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Abstract
Aiming at the disadvantages of the ant colony algorithm, such as slow convergence speed and easy to fall into local optimum,
this paper proposes an ant colony algorithm with Stackelberg game and multi-strategy fusion. Firstly, Stackelberg game
is established between ant colonies, and the population with the excellent performance is taken as the leader to increase
the influence of excellent ant colony. Secondly, a multi-strategy fusion system is proposed, which is composed of three
strategies: One is the pheromone fusion strategy, which selects the population whose entropy is less than the threshold value
and the population with the highest similarity for pheromone fusion to increase the diversity of the algorithm. The second
is the elite ant learning strategy, which speeds up the convergence rate by learning the elite ants of the elite population; The
third is the pheromone recombination strategy, which helps the algorithm jump out of the local optimum. The simulation
experiments of multiple cases in TSPLIB show that the improved algorithm balances diversity and the convergence speed,
and effectively improves the quality of the solution.

Keywords TSP problem · Multiple populations · Stackelberg game · Multi-strategy fusion

1 Introduction

Traveling Salesman Problem [1–5] (TSP) is a classic NP-
hard problem. There are many algorithms to solve the TSP
problem, among which the ant colony algorithm is one
of the best algorithms because it has good robustness and
convergence speed. In addition, ant colony algorithms have
a variety of applications in other fields, such as robot path
planning [6], network routing problems [7] and scheduling
problems [8, 9].

In the early 1990s, Italian scholars Dorigo et al. proposed
the Ant System (AS) [10, 11] based on the foraging behavior
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of ants, but the algorithm has a slow convergence speed
and is prone to stagnation in solving the TSP problem.
Therefore, in 2006, Dorigo proposed the ant colony
system (ACS) [12]. Compared with the AS algorithm,
this algorithm greatly improves the convergence speed and
solution accuracy in solving the TSP problem. At the same
time, Stutzle et al. proposed the Max-min Ant System
(MMAS) [13], which sets the upper and lower bounds as
pheromone as a way to improve the solution efficiency
of the algorithm. The above are some classical ant colony
algorithms, which have greatly improved the solving ability
but still have problems such as easy stagnation, slow
convergence, and poor diversity.

Since then many experts have come up with their own
improvements, Some algorithms improved the diversity of
the algorithms; Yue Wu et al. helped the algorithm to
improve the computational efficiency by designing a local
search method [14]; Wei Gao proposed a premium penalty
strategy that changes the distribution of pheromone as a
way to increase the diversity on good paths and increase
the search space [15]; Ye Ke et al. proposed a negative
feedback mechanism to help the algorithm explore more
unknown regions by continuously acquiring the experience
of ant failures [16]; S.Li et al. proposed a collective action
mechanism to improve the collaboration between individual
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ants [17]. The above algorithms enhance diversity through
their respective methods, but suffer from the disadvantage
of slow convergence of the algorithms.

Some algorithms improved the convergence of the
algorithm; Qin et al. accelerated the convergence of
the algorithm by enhancing the pheromone update and
improving the positive feedback of the optimal path [18].
Sahar used clustering method to reduce the number of nodes
in the TSP, which greatly improves the convergence speed.
[19] These algorithms alleviate the problem of slow iteration
of the ant colony algorithm to some extent, but do not have
good diversity such that they tend to fall into local optima
in the later stages of the algorithm.

There is a contradiction between the convergence speed
and diversity of ant colony algorithms, and to improve
this problem, some scholars have proposed many ingenious
methods. Rafał; Skinderowicz used GPU parallel computing
to speed up operations and increase the diversity of the
algorithm by changing the roulette wheel [20]. Zhao D.
et al. proposed a horizontal crossover strategy and a vertical
crossover strategy for speeding up the convergence and
expanding the search range of ants, respectively [21]. Liu
et al. proposed a random reference mechanism to speed
up the convergence and used a chaotic reinforcement
strategy to improve the accuracy of the solution [22].
Han, ZP et al. combined the ant colony algorithm with
symbiotic search to improve the search efficiency by
adaptively changing the search of ants while rapidly
selecting optimization parameters [23]. Wei Gao applied
two meeting ants to construct the path and a strategy
that polarized the pheromone on the path to improve the
computational efficiency and effectiveness of the algorithm,
respectively [24].

Other scholars applied multiple swarm algorithms and
introduced knowledge from other fields to balance con-
vergence and diversity and improve coordination between
ants. Xiaoyu Wang et al. evaluated the uncertainty of
pheromone through information entropy and improved pop-
ulation diversity through disturbance mechanism [25]. Zhou
et al. proposed an ant colony algorithm that combines dif-
ferent search ranges and convergence speeds to greatly
increase the diversity of the algorithm [26]. Dehui Zhang
et al. proposed a collaborative filtering strategy to improve
the efficiency of communication between populations [27].
Han Pan et al. smoothed the pheromones through a dynamic
bootstrap mechanism and determined the communication
frequency by comparing minimum spanning trees [28].

In this paper, we will propose ant colony algorithm
with Stackelberg game and multi-strategy fusion(MSACS)
for TSP problem; In order to improve the influence
of high-quality populations, the algorithm will establish

a Stackelberg game among multiple populations; In
addition, a multi-strategy fusion system is proposed to
communicate various information between populations. The
main contributions of this paper are as follows:

1. In order to apply the superiority of the different
populations, we choose ACS algorithm and MMAS
algorithm to form heterogeneous multi-population ant
colony algorithm.

2. The Stackelberg game model is established among
multiple populations; Through the comprehensive eval-
uation of convergence, diversity and the overall state
of the algorithm, the current best quality population is
selected as the leader; Then the leader acts as a pioneer
to explore the path for other populations, and forms a
cooperative relationship with other populations through
the exchange of information, so as to maximize the
benefits of the whole system.

3. Multi-strategy fusion mechanism is used to improve
the information exchange between populations. There
are three strategies in this mechanism: The pheromone
fusion strategy is used to improve the diversity of
populations with low information entropy; The elite
ant learning strategy is used to learn elite ants
from excellent population to improve the convergence
speed of the algorithm; The pheromone recombination
strategy is used to smooth the over-high pheromone in
non-public path, and local search is carried out to help
the algorithm jump out of local optimal.

This paper is organized as follows: Section 2 introduces
the background knowledge of traditional ant colony
algorithm, information entropy and Stackelberg game;
Section 3 introduces the main innovations and contributions
of this paper; Section 4 describes the various comparative
experiments and parameter Settings; Section 5 mainly
summarizes our work and some of our future research
directions.

