 0.158

SimplE 3895 0.332 0.470 0.379 0.256 405 0.186 0.356 0.205 0.103

RotatE 3340 0.476 0.571 0.492 0.428 177 0.338 0.533 0.375 0.241

Analogy 5176 0.404 0.472 0.425 0.365 590 0.243 0.422 0.269 0.157

ConvE 4187 0.43 0.52 0.44 0.40 244 0.325 0.501 0.356 0.237

CompGCN 3533 0.479 0.546 0.494 0.443 197 0.355 0.535 0.390 0.264

SACN - 0.47 0.54 0.48 0.43 - 0.35 0.54 0.39 0.26

JGAN (our model) 2415
±0.21%

0.425
±0.016

0.55
±0.012

0.468
±0.003

0.370
±0.001

160
±1.87%

0.360
±0.002

0.528
±0.001

0.395
±0.001

0.281
±0.006

The part of the results is taken directly from the previous papers (‘-’ indicates missing values). Some of the results are reproduced from the
original because these results are not shown in the original paper. We find that JGAN outperforms all the existing methods on 4 out of 5 metrics
on FB15k-237. Note that the bestresults are typeset in bold and the second bests are highlighted with underline
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Table 5 Data classification description. Note that bold indicates the large proportion of many-to-many relationships in these datasets, and
underlined indicates the dataset with the largest proportion of many-to-many relationships

Dataset 1-1 1-n n-1 n-n test n-n%

Medical 2421 544 3064 12210 18239 66.94%

Paper reading 24 11 29 20398 20462 99.69%

WN18RR 42 475 1487 1130 3134 36.06%

FB15K237 192 1293 4185 14796 20466 72.29%

improves 127 points compared to the best result 2508 in
our medical dataset. Moreover, we get the best Hit@3
0.203 and MRR 0.188. From the above experimental
results, our model has achieved excellent results in
different datasets, especially in the domain knowledge
graph paper reading. In a word, we conclude that our
JGAN model learns the multiple relation representation
and information of different adjacency relations, so as to
achieve better performance.

Variability Analysis For the sake of verifying the vari-
ability and generality of our JGAN model, we evalu-
ate our model in two classic datasets, i.e., WN18RR,
FB15K237. Table 4 reports Hits@10, Hits@3, Hits@1,
MR, and MRR results of eleven different baseline mod-
els and our models onWN18RR and FB15K237 datasets.
From Table 4, we can learn that our model obtains
the best MR, MRR, Hits@3, and Hits@1 results in the
FB15K237 dataset. More concretely, our model acquires
the MR value 160 in the FB15K237 dataset, and this
result is more than 17 points higher than the best Rotate’s
MR value, MRR, and the hits@k also receive the best
work. In the WN18RR dataset, we obtain the best MRR
value of 2415 compared with all the baseline methods.
However, our JGAN doesn’t work well on other indi-
cators. According to our analysis, WN18RR dataset is
an English dictionary that includes semantic informa-
tion, which covers only 18 relation types, therefore it
includes less complicated relations. However, FB15K-
237 dataset is a general knowledge graph, which includes
237 relation types and more complex relations. thus, the
reason for this result may be that our JGAN model learns
complicated relation but ignore more simple relationship.

In order to further analyze the experimental results
in WN18RR, we analyzed the data again. Our proposed
method models the multiple relationships in the knowledge
graph. As shown in Table 5, we can see that the Medical,
Paper reading, and FB15K237 datasets contain a large pro-
portion of multiple relationships, especially Paper reading
dataset contains 99% of the multiple relationships. Fur-
thermore, based on Table 3, our model achieves the best
performance on the Paper reading dataset. As for WN18RR
dataset, which includes less multiple relation data, so our
model obtains a poor result.

5 Conclusion

In this paper, we introduce the JGAN model, a relation-
based knowledge graph completion model for a multi-
relations knowledge graph. The JGAN model fuses the
entity with its corresponding relationship by a joint oper-
ation to learn the multiple relationship’s representations.
What’s more, inspired by the attention mechanism, our
model adopts its idea to measure the importance of dif-
ferent adjacency relationships of entities. Meanwhile, our
experiments proved that the JGANmodel outperforms other
models on multi-relation knowledge graph datasets.

