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Abstract
An efficient survey of numerous traditional metaheuristic algorithms (MAs) has been investigated in this paper. Among suc-
cessful MAs, differential evolution (DE) and particle swarm optimization (PSO) have been widely recognized to solve complex
optimization problems and received much attention from many researchers. Therefore, DE and PSO are chosen in the present
study and an extensive survey of their recent-past variants with hybrids has been inspected again. After this an advanced DE
(ADE) and PSO (APSO) with their hybrid (AHDEPSO) are proposed for unconstrained optimization problems. In ADE a novel
mutation strategy, crossover probability and random nature selection scheme (to avoid premature convergence) as well as in
APSO novel gradually varying parameters (to avoid stagnation) are introduced. Hence, ADE and APSO affords different
convergence characteristics to the solution space. Also to balance between exploration and exploitation, in AHDEPSO popula-
tion is divided (multi-population approach) and merged with others in a pre-defined way. Thus, AHDEPSO achieves better
solutions and it is expected to obtain productive solutions with an increasing success rate at each cycle. To verify the performance
of all 3 proposed algorithms i.e. ADE, APSO, and AHDEPSO applied to solve 23 basic, 30 IEEE CEC 2017 unconstrained
benchmark functions and 3 real-world problems. There are several numerical and graphical analyses have been done to verify the
performances of the proposed algorithms robustly. Additionally, statistical and comparative analysis confirms the superiority of
the proposed algorithms among traditional DE and PSO with their recent variants and hybrids as well as over many state-of-the-
art algorithms. Finally, between 3 proposed algorithms the best one i.e. AHDEPSO is recommended to solve unconstrained
optimization problems.

Keywords Metaheuristic algorithm . Particle swarm optimization . Differential evolution . Hybrid algorithm . Unconstrained
optimization

1 Introduction

Many optimizationmethods have been developed to solve mul-
tifaceted optimization problems. However, conventional opti-
mization methods have certain inherent drawbacks like high
computational complexity, local optimal stagnation, and deri-
vation of the search space [1]. Also, it is difficult to find the
optimal solution in the solving process. Presently, to overcome
the drawbacks of conventional optimization methods, a bunch

of optimization methods known as metaheuristics algorithms
(MAs) have been introduced. The mechanisms to develop
MAs are simple as well as based on natural practices and be-
come yet very efficient in solving complex global optimization
problems. According to the mechanical differences, the MAs
can be categorized into four groups as follows- swarm intelli-
gence algorithms, evolutionary algorithms, physics-based algo-
rithms, and human behavior based algorithms. Some recent past
instances of these algorithms are depicted in Fig. 1 and
reviewed briefly as follows.

Genetic algorithm (GA), the foundation for many evolu-
tionary algorithms, was defined by David Goldberg in 1989
[2]. It is taken as the search algorithms build on the mechanics
of natural genetics and selection, simulated by the natural
process of evolution like selection, mutation, and crossover.
Later in 1995, inspired by the flocking of bird Eberhart and
Kennedy proposed particle swarm optimization (PSO) [3].
PSO has acquired immense popularity amongst researchers
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because of its simplicity and effectiveness in plenty of scien-
tific and industrial applications. In PSO particles get updated
by themselves with the initial velocity, also all the individuals
learn from the others and adapt themselves by trying to emu-
late the behavior of the fittest individuals. On the other hand,
differential evolution (DE) is one of the most popular algo-
rithms in evolutionary metaheuristics algorithm discovered by
Storn and Price in 1997 [4]. DE work on two phases; initial-
ization and evolution. In first phase, population is generated
randomly and in the second phase, the same generated popu-
lation undergo mutation, crossover and selection processes.
Due some advantages like easy implementation and strong
global search capability, DE has come out to be a well-liked
choice among researchers for solving various optimization
problems in different sectors. Then in 1998, photosynthetic
learning algorithm (PLA) came into existence by Murase
and Wadano [5]. It utilizes the rules governing the conversion
of carbon molecules from one substance to another in the
Benson-Calvin cycle (comprises of three phases i.e.
carhoxylation, reduction & regeneration of the acceptor) and
Photorespiration reactions. Further in 2000, de Castro and
Zuben developed clonal selection algorithm (CSA) [6] which
is related to artificial immune system that described a general
learning strategy. The principal immune aspects of CSA taken
into consider were: maintenance of the memory cells, selec-
tion and cloning of the most stimulated cells, death of non-
stimulated cells, affinity maturation, and re-selection of the
clones.

With the help of analogy of the music performance process,
Geem et al. [7] devised harmony search (HS) algorithm. In
this algorithm a new vector is produced after taking all
existing vectors instead of considering only two (parents) as
in the genetic algorithm, and HS does not need the setting of
initial values of decision variables and it performed well in
many combinatorial or continuous problems. In 2003, Eusuff
and Lansey proposed shuffled frog leaping algorithm (SFLA)
[8]. It mimics the cooperative behavior of frogs displayed
while they search for food in a swamp and uses memetic

evolution in the form of infection of ideas from one individual
to another in a local search. Also, a shuffling technique per-
mits for the exchange of information between local searches to
move toward a global optimum. Again, in 2004 BeeHive al-
gorithm (Beehive) devised by Wedde et al. [9], it is inspired
by the communicative and evaluative procedures of honey
bees. In this algorithm, bee agents pass through network re-
gions called foraging zones and their information on network
state is delivered for updating the local routing tables. Further,
Pinto et al. in 2005 proposed wasp swarm optimization
(WSO) [10]. It is bidding algorithm where the wasps take
the role of bidders trying to acquire finite resources and had
been designed specifically with reference to logistics system
optimization. Then, Du et al. used theories of small-world
phenomenon and constructed SWOA small-world optimiza-
tion algorithm (SWOA) [11] algorithm in 2006 where local
shortcuts search and random long-range search operator are
employed to solve optimization problems. Later in 2006,
Mehrabian and Lucas proposed a general-purpose optimiza-
tion algorithm that is inspired by weed colonization named as
invasive weed optimization (IWO) [12]. In this algorithm,
invasive weed reproduces quickly by building seeds and in-
crease their population. Moreover, their behavior becomes
different with time as the colony becomes dense leaving lesser
opportunity of life for the ones with lesser fitness. Again in
2007, Karaboga and Basturk presented artificial bee colony
(ABC) [13] which contains three groups of bees: employed
bees, onlookers and scouts with three steps cycle: employed
bees send through the food sources then their nectar amounts
are measured; onlookers select the food sources after sharing
the information of employed bees then determining the nectar
amount of the foods and lastly determining the scout bees then
direct them onto possible food sources.

Moving in the year of 2008, Havens et al. invented roach
infestation optimization (RIO) [14] whose main aim is to look
into the effect of adapting the PSO with the social behavior of
cockroaches. In this algorithm cockroaches makes an effort to
search the darkest place, fitness of a cockroach is proportional
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Fig. 1 Traditional metaheuristics
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to the darkness of its location. They communicated with each
other with a predefined probability. At a certain point of time
cockroaches become hungry and leave the darkness to search
for food. Another population-based metaheuristic algorithm,
biogeography based optimization (BBO) was proposed by
Simon in 2008 [15]. It is inspired by geographical distribution
of biological organisms and enclosed two main operator’s
migration (support to update each individual by sharing the
characteristic of individuals) and mutation (helps to enhance
diversity and the changes for a good solution). Later in 2009,
Yang & Deb devised cuckoo search (CS) algorithm [16] in
which the brood parasitic behavior of cuckoo species simulat-
ed along with the lévy flight action of birds and fruit flies.
There are three steps in CS, (i) one egg laid at a time, and
cuckoo leaves its egg in an any random nest, (ii)high-quality
eggs nests having can survive, (iii) the number of host nests is
constant, and the egg can be noticed by the host bird with a
probability (pa) belongs to [0, 1]. Further, in the area of swarm
intelligence Yang discovered firefly algorithm (FA) in 2009
[17], inspired by the behavior of flashing features of fireflies.
The two main purposes of such flashes are attracting mating
partners and warning against predators. The flashing can be
formulated as an objective function which needs to be opti-
mized. Also in same year, Rashedi et al. proposed gravitation-
al search algorithm (GSA) [18]. It is based on the law of
Gravity in which agents are considered as objects and their
performance is measured by their masses. Each agent has four
properties (determined by fitness function value) position, in-
ertial mass, active gravitational mass, and passive gravitation-
al. Then in 2010, bat algorithm (BA) was proposed by Yang
[19]. Its main motivation is the echolocation behavior of bats,
where bats can find their prey and differentiate different kinds
of insects even in complete darkness.

Further, Rao et al. introduced teaching-learning based op-
timization (TLBO) in the year 2011 [20]. It is training based
model in which population comprises of two phase i.e.
Teacher phase (learning from the teacher) and learner phase
(learning by the interaction between learners). Then in the
year 2012, water cycle algorithm (WCA) was discovered by
Eskandar et al. [21]. Their elementary concepts are inspired
from nature and rely on the observation of water cycle pro-
cess. In WCA, raindrop is considering as initial population,
best raindrop (best individual) chosen as sea, good raindrops
taken as river and left raindrop chosen as streams which flow
to the rivers and sea. Again in 2012, Gandomi and Alavi
devised an algorithm named as krill herd (KH) [22], which
is based on the herding behavior of krill. Its three main actions
are: movement influence by the presence of other individuals,
foraging activity and random diffusion, that’s determined by
the time-dependent position of an individuals. Later in 2013,
social spider optimization (SSO) was introduced by Cuevas
et al. [23], which is inspired by simulation of cooperative
behavior of social-spiders. In this algorithm, individual

spiders (solutions) are simulated by the biological laws of
the cooperative colony. Also, males and females are two
search agents (spiders) in SSO, depending on which each
individual is conducted by different evolutionary operators.
Again, spider monkey optimization (SMO) was discovered
by Bansal et al. in 2014 [24], which is inspired by intelligent
foraging behavior of fission–fusion social structure based an-
imals. It has two control parameters i.e. global leader limit and
Local leader limit that helps local and global leaders to take
appropriate decisions. In same year 2014, Mirjalili et al. pro-
posed grey wolf optimizer (GWO) [25], it mimics the leader-
ship hierarchy and hunting approach of grey wolves. It
employed four types of grey wolves (Alpha, beta, delta, and
omega) for simulating the leadership hierarchy and three steps
(searching for prey, encircling prey, and attacking prey) for
hunting. Later in 2015, inspired by the shallow water wave
theory, Zheng devised an algorithm called as water wave op-
timization (WWO) [26] in which three operators; propagation
(helps to make high fitness waves search small areas and low
fitness waves explore), refraction (helps waves to escape
search stagnation) and breaking (enables an intensive search
around a promising area.) have been implemented de-
pending upon phenomena of water flow. Then, Mirjalili
proposed moth- flame optimization (MFO) [27] in same
year 2015, inspired by the navigation technique (trans-
verse orientation) of moths. In MFO, a mathematical
model of spiral flying path of moths around artificial
lights (flames) is developed in which moths are consid-
ered as candidate solutions and problem’s variables are
the position of moths in the space.

In the year 2016, Mirjalili and Lewisa proposed whale
optimization algorithm (WOA) [28]. This metaheuristic in-
spired by the social behavior of humpback whales and it con-
sists of three steps; encircling prey, bubble-net attacking meth-
od and search for prey. Later in 2016, a swarm intelligence
based technique, dragonfly algorithm (DA) proposed by
Mirjalili [29]. It is inspired by static and dynamic swarming
behaviours of dragonflies and it has two phases: exploration
and exploitation, which modeled while dragonflies search
food, navigate and avoid enemies in a swarm. Further in
2017, grasshopper optimization algorithm (GOA) was
modeled mathematically by Saremi et al. [30], it mimics the
behavior of grasshopper swarms and designed to simulate
repulsion force (help to explore the search space) and attrac-
tion forces (help to exploit promising regions) in between the
grasshoppers. Later in 2018, Pierezan and Dos inspired by the
Canis latrans species and introduced a population based
metaheuristic named as coyote optimization algorithm
(COA) [31]. It especially focuses on the social structure and
experiences exchange by the coyotes and has two parameters:
number of packs and the number of coyotes per pack. In recent
year 2019, search and rescue optimization (SAR) was devel-
oped by Shabani et al. [32], inspired by search and rescue
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operations of the humans being and it consists of two phases:
social phase (selects the search direction based on the position
of clue) and individual phase (searches around the best clue).
Then early in 2020, based on sense of smell and movement
mechanism of bear, Marzbali presented bear smell search al-
gorithm (BSSA) [33]. It has two mechanisms: olfactory bulb
mechanism that connected to the brain, employedmeshmech-
anism to move the next position.

The primary advantage of these algorithms is their use of
the “trial-and-error” principle in searching for solutions. Thus,
these algorithms were successfully applied to solve global
optimization problems. Among successful MAs, DE and
PSO have been widely recognized to solve complex optimi-
zation problems and received much attention of many re-
searchers [34–39]. Therefore, DE and PSO are chosen in the
present study. However, some shortcomings of DE and PSO
cause limitation in applying them in complex optimization
environments. Therefore, avoiding shortcomings of these al-
gorithms many variants and their hybridization are introduced
in the literature.

Although, as claimed on No-Free-Lunch(NFL) theorem
[40], a large number of MAs are introduced in the literature
but they couldn’t able to solve variety of problems. Moreover,
a method may have suitable results for some problems, but not
for others. Thus, there is a need to introduce some effective
algorithms to solve a wider range of problems. This is the
motivation of this study to present novel variants of DE and
PSO with their hybridization.

Moreover, after extensive vigorous literature review on
different variants of DE and PSO with their hybridization
(section 2 related work), following points are analyzed and
motivated from them.

(i). In DE mutation and crossover strategy with their associ-
ate control parameters utilized to produce the global best
solution which is beneficial for improving the conver-
gence behavior. Therefore, in DE most appropriate strat-
egies and their associated parameter values are consid-
ered a vital research study.

(ii). The performance of PSO greatly depends on its param-
eters like acceleration coefficients and inertia weight
which guide particles to the optimum and balancing
diversity respectively. Hence, many researchers have
tried to modify the control parameter of PSO to achieve
better accuracy and higher speed.

(iii). Hybrid algorithms (by combining the advantages of
different algorithms) have aroused interest of the
researchers due to its effectiveness for complex op-
timization problems. Since DE and PSO have com-
plementary properties therefore their hybrids have
gained prominence recently. To best of our knowl-
edge, finding ways to combine DE and PSO is still
an open problem.

Inspired/motivated by the above observations and our sur-
vey of literature, the following plans of action (major contri-
butions) have been outlined for solving complex uncon-
strained optimization problems.

(i). Developed an advanced differential evolution (ADE)
where novel mutation strategy and crossover probability
along with slightly changed selection scheme are
familiarized.

(ii). Suggested an advanced particle swarm optimization
(APSO) which consists of novel gradually varying (de-
creasing and/or increasing) parameters.

(iii). Designed an advanced hybrid algorithm (AHDEPSO)
by hybridizing advanced DE and PSO as well as based
on multi-population approach.

The rest of this paper is organized as follows: Section 2
reviews the related work on different and hybrid variants of
DE and PSO. Section 3 describes the proposed algorithms.
The proposed algorithms are verified on a wide set of
benchmark functions and real-world engineering applica-
tions in Section 4. Section 5 concludes this study with
future works.

2 Related work

During past decade, development of several powerful MAs to
solve high-dimensional optimization problems has become a
popular study area. Among successful MAs, DE and PSO
have been widely recognized to solve complex optimization
problems and received much attention of many researchers.
The basics of original DE and PSO are presented as follows.

2.1 Differential evolution (DE)

DE is an evolutionary approach proposed by Storn and Price [4].
The key idea behind DE is to use vector differences for
perturbing vector population. In D-dimensional search space it
initializes a population randomly of np individuals within the
lower and upper boundaries (xl, xu). After initialization, the DE
is conducted by the three main operations defined as follows.