2 Related research

2.1 Ant colony algorithm for solving Tsp problem

2.1.1 Path Selection

As shown in (1), the transfer of ant k from city i to city j

conforms to the pseudo-random rule:

j =
{

arg max
{
τij

[
ηij

]β}
, q ≤ q0

J, q > q0
(1)
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where q is a random number between [0,1]; q0 is a
deterministic parameter between [0,1];When the random
number q is less than the parameter q0, the ant k moves to
the next city in the determined direction; When the random
number q is greater than the parameter q0, the ant k then
moves to the next city by probability with the J ; J is
calculated from (2).

pk
ij =

⎧⎪⎨
⎪⎩

[τij ]α[ηij ]β∑
l∈Nk

i

[τij ]α[ηij ]β , j ∈ Nk
i

0, j /∈ Nk
i

(2)

where α is the heuristic factor of pheromone; β is the
heuristic factor of the greedy rule; Nk

i is the collection of
cities that the ant k can choose from; τij is the concentration
of pheromone between node i and node j ; ηij is the heuristic
function, whose expression is formula (3):

ηij = 1

dij

(3)

where dij is the distance between node i and node j ;

2.1.2 Pheromone update

Local pheromone update rule: After the ant moves from city
i to city j , the calculus will be updated for local pheromones
as shown in (4):

τij ← (1 − ρ) τij + ρτ0 (4)

where ρ is the volatile factor of local pheromone; τ0 is the
initial value of the pheromone;

Global pheromone update rule: When all ants have
finished solving, the algorithm will perform a global
pheromone update, as shown in (5):

τij ← (1 − ξ) τij + ξ�τbs
ij (5)

�τbs
ij = 1

Cbs
(6)

where ξ is the volatility factor of the global pheromone;
Cbs is the value of the global optimal solution; �τbs

ij is the
increment of global pheromone, as shown in (6):

2.2 Max-min ant colony algorithm

In order to improve the search efficiency of ant colony
algorithm and avoid falling into local optimum prematurely,
The MMAS algorithm sets upper and lower limits for the
pheromone. The calculation methods of τmax and τmin are
shown in (7) and (8):

τmax = (
1
/

ρ
) ∗

(
1
/

T gb
)

(7)

τmin = τmax
/

2n (8)

Where τmax is the upper limit set by the algorithm for the
pheromone; τmin is the lower limit of pheromone; T gb 1 is
the current optimal solution value of the algorithm; ρ is the
volatility factor of the pheromone; n is the number of nodes
in the city.

2.2.1 Pheromone Update

The MMAS algorithm updates only the pheromone on the
current optimal solution path; From (9) and (10), we can see
the updating rules of pheromone.

τij (t + 1) = (1 + ρ) τij (t) + �τbest
ij (9)

�τbest
ij = 1

/
f

(
sbest

)
(10)

Where τij is the value of the pheromone between node i

and node j in the MMAS algorithm; t is the iteration count;
�τbest

ij is the amount of change in the pheromone of the
node through which the current optimal individual passes,
which is obtained from (10); f

(
sbest

)
is the size of the

current optimal solution.

2.3 Lnformation entropy

Information entropy was put forward by Shannon [29]
to evaluate the degree of disorder of information. The
calculation method is shown in (11):

S (x) = −
n∑

i=1

P (xi)logb (P (xi)) (11)

Where b is the base value of the logarithm; P(xi) is the
quality function of probability. n is the number of solutions.

2.4 Stackelberg game

The Stackelberg game is a dynamic game of bounded
rationality proposed by Stackelberg in 1953 [30]. First,
the Stackelberg game divides the players into leaders and
followers; Then, the leader goes first, and the followers
make the decision that suits their own best interests on the
basis of the leader’s decision, and finally achieve dynamic
equilibrium. The game model can be described as (12):

H = {(L ∪ {F }) , {Pl}l∈L, {Pf }f ∈F , Rl, Rf } (12)

where L is the selected leader, {L ∪ {F } is all the
participants; Pl is the leader’s policy set, Pf is the follow
policy set, Rl is the leader’s revenue function, and Rf is the
revenue of follows.

The goal of each game is to maximize the respective
revenue, so the objective functions of leader and follow are
(13) and (14):

max
pl∈Pl

R (pl) (13)
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max
pf ∈Pf

Rn

(
pf

)
(14)

where R (pl) and Rn

(
pf

)
are the objective functions of

the leader and the follower respectively, and the whole
master-slave game aims at maximising these two values.

To sum up, when both sides of the game reach Nash
equilibrium, all participants gain the most and do not change
their strategies Return matrix.

3 Ant colony algorithmwith Stackelberg
game andmulti-strategy fusion

The Stackelberg game is a classic game model. In this game,
the leader makes the decision first, and the followers make
their own decisions after the leader makes the decision.
Based on the traditional idea of Stackelberg game, we
design a Stackelberg game among multi ant colonies. When
the algorithm is running, the group that is beneficial to the
whole system will be selected as leader, while the others
will be viewed as followers. Then, the leader, a pioneer
that explored other paths, trains a number of iterations after
exchanging information with other followers. After the path
has been explored, the most beneficial strategy will be
applied by the followers to obtain the information explored
by the leader. Finally, after exchanging information, the
followers continue to explore the path. From the Fig. 1,
we can see how the Stackelberg game between multiple
populations works. The dynamic Stackelberg game model
is divided into the following steps:

step1: Select the leader by (18);
step2: Leader make decisions first;
step3: Followers make decisions after the leader;
step4: back to Step1;

3.1 The establishment of Stackelberg game among
ant colony algorithms

3.1.1 Parameters for evaluating population and algorithm
state

Information entropy evaluates diversity
There are many indicators to evaluate the diversity of ant

colony algorithm, such as standard deviation, information
entropy and so on. For ant colony algorithms, keeping the
variety of algorithms allows ants to choose more different
paths. We use information entropy to measure the diversity
of the algorithms, as shown in (15)

E (P ) = −
∑
x∈X

P (x) log (P (x)) (15)

Where P (x) is the size of ant x in the current solution.
E (P ) is the information entropy of all the solutions in the
current population. The larger the deviation value of the
solution is, the higher the information entropy will be, thus
the higher the diversity will be.

