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Abstract
Continuously detecting traffic signs in a video sequence is necessary for autonomous or assisted driving scenarios, since
a vehicle needs the information from the signs to facilitate navigation. Single-image based traffic sign detector may fail
in many cases, when the car moves fast on the road, resulting in motion blur, partial occlusion, and abrupt environmental
change. In this paper, we propose an effective methodology, called detection-by-tracking, for robust traffic sign detection
in videos, so as to improve the detection performance beyond a basic object detector. We explore the temporal cues among
frames to help with the proposal reasoning for further regression. The correlations of spatial location and appearance
similarity for the same sign in adjacent frames are considered in our approach. Experimental results show that the proposed
detection-by-tracking mechanism is helpful, with improved detection performance to a large extent. Moreover, the idea of
the detection-by-tracking can also be generalized to other scenarios for object detection tasks in videos.

Keywords Traffic sign · Video object detection · Tracking · Shortest path

1 Introduction

Traffic signs are frequently observed on the road, providing
abundant information like driving direction, speed limita-
tion, danger warning, and so on. They are usually designed
to be unique and distinguishable with simple shapes and
uniform colors, standing out against the environment. Traf-
fic sign detection is essential in real-world applications such
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as autonomous driving, traffic surveillance, driver assis-
tance, and road network maintenance [3, 54]. Moreover, the
instructions implied by the signs can help to secure driving
safety, and support other applications in autonomous driv-
ing with their constant geo-location and planar property. For
example, the prominent features located on the signs can
be utilized to create reliable correspondence among frames
for better constraints in simultaneous localization and map-
ping (SLAM) [41, 60]. Besides the ordinary traffic signs,
some works [37, 39, 50] also explore to use planar makers
in indoor environments where there are not enough struc-
ture features for localization purposes either in robot uses or
micro air vehicles (MAVs). Yu et al. [56] exploit the Quick
Response (QR) code landmarks in positioning and naviga-
tion system for library robots. In real-world road scenarios,
traffic signs are and will still be important components on
the roads to enhance driving safety. Intensive researches on
traffic sign detection have been conducted by both academic
and industrial communities all over the world, however, it
is still a challenging task due to real-world complicated
driving scenarios, such as motion blur, camera defocus,
pose variation, occlusion, and changing lighting condition.
It’s meaningful to explore a robust scheme for traffic sign
detection continuously in videos.

When it comes to detection, people pay attention to
both the location and class information of objects in the
image. It’s necessary for a driving vehicle to perceive the
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environment and be aware of the sign’s location and its
type. People have explored and developed various kinds
of methods for traffic sign detection. As is known to us
all, traffic signs are usually designed as regular shapes
with discriminating colors. There are three main traffic sign
classes around the world [25, 63], i.e., prohibition signs (red
circular), mandatory signs (circular blue), and danger signs
(red triangle). Some random examples of traffic signs for
each big category mentioned above are shown in Fig. 1.

Previously, traditional methods like color-based as well
as shape-based methods are dominant approaches for traffic
sign detection [45]. Many researchers try to analyze the
color composition so as to generate good representations
for signs [7, 17]. The edges and gradients on the sign
plates also contribute to traffic sign localization and
recognition [2, 5]. Either color-based or texture-based
method has certain limitations, thus some authors make
use of both to better detect the traffic signs. For example,
the color cues are applied to localize the region of
interest and the detection is completed with shape methods
taking advantage of geometric information [46]. Giving
the extracted hand-crafted features, a classifier is usually
applied to determine the category, e.g., support vector
machine (SVM) [14]. Color histogram and histogram of
gradient (HoG) are commonly favorable choices for feature
engineering. However, the representation ability of hand-
crafted features is limited and they are easily affected by
environment changes.

To improve the detection performance in an image,
using more powerful representation features is a critical
solution. In recent years, great progress has been witnessed
owing to the adoption of convolutional neural networks

(CNNs). The features can be learned through the deep
learning frameworks and be further utilized in image
classification. Great progress has been made in the field
of object detection owing to the resurgence of deep
convolutional neural networks compared to traditional
approaches. Some classical work like R-CNN [43] and
YOLO [42] families have become the basis for various
applications with a significant improvement in detection
accuracy and efficiency [59]. These detectors perform on
single images and they are universal for different kinds
of targets. Considering the fact that a car drives on the
road, at the same time, the dash camera mounted on
the car can record the environment into videos. Videos
have increased one temporal dimension than pure images.
Simply applying object detection methods like Faster R-
CNN on images, there inevitably will be failure cases due
to motion blur, partial occlusion, scale change, and bad
viewing perspective. We show some results of using Faster
R-CNN detector in sampled video frames in Fig. 2, from
which we can see that missed detections (i.e., no bounding
boxes are identified on the objects) or incorrect detections
(e.g., incorrect classifications, false-positive detections,
incorrect locations and/or sizes of bounding boxes) exist.
Temporal correspondence among image frames within a
video sequence deserves to be investigated to solve these
problems.

Challenges exist to incorporate the temporal information
effectively. The applications benefiting from video anal-
yses to enhance traffic safety have become increasingly
popular. Based on videos collected from surveillance sys-
tems, Chen et al. [10] propose a novel sparse representation
model for understanding pedestrian abnormal trajectories to

