Applied Intelligence (2022) 52:7459-7479
https://doi.org/10.1007/510489-021-02726-3

l‘)

Check for
updates

Hierarchical learning from human preferences and curiosity

Nicolas Bougie'? ® . Ryutaro Ichise?

Accepted: 27 July 2021 / Published online: 28 September 2021
© The Author(s) 2021

Abstract

Recent success in scaling deep reinforcement algorithms (DRL) to complex problems has been driven by well-designed
extrinsic rewards, which limits their applicability to many real-world tasks where rewards are naturally extremely sparse.
One solution to this problem is to introduce human guidance to drive the agent’s learning. Although low-level demonstrations
is a promising approach, it was shown that such guidance may be difficult for experts to demonstrate since some tasks
require a large amount of high-quality demonstrations. In this work, we explore human guidance in the form of high-level
preferences between sub-goals, leading to drastic reductions in both human effort and cost of exploration. We design a novel
hierarchical reinforcement learning method that introduces non-expert human preferences at the high-level, and curiosity to
drastically speed up the convergence of subpolicies to reach any sub-goals. We further propose a strategy based on curiosity
to automatically discover sub-goals. We evaluate the proposed method on 2D navigation tasks, robotic control tasks, and
image-based video games (Atari 2600), which have high-dimensional observations, sparse rewards, and complex state
dynamics. The experimental results show that the proposed method can learn significantly faster than traditional hierarchical

RL methods and drastically reduces the amount of human effort required over standard imitation learning approaches.

Keywords Hierarchical reinforcement learning - Preference-based learning - Curiosity - Human guidance

1 Introduction

In reinforcement learning (RL), the objective of the agent is
set by an extrinsic reward function. However, such reward
functions are often poorly-defined, sparse, or delayed,
which may severely limit the applicability of reinforcement
learning methods. Moreover, RL algorithms often require a
large number of interactions to reach decent performance,
which can be intractable in real-world settings. A strategy to
escape these pitfalls is hierarchically reinforcement learning
(HRL) [50] that decomposes the overall task into easier
short-term sub-tasks. However, it may be slow to learn
subpolicies and it remains challenging to order subpolicies
in the absence of dense task rewards. Besides, HRL usually
requires to manually define a set of sub-goals.

B4 Nicolas Bougie
nicolas-bougie @nii.ac.jp

Ryutaro Ichise
ichise @nii.ac.jp

1" The Graduate University for Advanced Studies (Sokendai),
Tokyo, Japan

National Institute of Informatics, Tokyo, Japan

Another successful class of methods for dealing with
such problems is imitation learning (IL) [43] in which
the agent learns by observing and possibly querying an
expert [14]. Nevertheless, these approaches are not directly
applicable to behaviors that are difficult for humans to
demonstrate such as robot control or temporally-extended
tasks, and assume that the human demonstrator has some
familiarity with the task. A solution is to leverage other
types of human guidance such as “preferences” [16] or
“weak feedback” [66]. These types of human guidance were
shown to be easier to demonstrate for humans and reduce
the amount of human involvement. For instance, preference-
based learning has been applied to game-playing as well as
robot control [16, 28]. However, we argue that providing
low-level preferences between pairs of trajectory segments
may be an inefficient way of soliciting humans, and could
be expensive and/or subject to error. A different paradigm
provides an intrinsic exploration bonus (i.e. curiosity)
to the agent. For example, count-based exploration [51]
keeps visit counts for states and favors the exploration
of states rarely visited. Curiosity can also be measured
as the error in predicting the consequences of the agent’s
actions on the environment [42], a prediction task where
the problem is a deterministic function of its inputs [9, 13],
or explicitly promote in-depth exploration [10]. Prior work

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02726-3&domain=pdf
http://orcid.org/0000-0001-9856-0038
mailto: nicolas-bougie@nii.ac.jp
mailto: ichise@nii.ac.jp

7460

N. Bougie and R. Ichise

have demonstrated that curiosity is a sufficient exploration
signal to improve control and execution in agents (e.g.
learning to reach a sub-goal in HRL), however, learning
a task from scratch can still require a prohibitively time-
consuming amount of exploration of the state-action space
in order to find a good policy. Namely, reasoning and
planning based on common sense priors [24] is beyond the
reach of agents trained with no prior assumptions about
the domain. In order to expand the availability of DRL,
it is necessary to combine the strengths of both of these
techniques. In other words, human preferences is a good
source of guidance for high-level decision-making such
as planning/reasoning, while curiosity is a good source
of endogenous motivation for exploring the consequences
of low-level actions on the environment (control and
execution), like how to pass an obstacle or whether to
interact with a particular object.

In this paper, we propose a hierarchical reinforcement
learning algorithm. At a high-level, a meta-controller poli-
cy is trained to select sub-goals given (non-expert) human
high-level preferences between pairs of sub-goals as a feed-
back signal, leading to dramatic reductions in both human
workload and degree of familiarity necessary to provide feed-
back. Besides, human preferences provide prior assumptions
about the domain to the agent, avoiding learning from scratch
and enabling common sense reasoning. We decide how
to query preferences based on an approximation to the
confidence in the action selection. At a low-level, we
introduce curiosity to drive the learning of subpolicies
(i.e. low-level control and execution). Such an approach is
motivated by learning in animals, they utilize all possible
intermediate learning signals (e.g. curiosity, preferences) to
solve challenging tasks. We further contribute a strategy to
automatically discover sub-goals that relies on the agent’s
curiosity, alleviating the need for an expert to define sub-
goals. As an intuition, we found that manually created
sub-goals are generally associated with large spikes in the
curiosity, which indicate meaningful events. This strategy
promotes active cooperation between levels of the policy
by communicating potential novel meaningful sub-goals
throughout the training process. Our experiments take place
in three domains: 2D navigation tasks in Minigrid, robotics
tasks in the physics simulator MuJoCo, and Atari games in
the Arcade Learning Environment (ALE). We show that a
small amount of feedback from a non-expert human suffices
to rapidly learn both standard RL tasks and novel hard-to-
specify behaviors such as playing Montezuma’s Revenge
or dexterous manipulation with robotic arms, notorious for
their extremely sparse rewards and complexity.

The key contributions of this article are as follows:

— We present a two-level hierarchical algorithm that
introduces human high-level preferences between pairs

@ Springer

of sub-goals at the high-level to drastically reduce
human workload, while being more intuitive for
humans and enabling non-expert feedback.

— We introduce a technique to actively request very few
preferences - in states where the agent’s confidence is
low.

— We propose to use curiosity at the low-level to drive
exploration and reduce the amount of interactions to
learn subpolicies (i.e. low-level policies). Next, we
derive a method to automatically discover sub-goals
through the idea of curiosity-driven sub-goal discovery.

2 Background

Our method builds on top of reinforcement learning and
hierarchical learning. We briefly introduce them in this
section.

2.1 Reinforcement learning

Reinforcement learning [52] consists of an agent learning a
policy 7 by interacting with an environment. At each time-
step the agent receives an observation s; and chooses an
action a;. The agent gets a feedback from the environment
called reward, r;. Given this reward and the current
observation, the agent can update its policy to improve the
future expected rewards. Given a discount factor y, the
future discounted rewards, called return R;, is defined as
R = ZZ:; y" ~'ry, where T is the time-step at which the
epoch terminates. The agent learns to select the action with
the maximum return R; achievable for a given observation
[53]. We can define the action value Q" (s,a) at a time
t as the expected reward for selecting an action a for
a given state s, and following a policy 7#: Q(s,a) =
E[R; | s; = s,a]. The policy being learned is called the
target policy, and the policy used to generate exploration
behavior is called the behavior policy.