Mutation: for each target vector (xti; j ) a mutant vector (vti; j )
at iteration t is generated as follows.

vti; j ¼ xtr1 þ F xtr2−x
t
r3

� �
ð1Þ

where r1, r2, r3 ∈ {1, 2,...,np} are randomly chosen integers
with r1 ≠ r2 ≠ , r3 ≠ i, and F denotes the scaling vector that
employed to control the amplification of differential
variation.
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Crossover: a trial vector uti; j
� �

produce by combining tar-

get (xti; j ) and mutant (vti; j ) vector as follows.

uti; j ¼
vti; j; if rand≤Cr

xti; j ; otherwise

�
ð2Þ

where i ∈ [1, np], j ∈ [1,D] and rand ∈U[0, 1] (uniformly
distributed random number between 0 & 1), Cr ∈ [0, 1]
denotes crossover rate that controls how many components
are inherited from the mutant vector.

Selection : xtþ1
i; j ¼ uti; j; if f uti; j

� �
≤ f xti; j

� �
xti; j; Otherwise

(
ð3Þ

Again mutation, crossover and selection operators allowed
for offspring repeatedly up-to predefined stopped criteria.

2.2 Particle swarm optimization (PSO)

PSO was originally proposed by Eberhart and Kennedy in
1995 [3]. It simulates social and/or group behaviors in ani-
mals, insects and humans. In classical PSO, swarm flies in the
D-dimensional search space to seek for global optimum. Each
of the ith swarm particles has its own position (xi = (xi, 1, xi, 2,
…, xi, D)) and velocity vi = (vi, 1, vi, 2,…, vi, D). During the
evolution, each particle tracks its individual best pbesti-
= (pbest

i, 1
, pbesti, 2,…, pbesti, D) and global best gbestj-

= (gbest
1
, gbest2,…, gbestD), velocity and position of the ith

particle are updated as follows at each iteration.

vtþ1
i; j ¼ wvti; j þ c1r1 pbesti; j−x

t
i; j

� �
þ c2r2 gbest j−x

t
i; j

� �
ð4Þ

xtþ1
i; j ¼ xti; j þ vtþ1

i; j ð5Þ

where t is iteration index, vti; j is velocity of ith particle in D-
dimension at tth iteration, c1 is cognitive acceleration coeffi-
cient, c2 is social acceleration coefficient, r1, r2 are two uni-
form random numbers in the range between [0, 1] and w is the
inertia weight.

Due to some deficiencies of DE (low local exploitation
ability and loss of diversity) and PSO (easily get stuck at a
local optimal solution region and low convergence rate) cause
limitation in applying them in typical optimization problems.
Therefore, avoiding shortcomings of these algorithms many
variants and their hybridization are introduced in the literature.
Some recent past variants of DE and PSO as well as
their hybrids are reviewed effectively as follows and
illustrated in Fig. 2.

2.3 DE variants

DE has remarkable performance and become a powerful op-
timizer in the field of real world problems. However, it has
few issues such as convergence rate and local exploitation
ability. In order to overcome its shortcomings, lots of robust
and effective DE has been designed in the literature. A de-
tailed survey of DE variants can be found in [34, 35].
Moreover, a briefed survey of significant DE variants has been
summarized as follows.

As DE is effective in solving in difficult search problem,
Joshi and Sanderson in 1997 [41] applied DE approach to
solve the minimal representation problem in multisensor fu-
sion. In 1998, Cheng and Hwang developed DE algorithm
(DEA) [42], it represents the continuous parameters by
floating-point numbers rather than by binary bit-strings.
Moreover, it is applied to the design of optimal PID controller.
Later in 1999, Lee et al. proposed modified DE (MDE) [43], it
employed a local search to improve computational efficiency
as well as modified heuristic constraints to lessen the search
space size. And it is applied to the continuous methyl
methacrylate-vinyl acetate (MMA-VA) copolymerization re-
actor problem. Then in 2000, Kyprianou et al. [44] employed
DE to identify the optimal parameter values of a highly non-
linear dynamic system Freudenberg hydromount model.
Further, Ruzek and Kvasnicka have pointed out the practical
applicability of the DE in the problem of the kinematic loca-
tion of the earthquake hypocenter in 2001 [45]. It is found that
the sensitivity of the DE essentially retains the favorable prop-
erties over most of the admissible range. Then Chen et al.
proposed improved differential evolution (IDEP) [46] in
2002. It employed flip operation (to adjust the prior-
knowledge-violating networks), also Levenberg–Marquardt
descent and random perturbation strategy are adopted to speed
up the convergence of DE and prevent from being locally
trapped. Also, it is applied in the modeling chemical curves
with the increasing monotonicity constraint in network train-
ing. Later in 2003 Ilonen et al. [47] used DE to analyzed the
train feedforward multilayer perceptron neural networks for
reaching its optima. Because DE has no major restrictions
apply to the error function as well as on the regularization
methods. Proceeding in 2004, Kapadi and Gudi [48] analysed
the computational aspect of DE with augmented Lagrangian
including the dynamic penalty method. Then it applied on fed-
batch fermentation processes involving multiple feeds as it
provides a path to obtain the feasible optimal environment in
fermentation broth and avoid inhibition. In 2005, Rane et al.
[49] worked on the process of recrystallization using cellular
automata (CA). Where DE is employed to search for the value
of nucleation rate, providing an acceptable matching between
the theoretical and experimentally observed values of fraction-
recrystallized. Further, Babu and Angira in 2006 developed
Modified DE (MDE) [50]. It accomplished by taking single
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Fig. 2 DE, PSO & their hybrid variants with application
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array in MDE as compared to two arrays in traditional DE,
which reduces the memory and computational efforts. It is
applied to solve the non-linear chemical engineering prob-
lems. Next year in 2007, Chang et al. proposed robust
searching hybrid DE (RSHDE) [51]. It comprises of two
schemes; multi-direction search and search space reduction
scheme to enhance the search ability in the initial stages.
RSHDE is used to solve the capacitor placement problem in
distribution systems.

In 2008, Noman and Iba [52] have investigated the poten-
tial of the DE for solving economic load dispatch (ELD) prob-
lems in power systems. Where DE enhances the way of satis-
fying the power balance constraint and other boundary
constrained by using a reflection mechanism. Further, Das
and Konar presented automatic fuzzy clustering DE (AFDE)
in 2009 [53]. It incorporates the two novel parameter tuning
strategies to escape from stagnation and/or premature conver-
gence. Moreover, it is applied to the fuzzy clustering task in
the intensity space of an image. Later in the year 2010,
Amjady and Sharifzadeh invented modified DE (MDE) [54].
This framework generated by owning a newmutation operator
and selectionmechanismwhich is inspired fromGA, PSO and
simulated annealing (SA). It is applied on non-convex eco-
nomic dispatch problem considering valve loading effect.
Then in 2011 Uyar et al. [55] proposed a novel way of
employing DE to short-term electrical power generation
scheduling problem. This problem is divided into two sub
problem, where DE is applied with binary decision variable
in a way that it lower the cost scheduling of power generators,
satisfying some operational constraints. Proceeding in year
2012, Santos et al. [56] designed a new chaotic DE optimiza-
tion approach based on Ikeda map (CDEK) to tune the cross-
over rate and mutation factor. It is applied to the identification
of a thermal process. Later in 2013, Tsai et al. presented im-
proved DE algorithm (IDEA) [57] based on the cost and time
models on cloud computing environment. It combined the
Taguchi method (to exploit the better individuals on micro
space) and DE (has powerful global exploration capability).
Moreover, IDEA used to optimize the task scheduling and
resource allocation on cloud computing environment.
Further, Baskan and Ceylan proposed Modified DE
(MODE) [58] in 2014. It developed mutation strategy consid-
eration rate (MSCR) and local search operator that enhanced
the convergence rate of DE without being trapped in bad local
optimum. This algorithm deals with determining the optimal
link capacity expansions for a given road network. Guo and
Yang [59] developed DE utilizing eigenvector-based cross-
over operator in 2015. It introduced a rotationally invariant
crossover (based on eigenvectors of covariance matrix) and
a new parameter P (eigenvector ratio) to control the ratio be-
tween the binomial & eigenvector-based crossover and to pre-
serve the population diversity respectively. Moreover, it is
used to apply in real world optimization problem. Ayala

et al. invented beta DE (BDE) in 2015 [60]. It applies beta
probability distribution in tuning F and CR parameters as it is
flexible for modelling data. BDE is employed to select the
thresholds for segmenting the images. Further in 2015, Chen
et al. [61] employed DE in human detection approach based
on histograms of oriented gradients (HOG) feature and termed
as HOG-SVM-DE. Here DE is applied instead of scanning the
detection windows in sliding fashion so as to achieve fast and
accurate detection.

Further in 2016, Do et al. devised a modified DE (mDE)
[62]. In this framework, best individual based mutation and
elitist selection techniques instigated with modified scale and
crossover factor to escalate exploitation ability and/or conver-
gence speed of DE. Then it is applied for form-finding of
tensegrity structures. In the same year Sethanan and Pitakaso
proposed modified DE algorithms [63], where two additional
steps included i.e. reincarnation and survival process in order
to improve the solution quality. This algorithm is then used to
determine the routes for raw milk collection from a dairy fac-
tory. Then, Basu developed quasi-oppositional DE (QODE)
[64] in 2016. It adds quasi-oppositional based learning
(QOBL) for population initialization and also for generation
jumping. Moreover, QODE is used to solve reactive power
dispatch problem of a power system. Proceeding in 2017,
Vivekanandan and Iyengar proposed modified DE [65],
where mutation strategy (DE/rand/2-wt/exp) is employed.
Also, modified-DE-based feature selection is adapted to per-
form feature selection for cardio vascular disease. Further,
Suresh and Lal invented Modified DE (MDE) [66] in 2017,
it excesses DE for exploration phase whereas cuckoo search
(CS) for exploitation phase as it ensured an increase in the
convergence rate and to avoiding premature convergence.
And MDE is employed for enhancing the contrast and bright-
ness of satellite images. Later Sakr et al. proposed modified
DE algorithm (MDEA) [67] in 2017, it comprises of self-
adaptive scaling factor that dynamically adopts global and
local searches to eliminate local optima trapping. It is imple-
mented for solving optimal reactive power management
(ORPM) problem.

Then in 2018, Qiu et al. designed minimax DE (MMDE)
[68] where a novel bottom-boosting mechanism is introduced
to maintain the reliability and identified the promising solu-
tions. Also it applied partial-regeneration strategy and muta-
tion operator (DE/current/1) to provide in-depth exploration
over solution space. Then, it is applied to the robust optimal
design of a two-link robotic manipulator. Continuing in same
year, Yuzgec and Eser proposed another DE variant named as
Chaotic based DE (CDE) [69]. To maintain the diversity in the
initial population it includes four chaotic systems like as
Lorenz, Rossler, Chua and Mackey-Glass functions for selec-
tion of the candidates from population in the mutation, cross-
over operations. Also it is used for the optimization of baker’s
yeast drying process. Again in 2018, Buba and Lee [70]
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proposed DE approach to optimize the urban transit network
design problem (UTNDP). Identical point mutation and uni-
form route crossover with 0/1 crossover masks are used in this
algorithm to increase the diversity and noisy random vectors.
Early in 2019, a new DE variant direction averaged DE
(daDE) is proposed by Yang et al. [71]. It created a modified
mutation rule which utilizing the information of the current
and the former individuals altogether. daDE is employed to
solve the quantum state and gate preparation problems.
Further in 2019, Awad et al. proposed a new DE algorithm
named as DEa-AR [72]. It uses arithmetic recombination
crossover and scaling factor (based on Laplace distribution).
Additionally, an archive strategy is incorporated to consider
the inferior individual’s information to find new good solu-
tions. DEa-AR is propounded to solve the contemporary sto-
chastic optimal power flow OARPD problems. Later in 2019,
DE with biological based mutation operator (DEHeO) is pro-
posed by Prabha and Yadav [73]. In this algorithm, a mutation
operator (hemostatic operator influenced by hemostasis bio-
logical phenomenon) is introduced which gives promising
solutions and helps in enhancing the diversity in earlier stages
thereby avoiding stagnation during later stages. It is used to
apply in real world optimization problems. Recently in 2020,
Li et al. developed enhanced adaptive DE (EJADE) [74]. In
EJADE, a sorting mechanism is evolved to rationally assign
CR values for each individual according to their fitness values.
Moreover, a dynamic population reduction strategy is
employed to speed up the convergence rate and maintain the
diversity. It is used to apply in Photovoltaic systems optimi-
zation. Further, Hu et al. proposed Boltzmann annealing DE
(BADE) [75] in 2020. It introduced an annealing strategy into
the DE algorithm that allows exploring more searching space.
Additionally, different strategies are employed at different
stages of annealing (high and low temperature) to accelerate
the convergence. Also, it is employed to optimize the inver-
sion problem in the directional resistivity logging-while-
drilling(DRLWD) measurements.

2.4 PSO variants

PSO has attracted the attention to solve many complex opti-
mization problems due to its efficient search ability and sim-
plicity. However, the main drawback of the PSO is that it may
easily get stuck at a local optimal solution region. Therefore,
accelerating the convergence speed and avoiding the local
optimal solutions are the two critical issues in PSO. To over-
come such issues various different modifications of the PSO
has been proposed in the literature. A comprehensive survey
on the variants of PSO can be found in [36, 37]. Furthermore,
briefed reviews of some noteworthy PSO variants are summa-
rized as follows.

Zhenya et al. proposed a modified version of PSO in 1998
[76], where each particle’s uses the best current performance

of its neighbours to replace the best previous one. Also to
accelerate the search procedure, a not accumulative rate of
change replaces to the accumulative one. And it is applied to
train the fuzzy neural network problem. Then in 1999,
Eberhart and Hu used PSO to analyze the human tremor (es-
sential tremor and Parkinson’s disease) [77]. It is used as to
evolve a neural network weights and to evolve the network
structure indirectly. Further, Naka and Fukuyama proposed
hybrid PSO (HPSO) in 2000 [78]. It replaced the agent posi-
tion of low evaluation values by high evaluation values using
the selection procedure of evolutionary algorithm. Moreover,
HPSO can estimate the load and distributed generation output
values at each node considering nonlinear characteristics of
distribution systems. Abido developed PSO based power sys-
tem stabilizers (PSOPSS) in 2001 [79]. It incorporated an
annealing procedure to make uniform and local search in the
initial and later stages respectively. Additionally, feasibility
check procedure also imposed in order to prevent the particles
not to go outside the feasible search space. It is used as in order
to search for optimal settings of PSS parameters. Later in
2002, Al-kazemi and Mohan developed multi-phase PSO
(MPPSO) [80]. It evolves multiple groups of particles to
change the direction of the search in the different phases that
helps to explore the search space, enhancing population diver-
sity, and preventing premature convergence. Also, MPPSO is
employed for training multilayer feedforward neural networks
(MFNN) problem. Further, Gaing proposed binary PSO
(BPSO) in 2003 [81]. In BPSO the trajectories are changes
with the probability in which a coordinate will take on binary
value (0 or 1). Also, it combined with the lambda-iteration
method for solving unit commitment (unit-scheduled and eco-
nomic dispatch (ED)) problems. Proceeding in year 2004 [82],
Pang et al. developed modified PSO, where position and ve-
locity of the particles are presented by fuzzy matrices and
operators of the classical PSO are redefined. It is used to solve
traveling salesman problem (TSP). Then in 2005, Esmin et al.
invented hybrid PSO with mutation (HPSOM) [83]. It incor-
porated mutation process of GA into PSO which helps to
allow the search to escape from local optima and search in
different zones of the search space. HPSOM is then applied to
solve the power loss reduction problem. Meissner et al. pro-
posed optimized PSO (OPSO) [84] in 2006. It comprises of
subswarms and superswarm. The subswarms is used to find a
solution to a given optimization problem, while the
superswarm is employed to optimize their parameters. This
algorithm is applied to resolve the neural network training
problem. Later in year 2007, He and Wang invented co-
evolutionary PSO (CPSO) [85]. It consists of multiple swarm
(for searching the good solutions) and single swarm (for
evolving the suitable penalty factors). Furthermore, CPSO is
implement in parallel and applied to solve the welded beam
design, tension/compression string design and pressure vessel
design problems. Zhang et al. proposed improved PSO (IPSO)
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in 2008 [86], it combines the PSO with the two-point cross-
over (to redefine the model of the original PSO) and shift
mutation operators (to search neighbourhood when a particle
gets stagnate). Also, a fast fitness computation method based
on matrix is devised to improve the algorithm speed.
Moreover, it is used to solve the large scale flow shop sched-
uling problem. Further in 2009 [87], Meneses et al. presented
PSO with random keys (PSORK). In which the position vec-
tor’s information is decoded by the random keys (RK), so that
positions need not to be rounded or truncated. And, it is
employed to solve nuclear reactor reloading problem.
Proceeding in year 2010, Azadani et al. proposed constrained
PSO (CPSO) [88]. It initializes and updates the particles under
uniform distribution for the faster convergence. Also, CPSO is
applied to the multi-product and multi-area electricity market
dispatch problem. In 2011, Kang and He proposed a novel
discrete PSO (DPSO) [89]. It utilizes the characteristics of
discrete variable to update the position. Moreover, variable
neighbourhood descent algorithm and migration mechanisms
are submerged in DPSO to speed up the convergence and
maintain diversity. It is employed to solve meta-task assign-
ment in heterogeneous computing systems. Later in 2012, Kar
et al. proposed craziness based PSO (CRPSO) [90]. It intro-
duced a craziness operator to make sure that the particle has a
predefined craziness probability in order to maintain its diver-
sity. CRPSO is designed to solve the digital finite impulse
response (FIR) band stop filter design problem. Proceeding
in year 2013, Lim and Isa developed the two-layer PSO with
intelligent division of labor (TLPSO-IDL) [91]. It performes
the evolutions sequentially on the current and memory swarm.
A new learningmechanism is also proposed for current swarm
to improve its exploration. Meanwhile an intelligent division
of labor (IDL) module is invented for memory swarm to
evolve adaptively by allocating different tasks to each swarm
member. Additionally, an elitist-based perturbation (EBP)
module is considered to prevent stagnation in local optima.
Further, it is applied to solve the gear train design problem.
Then in 2014, based on particle positions Zhang et al. pro-
posed a novel parameter mechanism for classical PSO. [92]. It
used the concept of overshoot and the peak time of a transition
process, which provides new way to analyses the particle tra-
jectories. Moreover, this algorithm is applied to solve the an-
tenna array pattern synthesis problem. Basu developed modi-
fied PSO (MPSO) in 2015 [93]. The Gaussian random vari-
ables are introduced in velocity term to improve the search
efficiency and obtaining the global optimum without
impairing the convergence speed and the structure of PSO.
Also, MPSO is used to apply in solve non-convex economic
dispatch problems.