Convergence evaluation
Convergence indicates the convergence ability of the

current population, and the better the convergence is, the
faster the current algorithm converges. In this section, we use
(16) to evaluate the convergence of the current algorithm.

conv = lengthi
min − lengthmin

iteri − iterj
(16)

Where conv is the convergence of the current population,
lengthmin is the optimal solution of the current population;
iterj is the current number of iterations; lengthi

min was the
optimal solution last time; iteri is the number of iterations
in which the last optimal solution is found.

Assess system status

Fig. 1 The flow of the Stackelberg game
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Similarly, we use the convergence of the optimal solution
to measure the current state of the algorithm; If the optimal
solution converges rapidly, it indicates that the current
system is in a period of rapid convergence. At this time,
the algorithm needs the population with better convergence
as the leader; otherwise, it needs the population with better
diversity. We use (17) to express the convergence of the
overall algorithm.

CO = iteri
min

itermin
(17)

Where itermin is the number of iterations of the current
optimal solution; iteri

min is the number of iterations of the
previous optimal solution.

3.1.2 Multi-factor evaluation mechanism

After the number of planned iterations, the comprehensive
evaluation index of each population will be calculated by
(18), and the population with the highest score will be
selected as the leader.

Yi = (1 + CO) conviE(P )i (18)

Where Yi is the measure of the comprehensive evaluation
index of population i; CO reflects the overall convergence
of the algorithm, which is obtained from (17); convi is
the convergence of population i; E(P )i is the information
entropy of population i, which represents the diversity of
population.

3.1.3 The choice of leader

In our system, leader exists to lead other groups because of
their distinct advantages over other groups. Equation (18) is
used to evaluate the overall performance of the population.
There are many reasons for using these three variables as
the standard of the comprehensive ability of the population;
First, how leader is chosen depends on the current state of
the system. If the current system is in a period of rapid
convergence, it indicates that we need the population with
better convergence and higher precision as the leader; If
the convergence of the algorithm is slow at present, it
means that the whole system needs those populations with
good diversity as leaders to help the population find more
different paths. From the (17), we can judge the convergence
of the algorithm as a whole, and the current state of the
algorithm can also be judged from another perspective.
Secondly, we also need to consider the current state of the
population, so we add the evaluation index of convergence
and diversity of the algorithm into the formula, which
can reflect the state index of a single ant colony to some
extent. Therefore, by correlating these three parameters and
considering the overall performance of the algorithm, we

also consider the state of a single ant colony, which can
reflect the comprehensive performance of the population.

3.1.4 Number of training iterations for leaders

In order to explore more paths, the leader trains M iterations
in advance. There are many ways to determine M, such as
specifying M as a fixed value directly, but that is not the best
way. In this section, we use the similarity (We use cosine
similarity to evaluate the population similarity, as shown in
(20)) between populations to determine whether the leader
has been trained; As shown in (19), when L is greater than
l (l is the threshold), the leader training is considered to be
completed, and then the number of training iterations of the
leader is M. The selection steps for M are shown in Table 1
below.

L =
∣∣∣Sleader

M − S
f ollower min
M

∣∣∣
Sleader

M

× 100% (19)

Where Sleader
M is the cosine similarity of the leaders;

S
f ollower min
M is the minimum cosine similarity of the

follower; L represents the degree of difference between
leaders and followers. The greater the value of L, the more
obvious the difference is.

3.1.5 Cosine similarity

In this section, we use cosine similarity to evaluate the
similarity between populations, as shown in (20):

SM = A · B

|A| × |B| (20)

Where A and B is a 2-dimensional vector made up of conv

(Calculated by (16)) and E (Calculated by (15)), which
represents the state of the current population to some extent;
As can be seen from the (20), the higher the value of SM ,
the more similar the two populations are.

3.2 Multi-strategy fusionmechanism

After the populations make their choices, they will exchange
information, which is achieved by selecting various mecha-
nisms. If the population chooses to cooperate after the game,

Table 1 The calculation process of M

1 M=0;

2 While termination condition is not satisfied do

3 M=M+1;

4 Calculate the similarity;

5 Calculate the difference between leaders and followers;

6 End-While
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then the population will choose to exchange information
with the cooperating population; For a population, there are
many kinds of information that can be exchanged, such as
pheromone, optimal solutions common paths, and so on;
Therefore, the choice of information exchange is a key issue
for the participants.

In this section, we define different types of information;
For different information about an ant colony, it reflects the
current state of the colony differently; For example, The
pheromone of the population contains the path selection
of the population history, and the communication of
pheromone among the populations can help them to increase
the choice of different paths, thus improving the diversity of
the algorithm; Therefore, the population chooses different
information to communicate, which usually results in
different effects.

We will present three strategies for populations to
communicate different information between populations
in order to improve their required performance. First,
the pheromone fusion strategy will be used to improve
experience exchange between populations; In general, the
pheromone matrix of an ant colony algorithm contains the
path chosen in the history of the population, which reflects
the fuzzy experience of the population to some extent, and
has the path dependence of the population; If a population
exchanges pheromone, it will gain experience from other
populations and increase the probability of choosing
alternative paths, which is shown in Section 3.2.1. Secondly,
the elite ant learning strategy increases the influence of
the dominant population. The elite individuals of the
dominant population contain the excellent characteristics
of the population, and communication and learning with
them can improve the convergence of other populations,
as shown in Section 3.2.2. Finally, we propose the
pheromone recombination strategy to help the algorithm
avoid stagnation when the population is trapped in a local
optimum, which is shown in Section 3.2.3.

3.2.1 Pheromone fusion strategy

The pheromone fusion strategy is implemented when the
population has reached the specified time for communica-
tion and has converged to a certain extent and its diversity
has decreased. Firstly, the information entropy of each pop-
ulation is calculated by (15), which represents the diversity
of the population. Secondly, the population with the high-
est value of information entropy is selected to form a
new pheromone matrix through linear fusion by pheromone
fusion rules. By reorganizing the pheromone of the popu-
lation in this way, we can improve the exploration of other
paths, which in turn can increase the diversity of the pop-
ulation; Since this strategy will reduce the convergence
of the algorithm, we use the elite ant learning strategy in

Section 3.2.2 to balance the diversity of the population and
avoid the disadvantage of slow convergence of the algo-
rithm. The pheromone sharing between ant colonies will be
given by the following (21).