Fig. 1 Representative examples
of traffic signs belonging to
three big categories: (a)
prohibition signs. (b) mandatory
signs. (c) danger signs. Note
that, there are also other special
signs which don’t belong to any
of the big categories shown
above
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Fig. 2 Both good detections and
failure cases for traffic sign
detection in different video
sequences using a single-image
based detector. Red boxes and
green boxes denote incorrect
and correct classifications,
separately

improve public safety. VID dataset released by ImageNet
[44] collects a large number of videos for common objects
(not specifically traffic signs), which allows researchers to
experiment with different approaches. Authors either try to
increase per-frame feature quality for better detection per-
formance [52, 61], or explore objects’ location information
among frames for association in the box level [22, 27–
29]. Generally speaking, video object detection is kind of
costly, since an end-to-end deep learning-based approach
normally requires a mass of training data with considerable
annotations. It’s usually hard to collect and annotate such a
large-scale dataset. Traffic signs are important components
in driving scenarios. Most available traffic sign datasets are
composed of still images. For example, UAH Dataset [35],
CVL Dataset [30], German Traffic Sign Detection Bench-
mark(GTSDB) [25], Russian Traffic SignDataset(RTSD)
[49], and Tsinghua-Tencent 100K(TT100K) [64]. Even
though the MASTIF dataset [47] provides some annotated
video sequences, only a few frames in a long sequence are

labeled. Each sign is annotated 4-5 times at different dis-
tances from the car. The coarse-grained annotation does not
meet the requirement for developing a useful algorithm in
most cases. With autonomous driving gradually appearing
in our daily life, it is critical for an autonomous driving
system to reliably detect track traffic signs to ensure driv-
ing safety. The problem will be, if we don’t have enough
annotated video sequences, can we still design an approach
that has better performance than the base object detectors?
Or can we improve the video object detection performance
given a trained base object detector?

In this paper, we try to improve the traffic sign detection
performance beyond a basic object detector. We explore the
temporal consistency among image frames to detect traffic
signs continuously in videos. The contributions of this work
can be summarized as three folds.

1) We propose a detection-by-tracking approach based
on shortest path searches over candidate proposals.
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This approach leverages the temporal correlation
information of the same traffic sign among video
frames. The regression for the promising proposal is
greatly enhanced benefiting from neighboring frames’
information.

2) By recovering the missing frames or correcting
the mistaken frames, we can improve the detection
performance beyond the single-image based models.
The bottleneck of poor detection performance caused
by limited training samples can thus be resolved
to some extent since large-scale annotated video
sequences are no longer needed.

3) We adapt several algorithms, which are firstly designed
either for multiple object tracking (MOT) or VID,
to detect the traffic signs in videos. The experi-
mental results of these methods provide a reference
regarding the detection performance. Post-processing,
tracking-by-detection, and end-to-end approaches are
all included.

The rest of the paper is organized as follows. In Section 2,
we survey the related literature. Our proposed system
together with several other approaches is introduced in
Section 3. Experimental results and discussions are given in
Sections 4 and 5, separately. Finally, the conclusion is given
in Section 6.

2 Related works

We review the literature from three perspectives. First,
color-based and shape-based methods are discussed as the
traditional approach for traffic sign detection. Learning-
based methods are then reviewed. At last, we address the
topic of object detection in videos to gain some insights
about how to incorporate temporal information within the
detection framework.

2.1 Color-based and shape-basedmethods

Traditionally, researchers apply color-based and shape-
based methods to find the region of interest (RoI) in images,
since man-made objects usually have distinct characteris-
tics. Color is an important attribute for road signs. Several
colors like red, blue, and yellow are commonly used in traf-
fic signs. The color-based methodologies try to tell apart
the foreground from the background. The most intuitive
color space is the RGB system, while the hue, saturation,
intensity (HSI) system is less sensitive to lighting changes.
Fleyeh [17] proposes to use improved HSI color space for
color detection and segmentation of road signs, so as to
alleviate the influences from lightning variation. Escalera

et al. [15] use color thresholding to segment the image, fol-
lowed by shape analysis to detect the signs. Benallal et al.
[7] have studied how the color appearance of road signs
change under different outdoor illuminations during a day.
The learned rules further help with the segmentation, which
constitutes the first step towards identifying and locating the
road signs. Though the remarkable color properties enable
the traffic signs to stand out in the wild environment, yet it is
still an arduous process relying only on the color appearance
due to the sensitivity to various factors such as the reflec-
tion of sign surface, lightning changes in a day, weather
condition, etc.

In order to overcome the problems existing in color-
based methods, researchers explore shape-based methods.
Generally speaking, shape-based methods are expected
to be more robust. They take advantage of the edges
and connect them to regular polygons or circles [2, 5]
through Hough-like voting scheme or template matching.
For example, authors in [18] find the contours in images
first and then leverage the Hough transform of the edges
to carry out the detection. Hechri et al. [23] apply a
template-matching scheme in the color-segmented image
to filter out the regions without any traffic sign. Larsson
et al. [30] use shape descriptors in the frequency domain
by applying Fourier transform to the contours, which
are further combined with star-shaped object models as
prototypes for classification. Barnes et al. [1] present
an approach based on the radial symmetry operator to
recognize speed signs. Behloul et al. [4] propose to employ
a minimum rectangle to encompass the detected contour on
the filtered pattern maps for pattern recognition. The score
defined over the intersection between the detected pattern
and the rectangle is utilized to determine the shape of signs.

Detecting road signs based on shape information can be
tough when the traffic sign is very small in the image, and
it is easy to be mixed up with other man-made objects such
as commercial signs. Though gradients are less sensitive
to luminance and faded color, it consumes much more
time in the gradient computation process. Combining both
color and shape properties is a compromise [55]. The faster
speed of color segmentation and the higher accuracy of
HoG calculation are well balanced. The traditional methods
have played a great role in traffic sign detection before the
adoption of deep learning based approaches.

2.2 Learning-basedmethods

Based on large amounts of annotated data, we could develop
efficient algorithms taking advantage of machine learning.
Previously, hand-crafted features are widely used. Viola
and Jones [51] design Haar wavelet features and combine
a set of classifiers in a cascade based on AdaBoost. The
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system has achieved good detection rates in the domain
of face detection. Karla et al. [9] extend the Viola–Jones
approach to detect triangular traffic signs. Dalal and Triggs
[12] adopt a linear SVM based on grids of HoG descriptors
for human detection. Zaklouta et al. [57] also use HoG
in detecting triangular warning signs and an approximate
nearest neighbors search using a KD-tree to refine the
result. In addition to above-mentioned approaches, various
hand-crafted features such as LBP, SIFT, SURF, BRISK
are explored in a learning-based manner for traffic sign
detection in the field. However, the traditional hand-crafted
features have a limited representation ability.