Then in 2016, Eddaly et al. [94] proposed hybrid combi-
natorial PSO (HCPSO). It introduced an iterative local search
algorithm based on probabilistic perturbation, sequentially to
PSO for enhancing the solutions quality. This algorithm is

used for solving flowshop scheduling problem. Proceeding
in same year, Zhang et al. [95] proposed adaptive inertia
weight-chaos PSO (AIW-CPSO). It introduced an adaptive
inertia weight so as to enhance the local optimization ability.
Additionally, the logical self-mapping chaotic search is car-
ried out in order to make the PSO to jump out of local optima.
Further, it is employed for extracting the features of Brillouin
scattering spectra. Also in 2016, Ngo et al. proposed extraor-
dinariness PSO (EPSO) [96]. It contained extraordinary mo-
tion concept (movement strategy) for particles where they can
proceed to a target that may be global best, local bests, or even
the worst individual. EPSO is used to apply in engineering
design problems. Later in 2017, Li et al. developed partitioned
and cooperative quantum-behaved PSO (SCQPSO) [97]. It
introduced auxiliary swarms and partitioned search space to
enhance the population diversity. Also the cooperative theory
is considered to improve the particle global search ability.
Moreover, it is used to apply in medical image segmentation
problem. Proceeding in same year, Phung et al. proposed dis-
crete PSO (DPSO) [98]. It includes three techniques determin-
istic initialization, random mutation (to avoid the collapse sit-
uation and keep the balance between exploration and exploi-
tation), and edge exchange (to compare each valid combina-
tion of the swapping mechanism for edges) to improve the
accuracy of DPSO. Also, this algorithm solved the inspection
path planning (IPP) problem. Qin et al. developed improved
orthogonal design PSO (IODPSO) in 2017 [99]. It employed
the tent chaotic map for the acceleration coefficients adapta-
tion to improve global search capability. Further, IODPSO is
used to solve the single-area and multi-area economic load
problems.

Later in year 2018, direction aware PSO algorithm with
sensitive swarm leader (DAPSO-SSL) is proposed by
Mishra et al. [100]. It incorporated the basic human nature
qualities like awareness, maturity, relationship and leadership
to swarm leader and individual particles, so that particles can
utilize previous knowledge of the best and current fittest indi-
viduals. DAPSO-SSL is applied to the community detection
problem of big data networks. Proceeding to year 2018, Li
et al. proposed stochastic gradient PSO (SGPSO) [101]. It
combines stochastic gradient with the randomness of particle
swarm search to overcome the problems of premature conver-
gence and poor accuracy of standard PSO. It is used to gen-
erate a feasible solution of entry trajectory planning for hyper-
sonic glide vehicles. Then Tian and Shi developed modified
PSO (MPSO) in 2018 [102]. It utilized logistic map to distrib-
ute the particle uniformly so as to improve to initial population
quality. Sigmoid like inertia weight and wavelet mutation is
considered to achieve better swarm diversity. Additionally, an
auxiliary velocity-position update mechanism is employed to
global best particle in order to guarantee the convergence. It is
applied to the image segmentation problem. In 2019 Parouha
proposed modified time-varying PSO (MTVPSO) [103], It
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introduced a linearly decreased inertia weight and novel ac-
celeration coefficients which improve the global search capa-
bility and diversity of the population. MTVPSO is used to
apply in nonconvex/nonsmooth economic load dispatch prob-
lems. Further, Hosseini et al. [104] proposed hunter-Attack
fractional-order PSO (HAFPSO) in 2019, where fractional-
order derivatives and hunter-attack strategy are used to accel-
erate convergence and avoid stagnation respectively. It is used
to apply in Optimum power amplifier design problem. Early
in 2019, Dash and Patra developed mutation-based self-regu-
lating and self-perception PSO (MSRSP-PSO) [105]. It incor-
porates self-regulation and self-perception behaviour of the
global particle and dynamic adaption in learning. Also muta-
tion operator is performed in global particle. This algorithm is
suitably applied for tracking single as well as multiple objects
tracking. Further, Non-inertial opposition-based PSO
(NOPSO) [106] is proposed by Lanlan et al. in 2020. It has
a non-inertial velocity update formula and opposition based
learning strategy (to accelerate the convergence speed) also an
adaptive elite mutation strategy (to avoid trapping into local
optimum) is introduced. NOPSO is applied in the deep learn-
ing problem. Proceeding in same year, novel multi-swam PSO
(NMSPSO) [107] is suggested byXiong et al. It developed the
three scheme i.e. novel information exchange strategy (for
information transfer between sub-swarms), novel leaning
strategy (for speed up the convergence) and novel mutation
strategy (for better exploration). Also, it is used to solve the
real world applications problems. Then, Motion-encoded PSO
(MPSO) [108] is proposed early in 2020 by Phung and Ha.
The motion-encoded approach preserves the important quali-
ties of the swarm including the cognitive and social coherence
so as to obtain better solution. Moreover, it is used to solve the
problem of optimal search for a moving target using UAVs.

2.5 DE and PSO hybrid variants

Hybrid strategy is one of the main research directions to
improve the performance of single algorithm. Different
optimization algorithms have different search behaviors
and advantages. Yet, to overcome individual shortcom-
ings, such as premature convergence or stacking at
some local optima, hybrid techniques are now more fa-
vored over their individual effort. Therefore, in order to
enhance the performance of DE and PSO, lots of their
hybrid algorithms are presented in the literature. A sys-
tematic survey on hybrid variants of DE and PSO can
be found in [38, 39]. Likewise, a briefed review of
some notable hybrids of DE and PSO are summarized
as follows.

Hendtlass in 2001 proposed SDEA [109], where each
individual follows traditional PSO and at the time of
searching, individual move from a poorer region to a
better region with help of DE time to time. Also, it is

applied on unconstrained global optimization problems.
Further in 2003, Zhang and Xie devised a hybrid algo-
rithm DEPSO [110]. It has a bell-shaped DE mutation
to control population diversity and retain the self-
organized particle swarm dynamics. Moreover, it is
solved through unconstrained and constrained optimiza-
tion problems. Then Talbi and Batouche developed
DEPSO [111] in 2004. This framework follows the it-
erative scheme as; DE is employed on even iteration (to
enhance diversity) and PSO is applied on odd iteration
(to extricate the swarm from unwanted fluctuations).
Also, it is applied to solve multimodal image problem.
Another hybridization of PSO and DE (DEPSO) was
delivered by Hao et al. in 2005 [112], in which position
of particle is updated partially through DE (extracting
its differential information) and partially by PSO
(extracting its memory data) due to which swarm’s di-
versity and enhancement of local and global search abil-
ity is maintained. It is applied to solve the uncon-
strained global optimization problems. Later in 2008,
Niu and Li utilized the concept of parallel mechanism
and proposed PSODE [113], in which one population’s
individual upgraded by PSO whereas other evolved by
DE, this interaction of two populations leads to main-
tain the diversity. To check its effectiveness applied to
solve unimodal and multimodal problems. In 2009,
Wang and Cai proposed a hybrid multi-swarm particle
swarm optimization (HMPSO) [114], this hybrid model
splits the swarm into several sub-swarms and PSO used
as search engine for each sub-swarm as well as personal
best of each particle is improved by applying DE.
Moreover, it is used to solve on constrained optimiza-
tion problems. Caponio et al. developed a super-fit
memetic differential evolution (SFMDE) [115] in 2009.
This framework synergized DE with PSO (for super-fit
individual) as well as used nelder mead and rosenbrock
algorithm as local searcher for measuring quality of su-
per fit individual compared to other individual.
Moreover, it is employed for solving optimal control
drive design for a direct current (DC) motor and design
of a digital filter for image processing purposes.
Further, Liu et al. incorporated DE (as it has strong
search ability) in PSO (to overcome the stagnation and
speed up the convergence) and proposed PSO-DE [116]
in 2010. Additionally, it is used to solve welded beam
design, tension compression spring design, pressure ves-
sel design, speed reducer design, three-bar truss design
problems. Xin et al. proposed DEPSO [117] in year
2010. This hybrid model adopted statistical learning
strategy for an individual who leads to the adaptation
of evolution methods according to the relative success
ratio of alternative methods (DE and PSO). And then
applied to solve global numerical optimization problems.

10457

1 3



R. P. Parouha and P. Verma

In 2011, Pant et al. developed DE-PSO [118]. It utilized
the strength of both algorithm (DE and PSO) and exe-
cuted through alternating phases i.e. initiated by DE if
trial vector better than the corresponding point, then it
is added in population otherwise enters the PSO phase
to generate a candidate solution. DEPSO is further ap-
plied to solve unconstrained global optimization prob-
lems. Epitropakis et al. in the 2012 [119] framed a
hybrid algorithm in which after each evolution step of
PSO, the social and cognitive experience evolved with
DE that helps to enhance convergence. Further, this hy-
brid is employed to solve multimodal functions prob-
lems. Later in 2013, Nwankwor et al. [120] developed
hybrid particle swarm differential evolution (HPSODE).
It initiated with DE till the trial vector is generated
otherwise PSO is activated further to generate a new
candidate solution. Also, HPSODE is used to apply on
optimal well placement problems.

Then Sahu et al. [121] in 2014 utilized the advan-
tages of DE (maintaining diversity) and PSO (memory
mechanism) and proposed DEPSO. This hybrid algo-
rithm is used to optimize the gains of fuzzy PID con-
trollers employed in the control areas. Further, in year
2014, HPSO-DE initiated by Yu et al. [122]. It has an
adaptive mutation to improve the current population po-
sition from local optima and balanced diversity effi-
ciently. Then this hybrid algorithm is used to solve
unconstrained global optimization problems. Later in
2015, Seyedmahmoudian et al. [123] proposed DEPSO
by employing DE that adds on diversity to traditional
PSO. Also detrimental effects of the random coefficients
are reduced by DE in parallel with PSO. It is a reliable
and system independent technique to track the MPP of
PV system under partial shading conditions. Parouha
and Das proposed DPD [124] in 2015. It is based on
tri-population scheme (inferior, mid and superior group),
in which DE is executed in the inferior and superior
groups, while PSO is employed in the mid-group.
Moreover, elitism and non-redundant search concept
are included in DPD cycle to maintain diversity and
escape local optima effectively. This hybrid is investi-
gated on the engineering design problems. In year 2016,
Tang et al. [125] proposed hybrid of DE and PSO
namely HNTVPSORBSADE, where a nonlinear time
varying PSO (to update the velocities and positions of
particles) and a ranking based self-adaptive DE (to
avoid stagnation) are introduced which resulted the ex-
ploration and exploitation dynamically. This framework
is used for solving mobile robot global path planning
problem. Further, Memory based DE (MBDE) is pro-
posed by Parouha and Das [126] in 2016. It employed
two operators: swarm mutation and swarm crossover
(based on concept of PSO) for DE to direct knowledge

and improve the solution quality. Also MBDE is ap-
plied on continuous optimization problems. Then, DE-
PSO-DE is proposed in 2016 by Parouha and Das
[127], in which the population is divided into three
groups (A, B, & C) and executed in parallel manner.
Additionally, elitism (to retain the best obtained values)
and non-redundant search (to improve the solution qual-
ity) are evolved in DE-PSO-DE. It is employed for
solving economic load dispatch problems. A year later
in 2017, Famelis et al. devised DE-PSO [128] where to
enhance diversity, DE is merged with a velocity-update
rule of PSO in DE-PSO. It is applied on Multimodal
optimization problems. Mao et al. in 2018 designed
DEMPSO [129], in which DE is added first to lessen
the search space and then acquired populations used
modified PSO (MPSO) as an initial population to speed
up the convergence rate. DEMPSO is performed to
solve the numerical solution of the forward kinematics
of a 3-RPS parallel manipulator. Tang et al. also pro-
posed SAPSO–mSADE [130] in 2018. It integrated self-
adaptive PSO (SAPSO) to balance global and local
search ability of particles and modified self-adaptive
DE (mSADE) to evolve the personal best positions
and reduce potential stagnation. It is applied to solve
the tension compression spring design and three bar
truss design problems. Early in 2019, Too et al. devel-
oped binary particle swarm optimization differential
evolution (BPSODE) [131]. It inherits the strength of
binary PSO (BPSO) and binary DE (BDE) which is
computed on sequence. Additionally, the dynamic iner-
tia weight and dynamic crossover rate are introduced to
track the optimal solution and balance diversity. And
this hybrid algorithm is used to tackle feature selection
problems in EMG signals classification. Recently in
2020, Dash et al. proposed HDEPSO [132]. In
HDEPSO, three DE operations (mutation, modified
crossover and selection) are fused with the best particles
of PSO for enhancing global searching ability.
Moreover, it is developed to solve the effectiveness of
the sharp edge FIR filter (SEFIRF) problem. Since di-
versity of quantum PSO (QPSO) decline rapidly this
shows its inadequacy so Zhao et al. developed improved
QPSO [133] in 2020, in which DE is familiarized to
improve its diversity and convergence rate. It is
employed to solve economic environmental (EED) prob-
lem of the microgrid.

3 Proposed methodology

In this section proposed advanced differential evolution
(ADE), advanced particle swarm optimization (APSO) and
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advanced hybrid DEPSO (AHDEPSO) have been described
in detail as follows.

3.1 Advanced differential evolution (ADE)

As per earlier extensive studies performance of the DEmostly
depends on the following features.

(i). mutation strategy: as it improves the local search ability
and convergence rate.

(ii). crossover operator: since it increases the population
diversity.

(iii). control parameters (F and Cr): as they improve the
search and/or exploration and exploitation ability.

Moreover, above mentioned features are very essential for
efficiency of DE because they determine cooperation
mechanism among the different individuals. Thus, new
DE mutation strategies and crossover operators as well
as adjusting control parameters will surly helpful to im-
prove its robustness. Motivated by above observations
and to refrain from shortcomings, advanced DE (ADE)
is proposed in this paper. Where modified mutation strat-
egy and crossover rate as well as altered selection scheme
are introduced like so.