Phk = (1 − SM) Phk + SMPhm (21)

Where Phk is the pheromone matrix of the current ant
colony; Phm is the pheromone matrix of the population
selected to communicate pheromone; SM is the similarity
value of the two populations, which is obtained from
(20); According to (21), we form a new pheromone by
linear combination of the pheromone matrix of the two
populations in a certain proportion.

3.2.2 Elite ant learning strategy

After using pheromone sharing strategies to increase the
population diversity, we need some strategies to increase
the convergence rate of the algorithm to reduce the conflict
between convergence and diversity; In this paper, (17) is
used to evaluate the overall convergence of the algorithm. In
addition, when the convergence value CO of the algorithm
is less than ω1(ω1 is the current threshold of convergence),
we will enable the elite ant learning strategies. We will
select the population with the highest accuracy as the
learning target, and learn the elite ants of this population to
accelerate the convergence of the algorithm.

In this section, the ants in the population that are close to
the top K% by the order of solutions are considered to be
elite ants. When the population learns the elite ant, it learns
by rewarding the pheromone in the path of the elite ant. We
use (22). to reward pheromone in the path of the elite ants.
The learning process is shown in Fig. 2

Pn =
(

1 + CO

n

)
P (22)

Where P is the value of the pheromone in the public
path; Pn is the new value of the rewarded pheromone in
the common path; n is the number of nodes in the city;
CO is the evaluation of the overall convergence of the
algorithm, which is obtained from (17); At the beginning of
the algorithm iteration, the convergence of the algorithm is
fast and the value of CO is relatively large, which rewards
more pheromone in the common path and speeds up the
convergence speed of the algorithm; As the number of
iterations increases, the convergence rate of the algorithm
slows down, thus reducing the pheromone rewarding the
path of elite ants.

3.2.3 Pheromone recombination strategy

The classical ant colony algorithm is easy to fall into local
optimum (When the optimal solution does not change for
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Fig. 2 Schematic diagram of
learning strategies of elite ants

more than 200 iterations, it is considered to be trapped
in the local optimal solution), and when the number of
nodes to solve the problem is more, the algorithm is
easier to fall into local optimum. Therefore, we need a
strategy to help ant colony algorithm to jump out of local
optimum. First of all, from the perspective of the solution
mechanism of ant colony algorithm, the reason why ant
colony algorithm falls into local optimum is usually that
the concentration of pheromone matrix on the edge of some
paths is too high, which reduces the possibility of ants
in the ant colony to find other paths, so they fall into
local optimum. From this perspective, we can help ACO
jump out of local optimum by changing the distribution of
pheromone. There are many ways to reset the pheromone of
an ant colony. The simple way is to initialize the pheromone
matrix, but the disadvantage is that there is no way to take
advantage of the long experience of an ant colony, which
leads to low efficiency. Therefore, we need to maintain the
excellent experience of the ant colony in the pheromone
matrix while removing the pheromone in the path with high
concentrations. The specific operation of this policy is as
follows:

step1: Find the common paths between populations.
step2: The pheromone concentration of the public path

is maintained, and the pheromone smoothness of the
non-public path is carried out by using (23);

step3: The order of public paths is maintained, and the
local search for non-public paths is carried out by ant
colony algorithm;

step4: Update the pheromone of a non-public path;
step5: All paths are searched again.

Pl = (Pmax + Pmin) Pbest

2
(23)

Where Pmax is the maximum in the pheromone matrix;
Pmin is the minimum value in the colony’s pheromone
matrix; Pbest is the pheromone on the optimal solution in the
current population when the algorithm is stagnant. Through
(23), we reduce the pheromone in the optimal solution
path with high pheromone concentration in the stagnant
population, and re-assign the original path by averaging the
maximum and minimum values in the pheromone matrix;
Doing so in this way has two benefits: One is that we can
reduce pheromone on the pheromone pathway at very high
concentrations. Second, the population can retain most of
the original experience of finding paths to avoid reducing
the efficiency of finding solutions.

3.3 Algorithm framework

First, the ACS algorithm and the MMAS algorithm are
chosen as the ant colony algorithm for the various swarms;
Then, a certain number of iterations are used to train the
various parameters of each swarm; After the training is
completed, the parameters are brought into the model of
Stackelberg game, and the state of the various swarms is
evaluated by a combination of the highest rated swarms as
leaders and the rest as followers; The next training time for
the various groups is calculated; Leaders take the lead in
M iterations of training, after which information is obtained
from followers through a multi-strategy fusion mechanism;
Followers then conduct a search for solutions; Finally the
algorithm continues to loop the loop until the requirements
are met. The pseudo-code and flowcharts for the MSACS
algorithm are shown below, as shown in Table 2 and Fig. 3.

Comparison with the literature [14] to [19] mentioned
in the introduction, through a multi-strategy fusion mech-
anism, the MSACS algorithm balances convergence and

Table 2 Table of algorithmic framework

MSACS for TSP

1 Initialize the parameters of each population

2 Calculate the distance between nodes

3 While termination condition is not satisfied do

4 All populations run N iterations

5 Choosing leaders and followers

6 Calculating the number of leader training sessions M

7 Information sharing through multi-strategy fusion mechanism

8 for i=1:M

9 Leader seeking solutions

10 Pheromone Update

11 end

12 Information sharing through multi-strategy fusion mechanism

13 for i=1:M

14 Followers seeking solutions

15 Pheromone Update

16 end

17 nc = nc+M

18 End-While

19 Output best solution
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Fig. 3 Flowchart of the
algorithm

diversity very well. In addition to this, modelling the master-
slave game between multiple swarms can effectively exploit
the characteristics of the various swarms and improve the
synergy between ants compared to literature [20] to [24].

4 Experiment and simulation

In order to verify the performance of the MSACS algorithm,
this paper selects 30 different TSP instances to test the

Table 3 Experimental factors and levels of MMAS

Level1 Leve2 Leve3 Leve4

α 1 2 3 4

β 1 2 3 4

ρ 0.1 0.2 0.3 0.4

algorithm from the TSPLIP library, and each example
needs to carry out 20 experiments. The experimental test
environment of this paper is Windows10 operating system,
and Matlab2019A is used for simulation.

In Section 4.1, orthogonal experimental method is used
to select the parameters of MMAS and ACS. The best
combined parameters is selected through experiments.
The multi-population ant colony algorithm we improved
is composed of ACS algorithm and MMAS algorithm,
therefore, the best parameters of the improved ant colony
algorithm also choose these parameters.