2.2 Hierarchical learning

In this paper, we consider a hierarchical RL agent with
a two-level hierarchy (Fig. 1). The meta-controller policy
(also called master policy or high-level policy) chooses a
sub-goal that a low-level policy tries to reach. For instance,
a sub-goal could be “reach the door” and the corresponding
subpolicy “go left” — “jump” — “go down” — “use key”.
Each sub-goal corresponds to one subpolicy that can be
executed by the low-level component. We denote a sub-
goal as g € G and a low-level action is denoted by
a € A. The high-level policy iteratively selects a sub-goal
g which is then executed by the corresponding subpolicy
until completion or failure. To choose this sub-goal, the

Hierarchical learning from human preferences and curiosity

7461

state s
------------------------- [. T, ..
Subpolicies [1] [2] [3]
| sub-goal g B
[Meta-controller] action a
4 Environment
state s

Fig. 1 Hierarchical reinforcement learning

high-level policy takes as input the current state s € S.
This problem can be formalized as simultaneously learning
the high-level policy u : § — G and a set of low-level
policies m, : S — A. Low-level policies receive a positive
reward when the sub-goal being pursued is achieved. On the
other hand, the meta-controller receives an extrinsic reward
provided by the environment, which indicates whether the
agent is improving at solving the overall task.

3 Related work

Methods for providing external supervision largely divide
into two categories: imitation learning and learning from
interactive human feedback. We briefly introduce these
techniques in this section. Next, we discuss other sample-
efficient hierarchical reinforcement learning methods and
curiosity-driven learning.

3.1 Imitation learning

DQfD [25] pre-trains a Q-learning agent on the expert
demonstration data. This idea was extended to handle
continuous action spaces such as in robotic tasks [58], as
well as to actor-critic architectures [67]. In order to allow
the agent to outperform the expert, a recent follow-up [39]
introduces an expert loss in DDPG [35] and proposes to
filter suboptimal demonstrations based on the Q-values. To
reduce the amount of necessary demonstrations, a solution
is to represent a policy as a set of Gaussian mixture
models [14] and select needed demonstrations based on
the model’s uncertainty. In this work, we introduce a
simple strategy to model the agent’s confidence that relies
on dropout. One advantage of using dropout is that it
allows the predictor network to “smooth out” much of
the noise in the data, making the preference policy more
robust to noise in the demonstration data. Besides, this
technique is particularly effective in the low-data regime
to improve generalization of demonstrated preferences. In
a different spirit, AlphaGo [49] trains a policy network

to classify positions according to expert moves. A way
of dealing with sparse rewards consists in introducing
a curious replay mechanism and demonstrations [69]. In
recent years, an emerging strategy combines generative
adversarial networks and reinforcement learning (GAIL)
[26]. However, GAIL was shown to suffer from the drift
prediction error and instability during training. Another
method [19] constructs a goal-conditioned policy to visit
similar states as the expert. A different form of imitation
learning is inverse reinforcement learning (IRL) [40]
that uses demonstrated trajectories to extract a reward
function. IRL has been applied to several domains including
navigation [4, 68], and autonomous flight [1]. However,
in many cases it is impractical to demonstrate long-
term tasks and IRL algorithms assume that the observed
behavior is optimal. Overall, it is not clear how to scale
imitation learning to much more complex behaviors that
are difficult to collect. Another limitation is how to learn
when the agent’s goal deviates from the demonstrated
trajectories. This work differs by leveraging high-level
guidance - human preferences between pairs of sub-goals,
alleviating the need to collect low-level trajectories (e.g.
demonstrations) while drastically reducing human effort.

3.2 Interactive human feedback

Most methods that focus on learning from interactive
human feedback [16, 28, 37, 63, 64] query the human
to drive learning. Especially, it is possible to query
trajectory preferences [16], which can be combined with
fixed demonstrations [28]. In contrast, the depicted method
introduces the idea of high-level preferences, and combines
human feedback with curiosity that yields better-than-
expert performance by guiding the agent in the quest of
knowledge beyond the expert’s knowledge. Besides, our
approach builds upon hierarchical learning and introduces a
novel technique to decide how to query. Another example,
TAMER [62], trains the policy from feedback in high-
dimensional state spaces. The learner may also receive
feedback in the form of sequences of actions planned
by a teacher [11]. Some authors [48] consider multiple
demonstrators performing different tasks and the agent must
actively select which one to request for advice. Another
solution [45] is to block unsafe actions by training a module
from expert feedback. However, it requires the expert to
identify all unsafe situations by watching an agent play.
We argue that a constant supervision seems impractical, so
our work lets the agent identify querying opportunities so
that the expert is not required to constantly monitor the
agent. To deal with the problem of query selection, it is
possible to select sufficiently different unqueried data [27].
In this work, we only request high-level feedback to the
supervisor in states where the agent is unsure and struggles.

@ Springer

7462

N. Bougie and R. Ichise

Moreover, the proposed form of human guidance does not
necessarily require the human trainer to be an expert at
performing the task since the proposed form of guidance
only requires the human to judge outcomes. We further use
the structure of the task and introduce curiosity to drive the
agent’s exploration of sub-tasks for which human feedback
is not necessary, further reducing human effort.

3.3 Hierarchical reinforcement learning

One common strategy to solve temporally extended and/or
complex tasks is to exploit the hierarchical structure of
the task [54]. Several approaches assumed a set of pre-
specified options - a temporally extended sequence of
low-level actions, and planning / learning only occurs at
the higher level [22, 54]. While earlier works used pre-
specified options, a paper proposes a framework capable
of learning both the options and the termination conditions
of options [5]. Feudal learning is a multi-level hierarchical
model where communication is made between managers
and workers through goals and rewards [59]. However,
it is tailored to a specific kind of problem. MAXQ is
a hierarchical learning algorithm in which the hierarchy
of a task is obtained by decomposing the Q-value of
a state-action pair into the sum of two components.
Contrary to options, the MAXQ framework introduces a
real hierarchical decomposition of the task and it facilitates
the reuse of sub-policies [18]. In recent years, to address
efficiency, HIRO proposes to use off-policy experience for
both higher and lower-level training [38]. This algorithm
was then extended to jointly learn a hierarchy of policies.
They make use of goal-conditioned policies that use the
state space as the mechanism for breaking down a task into
subtasks [34]. In this work, we propose to discover sub-
goals based on the agent’s curiosity. In addition, we address
the problem of sample efficiency by introducing human
feedback to massively accelerate the learning of high-level
policies, and curiosity at the low level.