Mutation: vti; j ¼ xti; j þ F � rand 0; 1ð Þ � best j−xti; j
� �

ð6Þ

where xti; j: target vector, v
t
i; j: mutant vector, rand (0, 1): uni-

formly distributed random number between 0 & 1, bestj: best
vector and F: Scalar factor and it is given as follows.

F ¼ Fmin þ Fmax−Fminð Þ tmax−t
tmax

� �
; Fminϵ 0:1; 0:5½ �; Fmax ¼ 1:

when F composed of a higher values series, then it is benefi-
cial to the global search and when F composed of a lower
values series, then it is beneficial to the local search.

Crossover: uti; j ¼
vti; j; if rand 0; 1ð Þ≤Cr crossover rateð Þ

xti; j ; otherwise

�
ð7Þ

In Eq. (7) Cr is set as 2−exp tmax−t
tmax−0:6t

� �10
� �

. It assured of

individual diversity in early stage which improves global
search ability. Further reduce degree of difference among in-
dividuals which accelerate convergence rate in later stage.

Selection: xtþ1
i; j ¼ xti; j; if f uti; j

� �
> f xti; j

� �
and rand 0; 1ð Þ < p

uti; j ; otherwise

(
ð8Þ

where f (·): fitness function values and p: random value
in (0, 1]. In this selection each pioneer vectors gets
chance to survive and share its observed information
with other vectors in the next steps. It implies searching
capabilities are more enriched. Moreover, it is advanta-
geous for stabilizing essential exploration and exploita-
tion trends to encourage ADE for converging to better
quality solutions. The pseudocode of the proposed ADE
is presented below.

3.2 Advanced particle swarm optimization (APSO)

Based on pros and cons along with existing assessments of
PSO, it is essential to strike a good trade-off between
global and local search to find an optimal solution.
Preferably, PSO needs strong exploration ability (parti-
cles can rove entire search space instead of clustering
around the current best solution) and boost exploitation
capability (particles can explore in a local region) at
early and later phase of the evolution respectively. In
velocity update equation of the PSO, inertia weight (w)
and acceleration coefficient (c1and c2) are important fac-
tors to satisfy the above requirement with the following
concerning concept.

(i). a large and small values of w assists exploration and
exploitation respectively.

(ii). c1& c2 values facilitate exploitation and exploration of
the search area based on ensuing strategies.
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acceleration coefficient tactics

c1(cognitive acceleration
coefficient)

c2 (social acceleration
coefficient)

large small exploration

slightly large slightly small exploitation

slightly small slightly large convergence

small large jumping out

Considering all of the concerns like advantages, disadvan-
tages and parameter influences of the PSO, an advanced par-
ticle swarm optimization (APSO) is introduced in this study. It
relies on novel gradually varying (decreasing and/or increas-
ing) parameters (w, c1and c2) stated as follows.

w ¼ wf −wi

1−tmax

� �
t−tmaxð Þ þ wi;C1

¼ C1 f −C1i

1−tmax

� �
t−tmaxð Þ þ C1i and C2

¼ C2 f −C2i

1−tmax

� �
t−tmaxð Þ þ C2i ð9Þ

where, wi and wf: initial and final values of w; c1i and c1f:
initial and final values of c1; c2i and c2f: initial and final values
of c2; t and tmax: iteration index and maximum number of
iteration. Hence the velocity and position of the ith particle
are updated by the following equations in the proposed APSO.

vtþ1
i; j ¼ wf −wi

1−tmax

� �
t−tmaxð Þ þ wi

� �
vti; j

þ C1 f −C1i

1−tmax

� �
t−tmaxð Þ þ C1i

� �
r1 ptbest i; j−x

t
i; j

� �
þ C2 f −C2i

1−tmax

� �
t−tmaxð Þ þ C2i

� �
r2 gtbestj−x

t
i; j

� �
ð10Þ

xtþ1
i; j ¼ xti; j þ vtþ1

i; j ð11Þ

The pseudocode of the proposed APSO is presented below.

3.3 Advanced hybrid DEPSO (AHDEPSO)

Introductory reviews and results showed that hybrid algorithm
improve the performances of DE & PSO, because they have
complimentary properties. Therefore, an advanced hybrid al-
gorithm of advanced DE and PSO (AHDEPSO) are proposed
to further improve the solution quality. Basically, AHDEPSO
is based on relating superior capability of the proposed ADE
and APSO.

In AHDEPSO, entire population is sorted according to the
fitness function value and divided into two sub-populations
i.e. pop1 (best half) and pop2 (rest half). Since pop1 and pop2
contains best and rest half of the main population which im-
plies good global and local search capability respective-
ly. In order to maintain local and global search capabil-
ity, applying proposed ADE (due to its good local search
ability) and APSO (because of its virtuous global search
capability) on the respective sub-population ( pop1
and pop2). Evaluating both sub-population then better
solution obtained in pop1 (by using ADE) and pop2 (by
using APSO) are named as best and gbest separately. If
best is less than gbest then pop2 is merged with pop1
thereafter merged population evaluated by ADE (as it
mitigate the potential stagnation). Otherwise, pop1 is
merged with pop2 afterward merged population evaluated
by APSO (as it established to guide better movements).
Finally, reporting the optimal solution, if stoppings
criteria met then stop otherwise returns to sorting process
of population. Continue this whole process until get de-
sire optimal solution. The flowchart of AHDEPSO is
demonstrated in Fig. 3 and the pseudocode described
below.
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4 Experimental results and discussions

In this section considered optimization problems with their
experimental results are discussed as follows.

4.1 Test suite (TS) and real world problems (RWPs)

In order to evaluate performance of the proposed ADE, APSO
and AHDEPSO algorithm the following unconstrained test
suite (TS) and real world problems (RWPs) are considered
to solve.

(i). TS-1: 23 basic benchmark functions
(ii). TS-2: IEEE CEC 2017
(iii). RWP-1: Gear train design problem

Minimize f xð Þ ¼ 1

6:931
−
TdTb

TaT f

� �2

¼ 1

6:931
−
x1x2
x3x4

� �2

;

subject to : 12≤xi≤600; i ¼ 1; 2; 3; 4:

(iv). RWP-2: Frequency modulation sound parameter iden-
tification problem

y tð Þ ¼ a1sin w1t þ a2sin w2t þ a3sin w2tð Þð Þð Þ

y0 tð Þ ¼ 1:0sin 5:0ð Þt − 1:5ð Þsin 4:8ð Þt þ 2:0ð Þsin 4:9ð Þtð Þð Þð Þ

where: ¼ 2π
100, and −6.4 ≤ ai, wi ≤ 6.35, i = 1, 2, 3.

Minimize f a1;w1; a2;w2; a3;w3ð Þ ¼ ∑100
t¼0 y tð Þ−y0 tð Þð Þ2

(v). RWP-3: The spread spectrum radar poly-phase code
design problem

Minimize f xð Þ ¼ Max f 1 Xð Þ;…; f 2m Xð Þf g;
X ¼ x1;…; xnð Þ∈Rn 0≤x j≤2π

�� ; j ¼ 1; 2;…; n
	 


&m ¼ 2n−1

with: f 2i−1 xð Þ ¼ ∑n
j¼1cos ∑ j

k¼ 2i− j−1j jþ1xk
� �

i ¼ 1; 2;…; n;

f 2i xð Þ ¼ 0:5þ ∑n
j¼iþ1cos ∑ j

k¼ 2i− jj jþ1xk
� �

i

¼ 1; 2;…; n−1; f mþi xð Þ ¼ − f i xð Þ; i ¼ 1; 2;…;m:

The description of TS-1 is listed in Table 1 which consists
of three groups’ unimodal (f1-f7), multimodal (f8-f13) and
fixed-dimension (f14-f23) function. Also, TS-2 cited in
Table 2 which consists of unimodal (h1-h3), multimodal (h4-
h10), hybrid (h11-h20) and composition (h20-h30) functions.
Moreover, the detailed summary of TS-2 and 3 RWPs are
given in [134, 135] respectively.

Simulations were conducted on Intel (R) Core (TM) i5–
2350 M CPU @ 2.30GHz, RAM: 4.00 GB, Operating
System: Microsoft Windows 10, C-free Standard 4.0. An ex-
tensive analysis has been carried out to decide the values of
parameters wi, wf, c1i, c1f, c2i and c2f used in proposed
AHDEPSO. For this the values of (wi, wf), (c1i, c2f)
and (c1f, c2i) varies from (0.1–0.9, 0.1–0.9), (0.1–0.9,
0.1–0.9) and (2.1–2.9, 2.1–2.9) respectively with one
step length. The success rate (defined below) of total
81 combinations of these parameters are checked using
proposed AHDEPSO with population size (30), stopping
criteria (500 iterations) and independent run (30) on test
suite TS-1 and TS-2 (30D).

Success rate SRð Þ ¼ Number of succesful runs

Total nimber of runs

where a run is declaired as a ‘successful run’ if |f(x) −
f(x∗)| ≤ ∈, where f(x) is the known global minima and
f(x∗) is the obtained minima. In this study ∈ is fixed at
0.0001.

The success rate on best 10 combinations of (wi, wf) and
(c1i& c2f, c1f& c2i) are presented in Figs. 4 and 5 respectively.
From these figures, it is clearly noticeable that the highest
success rate can be found at (0.4, 0.9) in case of inertia
weight and (0.5, 2.5) in case of acceleration coefficients.
Hence, wi = 0.4, wf = 0.9, c1i = 0.5, c1f = 2.5, c2i = 2.5
and c2f = 0.5 have been recommended to use in proposed
AHDEPSO. The overall best values in each table are
highlighted with boldface letters of the corresponding al-
gorithms. In all experiments, for fair comparison common
parameters such as population size, stopping criteria and
independent run are set the same or minimum of compar-
ative algorithms. The results of the comparative

Fig. 3 Flowchart of AHDEPSO

10461

1 3



R. P. Parouha and P. Verma

algorithms are directly taken from the original references.
The simulation result analysis on TS-1, TS-2 and RWPs
with comparative experiments are presented below.

4.2 Numerical and graphical analysis

The simulation result analysis on TS-1, TS-2 and RWPs with
comparative experiments are presented below.

i). On TS-1: 23 basic unconstrained benchmark functions

The produced result by proposed algorithms on TS-1 is
compared with traditional algorithms (PSO [3] & DE [4]),
DE variants (JADE [136] & SHADE [137]), PSO variants
(HEPSO [138] & RPSOLF [139]) and hybrid variants
(FAPSO [140] & PSOSCALF [141]). The parameters of all
above compared and proposed algorithms are listed in
Table 3. The comparative experimental results in terms of

Table 1 Test Suite (TS)-1
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mean, std. (standard deviation) and ranking of the objective
function values are presented in Table 4 of 30 independent
runs.

It should be noted that from Table 4, the mean objective
function values of the proposed ADE, APSO and AHDEPSO
algorithms are better and/or equal in comparison of above
listed traditional algorithms, DE variants, PSO variants and

Table 2 Test suite (TS)-2 (IEEE
CEC2017 unconstrained
benchmark functions)

Type No. Functions Optimum

Unimodal h1 Shifted and Rotated Bent Cigar Function 100

h2 Shifted and Rotated Sum of Different Power Function 200

h3 Shifted and Rotated Zakharov Function 300

Multimodal h4 Shifted and Rotated Rosenbrock’s Function 400

h5 Shifted and Rotated Rastrigin’s Function 500

h6 Shifted and Rotated Expeanded Scaffer’s F6 Function 600

h7 Shifted and Rotated LunacekBi_Rastrigin’s Function 700

h8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800

h9 Shifted and Rotated Levy Function 900

h10 Shifted and Rotated Schwefel’s Function 1000

Hybrid h11 Hybrid Function 1 (N = 3) 1100

h12 Hybrid Function 2 (N = 3) 1200

h13 Hybrid Function 3 (N = 3) 1300

h14 Hybrid Function 4 (N = 4) 1400

h15 Hybrid Function 5 (N = 4) 1500

h16 Hybrid Function 6 (N = 4) 1600

h17 Hybrid Function 7 (N = 5) 1700

h18 Hybrid Function 8 (N = 5) 1800

h19 Hybrid Function 9 (N = 5) 1900

h20 Hybrid Function 10 (N = 6) 2000

Composition h21 Composition Function 1 (N = 3) 2100

h22 Composition Function 2 (N = 3) 2200

h23 Composition Function 2 (N = 4) 2300

h24 Composition Function 2 (N = 4) 2400

h25 Composition Function 3 (N = 5) 2500

h26 Composition Function 4 (N = 5) 2600

h27 Composition Function 5 (N = 6) 2700

h28 Composition Function 6 (N = 6) 2800

h29 Composition Function7 (N = 3) 2900

h30 Composition Function 8 (N = 3) 3000

Search space: [−100, 100]D

Fig. 4 Influence of different
inertia weights of proposed
AHDEPSO on test suite (TS)-1
and TS-2
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hybrid variants. As per the experimental results shown in
Table 4 the following comparison results (among non-
proposed algorithms) are summarized as follows for TS-1
cases (i). Unimodal function (f1-f7): proposed AHDEPSO ob-
tained better results in all seven functions (f1-f7), Suggested
ADE and APSO obtained better results for f1, f2, f3 and f6
functions and marginally similar for the rest functions. (ii).
Multimodal function (f8-f13): proposed AHDEPSO obtained
better results for all six function (f8-f13) and similar for f8 (on
DE, JADE and PSOSCALF), f9 (on RPSOLF, FAPSO &
PSOSCALF) and f11 (on RPSOLF & PSOSCALF).
Suggested ADE attained better results for f8, f9, f11 and mar-
ginally similar/inferior for the rest functions whereas, APSO
obtained better result for f9 and slightly inferior for the rest.
(iii). Fixed-dimension function (f14-f23): proposed AHDEPSO
and ADE exhibits best performance on all functions mean-
while APSO obtained marginally better or equal results com-
pared to other algorithms. Moreover, all algorithms are indi-
vidually ranked (as ‘1’for the best and ‘2’ for subsequent
performer and so on) in Table 4 based on mean result values.
From this table it is concluded that AHDEPSO, ADE and
APSO ranked 1st, 2nd and 3rd sequentially. Also, average

and overall rank of proposed algorithms Vs others are present-
ed in Table 4. It is clear that (from ranking) performances of
proposed algorithms are superior to others. Eventually, pro-
posed ADE, APSO and AHDEPSO produce less std. (it may
0.00E+00) for most of the cases on TS-1 which describes their
stability. Furthermore, superiority of proposed algorithms is
statistically validated over other algorithms through one-
tailedt-test (with 98 degree of freedom (df) at 5% significance
level) and Wilcoxon Signed Rank (WSR) test (at 5% signifi-
cance level). The details of these tests can be found in [142].
The results of t-test and WSR test on TS-1 are reported in
Table 5. From Table 5, it can be seen that proposed algorithms
has both ‘a (significantly better than other)’ or ‘a+ (highly
significance with other)’ sign (in case of t-test) and performs
better or equally (in case WSR test) in most of consequence.
Also, the p values as reported in Table 5 of the proposed
algorithms are less with others which conclude that simula-
tions are reliable for the majority of runs.

The convergence speed of proposed and comparative algo-
rithms is compared over 8 (f1, f5, f6, f7, f8, f9, f10 and f11)
typical 30-D TS-1. All plotted convergence graphs (objective
function values Vs iterations) are separately presented in

Fig. 5 Influence of different
acceleration coefficients of
proposed AHDEPSO on test suite
(TS)-1 and TS-2

Table 3 Parameter setting for TS-1

Algorithm Year Ref. Control parameter Population
size

Stopping
criterion
(iterations)

Run

Term Values

PSO 1995 [3] w, C1 & C2 Linear reduction from 0.9 to
0.1, 2 & 2

30 500 30

DE 1997 [4] F & CR 0.5 & 0.5 30 500 30

JADE 2009 [136] Fi & CRi, randci (μF, 0.1) & randni (μCR, 0.1) 50 1000 30

SHADE 2013 [137] Pbest & Arc rate 0.1 & 2 30 500 30

HEPSO 2014 [138] PC & PB 0.95 & 0.02 50 500 30

RPSOLF 2017 [139] w, c1, c2, c3, β & ε 0.55, 1.49, 1.49, 1.5 & 0.99 50 500 30

FAPSO 2018 [140] – – 50 5000 30

PSOSCALF 2018 [141] wmin, wmax, c1min, c1max,
c2min, c2max & β

0.4, 0.9, 0.5, 2.5, 0.5, 2.5 & 1.5 50 500 30

ADE Proposed Fmin & Fmax [0.1,0.5] & 1 30 500 30

APSO wi, wf, c1i, c1f, c2i & c2f 0.4, 0.9, 0.5, 2.5, 2.5 & 0.5 30 500 30

AHDEPSO – – 30 500 30
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Fig. 6a–h. From this figures it can be concluded that proposed
ADE, APSO and AHDEPSO converge much faster than other
algorithms in all cases. Also, total of 690 runs (30 runs for
each TS-1 with 30 population size) optimal solutions are il-
lustrated in Fig. 7. It confers that the proposed algorithms
score the highest optimum solutions. Apart from this the com-
putational time of proposed and compared algorithms on each
TS-1 are computed and presented in Fig. 8. From this figure, it
can be observed that the proposed algorithms take lesser time
to achieve the best value for the entire TS-1.