CNN features are more effective in representation as
demonstrated by abundant work and they bring about
extraordinary improvement compared to hand-crafted fea-
tures. Sermanet and LeCun [48] use convolutional networks
to learn invariant features of traffic signs in a supervised
way. The results reach a high classification accuracy above
human performance. In recent years, object detection [32,
33, 42, 43] in images has been thoroughly studied benefiting
from the rapid development both in theories and platforms.
Widely used object detection methods can be divided into
single-stage and multi-stage detectors. YOLO [42] and SSD
[33] are representatives of single-stage object detectors,
which detect objects directly over a dense sampling of pos-
sible locations. On the other hand, the R-CNN approaches
[20, 21, 43] and R-FCN [32], known as region-based meth-
ods, divide the object detection process into two stages: 1)
region proposals are first generated through selective search
or a regional proposal network (RPN); 2) the multi-task
classification and bounding box regression are then carried
out on the region candidates. In general, region-based meth-
ods, which pass the proposals with a higher objectiveness to
the subsequent classification and bounding box regression
tasks, can produce higher quality proposals compared to the
single-stage methods.

In this paper, we also adopt a region-based approach,
the Faster R-CNN pipeline [43], as the baseline single-
image object detector. Differently, we not only apply Faster
R-CNN to detect the traffic signs in the video frames,
but also decompose its structure, and incorporate temporal
information beyond tracking cues for the proposal selection,
so as to carry out an explicit regression for the traffic sign
localization in images. Note that, each individual traffic sign
type can be quite similar within the big traffic sign category,
e.g., the exemplar traffic signs shown in Fig. 1. Sometimes,
the Softmax suppresses the true class label if a similar sign
pattern exhibits a higher probability value, the classification
can be misled in this way. Therefore, considering the video
sequence’ detection results can help guide the detection in
the current frame. On the other hand, the spatial locations
of the same traffic sign in a “track” is highly correlated.
Thus, we predict the promising region where the sign is

likely to appear for a straightforward proposal selection. Our
proposed scheme can be regarded as an adaptation of the
basic Faster R-CNN for video object detection.

2.3 Video-based tasks

With the explosion of large-scale video data, video object
detection has significantly raised public attention recently
in the community. ImageNet VID competition [44] has
inspired a lot of works. Though many external factors such
as motion blur, video defocus, partial occlusion and rare
or bad pose can present a great challenge in the video
object detection, nevertheless, the temporal consistency
among video frames can still be leveraged to improve
the detection performance [27, 29, 40, 52, 61]. The same
object in adjacent frames possesses similar embedded
features with correlated locations and sizes of bounding
boxes, which can be a good reference for object detection
in videos. Zhu et al. [61, 62] propose a flow-guided
feature aggregation framework, which enhances the feature
quality through aggregating them along motion paths on the
feature level. Besides pixel-level feature calibration based
on flow estimation, Wang et al. [52] also use instance-
level calibration for better feature representation. Although
we don’t apply feature aggregation, we also leverage the
feature similarity when carrying out the proposal selection
in our proposed method. Kang et al. [27] propose a tubelet
proposal network (TPN) to generate tubelet proposals,
spatially aligned bounding boxes across time, in consecutive
frames as the first stage of object detection in videos.
Feichtenhofer et al. [16] use a multi-task objective to
jointly tune a frame-based object detection and across-
frame track regression network to simultaneously improve
the detection and tracking performance. However, these
methods all require extensive training based on a large-scale
video dataset, which is usually hard to obtain.

Besides the video object detection task, multiple object
tracking (MOT) is also related to video analysis. Traditional
tracking methods, such as mean-shift [31], KCF [24], CSR-
DCF [34], etc., can also localize the object according to
appearance similarity among frames, but they are likely
to face a severe drift problem along time especially the
traffic signs move relatively fast with large size variations
when observed from a fast-moving camera mounted on
the car. Bergmann et al. [8] propose to use a detector to
do the tracking, called “Tractor”. Han et al. [22] propose
“Seq-NMS” and Belkin et al. [6] propose “BBox-NMS”.
They both use good detections in nearby frames to boost
detections with lower scores. These ideas are also well
investigated in our work as baseline models. Similar to
“Tractor”, we also pay attention to region proposals for
regression. Inspired by “Seq-NMS” and “BBox-NMS”, we
also boost the weaker detections with frames with higher
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confidence scores. In all, we pay attention to both RoI
feature similarity and location consistency, along with the
class confidence scores of the proposals. Our method is
supposed to result in a more robust and accurate detection
result, which will be demonstrated in the following sections.

3Methods

Given a video sequence, our goal is to detect the traffic
signs in each frame, obtaining both location and category
information in the images. Correlating information within
adjacent frames is a general idea for video object detection
tasks. We propose a scheme for traffic sign detection in
videos called Shortest Path-based method [58]. By taking
into account temporal information, this task can also be
related to multiple object tracking since the temporal cues
exist among frames and the tracked objects are what
we aim to detect in each frame. We investigate several
existing approaches, which are simple but effective. For
handling multiple object tracking, Tractor [8] is one of the
state-of-the-art techniques by combining spatio-temporal
information with Faster R-CNN detection. It exploits the
ability of a detector to regress and classify bounding boxes,
without training or optimization during the tracking process.
To compensate and boost the weaker detections benefiting
from detections with higher scores in neighboring frames,
Seq-NMS [22] is supposed to work during the post-
processing phase beyond the Faster R-CNN detections. It
uses the IoU information to do the sequence selection,
followed by re-scoring. We borrow these two ideas and
adapt the methods in our scenario. We refer above two
methods as tractor-based approach and IoU-based approach,
which serve as baselines in this paper. Moreover, we
also carry out experiments on three video object detection
approaches for comparison. The common characteristic of
these methods is that they all leverage the Faster R-CNN
framework, which also ensures a fair comparison. In this
section, we will first give the problem statement, followed
by Faster R-CNN architecture and our proposed approach
for traffic sign detection in videos. Then, we will address in
details the two adapted baseline algorithms. Finally, we also
give a brief introduction to three other video object detection
methods.