3.4 Sample-efficient hierarchical reinforcement
learning

As mentioned above, many tasks are hierarchically struc-
tured, which entails that they can be decomposed and grad-
ually solved. In order to improve sample efficiency, several
work aim to introduce external or internal supervision. A
closely related hierarchical RL work to ours is the approach
named hg-DAgger [33] in which the agent can request high-
level and low-level demonstrations, and a signal to indicate
if the high-level sub-goal was chosen correctly. At each
level, the learning task becomes a typical imitation learning
problem. In this work, we primarily focus on preferences
to enable non-expert feedback and expand the possible

@ Springer

applications of HRL, including in tasks with behaviors dif-
ficult to demonstrate. Moreover, we overcome the need
for expert-engineered sub-goals by introducing a method
to automatically discover sub-goals during exploration.
Humans can also provide policy sketches that are high-level
sub-task labels [2]. A forward model has also been used
as a measure of novelty to improve sample efficiency in
actor-critic HRL [44]. Integrating temporal abstraction and
intrinsic motivation has also been applied to game-playing
[31]. That is, they use a two-level hierarchical model where
the top-level function learns a policy over intrinsic goals,
and the low-level learns a policy over atomic actions. On
the other hand, our method is driven by a Random Network
Distillation [13] error that gradually downmodulates states
that become progressively familiar across the agent’s learn-
ing, escaping from the known “Noisy-TV” issue inherent
in curiosity (see Section 3.6). Furthermore, while curiosity
is a powerful source of endogenous motivation for low-
level control, we found human guidance to be much more
effective for high-level control, such as planning. Thus, we
propose a framework that can integrate human guidance and
curiosity at different levels to leverage the strengths of both
learning signals.

3.5 Self-generating goals

Developing machine learning systems that are capable
to explore efficiently by self-generating goals is critical
to solve complex tasks [32]. One strategy is to train a
generative model and then sample increasingly difficult
goals from the model [21]. Another approach relies on the
learning process at different instants in order to select new
goals [6]. It is also possible to sample goals from a goal
space that has been learned by the agent [32]. This goal
space represents the set of possible outcomes that can be
produced by the agent. As mentioned earlier, our method
works in the state space (e.g., images) in order to allow a
human demonstrator to provide feedback. The idea of skill
discovery is also closely related to this field of research.
In DIAYN [20], a skill is a latent-conditioned policy that
dictates the states that the agent visits. They propose to
discover skills by maximizing an information theoretic
objective using a maximum entropy policy. In this work,
goals are particular states that are selected based on the
agent’s novelty progress. Our method is easy to implement
and allows the discovery of new goals throughout the
training process, which may be seen as a form of implicit
curriculum.

3.6 Curiosity-driven exploration

Inspired by curious behavior in animals - observing
something novel or surprising could be rewarded with a

Hierarchical learning from human preferences and curiosity

7463

bonus, the use of intrinsic motivation has been developed
to promote agents to learn about their environments even
when extrinsic feedback is rarely provided. A line of work is
to keep visit counts for states to favor exploration of rarely
visited states [7, 36, 51]. To enable count-based exploration
in continuous state spaces, a solution [41] is to train
an observation density model to supply counts. Another
strategy [55] is to map states to hash codes and count state
visitations with a hash table. In this setting, the counts are
used as exploration bonus to guide exploration. A famous
algorithm, ICM [42], relies on predicting environment
dynamics using an inverse or forward dynamic model.
That is, they train a predictor for the embedding of the
next observation, and reward the agent if the reality is
significantly different from the prediction. However, one
major issue of prior work that measure the inability of the
agent to predict the future is the “Noisy-TV” issue [13,
46]. Agents tend to get attracted to transitions where the
answer to the prediction problem is a stochastic function
of the inputs, for instance, a noisy TV in the environment
that displays new images in an unpredictable order. This
is a source of stochasticity that causes every next state to
be unpredictable. To deal with this issue, RND proposes
an alternative solution to this undesirable stochasticity by
defining an exploration reward using a prediction problem
where the answer is a deterministic function of its inputs
[13]. Please note that they do not consider a truly random
TV, but instead a TV where the images keep changing
in a random fashion. Since the prediction is deterministic
for each state, after visiting enough states coming from
stochastic regions of the environment, the prediction error
will decrease in such regions. On the other hand, other
work will continuously try to find a connection between the
agent’s action and the resulting state.

4 Method

The challenges of injecting expert feedback into DRL are
two folds. First, in many cases it is impractical to use
human policy as guidance because some of these tasks are
too challenging for even humans to perform well. Second,

state s

providing low-level feedback can be time-consuming and
significantly increase human workload.

The framework of hierarchical learning from human pref-
erences (HhP) provides us a mechanism to mitigate these
problems (Fig. 2). Our approach introduces (non-expert)
human high-level feedback into hierarchical reinforcement
learning via preferences over sub-goals. This provides a
significant speedup in learning while requiring less human
effort. Although a number of algorithms could in principle
be used to learn the low-level subpolicies, they often require
to manually engineer sub-goals and rely on large amounts of
interactions. In contrast, our formulation introduces curios-
ity to enable self-discovery of sub-goals and speed up the
learning of subpolicies.

In the following section, we first describe high-level
components of our method and then low-level components.

4.1 High-level preferences

In this section, we describe high-level components of our
algorithm. When learning from demonstrated trajectories,
the policy is trained to clone a human (expert) demonstrator
on the task. Nevertheless, to provide meaningful demonstra-
tions, the demonstrator has to have some knowledge and
familiarity with the current task. As a result, learning from
direct demonstrations of trajectories or high-level actions
(i.e. sub-goals) is significantly more costly than requesting
human (non-expert) preferences, which only uses the ability
to judge outcomes. Moreover, rather than relying on tra-
jectory preferences (i.e. low-level preferences) we propose
to query high-level preferences, decreasing the amount of
feedback required by several orders of magnitude.

To this end, we assume a set of sub-goals G and access
to a supervisor that can provide preferences over sub-goals.
Our method maintains a meta-controller (also called high-
level policy) w : & — G and a predictor network that
estimates a reward function from the annotator’s preferences
p : SxG — R, each parametrized by deep neural networks.
Our predictor network takes a state and a sub-goal as input
and outputs an estimate of the corresponding reward. In

L)

preference « fquery

117,

v I (glgz)bonus sub-goal g
Y b

Meta-controller

S,8

[]

reward r°

intrinsic reward

" Intrinsic Module

pseudo-reward r*#

action a

state,sub-goal state s
Fig. 2 Hierarchical learning from human preferences and curiosity.
The predictor network is trained based on high-level preferences pro-
vided by a demonstrator. The predictor network provides a bonus b

Environment

to the meta-controller for agreeing with human preferences. In addi-
tion to the pseudo-reward r¢¢, the subpolicies receive an intrinsic
reward r'

@ Springer

7464

N. Bougie and R. Ichise

our settings, preferences are collected while the agent is
training, during the experiment.

In detail, our algorithm works as follows (see Algo-
rithm 1). For each selected sub-goal g by the meta con-
troller v (line 11), the sub-policy 7, selects and executes
low-level actions until some termination condition is met
(lines 15-21). Along with the pseudo reward (line 17),
the agent receives an intrinsic reward (line 18). Upon
termination of the sub-goal, another sub-goal is selected
and the process continues until the end of the episode,
where the involvement of the demonstrator begins. The
expert is requested preferences (line 26) for the sub-goals

where the predictor’s confidence is low (line 25). The
preferences are used to train the predictor network (line
27). Then, the agent inspects the last state trajectory and
selects new goals based on its novelty-progress (line 29).
Finally, the meta-controller is trained given preferences
of the predictor network and extrinsic returns (lines 30-
34). This process continues until the task is mastered.
In the following section we describe the key components
of our method: (1) training the predictor network to fit
the high-level preferences collected from human so far,
(2) optimizing the meta-controller, and (3) selecting new
queries.