As a whole, above numerical, statistical and graphical
result analysis shows that proposed ADE, APSO and
AHDEPSO performs very competitive and/or equally
with other compared algorithms. However, among three
proposed algorithms AHDEPSO is superior i.e. ranking
order of proposed algorithms to solve TS-1 is
AHDEPSO>ADE > APSO.

ii). On TS-2: IEEE CEC 2017 unconstrained benchmark
functions

Further, the produced result by proposed ADE, APSO and
AHDEPSO on TS-2 is compared with DE variants (MPEDE
[143] & EFADE [144]), PSO variants (HEPSO [138] &
CSPSO [145]) and hybrid variants (HPSODE [120] &
PSOJADE [146]). The parameters of all above compared
and proposed algorithms are listed in Table 6 for TS-2. The
relative experimental results in terms of mean error, std. (stan-
dard deviation) and ranking of the objective function values
are presented in Tables 7, 8 and 9 (for 10D, 30D& 50D TS-2)
of 30 independent runs.

From Tables 7, 8 and 9, it should be noted that the mean
values of the proposed ADE, APSO and AHDEPSO algo-
rithms are better and/or equal in comparison of all compared
algorithms in test suites. As per the experimental results
shown in Table 7 following comparison results are

Table 5 Statistical comparisons of proposed Vs other algorithms for TS-1

Vs Criteria Algorithms

Traditional algorithms DE variants PSO variants Hybrid variants Proposed algorithms

PSO DE JADE SHADE HEPSO RPSOLF FAPSO PSOSCALF APSO AHDEPSO

ADE better 21 15 16 20 19 18 16 15 15 0

equal 2 8 6 3 4 5 5 8 8 16

worst 0 0 1 0 0 0 2 0 0 7

R+ 217 194 220 255 197 150 164 232 154 217

R− 59 82 56 21 79 126 112 44 122 59

p value 5.2e-07 5.6e-09 8.2e-07 5.8e-08 6.2e-04 6.9e-07 4.3e-09 6.2e-08 5.1e-10 6.9e-012

t-test a a a a+ a a a a+ a+ a+

decision + + + ≈ + + + ≈ + +

Vs PSO DE JADE SHADE HEPSO RPSOLF FAPSO PSOSCALF ADE AHDEPSO

APSO better 21 14 11 18 17 14 12 15 0 0

equal 2 4 5 3 2 4 4 2 8 8

worst 0 5 7 2 4 5 7 6 15 15

R+ 253 220 181 212 168 192 211 153 150 168

R− 23 56 95 64 108 84 65 123 126 108

p value 5.3e-08 5.1e-07 6.2e-05 4.6e-08 5.7e-07 5.1e-03 5.6e-07 5.8e-07 6.2e-09 5.3e-11

t-test a a a a+ a a+ a+ a+ a a+

decision + + + + ≈ + + + + +

Vs PSO DE JADE SHADE HEPSO RPSOLF FAPSO PSOSCALF ADE APSO

AHDEPSO better 0 0 17 20 19 18 17 15 7 15

equal 2 8 5 3 4 5 5 8 16 8

worst 21 15 1 0 0 0 1 0 0 0

R+ 171 177 145 220 227 217 164 207 156 187

R− 105 99 131 56 49 59 112 69 120 89

p value 5.1e-08 6.2e-09 4.6e-08 5.7e-07 5.1e-07 5.1e-09 5.3e-08 6.2e-09 4.6e-10 5.7e-11

t-test a a a a+ a a+ a+ a a+ a

decision + + + + + ≈ + + + +

10467

1 3



R. P. Parouha and P. Verma

Fig. 6 a-h Convergence graph of compared and proposed algorithms for TS-1
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Fig. 7 Comparison of algorithms
in finding the global optimal
solution out of 690 runs

Fig. 8 Processing times of algorithms for TS-1

Table 6 Parameter settings for TS-2

Algorithm Year Ref. Control parameter Population Size Stopping
criterion (MaxFEs)

Run

Term Values

MPEDE 2016 [143] λ1 & ng (0.1, 0.15, 0.25 & 0.3) & (10, 30, 50, 80) 40 2 × 105 30

EFADE 2018 [144] Fi, CR1 & CR2 rand (0, ki) where i = 1, 3,2; [0.05, 0.15] & [0.9, 1]. 30 2 × 105 51

HEPSO 2014 [138] PC & PB 0.95 & 0.02 40 2 × 105 30

CSPSO 2014 [145] – – 50 2 × 105 30

HPSODE 2014 [120] PSO , DE , & 0.3, 0.01, 1.5 & 0 40 2 × 105 30

PSOJADE 2019 [146] p 0.5 40 2 × 105 30

ADE Proposed Fmin & Fmax [0.1,0.5] & 1 30 2 × 105 30

APSO wi, wf, c1i, c1f, c2i & c2f 0.4, 0.9, 0.5, 2.5, 2.5 & 0.5 30 2 × 105 30

AHDEPSO – – 30 2 × 105 30

MaxFEs maximum number of function evaluations,
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Table 7 Simulation results on TS-2 (10D)

hn Criteria Algorithms

DE variants PSO variants Hybrid variants Proposed algorithms

MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE ADE APSO AHDEPSO

h1 mean 0.00e+000 0.00e+00 5.67e+000 1.29e+002 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000

std. 0.00e+000 0.00e+00 1.66e+001 1.65e+002 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000

rank 1 1 2 3 1 1 1 1 1

h2 mean 5.55e-016 0.00e+00 1.06e-007 1.28e-006 3.49e-014 1.97e-017 0.00e+000 0.00e+000 0.00e+000

std. 2.53e-015 0.00e+00 1.40e-007 1.11e-006 1.63e-013 4.71e-017 0.00e+000 0.00e+000 0.00e+000

rank 3 1 5 6 4 2 1 1 1

h3 mean 0.00e+000 0.00e+00 2.75e-014 0.00e+00 0.00e+00 0.00e+000 0.00e+000 0.00e+000 0.00e+000

std. 0.00e+000 0.00e+00 4.56e-014 0.00e+00 0.00e+00 0.00e+000 0.00e+000 0.00e+000 0.00e+000

rank 1 1 2 1 1 1 1 1 1

h4 mean 7.60e-032 0.00e+00 7.70e-006 1.78e-005 3.09e-030 0.00e+00 0.00e+000 0.00e+000 0.00e+000

std. 4.16e-031 0.00e+00 8.14e-006 6.48e-005 8.85e-030 0.00e+00 0.00e+000 0.00e+000 0.00e+000

rank 2 1 4 5 3 1 1 1 1

h5 mean 5.83e+000 6.49e+00 0.00e+000 3.42e+000 3.51e+000 3.97e-001 1.66e+000 2.00e+000 0.00e+000

std. 3.35e+000 1.44e+00 0.00e+000 9.75e-001 1.53e+000 6.71e-001 2.45e-002 3.70e-002 0.00e+000

rank 7 8 1 5 6 2 3 4 1

h6 mean 0.00e+000 4.68e-14 2.06e-017 0.00e+000 0.00e+000 0.00e+000 0.00e+000 1.40e-007 0.00e+000

std. 0.00e+000 5.65e-14 7.14e-017 0.00e+000 0.00e+000 0.00e+000 0.00e+000 9.90e-007 0.00e+000

rank 1 3 2 1 1 1 1 2 1

h7 mean 1.50e+001 1.91e+01 9.04e+000 1.39e+001 1.21e+001 1.07e+001 0.00e+000 1.03e+001 0.00e+000

std. 1.55e+000 1.71e+00 3.60e+000 1.33e+000 1.15e+000 3.24e-001 0.00e+000 0.00e+000 0.00e+000

rank `7 8 2 6 5 4 1 3 1

h8 mean 5.83e+000 7.68e+00 0.00e+000 3.24e+000 2.85e+000 3.97e-001 0.00e+000 2.38e-003 0.00e+000

std. 2.51e+000 1.99e+00 0.00e+000 8.93e-001 1.64e+000 6.18e-001 0.00e+000 0.16e+000 0.00e+000

rank 6 7 1 5 4 3 1 2 1

h9 mean 2.01e-029 0.00e+00 3.54e-022 1.99e-029 1.98e-029 1.98e-029 0.00e+000 1.87e-029 0.00e+000

std. 1.52e-030 0.00e+00 1.93e-021 3.18e-031 8.55e-045 8.55e-045 0.00e+000 6.68e-032 0.00e+000

rank 3 1 7 4 5 5 2 6 1

h10 mean 3.36e+002 2.76e+02 2.69e+001 3.80e+001 3.87e+002 9.56e+000 1.30e+001 1.45e+001 0.00e+000

std. 1.65e+002 8.44e+01 2.81e+001 4.65e+001 1.57e+002 3.02e+001 3.82e+009 5.62e+007 0.00e+000

rank 8 7 5 6 9 2 3 4 1

h11 mean 1.64e+000 1.40e+00 1.11e-011 1.05e+000 4.64e-001 6.63e-002 1.73e-002 2.22e-002 1.07e-003

std. 1.88e+000 1.05e+00 1.88e-011 1.02e+000 6.25e-001 2.52e-001 1.80e-001 7.91e-002 2.21e-002

rank 9 8 1 7 6 5 3 4 2

h12 mean 2.96e+002 1.62e+00 4.43e+003 4.92e+003 8.20e+001 7.49e+001 1.90e+002 2.96e+002 3.13e+001

std. 1.44e+002 3.54e+00 4.07e+003 3.43e+003 1.24e+002 1.05e+002 8.30e+002 1.35e+002 2.42e+003

rank 6 1 7 8 4 3 5 6 2

h13 mean 5.66e+000 3.60e+00 2.14e+000 1.71e+002 4.42e+000 2.23e+000 1.20e+000 3.46e+000 0.00e+000

std. 3.67e+000 2.89e+00 3.26e+000 1.68e+002 1.91e+000 2.10e+000 1.70e+002 8.55e+002 0.00e+000

rank 8 6 3 9 7 4 2 5 1

h14 mean 7.02e+000 3.85e-01 1.91e-013 1.19e+000 3.97e-001 0.00e+000 3.60e-009 2.04e-008 0.00e+000

std. 8.66e+000 4.52e-01 6.82e-013 9.45e-001 5.60e-001 0.00e+000 2.98e-008 7.02e-004 0.00e+000

rank 8 6 2 7 5 1 3 4 1

h15 mean 9.32e-001 1.26e-01 2.04e-002 7.84e-001 2.23e-001 3.21e-003 5.01e-001 3.25e-001 2.28e-002

std. 7.86e-001 3.11e-01 3.59e-002 4.84e-001 3.53e-001 4.23e-003 5.50e-001 7.91e-001 2.29e-001

rank 4 9 2 5 8 1 6 7 3
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Table 7 (continued)

hn Criteria Algorithms

DE variants PSO variants Hybrid variants Proposed algorithms

MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE ADE APSO AHDEPSO

h16 mean 1.49e+001 8.59e-01 2.91e-001 3.45e-001 1.28e+001 1.55e-001 7.50e-001 5.93e-001 8.03e-001

std. 3.19e+001 3.01e-01 4.40e-001 1.84e-001 2.43e+001 1.80e-001 4.60e-001 5.41e-001 7.45e-001

rank 9 1 6 5 8 7 3 4 2

h17 mean 1.33e+001 1.59e+00 2.84e-002 9.72e-001 2.46e+000 1.78e+000 2.77e-002 1.90e-002 1.18e-003

std. 2.30e+001 8.37e-01 3.50e-002 5.41e-001 5.70e+000 5.07e+000 1.13e-002 3.11e-002 7.86e-002

rank 9 6 2 5 8 7 3 4 1

h18 mean 9.96e+000 2.45e-01 2.54e-002 1.75e+001 8.81e-001 7.81e-002 6.90e-001 5.70e-001 1.89e-002

std. 9.68e+000 3.33e-01 2.16e-002 1.47e+001 3.61e+000 1.58e-001 1.60e-000 4.24e-000 3.22e-001

rank 8 7 2 9 4 1 5 6 3

h19 mean 6.43e-001 1.40e-02 2.59e-003 5.47e-002 3.70e-002 6.47e-004 1.70e-004 2.99e-004 1.06e-005

std. 7.73e-001 1.22e-02 6.71e-003 4.20e-002 1.84e-001 3.54e-003 3.80e-001 5.12e-001 6.16e-004

rank 9 8 5 6 7 2 4 3 1

h20 mean 3.26e+000 0.00e+00 8.95e-014 6.63e-002 8.32e-002 0.00e+000 0.00e+000 0.00e+000 0.00e+000

std. 6.90e+000 0.00e+00 2.53e-013 2.52e-001 1.40e-001 0.00e+000 0.00e+000 0.00e+000 0.00e+000

rank 5 1 2 4 3 1 1 1 1

h21 mean 1.65e+002 1.26e+02 5.01e+001 9.38e+001 1.85e+002 1.51e+002 4.70e+001 3.38e+001 2.30e+001

std. 5.43e+001 4.68e+01 4.46e+001 2.34e+001 4.34e+001 5.24e+001 4.96e+000 2.14e+000 1.81e+001

rank 8 6 4 5 9 7 3 2 1

h22 mean 9.40e+001 8.06e+01 6.00e+001 8.55e+001 9.48e+001 1.00e+002 4.78e+001 4.83e+001 3.86e+001

std. 2.40e+001 3.89e+01 4.98e+001 3.01e+001 2.12e+001 0.00e+000 1.33e+000 2.12e+000 7.22e+001

rank 7 5 4 6 8 9 2 3 1

h23 mean 3.09e+002 3.08e+02 2.20e+002 5.61e+001 3.08e+002 3.01e+002 2.00e+002 2.02e+002 1.71e+001

std. 2.95e+000 2.00e+00 1.34e+002 1.11e+002 3.19e+000 1.89e+000 6.72e+005 1.28e+003 3.45e+000

rank 8 7 5 2 7 6 3 4 1

h24 mean 2.74e+002 2.39e+02 1.00e+002 9.76e+001 3.39e+002 2.99e+002 2.25e+002 2.29e+002 1.00e+002

std. 1.06e+002 1.17e+02 4.78e-014 1.30e+001 3.92e+000 7.96e+001 4.23e+000 6.82e+000 5.23e+000

rank 6 5 2 1 8 7 3 4 2

h25 mean 4.15e+002 4.00e+02 2.98e+002 4.06e+002 4.21e+002 4.21e+002 2.98e+002 2.96e+002 2.95e+002

std. 2.27e+001 8.92e+00 1.42e+002 1.71e+001 2.39e+001 2.25e+001 8.77e+000 1.73e+001 2.30e+000

rank 6 4 2 5 7 7 2 3 1

h26 mean 2.94e+002 3.00e+02 1.13e+002 2.59e+002 3.05e+002 2.73e+002 2.94e+002 3.00e+002 2.92e+002

std. 6.27e+001 0.00e+00 1.00e+002 9.26e+001 2.86e+001 6.39e+001 2.45e+001 2.16e+001 6.06e+002

rank 4 6 1 2 7 3 5 6 4

h27 mean 3.90e+002 3.89e+02 2.78e+002 3.90e+002 3.89e+002 3.89e+002 3.89e+002 3.90e+002 3.89e+002