Problem statements The camera mounted on top of a car
records videos when the car drives along the road. We
assume there are T image frames in a video sequence,
denoted as, {I1, I2, ..., IT }. The traffic signs can be
categorized into K classes. The goal of our task is to detect
the traffic signs in every frame within the video sequence,
including the position and category information of detected
traffic signs. If N traffic signs are detected in the t-th frame,

the result can be written as, {bi
t , c

i
t |t ∈ T , ci

t ∈ K, i ∈ N},
where bi

t = (xi
t , y

i
t , w

i
t , h

i
t ) implies the the bounding box

position and size, and ci
t denotes the class label of the i-th

object.

3.1 Faster R-CNN

As a classical standard approach, Faster R-CNN applies a
Region Proposal Network (RPN) to generate a multitude of
proposals. Measures like Region of Interest (RoI) pooling or
RoI align are applied to extract features based on the CNN
maps. Then an object classification and a bounding box
regression are carried out. The classification head assigns
an object score to the RoI. The regression head refines the
bounding box location tightly around the potential object.
The final set of object detections are yielded by applying
non-maximum-suppression (NMS). To train a Faster R-
CNN detector, a multi-task loss is exploited, including Lcls

for classification and Lreg for bounding box regression. L

is defined as,

L(p, c, bc, bgt ) = Lcls(p, c) + λ[c ≥ 1]Lreg(b
c, bgt ), (1)

where Lcls(p, c) = − log pc is cross-entropy loss for true
class c. The Iverson bracket [ ] is 1 when the inner condition
is satisfied, otherwise it is 0. bgt and bc are bounding box
regression targets on ground truth and predicted values for
class c, individually. The hyper-parameter λ balances the
two losses.

As long as we have trained the detector, we treat a video
sequence as a collection of ordered images. During the test
phase, we send each image frame It ∈ {I1, I2, ..., IT } into
the single-image object detector one-by-one. We denote the
detection result as Dt = {bi

t , c
i
t } where t ∈ T , ct ∈ K, i ∈

N , if there are N traffic signs identified. Each item in Dt

is a pair of bounding box bt associated with its class ct .
The Faster R-CNN detector totally ignores the temporal
consistency in consecutive frames. It inevitably leads to
fluctuations in detection performance, e.g., some frames
with traffic signs have either no traffic sign detected (missed
detections) or incorrect detections with wrong classes or
deviated locations/sizes of bounding boxes. Figure 3 shows
a diagram indicating various scenarios for the detection
result.

According to our observations, the signs can be detected
correctly in most frames (especially, when the target is close
to the camera with a big size in the recorded images).
The difficulty of the task is to find the signs with wrong
classifications and missed detections when the signs are
pretty far from the camera, which results in a higher
probability of making mistakes for the detector. Thus, it
is necessary to take additional measures to deal with the
failure cases. During the safety allowed reaction time, the
information from frames in the future can be used to
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Fig. 3 Fluctuation exists in Faster R-CNN detection result. Each geometric pattern represents a frame. Green circles represent good detections,
while red rectangles and triangles represent detections with wrong class. Gray circles represent missing detections

improve the precision of detecting the traffic signs in the
current frame. Higher precision of traffic sign detections
can lead to better decision making in the reaction in
return. Considering the different types of missing detection
conditions, we divide the actual situations into two types.
On one hand, the missing frames can happen between
two tracklets within one potential trajectory. We call this
scenario as “Two-End”, as shown in Fig. 3. On the other
hand, they might be associated with only one tracklet
serving as one endpoint. Correspondingly, we call this
scenario as “One-End”.

3.2 Proposed shortest-path approach

The proposed shortest-path method works as a post-
processing procedure to improve the detector’s perfor-
mance. As is shown in Fig. 4, the whole framework consists
of several steps, which are also discussed in [58].

1) We assume a traffic sign c has been detected
successfully both in frames It ′ and It ′′(t ′′ > t ′) with
high confidence scores but missing detections occur
in between. We denote that it is the i-th object in the
sequence. Then we use the detection result in frame

It ′ and It ′′ , i.e., bi
t ′ and bi

t ′′ , to generate a promising
region which is supposed to contain the traffic sign. Ri

is a smallest rectangle which covers both bi
t ′ and bi

t ′′ ,
as are shown in Fig. 5. For every frame It between
It ′ and It ′′ , we use Ri to filter the whole image
proposals provided from the Faster R-CNN and keep
a set of candidate proposals {Pt } within Ri . If it is
“One-End” scenario, i.e., missed or incorrect detections
occur before frame It ′′ without information in It ′ , we
also infer a promising region according to the moving
trajectory of the detected traffic signs from It ′′ . The Ri

can also help to identify a set of Pt , which is likely to
be the traffic sign.

2) We extract the features ft using the filtered proposals in
Pt from frame It . To fix the length of extracted features,
we apply RoI align operation on the feature map to get
the embedding.

3) We construct a graph, in which the proposal boxes
within Ri associated with its distinct features serve
as intermedia nodes. The Euclidean distance values of
every two adjacent nodes’ features constitute the edges.
The detections of {bi

t ′, f
i
t ′ } and {bi

t ′′, f
i
t ′′ } serve as the

starting and ending nodes. In “One-End” mode, there
is only either a starting or an ending node. As seen

Fig. 4 The framework of our proposed algorithm
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Fig. 5 Proposal filtering

from Fig. 4, a shortest path can be established for both
cases through the Dijkstra algorithm [26]. A path from
{bi

t ′ , f
i
t ′ } to {bi

t ′′ , f
i
t ′′ } with the smallest cost will be

returned. In other words, the selected proposals on the
shortest path have the most similar features with the
detections in frame It ′ and It ′′ . It can ensure that we
find the same traffic signs during these frames. The
objective function in this process can be defined as,

jt = argmin
jt ′ ,...,jt ,...,jt ′′

t ′′∑

t ′
d(ft (jt ), ft+1(jt+1)),

s.t ., t ′ ≤ t < t + 1 ≤ t ′′, jt ∈ {Pt },
(2)

where d() is the distance measure.