Algorithm 1 Hierarchical learning from human preferences (HhP).

1: Given:

— replay buffer Ry, preference buffer R, low-level data buffers D, and RND buffer £2
— meta-controller policy u, predictor network p, subpolicies 77, and RND model

— predicates done(s, g), terminal(s, g), alpha, and t4,

: Initialize u, p, RND model
: Initialize Ry = {}, R ={},and D, = {}, 2 = {}
: Initialize set of sub-goals G = {}

: Add a random sub-goal to G and initialize the corresponding subpolicy 7

Receive initial state 5o from the environment, s; < 5o

2
3
4
5
6: for m=0,...,.M episodes do
7
8
9

on = {}
repeat
10: oL = {}
11: Select a sub-goal g < w(s;)
12: Calculate preference bonus b, < p(s;, g|60%)
13: Append (s;, g, by) to o
14: repeat
15: Get action a; < g (s;)
16: Execute a; and observe next state ;41
17: Compute pseudo-reward 7, and intrinsic reward rti
18: Compute the total reward r, = ;" + o -/
19: Append (s;, ar, S1+1, &, 1) to ¢ and Dy
20: Update 7,: a (stochastic) gradient descent step on a minibatch from D,
21: S <— Sr4+1
22: until rerminal(s;, g)
23: until end of episode
24: Calculate return for each sub-goal in ¢y
25: Evaluate confidence for tuples in ¢y
26: Query preference for low-confidence tuples and store preferences in R > Threshold 7

27: Update p on minibatches from R
28: Add ¢y to Ry

29: Inspect ¢, to select new sub-goals and add them to G
30: for j=0.,...,Nyp;-1 do

31 Sample a minibatch B from Ry

32: Normalize the preference bonus contained in B
33: Calculate rewards r°

34: Update meta-controller 4 <— TRAIN(u, B, r¢)

> If a query was produced

> Uses models in £2

35: Update the RND model and potentially replace models in §2

@ Springer

Hierarchical learning from human preferences and curiosity

7465

4.1.1 Training the predictor network

Our model maintains a predictor network p that mimics
human high-level preferences. It takes as input the current
state s; and the sub-goal g recommended by the meta-
controller, and outputs a reward that “criticizes” the meta-
controller’s recommendation, b, € R.

In order to train the predictor model, the human overseer
is given a visualization of a state s and a pair of two sub-
goals (g1, g2), in the form of images. The human then
indicates which sub-goal is favoured, that the two sub-
goals are equally good, or that the overseer is unable to
compare the two sub-goals. We record tuples (s, g1, g2, V)
in a database R, where s is a state, g; and g are two distinct
sub-goals, and v is the score given by the demonstrator.
Write g1 > g» to indicate that the human preferred sub-
goal gj to sub-goal g», and g; 4 g» to indicate that the
two sub-goals are equally good. In our implementation we
use labels for encoding preferences (i.e. score v): [1, 0, 0]
denotes g1 > g2, [0, 1, 0] denotes g» > g1, and [0, O, 1]
denotes g1 4 g2.

Assuming the data-set R of tuples, R = {(s, g1, g2, v), .-},
we train the predictor network p to minimize the
cross-entropy loss, £, between these predictions and the
actual judgment labels. Since we discard tuples that are
incomparable, the loss function can be written as follows:

LP.0"R) = —— >

R
| (5,81,82,V)€ER
+log(Plg2 > g1Dv1 (D

where 0* is the set of parameters of the predictor network,
v; corresponds to the i’th element of one-hot encoded label
of the sample (s, g1, g2), (g1, g2) is a pair of sub-goals, and
P is the probability of preferring a sub-goal. We calculate
this probability via:

log(P[g1 > g2]vo

eﬁ(xagl 16%)

Plg1 > g] = (2)

eh.8110%) 1 ¢h(s.8206%)

Therefore, the overall loss can be re-written as:

P (s.8116%)
eh.8110%) 1 oh(s.820m) |0
(+)

5 0* Ry — L
L(p,0*,R) = R Z log|:

(s,81,82,V)ER

oP(5.8210%)
log [(eﬁ(s,gzwﬂ pTIo \e))]v‘

This loss function is a specialization of the Bradley-Terry
model [29] for estimating score functions from pairwise
preferences. Similarly to the low-level preference model
[16], we resort to indirect training of this model via
preferences expressed by the teacher. However, here, rather
than working on low-level segment trajectories, our method
operates on sub-goals, making the training much less reliant

on large amounts of preferences to be accurate and more
intuitive for the overseer while being computationally more
efficient.

Besides, it has several advantages. 1) It is more natural
and faster for a human to compare a pair of sub-goals that
coming with an optimal sub-goal. 2) When a new sub-goal
is added to memory, it only requires to compare the new
sub-goal with current best sub-goals. 3) Humans with partial
knowledge about the task (i.e. non-experts) can provide
feedback signal since they can provide information about
pairs of sub-goals. That is, if an expert has poor knowledge
about one pair of sub-goals, it can still provide information
about other pairs of sub-goals. On the other hand, in
standard imitation learning, the human demonstrator has
to have some good familiarity with the task in order to
select the next optimal sub-goal or action. As a result, we
found that a non-expert can provide valuable feedback that
can be used to expand the possible applications of deep
reinforcement learning agents.

4.1.2 Optimizing the meta-controller

We can train the meta-controller © based on high-level
preference elicitation provided by the predictor network. At
time-step ¢, the meta-controller network receives the current
state s, and recommends the next sub-goal g. In this paper,
we consider that, along with the extrinsic reward, the meta-
controller also receives a preference bonus b; that rewards
the meta-controller for agreeing with human preferences.
Please note that since the reward function b, is often non-
stationary, it is useful to normalize the rewards so that the
action-value function can learn quickly [12]. We normalize
the preference reward by dividing it by a running estimate
of the standard deviations of the preference returns R,
p(sz, g|0*) = [%Iéﬁ]' Thus, the reward r{ that receives the
meta-controller for selecting the sub-goal g in a state s; is
the following:

by
o(Rp)

1= B-Re+(1=P)-p(si, 816)
3

rf = B-Re+(1—B)-[

where R, is the extrinsic return obtained by selecting the
sub-goal g and then following the subpolicy 7., B is a
hyperparameter to weight the importance of the preference
bonus, and p(s;, g|0*) is the normalized reward calculated
by the predictor network. Please note that this formulation
accounts for the possibility that human preferences can be
suboptimal. Rather than always selecting the preference-
based sub-goal, we provide a bonus to the meta-controller.
This enables the meta-controller to correct possible human
mistakes based on interactions with the environment and

@ Springer

7466

N. Bougie and R. Ichise

discover alternative options that are unknown to the
demonstrator.