std. 1.60e+000 1.96e+00 1.33e+002 2.64e+000 1.09e+000 2.11e+000 4.11e+001 6.42e+000 2.38e+002

rank 3 2 1 3 2 2 2 3 2

h28 mean 4.67e+002 3.00e+02 1.20e+002 2.91e+002 4.58e+002 4.19e+002 2.97e+002 2.98e+002 2.90e+002

std. 1.48e+002 0.00e+00 1.49e+002 4.41e+001 1.48e+002 1.48e+002 4.86e+001 5.78e+001 3.82e+001

rank 9 6 1 3 8 7 4 5 2

h29 mean 2.37e+002 2.52e+02 2.26e+002 2.40e+002 2.31e+002 2.31e+002 2.27e+002 2.27e+002 2.26e+002

std. 7.28e+000 5.69e+00 2.91e+001 3.45e+000 3.25e+000 2.58e+000 5.27e+002 5.27e+001 5.23e+002

rank 4 6 1 5 3 3 2 2 1

h30 mean 9.66e+004 3.97e+02 1.04e+003 2.39e+003 1.42e+005 4.50e+002 2.75e+002 2.89e+002 2.50e+002

std. 3.00e+005 7.46e+00 2.51e+002 1.31e+003 3.24e+005 5.81e+001 7.90e+001 5.33e+002 1.56e+001

rank 8 4 6 7 9 5 2 3 1
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Table 8 Simulation results on TS-2 (30D)

hn Criteria Algorithms

DE variants PSO variants Hybrid variants Proposed algorithms

MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE ADE APSO AHDEPSO

h1 mean 5.98e-021 1.50e-14 7.99e+002 1.44e+003 2.80e-023 1.01e-019 7.49e-023 2.78e-022 4.54e-024

std. 1.94e-020 8.24e-15 1.02e+003 2.12e+003 9.19e-023 4.67e-019 4.44e-020 7.29e-021 1.38e-020

rank 5 6 7 8 3 6 2 4 1

h2 mean 1.71e-006 0.00e+00 5.36e-006 5.06e-005 7.74e-005 1.13e-007 3.13e-008 6.23e-007 0.00e+000

std. 3.07e-006 0.00e+00 7.53e-006 1.77e-004 2.35e-004 5.48e-007 6.48e-007 4.28e-006 0.00e+000

rank 6 1 5 8 7 4 2 3 1

h3 mean 6.58e-028 2.22e-13 8.43e-001 0.00e+000 7.49e-028 1.98e-028 0.00e+000 7.44e-028 0.00e+000

std. 7.38e-028 2.63e-13 1.82e+000 0.00e+000 7.22e-028 2.70e-028 0.00e+000 6.12e-027 0.00e+000

rank 4 6 7 1 2 5 1 3 1

h4 mean 2.83e+001 3.74e+01 2.12e-001 2.55e+000 5.00e+001 6.47e+000 2.74e+001 2.81e+001 2.62e+001

std. 3.04e+001 2.91e+01 7.91e-001 1.94e+000 2.23e+001 1.61e+001 1.97e+001 8.31e+001 4.17e+001

rank 7 8 1 2 9 3 5 6 4

h5 mean 5.07e+001 4.20e+01 2.23e+001 4.62e+001 3.37e+001 2.69e+001 2.29e+001 2.32e+001 2.06e+001

std. 1.08e+001 1.32e+01 5.68e+000 1.35e+001 6.88e+000 4.47e+000 2.45e+002 3.70e+002 5.12e+001

rank 9 7 2 8 6 5 3 4 1

h6 mean 5.62e-004 1.25e-13 1.90e-013 4.91e-008 9.41e-008 0.00e+000 0.00e+000 1.40e-014 0.00e+000

std. 2.80e-003 3.41e-14 3.42e-013 2.18e-007 3.01e-007 0.00e+000 0.00e+000 1.30e-012 0.00e+000

rank 7 4 3 6 5 1 1 2 1

h7 mean 7.52e+001 9.51e+01 4.73e+001 6.52e+001 7.53e+001 5.66e+001 0.00e+000 1.03e+001 0.00e+000

std. 8.53e+000 2.54e+01 4.05e+000 1.24e+001 9.71e+000 5.02e+000 0.00e+000 4.17e+000 0.00e+000

rank 6 8 3 5 7 4 1 2 1

h8 mean 4.07e+001 4.54e+01 2.15e+001 6.05e+001 3.85e+001 2.85e+001 2.82e+001 2.84e+001 0.00e+000

std. 1.10e+001 1.36e+01 6.61e+000 2.09e+001 1.05e+001 5.98e+000 3.29e+001 5.87e+001 0.00e+000

rank 7 8 2 9 6 5 3 4 1

h9 mean 9.60e+000 2.23e-14 5.26e-023 2.35e-001 4.72e-001 1.33e-001 2.28e-025 6.87e-023 1.78e-026

std. 3.05e+001 4.56e-14 9.13e-023 3.53e-001 9.65e-001 4.27e-001 7.77e-023 7.18e-022 2.16e-024

rank 9 5 4 7 6 8 2 3 1

h10 mean 3.20e+003 3.57e+03 2.14e+003 3.52e+003 2.92e+003 1.11e+003 3.10e+003 3.15e+003 2.41e+003

std. 6.02e+002 7.36e+02 2.09e+002 2.86e+002 2.95e+002 2.89e+002 1.71e+004 6.79e+005 7.87e+002

rank 7 9 2 8 4 1 5 6 3

h11 mean 9.50e+001 1.30e+01 5.72e+000 2.21e+001 2.39e+001 1.87e+001 1.23e+001 1.32e+001 1.17e+001

Table 7 (continued)

hn Criteria Algorithms

DE variants PSO variants Hybrid variants Proposed algorithms

MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE ADE APSO AHDEPSO

Sum of rank 177 142 90 146 167 108 78 104 42

Average 5.9 4.73 3 4.86 5.56 3.36 2.6 3.46 1.4

Overall rank 9 6 3 7 8 4 2 5 1
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Table 8 (continued)

hn Criteria Algorithms

DE variants PSO variants Hybrid variants Proposed algorithms

MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE ADE APSO AHDEPSO

std. 5.46e+001 4.99e+00 3.05e+000 1.65e+001 2.26e+001 2.13e+001 1.80e+001 7.91e+002 2.21e+002

rank 9 4 1 7 8 6 3 5 2

h12 mean 1.29e+003 7.33e+03 6.39e+004 1.20e+004 9.81e+003 1.02e+003 2.30e+003 2.36e+003 1.13e+003

std. 3.54e+002 7.21e+03 1.00e+005 7.55e+003 1.26e+004 4.01e+002 5.17e+002 8.77e+002 3.90e+003

rank 3 6 9 8 7 1 4 5 2

h13 mean 4.61e+002 3.29e+01 5.44e+003 6.40e+003 1.73e+004 5.83e+001 3.27e+001 3.28e+001 3.24e+001

std. 6.26e+002 2.70e+01 3.95e+003 4.70e+003 1.56e+004 3.52e+001 1.77e+001 5.77e+001 7.78e+001

rank 6 4 7 8 9 5 2 3 1

h14 mean 1.57e+002 1.11e+01 2.14e+003 7.04e+002 2.91e+001 1.61e+001 1.60e+001 1.61e+001 1.04e+001

std. 7.07e+001 4.26e+00 2.89e+003 7.88e+002 9.57e+000 1.13e+001 2.98e+003 7.02e+002 5.12e+002

rank 6 2 8 7 5 4 3 4 1

h15 mean 1.79e+002 7.91e+00 2.80e+002 5.40e+002 2.17e+001 6.09e+001 2.16e+001 2.17e+001 2.14e+001

std. 1.22e+002 3.22e+00 2.51e+002 7.31e+002 1.46e+001 6.97e+001 4.10e+001 7.92e+001 8.69e+001

rank 6 1 7 8 4 5 3 4 2

h16 mean 7.02e+002 4.47e+02 3.88e+002 2.49e+002 3.56e+002 4.26e+002 2.43e+002 2.45e+002 2.23e+002

std. 3.56e+002 1.76e+02 9.93e+001 1.18e+002 2.05e+002 1.51e+002 4.63e+003 5.42e+001 4.15e+003

rank 9 8 6 4 5 7 2 3 1

h17 mean 1.66e+002 6.17e+01 4.10e+001 5.95e+001 8.29e+001 4.51e+001 4.20e+001 4.22e+001 4.18e+001

std. 1.14e+002 3.89e+01 2.43e+001 1.48e+001 8.42E+001 4.87e+001 3.23e+001 3.76e+001 2.65e+001

rank 9 7 1 6 8 5 3 4 2

h18 mean 1.03e+002 9.96e+01 1.17e+004 3.50e+004 3.23e+002 3.55e+001 3.21e+001 3.23e+001 3.20e+001

std. 4.78e+001 1.11e+02 8.80e+003 1.35e+004 3.94e+002 4.36e+001 6.98e+003 1.68e+004 4.65e+003

rank 6 5 8 9 7 4 2 3 1

h19 mean 8.88e+001 6.35e+00 1.16e+003 1.46e+003 1.17e+001 2.68e+001 1.70e+000 2.99e+000 1.06e+000

std. 5.06e+001 2.27e+00 1.21e+003 1.60e+003 5.20e+000 2.32e+001 3.80e+000 4.79e+000 2.72e+000

rank 7 4 8 9 5 6 2 3 1

h20 mean 2.88e+002 1.16e+02 1.22e+002 8.33e+001 1.10e+002 7.87e+001 0.00e+000 5.35e+001 0.00e+000

std. 1.80e+002 6.08e+01 4.99e+001 4.72e+001 1.27e+002 5.92e+001 0.00e+000 8.92e+001 0.00e+000

rank 8 6 7 4 5 3 1 2 1

h21 mean 2.41e+002 2.42e+02 1.77e+002 2.39e+002 2.38e+002 2.30e+002 1.45e+002 1.78e+002 4.33e+001

std. 1.35e+001 1.10e+01 6.49e+001 1.28e+001 7.98e+000 8.01e+000 3.45e+001 2.44e+002 2.84e+002

rank 8 9 3 7 6 5 2 4 1

h22 mean 3.78e+002 1.00e+02 1.00e+002 1.00e+002 2.62e+003 1.00e+002 1.00e+002 1.00e+002 1.00e+002

std. 9.67e+002 4.49e-13 2.00e-012 0.00e+000 1.32e+003 0.00e+000 2.95e+000 3.87e+003 7.22e+003

rank 2 1 1 1 3 1 1 1 1

h23 mean 3.95e+002 3.92e+02 3.00e+002 3.85e+002 3.90e+002 3.70e+002 3.00e+002 3.02e+002 3.00e+002

std. 1.18e+001 2.94e+00 1.40e+002 1.36e+001 9.65e+000 8.21e+000 5.62e+002 4.88e+003 5.92e+003

rank 7 6 1 4 5 3 1 2 1

h24 mean 4.69e+002 4.70e+02 2.49e+002 4.49e+002 4.73e+002 4.49e+002 2.31e+002 2.35e+002 2.09e+002

std. 1.03e+001 1.35e+01 1.32e+002 1.40e+001 1.37e+001 7.44e+002 1.87e+002 3.89e+002 5.35e+002

rank 6 7 4 5 8 5 2 3 1

h25 mean 3.87e+002 3.87e+02 3.88e+002 3.87e+002 3.87e+002 3.88e+002 3.87e+002 3.88e+002 3.85e+002

std. 1.24e+000 3.79e-02 2.19e+000 2.19e+000 1.39e+000 3.04e+000 1.78e+000 2.73e+001 4.87e+002

rank 2 2 3 2 2 3 2 3 1

h26 mean 1.50e+003 1.07e+03 2.44e+002 9.33e+002 1.42e+003 4.25e+002 2.44e+002 2.78e+002 2.43e+002
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summarized for 10DTS-2 cases (i). Unimodal function (h1-
h3): proposed ADE, APSO and AHDEPSO exhibits the best
performance in all three functions (h1-h3) with similar for h1
(on MPEDE, EFADE, HPSODE & PSOJADE), h2 (on
EFADE) and h3 (on MPEDE, EFADE, CSPSO, HPSODE
& PSOJADE). (ii). Multimodal function (h4-h10): proposed
AHDEPSO outperformed for all functions and equally for h4
(on EFADE & PSOJADE). h5 (on HEPSO), h6 (on MPEDE,
CSPSO, HPSODE & PSOJADE) and h9 (on EFADE).
Suggested component ADE execute better result in four func-
tions (h4, h6, h7 and h8) whereas APSO gives best result for f4
as well as for other functions they perform similar or margin-
ally inferior. (iii). Hybrid function (h11-h20): proposed
AHDEPSO execute better result for five functions (h13, h14,
h17, h19 and h20) similar for h15 (on PSOJADE) and margin-
ally inferior with HEPSO (for h11) and EFADE (for h12, h16
and h20). At the same time, ADE and APSO obtained better
results for h20 and marginally similar/inferior for the rest func-
tion. (iv). Composition function (h21-h30): proposed
AHDEPSO exhibits the best performance on six functions
(h21, h22, h23, h25, h29 and h30) and equally with HEPSO (for
h29) as well as marginally inferior with HEPSO (for h26, h27
and h28) and CSPSO (for h24). Meanwhile, ADE and APSO
perform marginally better/similar or slightly inferior in few
functions with other algorithms.

Further, as per the experimental results shown in Table 8
the following comparison results are précised as follows for

30DTS-2 cases (i). Unimodal function (h1-h3): proposed
AHDEPSO exhibits the best performance in all three func-
tions (h1-h3) similar with EFADE (for h2) and CSPSO (for
h3). Suggested ADE shown the best performance on h3 func-
tion and perform equal or marginally inferior with other algo-
rithms. Whereas, APSO perform slightly inferior in all three
functions with other algorithms. (ii). Multimodal function (h4-
h10): proposed AHDEPSO execute better result for five func-
tions (h5, h6, h7, h8 and h9) and equally with HEPSO (for h4)
and PSOJADE (for h6 and h10). Suggested ADE execute bet-
ter result in two functions (h6 and h7) and marginally inferior
with others. Whereas, APSO execute similar result or margin-
ally inferior for other functions. (iii). Hybrid function (h11-
h20): proposed AHDEPSO execute better result for six func-
tions (h13, h14, h16, h18, h19 and h20) marginally inferior with
HEPSO (for h11 and h17) and PSOJADE (for h12) EFADE (for
h15). At the same time, ADE obtained better results for h20 and
APSO marginally similar/inferior for the rest. (iv).
Composition function (h21-h30): proposed AHDEPSO exe-
cute the better performance on nine functions (h21, h22, h23,
h24, h25, h26, h27, h28 and h29) and equally with EFADE,
HEPSO, CSPSO and PSOJADE (for h22), HEPSO (for h23
and h28) as well as marginally inferior with PSOJADE (for
h30). Meanwhile, ADE perform better in three functions (h22,
h23 and h28) also APSO execute better result in one function
(for h22) and marginally better/similar or slightly inferior in
few functions with other algorithms.