4) For each proposal box (x, y, w, h) with extracted RoI
feature f , we send them to the bounding box regression
head of Faster R-CNN again, subjected to class c. We
denote the regression function as φ( ) taking the RoI feature
f as input. The output of the parameterized coordinates
(φx(f ), φy(f ), φw(f ), φh(f )) can be translated to the
predicted bounding box location,

x̂ = wφx(f ) + x,

ŷ = hφy(f ) + y,

ŵ = weφw(f ),

ĥ = heφh(f ).

(3)

3.3 Tractor-basedmethod

By applying Tractor [8] into the traffic sign detection
problem, we make several adaptations based on the original
paper, which is mainly proposed for tracking purposes. In

particular, Tracktor uses a detector for human association
among frames based on the MOT dataset. Differently, we
try to detect the traffic signs on the roads. In this case,
traffic signs are less compact compared to the crowds
in MOT datasets. We explore the temporal and spatial
correlation among frames to carry out the association for
the detected traffic signs with the same class. Besides, the
original Tractor would use regressed boxes in later frames
as detections if the score meets the requirement, with the
Faster R-CNN results for initialization. In our case, we keep
the Faster R-CNN detections in most trustable frames. We
only recover those frames with fluctuations. Every traffic
sign can be found as a trajectory in a video sequence, which
is defined as the 2D bounding box coordinates along time.
As for the missing part in the trajectory (e.g., gray and red
patterns in Fig. 3), we do the following steps (as is shown in
Fig. 6):

1) Firstly, we use the detection result
(xt−1, yt−1, wt−1, ht−1) in frame It−1 for bounding
box initialization in frame It . We apply RoI align on the
features of the current frame It , but with the previous
bounding box coordinates (xt−1, yt−1, wt−1, ht−1).

2) Then, we use the regression head of Faster R-CNN to
regress the bounding box of frame It to the object’s new
position (xt , yt , wt , ht ) at frame It .

3) When we do Step 2, at the same time, the feature will
be fed into the fully connected layer for classification,
though we already know the class owing to the
information from bilateral frames. The confidence
score sc will be obtained for the specific class c.

4) We set a threshold σ for the confidence score to decide
whether we accept the new position in the current

Fig. 6 The workflow of Tractor-based method
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frame. If the calculated score sc > σ , the regressed
bounding box will be used to initialize the box in the
next frame. If not, we terminate the trajectory.

5) Steps 1-4 are repeated for all subsequent frames till the
next frame with good detection if the trajectory has not
been terminated yet. Note that, in the “Two-End” mode,
we also perform Steps 1-4 in the opposite direction, and
then we keep the ones that possess higher confidence
scores.

Note that, the assumption for using Tractor is that a target
moves slightly among frames, which is usually ensured by
high frame rates. It is known that the cars usually move fast
on the road, thus, we set a low threshold in Step 4 to accept
a potential target. Besides, the missing trajectory usually
happens when the car is far from the sign, in this case, the
locations of the sign in images do not change much if the
car moves straightly. This observed phenomenon alleviates
the influence of the assumptions from the original Tractor.

3.4 IoU-basedmethod

Similar to Seq-NMS [22] and BBox-NMS [6], we test an
approach that also utilizes IoU information and carries out
NMS. We call this method as IoU-based scheme, as is
shown in Fig. 7. The idea is to use high-scoring detections
in nearby frames to boost scores of weaker detections. As
is known to us all, during the post-processing phase of
Faster R-CNN, in order to suppress false positives, a proper
threshold β for the confidence score is set. Facilitated by
the adjacent frames’ information, we are aware of the class
c of the traffic sign in the sequence. We assume frames
It ′ to It ′′(t ′′ > t ′) are the ones that need to be recovered
in a trajectory. Given a set of probable bounding boxes
B in between, and their detection scores S as input, The
IoU-based method works following four steps:

1) For each pair of candidate boxes in neighboring frames,
a detection in the first frame can be linked with a

Fig. 7 The workflow of IoU-based method
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candidate box affiliated to the same class in the second
frame, if their IoU is above some threshold γ . Note
that, considering the motion of moving cars, we set a
relaxed value of γ to discover the missed target as much
as possible. We find potential linkages in each pair of
neighboring frames across the video segment.

2) We find the linkages which possess the maximum score
across the video clip of interest. In other words, we try
to find the sequence of boxes that maximizes the sum of
object scores. The objective function is defined as Eq.4,

jt = argmax
jt ′+1,...,jt ,...,jt ′′−1

t ′′∑

t ′
st [jt ],

s.t ., t ′ < t < t + 1 < t ′′,
s.t ., IoU(bt [jt ], bt+1[jt+1]) > γ,

(4)

where st [ ] denotes score for the jt -th box in frame It .
The optimization formula will return a set of indices
{jt ′+1, ..., jt , ..., jt ′′−1}, which can be used to locate the
corresponding candidate boxes.

3) As far as we have identified a sequence with the
maximum likelihood, we take some measure to boost
the boxes with lower confidence scores. Specifically,
we apply a function F to the sequence scores Sc

subjected to class c, i.e., S′
c = F(Sc). In our

implementation, we define the re-scoring function as
assigning the max score in neighboring frames of I ′

t

and I ′′
t to current frame It , i.e., the st is updated by

st = max{st ′, st ′′ }, t ∈ (t ′, t ′′).
4) Finally, the missing frames with re-scored higher values

will be recovered as new detections. At the same time,
other boxes that are not selected in the sequence are
removed from the current trajectory for the specific
traffic sign class c.

The above steps are repeated for every traffic sign on the
road. The result will be successive in image frames.

3.5 Video object detectionmethods

Besides, we also investigate several video object detection
methods, which are originally performed on ImageNet VID.

1) Deep Feature Flow (DFF) proposed by Zhu et al. [62].
DFF performs image recognition in sparse key frames.
Then, it propagates the deep feature maps from key
frames to other frames via a flow field. Yet, FlowNet
[13] is employed. DFF jointly trains flow and video
recognition tasks in a deep learning framework.