4.1.3 Selecting queries

One common solution to decide how to query preferences
relies on ensemble-based uncertainty estimates, as done by
Christiano et al. (2017) [16]. However, such an approach
tends to be computationally expensive [28]. Moreover, we
found this strategy less accurate when operating in the low
data regime (with very few preferences), as in our work.
Therefore, we introduce a different approach to decide
how to query preferences based on the predictor’s confi-
dence. This prompts the predictor to query preferences only
for sub-goals that are found with a low degree of confi-
dence. The predictor network’s confidence can be modeled
using bayesian models. However, in the context of RL, their
computational cost can be prohibitive. This problem can be
mitigated by using an estimation of Bayesian inference. It
was shown that the use of dropout can be interpreted as a
Bayesian approximation of Gaussian process [23]. There-
fore, we introduce a dropout layer before every weight layer
of our predictor network. After each episode, to estimate
predictive confidence c(s, g) of a tuple (s, g), we collect the
results of stochastic forward passes through the predictor
network and then measure the variance in the prediction:

c(s, g) = Ba~p[p% (s, g16*) — pI*)

where p%i(s, g|6*) represents the model’s prediction with
dropout mask d;, D is a set of dropout masks, and p
is the predictive posterior mean, p = Eg;~p pli(s, g6).
Since the forward passes can be done concurrently, the
method results in a running time identical to that of standard
dropout. We can expect the variance of unknown and far-
away tuples to be larger than known tuples. Furthermore,
using a large number of dropout masks makes this approach
much more accurate than training an ensemble of models,
while preventing overfitting of recorded preferences.

A score above a threshold #,., results in a query;
however, one remaining question is the choice the sub-goal
g» that will be sent to be compared to g. g» is chosen as
the second most likely sub-goal to be selected by the meta-
controller in the state s. The intuition behind this strategy
is that rather than comparing g to all the other sub-goals,
we can leverage the knowledge of the meta-controller about
similar situations to reduce the search space. In other words,
even though the meta-controller has a low confidence, it
can still discard very unlikely sub-goals and assign higher
probabilities to sub-goals similar to the ones encountered
before. After a query (s, g, g2), the resulting feedback is
added to the buffer R. Then, we finetune the predictor
network on R.

@ Springer

4.2 Combining low-level policies with curiosity

At the low-level, we train subpolicies 7, where g is
the sub-goal pursued by the subpolicy. In particular we
can use any standard off-policy reinforcement learning
algorithm like DDPG where each learner accumulates its
own experience. Similarly to prior work on hierarchical
reinforcement learning [31, 33], we assume access to a
terminal(s,g) function that indicates the termination of the
sub-task and a done(s,g) function that indicates a failure or
success of the goal being pursued. Hence, we can derive a
pseudo-reward function r®&. The subpolicies are trained to
maximize this excepted pseudo-reward, defined as follows:

1 if done(s,g)
r®& ={ —1 if terminal(s,g) A —done(s,g) (5)

0 otherwise

However, this pseudo-reward function ¢ may be very
sparse depending on the time-horizon of the sub-task. This
will become pressing when attempting to scale this method
to practical tasks where the number of steps to reach the
sub-goal being pursued can be large or the sub-task be very
challenging. In this paper, we extend the formulation of the
pseudo-reward to tackle sparse reward sub-tasks, drastically
reducing the number of interactions to learn subpolicies.

To this end, we propose to make use of a curiosity-based
intrinsic reward, r. This bonus is summed up with the sub-
task reward (i.e. pseudo-reward), making rewards dense and
more suitable for learning, without the need for handcrafting
a reward function for each sub-goal.

Overall, at every time step 7, m, receives the following
reward:

r,:r,e’g—l—oz-r," 6)

where « is a hyperparameter of our method to weight reward
components, 7€ is the pseudo-reward, and 7/ is the intrinsic
reward. In all our experiments, we use Random Network
Distillation (RND) [13] as formulation of curiosity, which
consists of two neural networks. A fixed network takes
an observation to an embedding f : S — RF and a
reconstructor networks that aims to predict the output of f on
the current observation, f : & — R*. Please note that only
the reconstructor network is trained by gradient descent to
minimize the prediction distance with f. The intrinsic reward
r is calculated via:

rE =11 f (1) = Flsipn)]? %

An important “trick” that we found is to use a global
estimator of curiosity rather than an estimator for each
subpolicy. Intuitively, the agent does not need to revisit
states that have already been visited by other subpolicies.
Furthermore, using a global curiosity estimator ensures that
only relevant parts of the state space are collected by the

Hierarchical learning from human preferences and curiosity

7467

agent. That is, the agent collects experience that has never
been explored (or potentially not fully explored) by other
subpolicies and that are relevant for reaching the goal being
pursued, g.

4.2.1 Curiosity-driven sub-goal discovery

Rather than relying on manually created sub-goals as
done in most prior work, we introduce Curiosity-Driven
Sub-goal Discovery (CSD) to automatically discover sub-
goals with a minimal computational overhead. Intuitively,
it has been shown that spikes in the intrinsic curiosity
mostly correspond to meaningful events [10, 13]. For
instance, in Montezuma’s Revenge, large spikes correspond
to events such as passing an obstacle, picking an object,
interacting with a torch, or using a ladder. Therefore, we
can hypothesize that some of the states where curiosity
spikes can be considered as potential sub-goals. Moreover,
we would like to emphasize that irrelevant sub-goals will be
discarded (i.e. not selected) by the high-level policy.

The proposed method works as follows. We consider £2
a set of M prior novelty models (e.g. RND [13]). To fill £2,
every T time steps we substitute the oldest model in memory
with the current model. By doing so, we can measure the
novelty progress at different time-scales. Novelty-progress
p(sy) in a state s; can now be estimated by measuring the
average distance between the current model and previous
models at different time-scales:

1
pls) = —

a1 2 (1m0 = femaol?

Oo1d €82

— 11f Ge411001a) — f (5141 |901d)||2] (8)

where ||fA(s,+1 [) — f(st41 [)]]? is the novelty estimation
parametrized by a set of trainable parameters 6 (current
model) or 6,4 (prior model). Please note that our method
adds states as sub-goals only if they have been visited
several times (i.e. regularly visited). This eliminates states
that initially have a high novelty but that will be considered

(a) Door & key

,T D
e

s ¥

(b) Fetch Push

less significant by the agent as it explores and gains
knowledge about the task. In contrast, task-relevant states
are by nature frequently visited. After the novelty progress
score computation, a new sub-goal with a score in the
lowest 5-percentile is added to memory if the similarity
with any other sub-goals is smaller than a similary threshold
bsimiiariry- This check is necessary for the following reason:
the threshold byimijariry induces a discretization in the
sub-goal space, which enables to store “distinct enough”
sub-goals.

5 Experiments

In this section, we first describe implementation details and
the tasks to be completed by the agent. Then, we answer the
following questions:

— Is HhP robust to noisy human preferences?

— Is HhP robust to non-expert preferences?

— What is the impact of using a synthetic oracle?

— Is automatic sub-goal discovery an efficient way to
design sub-goals?

— How much do preferences and curiosity help?

— What is the impact of the query budget on the
performance?

— What is the impact of the number of experts on the
performance?

Finally, we conduct experiments in multiple tasks from the
Minigrid environment, MuJoCo suite, and Atari benchmark
suite (Fig. 3).

5.1 Implementation details

In this section, we refer to our algorithm as hierarchical
human preferences (HhP). In all the experiments, the
observations are given in the form of images. The RGB
images are converted to 84x84 grayscale images. The
input given to the policy networks (high-level and low-
level) consists of the current observation concatenated with

I
N

¥

Fig.3 Frames from door & key, fetch push, and montezuma’s revenge (MR)

@ Springer

7468

N. Bougie and R. Ichise

the previous three frames. The data buffers contain the
most recently encountered tuples. Once their capacity is
reached, we substitute the oldest element in memory with
the current element. Note that the number of subpolicies is
not capped. Empirically, capping the number of subpolicies
leads to a deterioration in the overall performance as
the agent tends to forget prior skills. When we add
a new sub-goal to the set of sub-goals, we randomly
initialize the corresponding subpolicy. We use DDQN with
prioritized experience replay (Minigrid and Atari; with
prioritization exponent ¢ = 0.6 and importance sampling
exponent B = 0.4) or DDPG (MuJoCo) at the low level
and high level of our algorithm, and RND with similar
hyperparameters as in the original implementation [13].
The target network used in Q-learning is updated every
2000 steps.