Table 8 (continued)

hn Criteria Algorithms

DE variants PSO variants Hybrid variants Proposed algorithms

MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE ADE APSO AHDEPSO

std. 3.82e+002 5.37e+02 5.06e+001 4.43e+002 1.11e+002 4.02e+002 3.95e+003 3.89e+003 4.95e+003

rank 8 6 2 5 7 4 2 3 1

h27 mean 5.11e+002 4.98e+02 5.98e+002 5.21e+002 5.06e+002 5.03e+002 4.89e+002 4.90e+002 4.19e+002

std. 1.20e+001 7.27e+00 1.15e+001 8.99e+000 5.77e+000 8.02e+000 4.11e+001 5.85e+003 5.55e+002

rank 7 4 9 8 6 5 2 3 1

h28 mean 3.29e+002 3.14e+02 3.00e+002 3.16e+002 3.53e+002 3.14e+002 3.00e+002 3.13e+002 3.00e+002

std. 5.51e+001 3.59e+01 7.82e-013 3.86e+001 6.36e+001 3.66e+001 4.78e+001 4.98e+001 5.76e+001

rank 5 3 1 4 6 3 1 2 1

h29 mean 6.39e+002 4.40e+02 6.36e+002 4.95e+002 4.62e+002 4.39e+002 4.39e+002 4.40e+002 4.36e+002

std. 1.23e+002 5.17e+01 3.44e+001 3.08e+001 6.31e+001 3.29e+001 3.86e+001 5.56e+001 5.88e+002

rank 7 3 6 5 4 2 2 3 1

h30 mean 2.30e+003 2.27e+03 9.07e+003 3.71e+003 2.14e+003 5.63e+002 2.13e+003 2.19e+003 2.10e+003

std. 3.26e+002 1.94e+02 1.95e+003 6.67e+002 2.13e+002 9.81e+001 5.98e+002 4.54e+002 4.14e+002

rank 7 6 9 8 4 1 3 5 2

Sum of rank 195 152 137 181 169 120 68 102 40

Average 6.5 5.06 4.56 6.03 5.63 4 2.26 3.4 1.33

Overall rank 9 6 5 8 7 4 2 3 1
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Table 9 Simulation results on TS-2 (50D)

hn Criteria Algorithms

DE variants PSO variants Hybrid variants Proposed algorithms

MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE ADE APSO AHDEPSO

h1 mean 6.85e-017 8.41e-01 1.46e+003 9.26e+002 7.74e+003 2.78e-016 7.49e-028 2.78e-024 1.77e-029

std. 1.34e-016 1.68e+00 2.18e+003 1.61e+003 9.71e+003 1.09e-015 2.24e-026 3.10e-023 2.38e-025

rank 4 6 8 7 9 5 2 3 1

h2 mean 5.21e+09 0.00e+00 1.82e+09 6.31e+09 7.35e+008 2.69e-005 2.33e-011 6.74e-009 0.00e+000

std. 2.85e+08 0.00e+00 9.96e+09 3.45e+09 4.02e+009 5.51e-005 4.18e-012 4.27e-010 0.00e+000

rank 7 1 6 8 5 4 2 3 1

h3 mean 8.00e-027 7.75e-05 7.00e+003 2.18e-027 4.93e-020 2.61e-014 0.00e+000 9.25e-027 0.00e+000

std. 7.40e-027 2.28e-04 8.19e+003 1.85e-027 1.10e-019 7.79e-014 0.00e+000 7.81e-028 0.00e+000

rank 3 7 8 4 5 6 1 2 1

h4 mean 5.32e+001 4.20e+01 4.67e+000 1.58e+001 4.38e+001 2.70e+001 3.74e+000 1.45e+001 3.69e+000

std. 4.53e+001 3.03e+01 1.73e+001 3.30e+001 3.60e+001 4.56e+001 2.45e+001 4.31e+001 5.88e+001

rank 9 7 3 5 8 6 2 4 1

h5 mean 1.10e+002 9.56e+01 1.06e+002 1.05e+002 8.96e+001 1.03e+002 1.02e+001 1.10e+001 8.66e+001

std. 2.97e+001 2.61e+01 1.94e+001 4.21e+001 3.20e+001 1.87e+001 2.34e+002 2.82e+002 7.32e+001

rank 4 3 7 6 1 5 2 4 2

h6 mean 4.71e-002 1.83e-13 3.28e-008 3.05e-006 2.93e-003 0.00e+000 0.00e+000 7.48e-015 0.00e+000

std. 1.40e-001 5.61e-14 9.08e-008 5.77e-006 1.11e-002 0.00e+000 0.00e+000 5.10e-013 0.00e+000

rank 7 3 4 5 6 1 1 2 1

h7 mean 1.73e+002 1.77e+02 1.34e+002 1.39e+002 1.92e+002 1.31e+002 0.00e+000 1.13e+002 0.00e+000

std. 2.61e+001 7.00e+01 1.63e+001 4.66e+001 2.50e+001 1.68e+001 0.00e+000 2.88e+003 0.00e+000

rank 6 8 4 5 7 3 1 2 1

h8 mean 1.15e+002 9.09e+01 1.07e+002 9.25e+001 8.94e+001 9.55e+001 9.02e+001 9.24e+001 0.00e+000

std. 2.32e+001 1.94e+01 2.14e+001 2.87e+001 2.99e+001 2.11e+001 7.19e+001 8.45e+001 0.00e+000

rank 9 4 8 6 2 7 3 5 1

h9 mean 4.48e+002 5.27e-03 4.20e-002 4.08e+000 8.91e+000 3.07e+000 2.28e-010 6.87e-012 3.78e-015

std. 3.76e+002 2.13e-02 8.81e-002 3.25e+000 2.06e+001 4.55e+001 7.78e-011 7.65e-013 4.14e-016

rank 9 4 5 7 8 6 3 2 1

h10 mean 5.84e+003 8.02e+03 4.52e+003 1.00e+004 7.35e+003 3.08e+003 2.58e+003 2.65e+003 2.27e+003

std. 7.74e+002 1.61e+03 4.51e+002 2.66e+002 4.76e+002 5.94e+002 3.78e+004 5.19e+005 3.18e+002

rank 6 8 5 9 7 4 2 3 1

h11 mean 1.91e+002 4.66e+01 4.55e+000 5.20e+001 8.23e+001 1.14e+002 4.13e+001 5.38e+001 7.58e+000

std. 5.00e+001 7.34e+00 1.99e+000 1.48e+001 3.11e+001 4.34e+001 3.84e+001 6.92e+002 6.25e+000

rank 9 4 1 5 7 8 3 6 2

h12 mean 9.45e+003 4.83e+04 1.75e+006 7.86e+004 4.20e+004 2.89e+003 4.38e+003 5.16e+003 3.65e+003

std. 1.91e+004 2.97e+04 1.55e+006 8.19e+004 2.46e+004 1.22e+003 6.78e+002 6.77e+002 4.91e+003

rank 5 7 9 8 6 1 3 4 2

h13 mean 6.98e+002 2.71e+03 1.99e+003 9.48e+002 7.32e+003 1.91e+002 6.98e+002 8.28e+002 6.24e+002

std. 5.38e+002 2.51e+03 1.27e+003 1.04e+003 9.70e+003 2.45e+002 5.87e+002 4.79e+003 3.78e+003

rank 3 7 6 5 8 1 3 4 2

h14 mean 3.85e+002 4.42e+01 2.04e+005 1.79e+004 2.77e+002 1.77e+002 1.77e+002 1.88e+002 1.74e+002

std. 1.13e+002 1.36e+01 1.72e+005 1.57e+004 1.98e+002 2.35e+002 3.98e+003 6.78e+002 4.22e+003

rank 6 1 8 7 5 3 3 4 2

h15 mean 4.89e+002 1.20e+02 4.89e+003 3.68e+003 8.31e+003 2.38e+002 3.55e+002 2.87e+002 2.27e+002

std. 1.89e+002 2.36e+02 4.90e+003 2.77e+003 8.53e+003 1.96e+002 7.10e+001 3.92e+001 8.69e+001

rank 6 1 7 8 9 3 5 4 2
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Table 9 (continued)

hn Criteria Algorithms

DE variants PSO variants Hybrid variants Proposed algorithms

MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE ADE APSO AHDEPSO

h16 mean 1.31e+003 8.99e+02 1.11e+003 8.34e+002 1.19e+003 8.36e+002 8.24e+002 8.29e+002 7.85e+002

std. 4.18e+002 2.06e+02 2.25e+002 3.16e+002 2.83e+002 2.15e+002 6.62e+003 3.82e+003 5.74e+002

rank 9 6 7 4 8 5 2 3 1

h17 mean 8.71e+002 6.02e+02 9.61e+002 7.44e+002 5.67e+002 5.79e+002 4.10e+002 4.18e+002 4.08e+002

std. 2.92e+002 1.38e+02 1.26e+002 1.47e+002 1.77e+002 2.26e+002 3.23e+002 3.76e+002 2.65e+002

rank 8 6 9 7 4 5 2 3 1

h18 mean 2.36e+002 3.02e+03 3.22e+005 5.94e+005 6.86e+003 2.36e+002 2.21e+002 2.22e+002 2.20e+002

std. 1.45e+002 3.19e+03 2.42e+005 3.91e+005 4.61e+003 4.09e+001 5.21e+003 2.61e+003 3.65e+003

rank 4 5 7 8 6 4 2 3 1

h19 mean 2.05e+002 2.17e+01 1.09e+004 1.10e+004 7.77e+003 1.03e+002 2.70e+001 2.78e+001 2.06e+001

std. 6.19e+001 2.47e+01 3.61e+003 2.54e+003 9.31e+003 5.08e+001 3.91e+002 3.25e+002 2.72e+002

rank 6 2 8 9 7 5 3 4 1

h20 mean 8.78e+002 3.95e+02 6.20e+002 5.30e+002 5.31e+002 3.41e+002 0.00e+000 3.35e+002 0.00e+000

std. 3.92e+002 1.67e+02 1.76e+002 9.35e+001 1.99e+002 1.24e+002 0.00e+000 5.12e+002 0.00e+000

rank 8 4 7 5 6 3 1 2 1

h21 mean 3.02e+002 2.91e+02 3.01e+002 3.02e+002 2.84e+002 2.73e+002 2.65e+002 2.70e+002 2.56e+002

std. 2.12e+001 2.10e+01 5.42e+001 4.56e+001 2.77e+001 6.47e+000 3.22e+001 2.46e+002 2.87e+002

rank 8 6 7 8 5 4 2 3 1

h22 mean 6.60e+003 6.44e+03 2.79e+003 4.04e+002 7.91e+003 1.94e+003 2.41e+003 2.46e+003 1.89e+003

std. 1.01e+003 3.78e+03 2.74e+003 1.66e+003 4.23e+002 2.02e+003 3.89e+002 4.47e+002 7.32e+003

rank 8 7 6 1 9 3 4 5 2

h23 mean 5.57e+002 5.18e+02 5.90e+002 5.43e+002 5.15e+002 4.91e+002 4.78e+002 4.89e+002 4.60e+002

std. 2.80e+001 2.67e+01 6.17e+001 4.68e+001 1.73e+001 1.70e+001 5.62e+002 6.58e+003 6.78e+003

rank 8 6 9 7 5 4 2 3 1

h24 mean 6.10e+002 5.84e+02 8.31e+002 6.10 + 002 5.90e+002 5.64e+002 5.11e+002 5.22e+002 4.19e+002

std. 3.06e+001 1.78e+01 6.65e+001 6.48e+001 1.76e+001 1.54e+001 6.44e+002 6.45e+002 5.87e+002

rank 7 5 8 7 6 4 2 3 1

h25 mean 5.34e+002 4.89e+02 4.80e+002 5.43e+002 5.24e+002 5.71e+002 4.80e+002 4.84e+002 4.29e+002

std. 4.25e+001 1.92e+01 3.65e+001 3.95e+001 4.09e+001 2.94e+001 1.78e+000 2.73e+001 5.6e+002

rank 6 4 2 6 5 7 2 3 1

h26 mean 2.45e+003 2.08e+03 1.12e+003 2.26e+003 2.07e+003 4.34e+002 2.34e+002 2.48e+002 2.13e+002

std. 3.25e+002 2.03e+02 1.10e+003 4.20e+002 2.31e+002 5.21e+002 1.36e+003 5.19e+003 2.68e+003

rank 9 7 5 8 6 4 2 3 1

h27 mean 7.22e+002 5.29e+02 1.00e+003 7.19e+002 6.44e+002 6.18e+002 4.99e+002 5.10e+002 4.65e+002

std. 9.33e+001 1.07e+01 6.26e+001 6.51e+001 5.54e+001 5.14e+001 7.56e+001 6.15e+003 6.23e+002

rank 8 4 9 7 6 5 2 3 1

h28 mean 4.93e+002 4.59e+02 4.93e+002 4.84e+002 4.93e+002 4.83e+002 4.62e+002 4.64e+002 4.60e+002

std. 1.53e+001 5.31e-13 1.50e+001 2.09e+001 1.95e+001 1.87e+001 5.92e+001 3.93e+001 3.77e+001

rank 7 1 7 6 7 5 3 4 2

h29 mean 1.07e+003 4.84e+02 1.08e+003 7.66e+002 5.08e+002 4.61e+002 4.84e+002 4.82e+002 4.61e+002

std. 3.28e+002 1.13e+02 1.22e+002 1.67e+002 1.19e+002 1.22e+002 1.86e+001 3.92e+001 5.21e+002

rank 6 3 7 5 4 1 3 2 1

h30 mean 7.14e+005 6.11e+05 7.05e+006 8.01e+005 6.43e+005 6.08e+005 5.98e+005 6.06e+005 5.83e+005

std. 1.10e+005 5.22e+04 1.10e+006 6.38e+004 7.63e+004 3.07e+004 3.97e+003 5.87e+005 3.84e+005

rank 7 5 9 8 6 4 2 3 1
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Then, according to the experimental results given in
Table 9 the following comparison results are précised as fol-
lows for 50DTS-2 cases (i). Unimodal function (h1-h3): pro-
posed AHDEPSO exhibits the best performance in all three
functions (h1-h3) and similar with EFADE (for h2). Suggested
ADE execute the best performance on h3 function and gives
equal or marginally inferior result with other algorithms.

Meanwhile, APSO perform slightly inferior in all three func-
tions with other algorithms. (ii). Multimodal function (h4-h10):
proposed AHDEPSO execute better result for six functions
(h4, h6, h7, h8, h9 and h10) and equally with PSOJADE (for
h6) as well as marginally inferior with HPSODE (for h5). ADE
executes better result in two functions (for h6 and h7).
Moreover, APSO execute similar or marginally inferior for

Table 10 Statistical comparisons of proposed Vs other algorithms for TS-2 (10D)

Vs Criteria DE variants PSO variants Hybrid variants Praposed algorithms

MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE APSO AHDEPSO

ADE better 25 22 17 24 24 16 23 0

equal 3 5 2 1 4 6 6 8

worst 2 3 11 5 2 8 1 22

R+ 329 367 330 313 377 350 293 323

R− 136 98 135 152 88 135 172 142

p value 5.24e-09 5.14e-10 4.32e-10 6.92e-07 5.15e-10 5.55e-06 6.2e-11 4.41e-10

t-test a+ a+ a+ a a a a+ a+

decision + + + + + + + +

Vs MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE ADE AHDEPSO

APSO better 23 20 15 20 23 22 1 0

equal 4 6 1 2 2 4 6 5

worst 3 4 14 8 5 4 23 25

R+ 345 355 329 465 323 367 377 342

R− 120 130 136 79 142 98 88 123

p value 6.25e-10 4.46e-10 5.74e-10 5.31e-10 5.36e-10 8.32e-10 5.80e-12 6.02e-11

t-test a a a+ a a a+ a+ a+

decision + + + + + + + +

Vs MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE ADE APSO

AHDEPSO better 27 22 22 26 23 20 22 25

equal 3 6 4 2 5 7 8 5

worst 0 2 4 2 2 3 0 0

R+ 335 305 312 323 382 305 300 350

R− 130 160 153 142 83 160 165 115

p value 3.52e-10 4.52e-10 1.15e-10 6.47e-10 4.71e-10 4.76e-08 3.50e-12 5.28e-11

t-test a+ a+ a+ a a a a+ a+

decision + + + + + + + +

Table 9 (continued)

hn Criteria Algorithms

DE variants PSO variants Hybrid variants Proposed algorithms

MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE ADE APSO AHDEPSO
Sum of rank 202 142 196 186 183 126 70 99 38

Average 6.73 4.73 6.55 6.2 6.1 4.2 2.33 3.3 1.26

Overall rank 9 5 8 7 6 4 2 3 1
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Table 11 Statistical comparisons of proposed Vs other algorithms for TS-2 (30D)

Criteria DE variants PSO variants Hybrid variants Praposed algorithms

Vs MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE APSO AHDEPSO
ADE better 26 23 16 26 23 18 23 0

equal 3 5 3 2 5 4 6 8
worst 1 2 11 2 2 8 1 22
R+ 329 367 330 313 377 313 377 323
R− 136 98 135 152 88 152 88 142
p value 6.26e-09 7.17e-10 4.36e-10 6.69e-07 5.61e-10 5.55e-06 6.25e-11 5.01e-12
t-test a+ a a+ a+ a a a+ a+
decision + + + + + + + +