2) Flow Guided Feature Aggregation (FGFA) proposed
by Zhu et al. [61]. Similar to DFF, FGFA also works
on feature level. It improves the feature quality by
aggregating nearby features along the flow motion
paths to the current frame according to an adaptive

weighting network. The resulting aggregated feature
maps are then fed to the detection network to produce
the detection result on the reference frame.

3) Sequence Level Semantics Aggregation (SELSA)
proposed by Wu et al. [53]. SELSA first extracts
proposals in different frames. Then, it proposes to
link proposals across space-time with their semantic
similarities (generalized cosine similarity). At last, it
aggregates the features from other proposals with larger
similarities to get a more discriminative and robust
feature. The enhanced proposal features are further fed
into the detection head for classification and bounding
box regression.

4 Experiments

4.1 Datasets

Unlike image-based datasets, large scale video-based
dataset is harder for collecting and annotating. To inves-
tigate the traffic sign detection in videos in autonomous
driving scenarios, we utilize several datasets.

1) The KITTI datasets [19]. KITTI is a real-world
computer vision benchmark [19], widely used in
autonomous driving. To collect the data, the car is
equipped with two high-resolution color and grayscale
video cameras. We choose several sequences from
KITTI raw dataset (left color camera) to evaluate
the proposed approach for video-based traffic sign
detection. The sequences (0005, 0014, 0015, 0029, and
0084) contain in total 1578 frames, where traffic signs
are frequently observed. The resolution of the images is
1242×375. Since there are no ground truth annotations
in KITTI for different traffic signs, we label each sign
with a tight bounding box together with its class type as
the ground truth.

2) The GTSDB dataset [25]. We train a basic single-image
based traffic sign detector on the German traffic sign
benchmark (GTSDB) [25], which provides detailed
ground truth annotations for the traffic signs that
appeared in the images. The resolution of the images
is 1360×1024 pixels. There are 43 classes in the
ground truth labeling. In our experiments, we further
cluster them into 21 gross classes based on color,
shape, and pattern. The images are collected in different
environments, which can help our detector to learn and
generalize better in the wild. GTSDB and KITTI are
both collected in German, resulting in the consistency
of traffic sign types. Thus, the Faster R-CNN detector
trained on the GTSDB can support the basic detection
in KITTI datasets.
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3) The LISA datasets [38]. The LISA traffic sign dataset
collects traffic sign images and videos in the U.S.
with several different vehicles and cameras. The dataset
consists of some long sequences made up of many
short video clips. Each short video clip contains at
least one kind of traffic sign. The dataset has 7855
annotations on 6610 images. There are 47 classes. We
have used 4098 annotations out of 3058 images for
training. The resolution of the captured frames varies
from 640×480 to 1024×522 pixels and the annotations
vary from 6×6 to 167×168 pixels. To evaluate the
performance, we test on a long sequence called “vid4”,
which includes 460 images with plenty of different
signs. The dataset has been preprocessed, thus, there
are 34 short segments for different traffic signs within
the sequence and each segment contains around 5 to 50
images subjected to the same sign.

4.2 Experiment setup

To train a baseline single-image based traffic sign detector,
we have implemented the Faster R-CNN based on [36].
We have used the same parameter settings for training
both on GTSDB and LISA. The shared convolutional
layers are initialized by a pre-trained model for ImageNet
classification (ResNet R-50-C4). A learning rate of 0.0025
is used for the first 12K iterations and is then decreased
by 0.1 each time for another 4K and further 2K iterations,
until it stops at 18K iterations. We use a momentum of
0.9 with a weight decay of 0.005. The experiments are
carried out on an NVIDIA Quadro GV100 32GB GPU.
We resize the input images such that the shortest side is
at least 480 and at most 800 pixels while the longest is at
most 1333 pixels. To extract the features from RoI, we have
adopted RoI align measure instead of RoI pooling for better
feature representation. After several aggregation operations,
the feature dimension of candidates in shortest path based
search is 2048.

In Section 3, we have mentioned several thresholds.
For KITTI sequences, in the Tractor-based method, we
empirically set σ = 0.001 as a loose reference to decide
whether we accept the recovered detection or not. In
the IoU-based method, we empirically set β = 0.02 to
keep enough potential detections in the missing frame. We
empirically set γ = 0.001 to decide the linkages in selecting
sequence. Note that, the frame rate in LISA is much less
than KITTI. Thus, we make an even looser parameter
threshold for LISA dataset. In specific, if σ and γ are larger
than 0, the results can be accepted, while the β is still set as
0.02.

For the video object detection methods, we have tested
the performances based on MMTracking [11]. It provides

a flexible as well as standardized toolkit to reimplement
existing methods, e.g., DFF [62], SELSA [53], and FGFA
[61]. We use ResNet-50 as the backbone network and adopt
the Faster R-CNN in the frameworks for object detection
purpose.

4.3 Results

To evaluate the detection performance, we use Average
Precision (AP) and Average Recall (AR) as the metrics. The
results are calculated averaged over all traffic sign classes
based on IoU=0.5. The Faster R-CNN detector, as trained
on the GTSDB dataset, can achieve an overall AP of 0.800
in the single-image traffic sign detection task (calculated
on the test set of GTSDB). Later, we use this single-
image based detector to detect traffic signs in KITTI video
sequences as the first step of our algorithm, which achieves
an overall AP of 0.628. Note that, the performance for
single-image based traffic sign detection is not high enough
since the KITTI video sequence contains more small signs
when the car is far away. It is pretty challenging to detect
traffic signs continuously in the wild images.