In order to select the hyperparameters used for the
tasks, we ran a grid search with the ranges shown
in Section 5.2. We also ran grid searches over the
learning rate € [0.0001, 0.0005, 0.001, 0.005], the number
of hidden units € [128,256], the query threshold
tgry € [0.20,0.26,0.42,0.60], the number of dropouts €
[500, 1000], and p € [0.05, 0.1, 0.2]. We did not tune other
hyperparameters. As the Mingrid and Mujoco environments
are procedurally generated we performed tuning on the
validation set, disjoint with the training set. For Atari games,
the validation set and training set use different seeds that
were randomly chosen (i.e. without any seed tuning). When
tuning, we consider the mean final reward of 10 training
runs with the same set of hyperparameters as the objective.
We employ the following neural network architectures and
settings:

— At the high-level, the predictor network uses a siamese
architecture [65] with two branches (one for the state
and one for the goal), each branch consists in a sequence
of three convolutional layers with (32,64,64) filters
each, stride: 4,2,1, kernel size of: 8 x 8,4 x 4,3 x
3, and padding 1. We apply a rectifier non-linearity
after each convolutional layer. The outputs of the last
convolutional layers are concatenated and passed to a
serie of two fully connected layers of size 256. The last
layer uses a sigmoid activation. After each episode, if
the agent made at least one query to the demonstrator,
we perform 4 epochs of training on the preference
buffer, R. Note that the preference buffer has a capacity
equal to the query budget.

— The synthetic oracle has the same architecture and
hyperparameters as the predictor network. However, it
is trained to predict the average return so the last layer
is followed by a rectifier non-linearity activation. After
each episode, we perform 4 epochs of training on a
buffer of size S00K.

@ Springer

— The meta-controller uses a similar architecture, but the
dimension of its last layer is the number of subpolicies.
It uses a softmax activation to predict the next sub-
goal. In our implementations, each goal has a unique /D
([0,...,|G|) that is assigned after a new goal is selected
by the agent. Please note that the input of the predictor
network is not the ID of the goal but the goal itself (i.e.
an image). Training is carried after each episode and we
use Nyp; = 4 for training the meta-controller. The size
of the replay buffer Ry is S00K.

— The sub-policies consist in a sequence of three
convolutional layers with (32,64,64) filters each, stride:
4,21, kernel size of: 8 x 8,4 x 4,3 x 3, and
padding 1. We apply a rectifier non-linearity after
each convolutional layer. The outputs of the last
convolutional layers are concatenated and passed to a
serie of one fully connected layer of size 256. The
output size is the number of actions. The low-level
buffers have a capacity of 5S0K.

For all networks, training is carried out with a fixed learning
rate of 10~ using the Adam optimizer [30], with a batch
size of 128. The frequency update T of the prior model
buffer, £2, is set to 15,000, and we found M = 4 to be

sufficient. For Minigrid tasks, we use f;y = 0.26. For
Atari games and Mujoco tasks, we set t,,, = 0.42. We
set the coefficient of rewards § = 0.7 and ¢« = 0.5.

In MuJoCo we set the query budget to 750 and 3000
in Atari games. The query budget is the total number of
tuples (s, g1, g2) that are requested to the expert throughout
the training process. Once the budget is exhausted, the
agent cannot make additional queries. In Minigrid, we
report results for different query budgets, between 50 and
200. We set bgimilaricy = 0.5. We estimate the sum of
discounted preference rewards using a discount factor of
0.99 on rollouts of length 64. o(R,) (3) is defined as
the running average of the standard deviations of these
discounted preference rewards. We use the original terminal
functions provided by the environments. To detect the
correct termination/attainment of a subgoal in Atari games,
we use a similar strategy as done in hg-Dagger [33]. They
count the number of pixels inside of a prespecified box (i.e.
around the agent) that has changed in value. In detail, a
sub-goal completion is detected if at least 20% of pixels in
the landmark’s detector box change. For Mingrid tasks, we
directly compare the sub-goal and current state. For Fetch
tasks, a sub-goal completion is detected if the Euclidean
distance to the goal is less or equal to 0.05. In all our
experiments, predictor confidence is estimated based on
500 dropout masks with p = 0.1. We embrace the single-
scale SSIM metric [60] for measuring the similarity between
sub-goals, which compares corresponding pixels and their
neighborhoods in two images with three metrics: luminance,

Hierarchical learning from human preferences and curiosity

7469

contrast, and structure. We found this metric to perform
better than the standard Euclidean distance when working in
environments with complex visual patterns or small details.

Preferences In our experiments, feedback is provided by
humans (3 annotators) who are being asked to compare
pairs of sub-goals. They were recruited among friends
and colleagues. They had no special expertise about the
tasks, however, before providing feedback to the AlI,
demonstrators were asked to test the task for 1 hour to get
a sense of how it works. Each sub-goal is represented by an
image, which allows the demonstrator to quickly compare
sub-goals. The human then indicates which sub-goal is
favored, that the two sub-goals are equally good, or that the
demonstrator is unable to compare the two sub-goals. The
human demonstrator had to reply within 5 seconds. Tasks
were randomly assigned to the demonstrators and they could
not communicate together, which entails that there was no
agreement between them. We also run experiments (see
Section 5.2.3) using a synthetic oracle whose preferences
are generated based on the extrinsic rewards. The synthetic
oracle consists of a neural network that estimates the
average return (with no discount factor) of a sub-goal.
That is, it takes as input a pair of state and sub-goal, and
outputs the average return (based on the agent’s experience)
obtained by an agent starting in this state and aiming to
reach this sub-goal. The preferred sub-goal is then the
sub-goal with the highest estimated return. In practice
(see Section 5.2.3), the reward function provides enough
information to the synthetic oracle for selecting accurate
preferences.

Environments We conduct experiments on several sparse
reward environments:

— Minigrid: In Minigrid [15], the world is a partially
observable grid. Each tile in the grid contains nothing or
one object: ball, box, door, wall, or key. An observation
consists of the visible cells surrounding the agent. The
agent can choose among seven possible actions: turn
left, turn right, move forward, pick up an object, drop
the object being carried, open a door, and complete the
task. The agent will remain in the same state if the
action is not legal. For instance, if there is no key in
front of the agent, the agent will remain in the same
state when trying to pick up an object. The Door &
Key task consists of two rooms connected by a door.
The agent has to pick up the key in order to unlock
the door and then get to the goal. In KeyCorridor, the
task is similar to Door & Key but there are multiple
rooms and multiple doors. In detail, the agent has to
pick up the key, use the key to open the locked door,
and pick up the ball. In Multiroom, the agent has

to open a serie of doors to reach the final goal. In
ObstrMaze, the doors are locked, the keys are hidden in
boxes and doors are obstructed by balls. Solving such
sparse tasks is challenging since the object locations
are randomized and the agent only receives a positive
reward +1 when it reaches the final goal. These tasks
also require sequential decision making (e.g. saving the
key to open a distant door) to reach the final goal.