In Section 4.2, we analyze the validity of the MSACS
algorithm strategy; In Section 4.2.1, the effectiveness of
multi-strategy fusion strategy is analyzed; In Section 4.2.2,
the training time of leaders is analyzed.

In Section 4.3.1, Through 30 TSP examples, we compare
the performance of MSACS, ACS and MMAS; In addition,
we analyze the data differences of MSACS algorithm, ACS
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Table 4 Results of MMAS orthogonal test

na α β ρ results

1 1 1 0.1 433.60

2 1 2 0.2 428.67

3 1 3 0.3 427.83

4 1 4 0.4 428.07

5 2 1 0.2 447.50

6 2 2 0.1 436.20

7 2 3 0.4 435.17
8 2 4 0.3 431.47
9 3 1 0.3 489.43
10 3 2 0.4 457.37
11 3 3 0.1 435.00
12 3 4 0.2 434.87
13 4 1 0.4 535.43
14 4 2 0.3 460.93
15 4 3 0.2 442.80
16 4 4 0.1 435.30

algorithm and MMAS algorithm in 30 groups of examples,
through the rank sum test. In Section 4.3.2, The MSACS
algorithm is in comparison with other ant colony algorithms
and intelligent algorithms.

4.1 Parameter setting

In this section, we will choose the best parameter combi-
nation for MSACS algorithm, ACS algorithm and MMAS
algorithm through orthogonal test; Tables 3, 4, and 5 shows
the experimental results of parameter selection of MMAS;
Tables 6, 7, and 8 shows the experimental results of param-
eter selection of ACS. Each experiment used eil51 as an
example. For each set of parameters, we conducted experi-
ments of 30 times respectively. Based on the above exper-
iments, It can be obtained from the Table 5 that the best
combination of parameters of the MMAS algorithm is: α =

Table 5 Test results of MMAS

T α β ρ

T1 1718.17 1905.97 1740.10

T2 1750.33 1783.17 1753.83
T3 1816.67 1740.80 1809.67
T4 1874.47 1729.70 1856.03
t1 429.54 476.49 435.03
t2 437.58 445.79 438.46
t3 454.17 435.20 452.42
t4 468.62 432.43 464.01
max 468.62 476.49 464.01
min 429.54 432.43 435.03
range 39.08 44.07 28.98
scheme Level 1 Level 4 Level 1

Table 6 Experimental factors and levels of ACS

Level1 Leve2 Leve3 Leve4

α 1 2 3 4

β 1 2 3 4

ρ 0.1 0.2 0.3 0.4

ζ 0.1 0.2 0.3 0.4

q0 0.6 0.7 0.8 0.9

1, β = 4, ρ = 0.1; In addition, It can be obtained from the
Table 5 that the best combination of parameters of the ACS
algorithm is: α = 2, β = 4, ρ = 0.4, ζ = 0.2, q0 = 0.8.

In Tables 5 and 8: T is the sum of the results. t is the
average of each level range. range is the difference between
the maximum minus the minimum, which will be used to
determine which factor is important, and a larger range is
usually more important. The scheme is to get the best result
by orthogonal test of each factor.

4.2 Policy testing and performance analysis

4.2.1 Analysis of the effectiveness of the mechanism

The multi-strategy fusion strategy proposed includes three
mechanisms: the pheromone sharing mechanism, the elite
ant learning mechanism and the pheromone recombina-
tion mechanism. Firstly the pheromone sharing mechanism is
applied to increase the diversity of the population; Secondly
the elite ant learning mechanism helps the algorithm improve
the convergence speed by learning the elite individuals of the

Table 7 Results of ACS orthogonal test

na α β ρ ζ q0 results

1 1 1 0.1 0.1 0.6 431.33

2 1 2 0.2 0.2 0.7 429.07

3 1 3 0.3 0.3 0.8 429.13

4 1 4 0.4 0.4 0.9 428.77

5 2 1 0.2 0.3 0.9 4293.10

6 2 2 0.1 0.4 0.8 429.17

7 2 3 0.4 0.1 0.7 428.90

8 2 4 0.3 0.2 0.6 428.67

9 3 1 0.3 0.4 0.7 431.77

10 3 2 0.4 0.3 0.6 431.50

11 3 3 0.1 0.2 0.9 428.43

12 3 4 0.2 0.1 0.8 429.47

13 4 1 0.4 0.2 0.8 430.20

14 4 2 0.3 0.1 0.9 431.53

15 4 3 0.2 0.4 0.6 432.3

16 4 4 0.1 0.3 0.7 430.33
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Table 8 Test results of ACS
T α β ρ ζ q0

T1 1718.3 1722.4 1719.3 1721.2 1723.8

T2 1715.8 1721.3 1719.9 1716.4 1720.1

T3 1721.2 1718.8 1721.1 1720.1 1717.9

T4 1724.4 1717.2 1719.4 1722.0 1717.8

t1 429.6 430.6 429.8 430.3 430.9

t2 428.9 430.3 429.9 429.1 430.0

t3 430.9 429.7 430.3 430.0 429.5

t4 431.1 429.3 429.8 430.5 429.5

max 431.1 430.6 430.3 430.5 430.9

min 428.9 429.3 429.8 429.1 429.5

range 2.2 1.3 0.5 1.4 1.4

scheme Level 2 Level 4 Level 4 Level 2 Level 3

dominant population; Finally The pheromone recombina-
tion mechanism is applied to improve the probability of the
algorithm jumping out of local optimum.

We use MSACS-1 to label the MSACS algorithm
without the pheromone fusion strategy, MSACS-2 to label
the MSACS algorithm without the elite ant learning
strategy, and MSACS-3 to label the MSACS algorithm
without the pheromone recombination strategy; We used
three TSP instances (kroA100, kroB150, and A280) to
test the effectiveness of the strategy. Each instance ran
20 experiments respectively, and each instance ran 2000
generations; In the comparison experiment, the following
parameters are used to judge: the optimal solution (best),
the worst solution (worst), the average solution (mean) and
the average deviation (MeanError(%)); The experimental
results are shown in Fig. 4 and Table 9.

As shown in Table 9 and Fig. 4, the convergence speed
and solving quality of MSACS are better than MSACS-
1,MSACS-2 and MSACS-3; In addition, due to the absence

of the elite ant learning strategy, the convergence speed of
MSACS-2 is the slowest among several algorithms, which
verifies that this mechanism can enhance the speed of
convergence; Finally, in the experimental comparison of
A280, it can be seen that the accuracy of MSACS-3 is the
lowest among several algorithms, which is due to the lack of
the pheromone recombination strategy, resulting in it falling
into local optimum in the late stage of most experiments.