The algorithm we have introduced considers the feature
similarity of candidate proposals with neighboring detec-
tions. The shortest path based algorithm can improve the
performance of the original single-image based detector to a
large extent. The time complexity of the Dijkstra algorithm
used in our shortest path search in this process is O(|V |2),
where V represents the vertexes in the graph constructed
based on filtered proposals. Besides, we also investigate
two other approaches described in Sections 3.3 and 3.4 as
comparisons. These methods all try to take advantage of
the temporal information by looking through the detected
objects in neighbor frames with high confidence scores.
The class label can be determined based on the high confi-
dence score in consecutive frames, then the potential boxes
in missing frames can thus be retrieved through different
measures. To demonstrate the effectiveness of the algo-
rithms, besides KITTI, we also use LISA for experiments.
We process the test video sequences obtained from real-
world driving scenarios. The overall results are reported
in Table 1, from which we can see that the three meth-
ods discussed above show better performances since they
exploit the temporal information and work as a post pro-
cessing step. In specific, in the KITTI dataset, the AP is
0.628 and AR is 0.626 for the basic Faster R-CNN detec-
tor. For the Tractor-based method, AP is 0.640 and AR is
0.647. IoU-based method achieves better performance com-
pared to Tractor-based approach. The AP and AR are 0.673
and 0.672, separately. In our proposed shortest path based
method, the AP and AR can be improved to 0.733 and 0.748.
Similarly, we also test the performance on LISA dataset.
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Table 1 The performance of different methods. The bold number indicates the best value in the column

AP@.50 AR@.50 AP@.50 AR@.50

KITTI KITTI LISA LISA

Faster R-CNN [43] 0.628 0.626 0.661 0.663

Tractor-based [8] 0.640 0.647 0.675 0.680

IoU-based [22] 0.673 0.672 0.733 0.733

Ours (Shortest Path) 0.733 0.748 0.775 0.804

SELSA [53] - - 0.720 0.890

DFF [62] - - 0.300 0.683

FGFA [61] - - 0.458 0.708

The AP and AR are 0.661 and 0.663 for the basic Faster R-
CNN detector. Our proposed shortest path based method can
improve the metric values to 0.775 and 0.804, separately.

Above mentioned three methods (IoU-based, Tractor-
based, and Shortest Path-based) all extend the Faster R-
CNN and improve the detection performance by taking
advantage of temporal consistency. These measures allow us
to exploit a comparatively cheap way to leverage a detector
for traffic sign detection in videos. We can directly benefit
from the improved object detection methods to compensate
for failure cases. Moreover, operating during the post-
processing phase can be suitable for various detectors, in
addition to Faster R-CNN, since it does not require large
video data annotations for training when only images are
available.

Note that, with a limited number of annotated video
sequences from KITTI, it is inappropriate to train the
competing VID techniques [27, 29, 52, 62] on this
dataset. We carry out the competitive methods described
in Section 3.5 leveraging the LISA dataset, which contains
a certain number of video clips. From Table 1, we can
see that the recall values of DFF, FGFA, and SELSA
are pretty high. It demonstrates that correlating multiple
frames information is helpful to find potential signs. The
performance of SELSA is impressive compared to DFF
and FGFA. Since the similarities in SELSA are built on
the proposal level, they are more robust compared with
the optical flow which is computed on each position in
feature maps. The performances of average precision (AP)
from DFF and FGFA are not good. The flownet trained
on synthetic datasets may not be suitable for traffic sign
detection in the wild.

Figure 8a, b, and c qualitatively show the detection
results of our proposed shortest path algorithm in several
video segments. Figure 8d, shows various traffic signs
appeared in KITI test sequences, while Fig. 8e shows
different traffic signs in LISA dataset. From Fig. 8, we can
observe some phenomenon: 1) Either “One-End” or “Two-
End”, it works fine as the post processing step beyond the

Faster R-CNN detector. The traffic signs in “bad” frames
can be effectively recovered (orange boxes); 2) Compared to
the red bounding boxes (wrong classifications) returned by
Faster R-CNN, our recovered boxes fit well with the ground
truth. 3) Detection for very small sign is still a challenge,
e.g., “speed limit” sign in Fig. 8a, in spite that our method
can make some improvement to a large extent.

Figure 9 shows an example of the qualitative per-
formance using three competing methods described in
Section 3. The information from neighboring frames is
exploited to boost the discovery of signs in the missed and
incorrect frames. In the video segment shown in Fig. 9,
where the triangular sign denotes “slippery road”. The traf-
fic signs in the first three frames prior the first purple line
can utilize the information from the frame denoted by the
purple line. As for the two subsequent frames, they can
be detected using the information from the bilateral frames
denoted by the two purple lines. In other words, the first
three frames satisfy “One-End” mode, the subsequent two
frames meet the condition of “Two-End” mode. From this
figure, we can obviously see that Tractor-based method
tends to experience severe drift when the car has drastic
motion. The reason can be traced back to the working pro-
cedure of the Tractor, which uses the detected box in the
former frame as the initialization of the proposal box in cur-
rent frame. When the car moves fast on the road, there might
be little overlapping for the two signs in the image frames.
Then the feature extracted from current frame cannot fully
represent a sign, resulting in inaccurately regressed bound-
ing box location. IoU-based method fails in the first three
frames, due to no correct detection is achieved by Faster
R-CNN on current class label. However, in the last two
frames, IoU-based method can achieve much better local-
ization results than Tractor-based method. Compared to
the aforementioned two approaches, our proposed shortest
path-based method not only can detect the sign successfully,
but also localize the box more precisely. This is because
we do not restrict the proposal box localization to the same
one with other frames, which alleviates the influence from
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Fig. 8 Qualitative performance of our proposed shortest path based
method. Example video segments are shown in (a), (b) and
(c) with recovered or improved bounding boxes from originally
missed/incorrect detections. Red boxes denote wrong detections, green

boxes denote good detections with high confidence, and orange boxes
denote the recovered boxes by our proposed method. d shows vari-
ous signs appeared in the KITTI dataset. e shows different signs in the
LISA dataset

Fig. 9 The performance of three methods for recovered bounding
boxes from originally missed/incorrect detections on KITTI. The pur-
ple lines represent frames with correctly detected high confidence
detections. a Pink boxes denote the detection result using IoU-based

method. b Cyan boxes denote the detection result using Tractor-based
method. c Orange boxes denote the detection result using our shortest
path based method
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camera motion. On the other hand, we try to use the feature
similarity to locate somewhere which is most likely to be a
sign. A further regression step would return a better fitting
box.