MuJoCo: In the MulJoCo environment, the agent
controls a 7-DoF Sawyer arm which is simulated using
the MuJoCo physic engine [57]. A state of the system is
represented by an RGB image. The goals are randomly
sampled by the environment. They describe the desired
position of the object (a box or a puck depending on
the task) with some fixed tolerance. The agent receives
a positive reward +1 after reaching the goal being
pursued, 0 otherwise. Action space is 4-dimensional
and continuous. Three dimensions specify the desired
relative gripper position at the next step. Another
dimension specifies the desired distance between the 2
fingers, which are position controlled. The end-effector
(EE) is constrained to a 2-dimensional rectangle. We
consider four Fetch tasks where the agent controls the
robotic arm: (1) Fetch Reach, (2) Fetch Push, (3) Fetch
Pick & Place, and (4) Fetch Slide. In Fetch Reach,
the agent aims to move the effector to reach a goal as
quickly as possible. In Fetch Push, a box is placed on
a board in front of the robot and the goal is to move it
to the target location on the board. In Fetch Fetch Pick
& Place, the agent needs to grab a box and move it to a
target location in the air. In Fetch Slide, the robot aims
to hit a puck placed on a slippery table so that it reaches
a target position located outside the robot’s reach.

Atari: We conduct experiments in the Arcade Learning
Environment [8], including: Montezuma’s Revenge,
Private Eye, Gravitar, Pitfall, Seaquest, and Solaris.
These are hard exploration games that might also
contain deceptive rewards such as in Pitfall. In
these games, the agent has to navigate in complex
environments, explore labyrinths, avoid enemies, pass
obstacles, and/or collect objects. In Montezuma’s
Revenge the player explores rooms filled with enemies,
obstacles, traps, in an underground labyrinth. In Private
Eye, the agent is a private investigator who is driving
a car that can move around and jump vertically or over
obstacles. The environment can be seen as a labyrinth
as it consists of multiple roads located in a city or in the
woods. The objective of the game is to capture thieves
that sit behind the windows of buildings. In Gravitar,
the agent controls a small blue spacecraft. The gravity
plays an important role in this game as the ship will be
pulled slowly to the bottom of the screen. The agent
receives rewards for destroying bunkers. In Pitfall, in

@ Springer

7470

N. Bougie and R. Ichise

order to recover 32 treasures, the player must maneuver
through numerous hazards, including pits, quicksands,
and rolling logs. In Seaquest, the agent must shoot
enemies to survive. In Solaris, the agent must attempt to
keep its fuel consumption low and navigate into hostile
battlegroups. Each battlegroup has at least one enemy,
which shoots out fuel-sapping drones.

5.2 Ablation study

We have conducted ablation studies on some Atari games
to investigate: (1) the robustness to imperfect preferences,
(2) the robustness to non-expert preferences, (3) the impact
of using a synthetic oracle, (4) the impact of the sub-goal
discovery strategy, (5) the impact of the components on
the performance, (6) the impact of the query budget on the
performance, and (7) the impact of the number of experts on
the performance.

5.2.1 Robustness to imperfect preferences

In the above experiments, we assume perfect preferences
(i.e. the demonstrator always provides optimal feedback).
However, the teacher might select not the best preferences
or even lack knowledge about a sub-goal. We study how our
agent performs when imperfect preferences are generated
by the human teacher. In order to generate imperfect
preferences, we randomly provide a non-optimal preference
with a probability ¢ € {0.05,0.1,0.2}. We report in
Table 1 (lines 1-3) the performance of our framework. We
observe that HhP can still achieve acceptable performance.
For instance, on Montezuma’s Revenge, scores obtained
by our method remain close to the best scores. Even
though the proposed method performs slightly worse in the
imperfect setting, it still improves performance as compared
to the prior methods. A reason is that the agent can
leverage high-level preferences of similar sub-goals and
learn from interactions to correct mistakes made by humans.

The experimental results demonstrate that our method is
reasonably robust to noise in the preferences, and hence
a non-expert teacher can provide a feedback signal to the
agent.

5.2.2 Preferences from a non-expert

In addition to the set of experiments where the agents
are trained with imperfect preferences (see Section 5.2.1),
we run experiments with a non-expert human. It aims to
quantitatively establish how good performs our method
when preferences are generated by a non-expert. We only
explained the controls of the game to the player and did
not elaborate on the specific game mechanics. As shown
in Table 2, our method can still perform reasonably well
when preferences are generated by a non-expert human.
A possible explanation of this result is that the agent can
correct possible human mistakes based on its interactions
with the environment. In addition, the proposed form of
human guidance allows the demonstrator to label tuples as
unable to compare, which entails that some sub-optimal
labels are naturally discarded.

After carrying these experiments, we further asked the
non-expert demonstrator to provide optimal actions and
preferences for 500 randomly selected tuples (s, g1, g2)- In
other words, the demonstrator had to select the best possible
action to take in a state s as well as judge the best sub-goal to
select in the same state. Note that for both forms of human
guidance, the demonstrator could decide that he is unable to
return a label. First, we show how many labels are discarded
for both forms of guidance (Table 2 lines 3-4). We then
report the frequency of disagreement between the expert
and non-expert when feedback is provided (lines 5-6). In
all the six games, the non-expert is able to provide more
preferences than low-level actions. One possible reason is
that less familiarity about the task is necessary to generate
high-level knowledge than low-level knowledge. The results
also show a much larger frequency of disagreement for

Table 1 Final mean performance (= std) of our method with various sub-goal creation strategies on Atari games and average success rate (£ std)

on KeyCorridorS4R3 and Fetch Pick & Place

Maximum Mean Score (at convergence)

Success rate

Method Montezuma’s Revenge Private Eye Gravitar Pitfall KeyCorridorS4R3 Pick & Place
HhP / 0=0.05 18,657+1,168 66,145+1,609 2,941+963 9924205 0.90+0.04 0.94 +£0.04
HhP / 0=0.1 16,569+1,453 63,693+£2,272 2,836+1,231 759+£301 0.84+0.07 0.79 £0.07
HhP / 0=0.2 15,028+1,625 58,30442,263 2,564+1,456 7041416 0.77£0.12 0.76 £0.09
HhP / random 12,698+2,865 49,2174+6,580 2,547+687 5761220 0.65+0.11 0.39 £0.14
HhP/CSD 19,9144+979 68,874+1,265 3,100+£714 1,288+169 0.91£0.02 0.97 £0.03

Averages over 10 runs are shown after 100M steps (Atari), SM steps (KeyCorridorS4R3), and 1.5M steps (Fetch Pick & Place)

@ Springer

Hierarchical learning from human preferences and curiosity 7471
Table 2 Final mean performance (mean=std) of our method with expert labels or non-expert labels (lines 1-2)

Maximum Mean Score (at convergence)
Method Montezuma’s Revenge Private Eye Gravitar Pitfall Seaquest Solaris
HhP (expert) 19,914 + 979 68,874 + 8,265 3,100 £714 1,288 +169 17,143 +1,231 3,996 + 511
HhP (non-expert) 16,125 + 687 57,090 £9,124 3,081 £ 801 1,022 £ 364 16,062 + 1,478 3,747 £ 419
Actions 118 132 87 147 61 85
Preferences 29 45 12 21 32 30
Disagreement (actions) 0.12 0.21 0.13 0.15 0.19 0.09
Disagreement (Preferences) 0.05 0.07 0.04 0.08 0.11 0.03

We report the results of our method achieved over total 100M timesteps of training, averaged over 10 seeds. We also report the number of discarded
labels (lines 3-4) and the frequency of disagreement between the expert and the non-expert (lines 5-6)

actions than preferences. We found that it is generally more
intuitive for a human to judge outcomes than controlling
the agent. We conclude that our method tends to be more
intuitive and easier to demonstrate for a non-expert than
standard demonstrations.