Vs MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE ADE AHDEPSO
APSO better 22 20 14 21 21 23 1 0

equal 4 5 1 2 5 3 6 5
worst 4 5 15 7 4 4 23 25
R+ 350 293 330 313 377 329 377 350
R− 135 172 135 152 88 136 88 135
p value 6.29e-10 4.60e-10 5.70e-10 5.0e-10 5.46e-10 8.21e-10 4.81e-11 1.2e-13
t-test a a+ a+ a a a a+ a+
decision + + + + + + + +

Vs MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE ADE APSO
AHDEPSO better 28 22 23 27 24 21 21 24

equal 2 5 3 2 4 6 9 6
worst 0 3 4 1 2 3 0 0
R+ 313 377 329 367 382 313 377 350
R− 152 88 136 98 83 152 88 115
p value 3.55e-10 4.75e-10 1.50e-10 6.04e-10 4.10e-10 4.60e-08 5.5e-11 5.8e-12
t-test a+ a+ a a a a a+ a+
decision + + + + + + + +

Table 12 Statistical comparisons of proposed Vs other algorithms for TS-2 (50D)

Criteria DE variants PSO variants Hybrid variants Praposed algorithms

Vs MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE APSO AHDEPSO
ADE better 29 24 28 29 28 23 28 0

equal 1 1 1 0 0 2 0 4
worst 0 5 1 1 2 5 2 26
R+ 329 367 330 313 377 350 293 323
R− 136 98 135 152 88 135 172 142
p value 3.23e-09 5.13e-10 4.33e-10 6.19e-07 5.11e-10 5.15e-06 6.02e-11 6.19e-12
t-test a+ a a+ a a a a+ a+
decision + + + + + + + +

Vs MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE ADE AHDEPSO
APSO better 29 22 27 29 28 24 2 0

equal 0 0 0 0 0 0 0 0
worst 1 8 3 1 2 6 28 30
R+ 345 355 329 465 323 367 377 342
R− 120 130 136 79 142 98 88 123
p value 6.22e-10 5.76e-10 5.73e-10 5.31e-10 5.36e-10 8.23e-10 5.58e-12 6.20e-12
t-test a+ a a+ a a+ a a+ a+
decision + + + + + + + +

Vs MPEDE EFADE HEPSO CSPSO HPSODE PSOJADE ADE APSO
AHDEPSO better 30 25 29 29 29 25 26 30

equal 0 2 0 0 0 2 4 0
worst 0 3 1 1 1 3 0 0
R+ 335 305 312 323 382 305 300 350
R− 130 160 153 142 83 160 165 115
p value 3.59e-10 5.50e-10 1.15e-10 6.41e-10 4.11e-10 4.96e-08 5.59e-11 5.8e-12
t-test a+ a+ a a a a a+ a+
decision + + + + + + + +
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other functions. (iii). Hybrid function (h11-h20): proposed
AHDEPSO outperformed in five functions (h16, h17, h18 h19
and h20) and marginally inferior with HEPSO (for h11),

PSOJADE (for h12 and h13) and EFADE (for h14 and h15).
Meanwhile, ADE obtained better results only for h20 and at
the same time APSO is marginally similar/inferior for the rest.

(a). h3 (Unimodal function) 10D (b). h3 (Unimodal function) 30D (c). h3 (Unimodal function) 50D 

(d). h9 (Multimodal function) 10D (e). h9 (Multimodal function) 30D (f). h9 (Multimodal function) 50D 

(g). h20 (Hybrid function) 10D (h). h20 (Hybrid function) 30D (i). h20 (Hybrid function) 50D 

(j). h29 (Composition function) 10D (k). h29 (Composition function) 30D (l). h29 (Composition function) 50D
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Fig. 9 a-l Convergence curves for TS-2 (10D, 30D & 50D)
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(iv). Composition function (h21-h30): proposed AHDEPSO
exhibit the best performance on eight functions (h21, h23,
h24, h25, h26, h27, h29 and h30) and marginally inferior with
CSPSO (for h22) and EFADE (for h28). Meanwhile, ADE and
APSO perform marginally better/similar or slightly inferior in
few functions with other algorithms

Moreover, all algorithms are individually ranked in
Tables 7, 8 and 9 based on mean error values. From these
tables, it is concluded that AHDEPSO, ADE and APSO
ranked 1st, 2nd and 5th (in case of 10D TS-2) 1st, 2nd and
3rd (in case of 30D & 50D TS-2) individually. Also, average
and overall rank of proposed algorithms Vs others are present-
ed in Tables 7, 8 and 9. It is clear that (from ranking) perfor-
mances of proposed algorithms are superior to others.
Ultimately, proposed ADE, APSO and AHDEPSO produces
less std. for most of the functions on TS-2 which defines their
stability. Furthermore, superiority of proposed ADE, APSO
and AHDEPSO are statistically validated over others through
one-tailedt-test (with 98 degree of freedom (df) at 5% signif-
icance level) and WSR test (at 5% significance level). The
results of t-test and WSR test on TS-2 are reported in
Tab le 10 (10D TS-2) , Tab le 11(30D TS-2) and

Table 12(50D TS-2). From these tables it can be clearly seen
that proposed algorithms has both ‘a’ or ‘a+’ sign (in case of
t-test) and performs better or equally (in case WSR test) in
maximum circumstances. As well as, the reported less p-
values in Tables 10, 11 and 12 concluded reliable results
for the majority of runs of the proposed algorithms in TS-2
case.

The convergence speed of proposed ADE, APSO and
AHDEPSO algorithms with others are analyzed on 10, 30 &
50D TS-2. For this one function from each category of TS-2 (h3,
h9, h20 & h29) is taken. The convergence graph for all such func-
tion can visualize on Fig. 9a-l for TS-2. It can be observed that
from these figures ADE, APSO and AHDEPSO makes better
convergence than other algorithms. Apart from this, average error
values of proposed algorithms for 10, 30 & 50DTS-2 have
been analyzed through box plots. The respective box plots
figures presented in Fig. 10a-c. From these figures, it is
clearly visible that average error value of proposed algo-
rithms is better than others.

Furthermore, to check the performance of the proposed
algorithms ECD (empirical cumulative distribution) test
[142] is applied on the set of 10, 30, & 50D TS-2.

Fig. 10 a-c Average function error values of TS-2 (10D, 30D & 50D)
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Whereas, SP/SPbest Vs empirical distribution graph is
plotted in Fig. 11a-c over all TS-2 functions. These
figures confirm that the proposed algorithms have

higher performance over other comparative algorithms.
Besides, success rate distributions for 10, 30 & 50DTS-
2 are evaluated and presented in Fig. 12. Graphical

Fig. 11 a-c Empirical distribution of normalized success performance on TS-2 (10D, 30D & 50D)

Fig. 12 Success performance of
the algorithms over TS-2 (10D,
30D & 50D)
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representation shows that proposed ADE, APSO and
AHDEPSO are competitively higher than others.
Moreover, the spider charts (where closer distribution
of the algorithm is to the circle’s center for better per-
formance of the algorithms) are employed on 10, 30 &
50DTS-2 to check the performance differences more
intuitively among all algorithms. These charts can visu-
alized in Fig. 13a-c. It can be observed from these fig-
ures that the proposed algorithms perform competitively
on most of the functions. Additionally, significance lev-
el of proposed with other algorithms for 10, 30 &
50DTS-2 is evaluated through Bonferroni–Dunn’s
[147] procedure. It is applied as a post hoc procedure
to calculate the critical difference (CD). In this test,
solid and dotted lines are representing threshold for

the control algorithm (here AHDEPSO) on two preva-
lent significance levels of 0.05 and 0.1. Also, it demon-
strates that performance of two algorithms is significant-
ly different if the difference in average ranking of
methods is larger than CD. The Bonferroni–Dunn’s bar
chart of different algorithms on average rankings (ob-
tained by Friedman test) for TS-2 is reported in
Fig. 14. Here it can be observed that among all com-
pared algorithms AHDEPSO significantly outperformed
than others at both levels of significance. Also the av-
erage execution time of proposed algorithm with others
of 30 independent runs for 10, 30 & 50DTS-2 has been
reported in Fig. 15a-c through box plots. From corre-
sponding figures, it is clearly visible that average exe-
cution time of proposed algorithms is less than others.

Fig. 13 a-c Spider performance charts of different algorithms on TS-2 (10D, 30D & 50D)
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Fig. 14 Bonferroni Dunn bar
chart of different algorithms on
average rankings obtained by
Friedman test for TS-2 (10D, 30D
& 50D)

Fig. 15 Average running time of different algorithms for TS-2 (10D, 30D & 50D)
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In general, from all above result analysis it can be declare
tha t proposed ADE, APSO and AHDEPSO are
performing better and/or equally with others. However,
among three proposed algorithms AHDEPSO have larger
competence.

iii). On RWPs: Real world problems

The results of proposed ADE, APSO and AHDEPSO al-
gorithms on 3 RWPs are compared with traditional algorithm
(PSO [3], DE [4], & ABC [13]), DE variants (JADE [136],
SaDE [148], & CoDE [149]), PSO variants (SLPSO [150],
HCLPSO [151], & MSPSO [152]), and hybrid variants
(MBDE [126], DEPSO-2S [135], & DPD [142]). The param-
eters of all compared and proposed algorithms are listed in
Table 13. The experimental comparative results in terms of
best, worst, mean, std. (standard deviation), p values and av-
erage ranking of the objective function values are presented in
Table 4. From Table 14, the proposed ADE, APSO and
AHDEPSO produce better and/or equally results in terms of
best, worst, and mean case of all RWPs.

Additionally, less std. and p values of proposed algo-
rithms on most cases imply their better stability and reli-
able results for the majority of runs respectively. Also, in
order to analyze the performance all algorithms are ranked
depending on their mean value and reported in Table 14.
From this table, it can be seen that AHDEPSO and ADE
ranked 1st on all RWPs. Whereas, APSO secured 1st, 2nd

and 4th rank on RWP-1, RWP-2 and RWP-3 successive-
ly. Hence, based on ranking results the proposed algo-
rithms perform better than others. Moreover, the conver-
gence graphs of all proposed and compared algorithms is
plotted and presented in Fig. 16a-c. In these figures it can
be clearly visualized that the proposed algorithms con-
verge faster than others. Hence, proposed algorithms are
computationally efficient.

All in all, from all above numerical, statistical and graphi-
cal result analysis it can be proclaim that proposed ADE,
APSO and AHDEPSO are performing very competitive and/
or equally with other compared algorithms. However, among
three proposed algorithms AHDEPSO has greater efficiency.

4.3 Complexity analysis

Some complexity analysis of the proposed algorithms is given
as follows.

i). Algorithm complexity

According to the guidelines of CEC test suite the algorithm
complexity has been investigated on 10, 30 & 50D TS-2.
Firstly, T0 time (in seconds) executed through subsequent
program.

Table 13 Parameter setting for real world problems

Algorithms Year Ref. Control parameter Population
size

Stopping
criterion
(iterations)

Run

Term Values

PSO 1995 [3] w,C1 & C2 [0.543254–0.33362], 1.9460 & 1.8180, 50 1000 30

DE 1997 [4] F & CR 0.12470 & 0.58143 50 1000 30

ABC 2007 [13] – – 50 1000 30

JADE 2009 [136] F & CR 0.5 & 0.5 30 10,000 100

SaDE 2009 [148] F & CR N(0.5, 0.3) & N(CRm, 0.1) 30 10,000 100

CoDE 2011 [149] F & CR 1.0 & 0.1 30 10,000 100

SLPSO 2012 [150] w 0.9–0.5 30 10,000 100

HCLPSO 2015 [151] W & C 0.9–0.4 & 1.49445 30 10,000 100

MSPSO 2018 [152] C1 & C2 1.49445 30 10,000 100

DEPSO-2S 2012 [135] w, C1, C2 & CR 0.72,1.19 & 0.5 – – 30

MBDE 2016 [126] – – 100 5000 50

DPD 2016 [142] FA, FC, CRA & CRC 0.5, 0.9, 0.9 & 0.9 100 200 30

ADE Proposed Fmin & Fmax [0.1,0.5] & 1 30 1000 30

APSO wi, wf, c1i, c1f, c2i & c2f 0.4, 0.9, 0.5, 2.5, 2.5 & 0.5 30 1000 30

AHDEPSO – – 30 1000 30
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After this computing T1 time on and h18 (TS-2 function).
Further, T2 time (evaluated 5 times) for all algorithms to
completely execution of the both functions on 200,000 eval-

uations and store its mean value denoted as bT 2. Thereafter

calculated
bT2−T1
T0

for each algorithm and reported in

Table 15. Also, complexity chart of proposed algorithms
with others are presented in Fig. 17. It can be being ob-
served from Table 15 and Fig. 17, the time complexity of
proposed algorithms is significantly less than other com-
parative algorithms.

ii). Time complexity

Fig. 16 a-c Convergence graph for real world problems

Table 15 Algorithm complexity results on TS-2

Algorithm 10D 30D 50D

T0 0.0216 0.0216 0.0216

T1 0.8971 0.5831 1.3630

MPEDE 94.23 90.88 98.65

EFADE 111.25 99.54 120.88

CSPSO 192.87 167.87 190.23

HEPSO 140.25 130.98 170.54

HPSODE 150.99 140.25 160.23

PSOJADE 140.53 130.55 155.21

ADE 52.32 48.45 53.09

APSO 77.88 75.87 82.98

AHDEPSO 38.98 33.88 40.02
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According to the pseudo-code, AHDEPSO has the follow-
ing time complexity.

a). Initialization of np-population requires O(np.D) time.
b). Evaluation and sorting population according to fitness

function values needs O(tmax × np) time.
c). Division of population into pop1 and pop2 procedure re-

quires O(tmax × np) time.
d). Evaluation of pop1 (by ADE) and pop2 (by APSO)

takes O(tmax ×
np
2 ×np2 ) = O(tmax ×

np2

4 ) time.
e). Merging pop and implementation of algorithm requires

O(tmax × np × np)= O(tmax × np2) time.

Therefore, the total time complexity of AHDEPSO for
maximum number of iterations is

O np:Dð Þ þ O tmax � npð Þ þ O tmax � npð Þ

þ O tmax � np2

4

� �
þ O tmax � np2

� �
¼ O tmax � np2 � D

� �

iii). Space complexity

The space complexity of proposed AHDEPSO algorithm is
the maximum amount of space that used by above algorithm.
Thus, the total space complexity of proposed AHDEPSO al-

gorithm is O(max(np, np; np; np
2

4 ,np
2) ×D) =O(np2 ×D).

5 Conclusion with future works

In this study, magnificent survey of various recent-past tradi-
tional algorithms with DE and PSO variants as well as their
hybrids have been examined along with their applied fields.

After this, an advanced DE (ADE, to avoid premature conver-
gence) and PSO (APSO, to avoid stagnation) as well as their
hybrid (AHDEPSO, to balance between exploration and ex-
ploitation) has been proposed for unconstrained optimization
problems. The briefed summary of these proposed algorithms
are given as follows.

(i). The novel mutation strategy, crossover probability and
altered selection schemes of ADE will provide high and
low population diversity at start and end of the algorithm
respectively.

(ii). The novel gradually varying (decreasing and/or increas-
ing) parameters of APSO can well-balanced exploration
and exploitation capabilities and promotes particles to
search high quality solution.

(iii). The AHDEPSO yields guaranteed convergence and di-
versifying solutions due to different convergence char-
acteristics of ADE and APSO as well as based onmulti-
population approach as well as the divided population
is merged with other in a pre-defined manner.

Further, the effectiveness of the proposed algorithms
tested on TS-1 (basic unconstrained benchmark function)
and TS-2 (IEEE CEC 2017 functions) along with 3 RWPs
(real world problems). The numerical, statistical, and
graphical analysis of the proposed algorithms is compared
against traditional DE and PSO with their recent variants
and hybrids as well as over many state-of-the-art algo-
rithms. The comparative results shapes that the proposed
algorithms become more robust and effective. Thus, it is
conclusive that the proposed algorithms can be treated as
a vital alterative in the field of EAs. Moreover, in the
view of feasibilities, superiorities and solution optimality
among proposed algorithms AHDEPSO outperformed. In
addition, the effectiveness of the proposed algorithms can
be tested by some more complicated real-world applica-
tions and new EAs will be developed in future.
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