5 Discussion

5.1 Proposal selection scheme

One key step in our proposed approach (Section 3.2) is
regarding proposal selection. Currently, we use the shortest
path scheme to determine which proposals are likely to be
the traffic signs based on the feature similarity. Besides,
we also try a maximal confidence score based method for
selecting the proposals. In other words, for every proposal
in the promising region, we send them to the classification
head to get the confidence score. Regressed proposal with
the maximal score of the same sign category is chosen as
the recovered detection. We use (5) to derive the objective
function for the maximal confidence score based method.

jt = argmax
jt

t ′′∑

t ′
Sc(ft (jt )), s.t ., t ′ < t < t ′′, jt ∈ {Pt },

(5)

where Sc( ) mimics the confidence score for the same sign
category c, obtained through the classification branch, by
taking the jt -th proposal feature ft (jt ) as input .

Since both methods operate on the same set of proposals,
the selection procedures are different. Inspired by the
metrics used in [27], we also apply mean absolute pixel
difference (MAD), mean relative pixel difference (MRD),
and mean IoU between predicted boxes and target boxes
to evaluate the quality of detected bounding boxes. The
comparative results are listed in Table 2. Both shortest
path based and max score based selection procedures
perform well with a slight offset with the ground truth
annotations. The shortest path based method exhibits lower
values of MAD and MRD, higher values of IoU, which
indicates that it is superior to max score based method

when it comes to localization precision. According to our
observation, the regressed boxes returned by shortest path
based method might hold a lower score through the Faster
R-CNN classification head than max score based method.
However, the shortest path based method fully leverage
the RoI feature consistency in adjacent frames and thus
lead to a better localization performance. We also randomly
choose 3 KITTI sequences (0005, 0029, 0084) to show
the performances. Considering the dataset’s properties, the
bigger the detected signs are, the higher locating accuracy
can be obtained, e.g., the signs in the missing frame in
“0084” are much bigger than the missing signs in the other
two sequences.

5.2 Regression necessity

Some people may claim that we already select the proposal
with the most consistent features, do we need to send them
into the regression head again to get the final detection result
as described in Section 3.2? The answer is yes. The selected
proposals through the shortest path based search can provide
a good embedding of feature extracted from the backbone,
but the bounding box regression stage is still necessary. As
is shown in Fig. 10, the candidate proposal can be more
accurately located on the objects after running through the
bounding box regressor. The bounding box regression plays
a critical role in refining the location and size of a chosen
proposal RoI. We thus use the regressed region as a better
interpretation for the traffic signs.

5.3 Generalization ability

It’s unfair to compare our proposed method with other kinds
of single-image based object detector, since the goal of our
algorithm is to improve a detector’s performance in video
object detection. We take additional measures beyond a
vanilla detector so as to improve its original performance.
In this paper, we have chosen a two-stage classical approach
of Faster R-CNN as the base detector. We treat our method
as a post processing step attached to a basic Faster R-CNN
detector. We select the proposal which is likely to be a sign

Table 2 The comparative performance of maximum score (MS) and shortest path (SP) methods (in KITTI dataset)

Overall Two-End One-End

MAD MRD IoU MAD MRD IoU MAD MRD IoU

MS 2.31 0.104 0.681 2.65 0.119 0.634 1.81 0.082 0.751

SP 2.06 0.093 0.706 2.31 0.103 0.667 1.68 0.079 0.765

Seq. 0005 Seq. 0029 Seq. 0084

MAD MRD IoU MAD MRD IoU MAD MRD IoU

MS 3.16 0.137 0.609 1.99 0.100 0.687 2.00 0.052 0.814

SP 2.94 0.130 0.629 1.69 0.085 0.715 1.66 0.044 0.833
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Fig. 10 A traffic sign example
in Seq. 0005 from KITTI,
showing proposal box with
regressed box. a Proposal box in
blue color; b Regressed box in
orange color. Pink rectangle
denotes the promising region for
proposal selection

but was missed detected by the base detector. A further step
of regression can help the proposal to localize the object
more precisely. This kind of idea is simple but effective. It
can be generalized to other two-stage base detectors when
solving the video object detection problem, e.g., R-FCN.
Compared to Tractor-based approach, our proposed scheme
is better at dealing with the scenario where large motion
exists in the moving camera. Thus, our method performs
better in the subject of traffic sign detection in videos.
Otherwise, Tractor is also supposed to be effective, e.g., on
the MOT dataset, with slow-moving pedestrians captured by
fixed cameras.

There might be some special signs or V2X smart
transportation infrastructure for autonomous vehicles in the
future. Our proposed scheme for more reliably detecting
traffic signs continuously in videos can also be used for
detecting other kinds of objects. The idea of detection-
by-tracking can boost the detection performance taking
advantage of the “tracking” information.

6 Conclusions

The problem of detecting and recognizing road signs
from cameras mounted on a car is gaining more and
more interest with the advent of advanced driver assisted
systems or autonomous driving applications. In this paper,
we try to improve the detection performance based on
a single image based object detector. We have surveyed
different measures which could be incorporated into the
system. We investigate and implement the Tractor-based,
IoU-based approach, DFF, FGFA, and SELSA. We also
propose a framework, acting as a post processing procedure
based on the two-stage object detector of Faster R-CNN.
The detection performance can be greatly improved by
leveraging the temporal information from neighboring
frames. The experimental results prove the effectiveness of
adopting the “track” information to boost the weaker or
wrong detections. The core idea of our proposed scheme
is to employ the shortest path based search over the graph

constructed by proposals. The recovered detections are
expected to have the most consistent features with the traffic
sign of interest. The explorations we have made beyond a
detector can give some insights for future researchers. Our
method can also help to enhance the detection performance
of other detectors, in addition to Faster R-CNN. Taking
advantage of the temporal information from videos, we can
detect the traffic signs more effectively beyond a single
image based object detector. Considering that robustness
is crucial for traffic sign detection in the vision system of
autonomous cars, in the future, we will investigate into the
adversarial attacks regarding the road signs in the wild.
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