However, our model has low computational efficiency
and high complexity due to the graph convolution network
in the model. After preliminary analysis, We find that many
methods based on graph convolution networks also have
high complexity, and the complexity of the JGAN model
is equivalent. In future work, we consider reducing the
adjacency matrix by pooling the input model’s adjacency
matrix in future work, to improve the computational
efficiency and reduce the complexity of the model. In this
way, our model can be extended to a larger scale knowledge
graph.
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Y (2018) Graph attention networks. In: 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=rJXMpikCZ

30. Wang Q, Huang L, Jiang Z, Knight K, Ji H, Bansal M, Luan
Y (2019) Paperrobot: Incremental draft generation of scientific
ideas. In: Korhonen A, Traum DR, Márquez L (eds) Proceedings
of the 57th conference of the association for computational
linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019,
Volume 1: long papers, association for computational linguistics,
pp 1980–1991. https://doi.org/10.18653/v1/p19-1191

31. Wang Z, Li J (2016) Text-enhanced representation learning for
knowledge graph. In: Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, IJCAI’16,
AAAI Press, pp 1293–1299

32. Wang Z, Zhang J, Feng J, Chen Z (2014) Knowledge graph
embedding by translating on hyperplanes. In: Twenty-Eighth
AAAI conference on artificial intelligence. https://ojs.aaai.org/
index.php/AAAI/article/view/8870

33. Xie R, Liu Z, Jia J, Luan H, Sun M (2016) Representation learning
of knowledge graphs with entity descriptions. In: Proceedings of
the AAAI Conference on Artificial Intelligence, vol 30. https://ojs.
aaai.org/index.php/AAAI/article/view/10329

34. Yadav P, Nimishakavi M, Yadati N, Vashishth S, Rajkumar A,
Talukdar PP (2019) Lovasz convolutional networks. In: Chaudhuri
K, Sugiyama M (eds) The 22nd international conference on
artificial intelligence and statistics, AISTATS 2019, 16-18 April
2019, Naha, Okinawa, Japan, Proceedings of Machine Learning
Research, vol 89, pp 1978–1987. PMLR. http://proceedings.mlr.
press/v89/yadav19a.html

35. Yang B, Yih W, He X, Gao J, Deng L (2015) Embedding entities
and relations for learning and inference in knowledge bases.
In: Bengio Y, LeCun Y (eds) 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings. http://arxiv.org/
abs/1412.6575

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Jin Huang is currently an
Associate Professor at South
China Normal University.
He received his M.E. and
Ph.D. degrees in Computer
Science from Sun Yat-Sen
University, China, in 2004 and
2010, respectively. His cur-
rent research interests include
social network analysis and
graph mining.

Tian Lu is currently pursu-
ing a Master’s degree in the
School of Computing Science,
South China Normal Univer-
sity. And she is a member of
the Data Intelligence Lab of
South China Normal Univer-
sity. Her research interests
include knowledge graphs,
machine learning, and artifi-
cial intelligence, and social
network analysis.

Jia Zhu is currently a Professor
at Zhejiang Normal Univer-
sity. Before he was a Postdoc-
toral Fellow/Project Manager
in UNU-IIST since Decem-
ber 2012. Dr. Zhu received a
Bachelor of Information Tech-
nology from Bond University,
Australia, in 2004 and Mas-
ter of Information Technology
(Hons) from Bond University,
Australia, in 2006. In 2012,
he received a Ph.D. degree in
Computer Science.

Weihao Yu graduated from
South China Normal Univer-
sity with a master’s degree
in software engineering. He
is currently working in the
Research Institute of China
Telecom Co., LTD. His
research interests include
communication network
analysis and social network
analysis.

Tinghua Zhang graduated
from South China Normal
University with a master’s
degree in Computer Science
and Technology. She is now
working at China Electronic
Product Reliability and Envi-
ronmental Testing Research
Institute. Her research inter-
ests include knowledge graph
and social network analysis.

7994 J. Huang et al.

http://proceedings.mlr.press/v89/vashishth19a.html
http://proceedings.mlr.press/v89/vashishth19a.html
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.18653/v1/p19-1191
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://ojs.aaai.org/index.php/AAAI/article/view/10329
https://ojs.aaai.org/index.php/AAAI/article/view/10329
http://proceedings.mlr.press/v89/yadav19a.html
http://proceedings.mlr.press/v89/yadav19a.html
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575

	Multi-relational knowledge graph completion method with local information fusion
	Abstract
	Introduction
	Related work
	Knowledge graph embedding
	Graph convolutional network

	Proposed method
	Notations and problem definition
	Attention-based relation conjunction
	Joint graph attention network
	Score computing

	Experiment
	Knowledge graph datasets
	Experimental setup
	Experimental results and analysis

	Conclusion
	References