4.2.2 Analysis of the frequency of information exchange

In this paper, the leader selected through stackelberg game
needs to run for a period of time M before other populations.
In order to determine the optimal running time, experiments
were conducted with 50 iterations, 100 iterations, 150
iterations, 200 iterations, 250 iterations, 300 iterations, 350
and fq (The number of dynamic iterations is determined
by Section 3.1.4) iterations respectively; TSP instances
EIL51, EIL76, KROA100, and CH130 were used to run

Table 9 Comparison of
MSACS, MSACS-1,
MSACS-2 and MSACS-3

TSP instances Algorithm Best Worst Mean MeanError(%)

MSACS 21282 21292 21282.55 0.00

kroA100 MSACS-1 21282 21292 21307.54 0.12

MSACS-2 21282 21305 21309.67 0.13

MSACS-3 21282 21331 21308.39 0.12

MSACS 26130 26228 26153.60 0.09

kroB150 MSACS-1 26130 26268 26166.58 0.14

MSACS-2 26130 26423 26161.36 0.12

MSACS-3 26183 26644 26184.87 0.21

MSACS 2579 2610 2595.00 0.64

a280 MSACS-1 2580 2642 2598.34 0.75

MSACS-2 2582 2626 2599.89 0.81

MSACS-3 2590 2653 2605.05 1.01
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Fig. 4 Convergence comparison of MSACS, MSACS-1, MSACS-2 and MSACS-3

Table 10 The choice of M
value Instance

Choose Eil51 Eil76 KroA100 Ch130

50 436.80 546.05 21310.84 6204.87

100 431.52 546.21 21294.55 6195.54

150 432.22 544.64 21286.21 6177.42

200 429.55 541.17 21290.91 6151.24

250 430.45 542.11 21289.65 6164.47

300 432.13 543.31 21293.33 6184.33

350 433.77 543.56 21305.24 6205.84

fq 426.05 538.15 21282.55 6143.75
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20 groups each and run 2000 iterations. The results are
shown in Table 10, which shows the average solution of
20 experiments. According to the table, the best parameter
is f q, which is determined by the similarity between the
populations.

4.3 Comparative experimental analysis

4.3.1 Contrastive analysis with classical ant colony
algorithm

In order to compare the abilities of ACS, MMAS and
MSACS algorithms, we selected 30 different TSP instances
for comparative analysis. The experiment is analyzed in
terms of the following evaluation parameters: the optimal
solution (best), the minimum error(PDbest ), the worst
solution (Worst), the worst error(PDworst ), the average
solution (Average), the average error(PDavg), the optimal
iteration number (iters), the Standard deviation (std), and
the rank sum test (P ). The results of the experiment are
presented in Tables 11, 12, and 13. The minimum error rate
is obtained from (24); The average error rate is calculated
by (25); The maximum error rate is obtained from (26); The
standard deviation is obtained from (27).

PD best = LB − Lmin

Lmin
× 100% (24)

PD avg = LAV G − Lmin

Lmin
× 100% (25)

PD worst = LW − Lmin

Lmin
× 100% (26)

Where LB is the optimal solution found by the algorithm;
LA is the average of N optimal solutions; LW is the worst of
N optimal solutions; Lmin is the optimized solution for the
TSP instance.

dev =
√√√√ 1

N

N∑
i=1

(
li − lavg

)2 (27)

Where N is the number of ants; li is the best solution for
the ith experiment; lavg is the average of the current N

solutions.
As shown in Table 11, 21 groups of optimal solutions

were found by the MSACS algorithm in 30 groups of
TSP instances. For the other TSP instances, the percentage
deviation from the optimal solution is also relatively small,
with 7 TSP instances having an error of less than 1%; In
addition, the percentage deviation of the optimal solution
for the remaining three TSP instances is less than 2%. In
addition, in the average error comparison, in most instances,

the value of Pavg is less than 1% (kroB200, lin318, pr439,
att532, p654, and d1291 whose Pavg is 1.47%, 1.89%,
2.53%, 2.64%, and 3.63%); Most values of Pworst have
percentage deviations of less than 4% (p654 and d1291
whose Pworst is 6.08% and 7.44%);

As can be seen from Tables 12 and 13, The MSACS
algorithm outperforms the traditional MMAS algorithm and
the ACS algorithm in all TSP instances for all properties. It
can be seen that in urban TSP instances with less than 200
nodes, most MACS algorithms can find optimal solutions
compared to ACS algorithms and MMAS algorithms; In
addition, due to the elite ant learning strategy, the MSACS
algorithm has the fastest algorithm convergence speed
compared to the other two algorithms; In the experimental
comparison of the number of city nodes in the TSP instances
between 200 and 500, MSACS still has the high accuracy.
This is due to the influence of the pheromone fusion
strategy and the elite ant learning strategy, which makes
the algorithm both convergent and maintain good diversity;
In the TSP example, the MSACS algorithm is far more
accurate than the other two algorithms in the experimental
comparison for city nodes greater than 500(especially in
the comparison of TSP instances d1291, the error of the
optimal solution of MSACS is 1.34%, while the error of
MMAS algorithm and ACS algorithm are 6.98% and 8.47%
respectively). What’s more, in the comparison of average
deviation, We can see that the average error of MSACS is
lower than the two other algorithms, which indicates that the
solution stability of MSACS algorithm is also better.

Figure 5 shows the comparison of the standard deviation
distribution of MSACS algorithm, ACS algorithm and MMAS
algorithm; It can be seen from the figure that, compared
with the other two algorithms, the standard deviation of
MSACS algorithm is the smallest in most TSP instances;
In addition, standard deviation can reflect the stability of
the algorithm to some extent, and the smaller the standard
deviation is, the better the stability of the algorithm is;
From the comparison in the figures, we can see that the
stability of MSACS algorithm is the best among the three
algorithms.

Figure 6 shows the convergence variation of MSACS,
ACS, and MMAS in the set of TSP instances; As can be seen
from the figure, MSACS algorithm has higher convergence
speed and accuracy than MMAS algorithm and ACS
algorithm; Since MSACS uses pheromone recombination
strategy, it improves the disadvantage of ACS algorithm and
MMAS algorithm that it is easy to fall into local optimum,
and has better accuracy in various TSP instances.

Figure 7 shows the optimal paths found by the MSACS
algorithm for eight different TSP instances.
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Fig. 5 The stability of the different algorithms

The P values in Tables 12 and 13 are the results of
rank sum test, which reflects the differences of samples;
As can be seen from the table, the results of MSACS are
significantly different from those of MMAS and ACS in
most cases.

Overall, the MSACS algorithm enhances the accuracy of
the algorithm, speeds up the convergence, and reduces the
possibility of algorithm stagnation. The solving ability of
MSACS is better than that of MMAS and ACS.

4.3.2 Comparative analysis with other ant colony
algorithms and other intelligent algorithms

To further verify the effectiveness of the improved MSACS
algorithm, we compare it with other improved ACS
algorithms and other intelligent algorithms in this section,
and the results are shown in Tables 14, 15, 16, 17, 18, and

19.
In Table 14 MSACS algorithm and PACO-3OPT [31]
algorithm were compared, and from the table we can see: In
cities with less than 200 nodes, the MSACS algorithm finds
the optimal solution while the PACO-3OPT algorithm finds
the optimal solution only partially. In the comparison of
optimal, worst and average solutions, the MSACS algorithm
performs better than the PACO-3OPT algorithm in most
of the TSP instances. In spite of that, MSACS algorithm
is compared with HAACO [32] algorithm in all aspects
in detail in Table 15. Similarly, we can see that the
MSACS algorithm outperforms the HAACO algorithm in
the comparison of all city instances.

Further, other intelligent algorithms are used to compare
with MSACS. In Tables 16 and 17, the DSFLA and DJAYA
algorithms are compared with the MSACS algorithm,
respectively. In addition to being better in the comparison
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Fig. 6 Convergence comparison of MSACS, ACS and MMAS

of optimal and average solutions, the MSACS algorithm is
smoother than the other two algorithms in the comparison
of variance.

Finally, to better evaluate the capability of the MSACS
algorithm, more comparisons will be shown in Tables 18
and 19. DFFO [4], DEACO [19], CCMACO [33], HDACO
[34], HGA [35], HDABC [36] GA-MARL+NICH-LS
[37], SSABC [38], AG-BSO [39], PSO-ACO-3opt [40],
MARL+NICH-LS [37], IBA [41], DWCA [42], HMMA
[43], DBACS [44], DCS [45], ABC-3OPT [46], DSMO
[47], JCACO [27], and MGACACO [48]will be compared
with the MSACS algorithm in the optimal solution. In the
comparison, the solution accuracy of MSACS algorithm
is better than the other algorithms. This shows that the
MSACS algorithm expands the search space by selecting the

best strategy through the Stackelberg game, which results in
better accuracy.

5 Conclusion

In this paper, we propose An ant colony algorithm with
Stackelberg game and multi-strategy fusion. First of all,
MMAS algorithm and ACS algorithm are used to construct
heterogeneous multi-population ant colony algorithm, so
that the advantages of different algorithms are used to
balance the convergence and diversity of the algorithm;
Secondly, Stackelberg game with dynamic changes of
leaders among multiple populations is established. In this
game, the overall consideration algorithm and the attributes
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Fig. 7 Best tours for each TSP instance found by MSACS

Table 14 Comparison of MSACS and PACO-3OPT in TSP instances

instance PACO-3OPT(2018) MSACS

name optima Avg. Best Worst PD(%) Avg. Best Worst PD(%)

Eil51 426 426 426 427 0.00 426 426 427 0.00

Berlin52 7542 7542 7542 7542 0.00 7542 7542 7542 0.00

St70 675 678 676 679 0.15 676 675 679 0.00

Eil76 538 540 538 542 0.00 538 538 540 0.00

Rat99 1211 1217 1213 1225 0.17 1212 1211 1221 0.00

KroA100 21282 21327 21282 21382 0.00 21282 21282 21292 0.00

Eil101 629 631 629 639 0.00 630 629 632 0.00

Lin105 14379 14393 14379 14422 0.00 14384 14379 14483 0.00

Ch150 6528 6601 6570 6627 0.64 6530 6528 6539 0.00

KroA200 29368 29644 29533 29721 0.56 29435 29368 29478 0.00

Fl417 11861 11987 11972 NA 0.94 11969 11901 12000 0.34

Pr439 107217 108702 108482 NA 1.18 108403 107916 108970 0.65

P654 34643 35075 35045 NA 1.16 34939 35558 36749 0.85

U724 41919 43123 42764 NA 2.02 43313 42978 43474 2.55
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Table 15 Comparison of MSACS and HAACO in TSP instances

instance HAACO(2020) MSACS

name optima Avg. Best Worst PD(%) Avg. Best Worst PD(%)

Eil51 426 428 426 431 0.00 426 426 427 0.00

Eil76 538 542 538 545 0.00 538 538 540 0.00

Rat99 1211 1214 1211 1218 0.00 1212 1211 1221 0.00

KroA100 21282 21364 21282 21445 0.00 21282 21282 21292 0.00

Eil101 629 632.5 630 635 0.00 630 629 632 0.00

Lin105 14379 14412 14379 14483 0.00 14384 14379 14483 0.00

Ch150 6528 6579 6554 6595 0.40 6530 6528 6539 0.00

KroA200 29368 29633 29483 29755 0.39 29435 29368 29478 0.00

Fl417 11861 NA 11960 NA 0.83 11969 11901 12000 0.34

Pr439 107217 NA 108730 NA 1.41 108403 107916 108970 0.65

Table 16 Comparison of MSACS and DSFLA in TSP instances

instance DSFLA(2021) MSACS

name optima Avg. Best SD. PD(%) Avg. Best SD. PD(%)

Eil51 426 426 426 0.5 0.00 426 426 0.22 0.00

Eil76 538 539 538 1.6 0.00 538 538 0.49 0.00

Rat99 1211 1216 1211 5.04 0.00 1212 1211 3.08 0.00

KroA100 21282 21312 21282 50.01 0.00 21282 21282 1.88 0.00

KroC100 20749 20772 20749 56.37 0.00 20760 20749 31.78 0.00

Eil101 629 632 629 3.65 0.00 630 629 0.8 0.00

Lin105 14379 14423 14379 55.82 0.00 14384 14379 23.26 0.00

Pr124 59030 59503 59030 185.88 0.00 59067 59030 39.39 0.00

Ch130 6110 6140 6110 47.66 0.49 6143 6110 22.2 0.00

Ch150 6528 6562 6533 12.95 0.08 6530 6528 3.46 0.00

Pr152 73682 73970 73682 271.23 0.00 73994 73682 209.06 0.00

KroA200 29368 29671 29499 135.84 0.45 29435 29368 39.53 0.00

Table 17 Comparison of MSACS and DJAYA in TSP instances

instance DJAYA(2021) MSACS

name optima Avg. SD. PD(%) Avg. SD. PD(%)

Eil51 426 440 4.95 2.64 426 0.22 0.00

Eil76 538 573 6.33 5.10 538 0.49 0.00

KroA100 21282 21735 331.33 2.13 21282 1.88 0.00

Eil101 629 677 4.87 5.46 630 0.8 0.00

Ch150 6528 6638 52.79 1.63 6530 3.46 0.00

Tsp225 3916 4095 42.54 6.12 3948 14.59 0.00
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Table 18 Comparison of MSACS and other algorithms in TSP instances

TSP Eil51 Berlin52 St70 Eil76 Rat99 kroA100 Lin105

MSACS 426 7542 675 538 1211 21282 14379

PD best(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DFFA(2020) 426 7542 675 538 1211 21282 14379

PD best(%) 0.00 0.00 0.00 0..00 0.00 0.00 0.00

DEACO(2020) 426 7542 675 538 1211 21282 14379

PD best(%) 0.00 0.00 0.00 0..00 0.00 0.00 0.00

CCMACO(2019) 426 7542 675 538 NA 21282 NA

PD best(%) 0.00 0.00 0.00 0.00 NA 0.00 NA

HDACO(2018) 426 7542 675 538 NA 21282 NA

PD best(%) 0.00 0.00 0.00 0.00 NA 0.00 NA

HGA(2014) 428 7544 677 544 1219 21285 14382

PD best(%) 0.47 0.03 0.30 1.12 0.66 0.01 0.02

HDABC(2017) 426 7542 675 538 NA 21282 NA

PD best(%) 0.00 0.00 0.00 0.00 NA 0.00 NA

GMNL(2017) 426 7542 675 538 1211 21282 14379

PD best(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SSABC(2018) 426 7542 675 538 1211 21282 14379

PD best(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AG-BSO(2020) 428 7542 678 541 1211 21070 NA

PD best(%) 0.61 0.00 0.44 0.50 0.00 0.00 NA

PSO-ACO(2015) 426 7542 676 538 1221 21301 14379

PD best(%) 0.00 0.00 0.15 0.00 1.07 0.09 0.00

JCACO(2019) 426 NA NA 538 1211 21282 NA

PD best(%) 0.00 NA NA 0.00 0.00 0.00 NA

MNL(2017) 426 7542 675 538 1211 21282 14379

PD best(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

IBA(2016) 426 7542 675 539 NA 21282 NA

PD best(%) 0.00 0.00 0.00 0.19 NA 0.00 NA

DWCA(2018) 426 7542 675 543 NA 21282 NA

PD best(%) 0.00 0.00 0.00 0.93 NA 0.00 NA

ABC3OPT(2019) 427 7542 675 538 1211 21282 14379

PD best(%) 0.23 0.00 0.00 0.00 0.00 0.00 0.00

MGACACO 427 7544 NA 539 1216 NA 14381

PD best(%) 0.23 0.02 NA 0.18 0.41 NA 0.01

of each population are comprehensively used to select
leader. Then, the leader improves the search efficiency by
training a certain number of iterations in advance to explore
more paths; Finally, the multi-strategy fusion strategy is
used to improve the information exchange among the
populations, among which three strategies are proposed:
Strategy 1 is the pheromone fusion strategy, under which
the pheromone matrices between populations that need to
communicate are combined into a new pheromone matrix
through a linear combination of certain parameters. This
strategy can improve the ability of ants to explore different
paths and increase the diversity between populations;
Strategy 2 is the elite ant learning strategies. Under this

strategy, the population learns from the experience of the
elite ants of the dominant population through the updating
of pheromone to improve the convergence rate of the
population; Strategy 3 is the pheromone recombination
strategy, which is used to help the population jump out
of local optimality. When the population is in the local
optimal state, the pheromone of common paths between the
populations are retained, and the pheromone of non-public
paths are smoothed, and then the local search is carried
out.

The experimental results show that Compared with the
traditional ant colony algorithm, the improved ant colony
algorithm and other intelligent algorithms, the MSACS
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Table 19 Comparison of MSACS and other algorithms in TSP instances

TSP KroB100 Pr152 Pr226 Fl417 Pr439 P654 U724

MSACS 21241 73682 80369 11901 107916 34939 42978

PD best(%) 0.00 0.00 0.07 0.34 0.65 0.85 2.55

DSMO(2020) 22308 74244 83588 12219 112105 NA NA

PD best(%) 0.75 0.18 4.00 3.02 4.56 NA NA

PSO-ACO(2015) NA NA NA 11941 108530 35052 43172

PD best(%) NA NA NA 0.73 1.20 1.20 3.00

HMMA(2015) 22388 73892 83972 12543 114095 37044 46662

PD best(%) 1.11 0.28 4.48 5.70 6.40 6.90 11.30

DBACS(2020) NA 73682 80369 11949 108036 34939 42983

PD best(%) NA 0.00 0.00 0.74 0.76 0.85 2.56

AG-BSO(2020) 22152 NA 80961 11936 113074 NA NA

PD best(%) 0.05 NA 0.74 0.63 5.46 NA NA

DCS(2014) 22139 73683 80440 11949 108136 NA 42860

PD best(%) 0.00 0.00 0.09 0.75 0.86 NA 2.26

algorithm has better convergence speed and precision, and
has better quality in the solution of large-scale examples.

In addition, the ant colony algorithm mentioned in this
paper can also be applied to specific practical applications,
such as robot path planning: in a general solution, the
map rasterization makes path planning for robots a nodal
optimization problem, which is similar to the TSP problem.
In our algorithm, Stackelberg game model can improve the
collaboration of ants in path planning; The multi-strategy
fusion mechanism can help the algorithm balance diversity
and convergence, and increase its probability of jumping out
of the local optimum when stalled.

In the future work, we will further investigate the essence
of solution seeking of ant colony algorithm, improve its
convergence speed and solving precision for large-scale
node problems, and apply it to some practical engineering
problems.
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