5.2.3 Synthetic oracle for preference elicitation

The majority of the experiments use a human for labeling.
We also run experiments with a synthetic oracle. This
experiment aims to quantitatively establish how good is
our method when preferences are generated by the agent
itself. With synthetic labels, poor performance can stem
from two causes: (1) failure of the oracle to capture a good
estimation of value function, resulting in bad preferences, or
(2) conservative exploration behaviors. Table 3 summarizes
the overall performance of each setup. In most tasks,
performance is similar, but in Montezuma’s Revenge and
Pitfall, human preferences are clearly better. This is due to
the very long time-horizon of these tasks, which makes the
estimation of the value function difficult. Overall, it shows
that our method can be generally trained using synthetic
labels.

5.2.4 Impact of the sub-goal discovery strategy

To see the potential benefits of using an automatic sub-goal
creation strategy, we explore the performance of HhP with
sub-goals created using the following strategies: randomly
discovered, and automatically discovered (CSD) (Table 1,
line 4-5). Note that in complex and temporally-extended
tasks like Atari games, manually creating all sub-goals is
deemed infeasible. During late training, the agents trained
with CSD always reached higher performance. It validates
that our strategy can discover a diverse range of sub-
goals that cover key events of the task. On the other hand,
randomly selecting sub-goals deteriorates the performance.
Nevertheless, even with randomly discovered sub-goals, the
meta-controller and the teacher can still discard irrelevant
sub-goals and select meaningful sub-goals, keeping the
performance in an acceptable range. However, the final
performance of HhP trained with randomly discovered sub-
goals is capped since the agent cannot keep learning once
all the meaningful sub-goals are mastered.

To further validate the depicted strategy, we show the
sub-goals discovered in the first room of Montezuma’s
Revenge and compare it against the optimal sub-goals

Table 3 Final mean performance (mean=std) of our method with synthetic labels or human labels

Maximum Mean Score (at convergence)

Method Montezuma’s Revenge Private Eye Gravitar Pitfall Seaquest Solaris
HhP (synthetic) 13,125 £ 1,612 46,601 £6,459 2,947 £830 611 £ 154 14,286 £ 1,029 3,804 + 524
HhP (human) 19,914 4+ 979 68,874 + 8,265 3,100 + 714 1,288 + 169 17,143 + 1,231 3,996 + 511

We report the results of our method achieved over total 100M timesteps of

training, averaged over 10 seeds

@ Springer

7472

N. Bougie and R. Ichise

Fig.4 Screenshots from
Montezuma’s Revenge:
manually created sub-goals
(left), and automatically
discovered sub-goals (right). The
sub-goals (the agent’s position)
are denoted by a red dot

(a) Expert labelling

created by an expert [33]. For simplicity, we report in Fig. 4
the location of the agent for each sub-goal. We can see that
the automatically discovered sub-goals are very similar with
manually created sub-goals. For instance the sub-goal pick
a key was found by both strategies. A noticeable difference
is that our strategy found a larger number of sub-goals
compared to experts. Thus, this experiment validates that
CSD can be used as a robust alternative to manually created
sub-goals.

5.2.5 Impact of the components on the performance
In order to measure how much do high-level preferences

and curiosity help, we compare the following experimental
setups:

® Curiosity (Cur): The model is trained solely based on
its own curiosity.

(b) Automatic discovery

e Preferences (Pref): The model is trained from human
high-level preferences, without curiosity.

e Full model (HhP): The model is trained from human
high-level preferences and curiosity.

As can be observed in Fig. 5, Cur produces faster learning
during the early stages of the agent’s training. For instance,
on Pitfall after 50M training steps the agent equipped with
curiosity achieves a score of ~ 260. However, as selecting
the next sub-goal becomes increasingly difficult, learning
without human preferences hurts the performance. We gen-
erally observe that curiosity significantly reduces training
time of subpolicies, but has a limited impact on the gain
in performance. On the other hand, learning from human
high-level preferences (Pref) shows large improvements
compared to Cur - human preferences help the agent to
rapidly order the subpolicies. Nevertheless, learning with-
out curiosity increases the exploration workload, requiring

Cur
Pref
mm HhP

J\

0-25 25-50 50-75 75-100 25-50
Training Steps (in millions)

(b) Private Eye

Training Steps (in millions)

(a) Montezuma’s Revenge

50-75 75-100 ’ 0-25 25-50 50-75 75-100
Training Steps (in millions)

(c) Gravitar

1400 Cur

=
o
1<
S

Mean Episode Return
Mean Episode Return

17500 Cur
Pref Pref 4000 Pref
1200 | mmm HhP 15000 | mmm HhP e
12500 | l
800 10000
600 7500 2000 ‘ |
400 5000
I 1000
200 2500
0 0

1 Cur

w
1=}
S
I}

Mean Episode Return

o

“o- 25 25-50 50-75 75-100 25-50
Training Steps (in millions)

Training Steps (in millions)

(d) Pitfall

(e) Seaquest

50-75 75-100 25-50 50-75 75-100
Training Steps (in millions)

(f) Solaris

Fig.5 Performance for different experimental setups on 6 Atari games after 100M agent steps. Performance of the model (HhP) against the model
trained solely based on its own curiosity (Cur) and with preferences (Pref). Results are averaged over 10 runs (%std)

@ Springer

Hierarchical learning from human preferences and curiosity

7473

more interactions to reach similar performance as HhP. This
experiment demonstrates that curiosity-driven exploration
plays a central role in reducing the number of trial-and-
errors and human guidance enables various forms of com-
mon sense reasoning, improving the overall performance.

5.2.6 Query budget of preferences

We now report evaluations showing the effect of increased
query budget. Figure 6 demonstrates that agents trained
with a larger query budget obtain higher mean returns after
similar numbers of updates. However, despite a small query
budget (less than 4000), our method can still learn near-
optimal policies. We can draw the observation that as the
query budget increases, the learning effect on the agent
gradually improves. Nonetheless, for the results with 3000
and 6000 queries, we can see that even though the number
of queries significantly differs, the difference in learning
effect can be negligible. This can happen when the queried
preferences cover a broad enough number of sub-goals
and therefore the agent does not need to make additional
queries. As a result, our method leverages a small amount of
preferences that cover critical sub-goals, leading to dramatic
reductions in both human effort and cost of exploration.

5.2.7 Number of experts

the
the

Finally, one legitimate question is to study
of the number of different demonstrators on

impact
agent’s

Table 4 Final mean performance (meanztstd) of our method for a
various number of experts

Maximum Mean Score (at convergence)

Method Montezuma’s Revenge Private Eye

HhP (1 expert) 20,005 + 964 66,741 + 7,459
HhP (2 experts) 19,321 + 805 65,256 + 8,198
HhP (3 experts) 19,914 + 979 68,874 + 8,265

We report the results of our method achieved over total 100M
timesteps of training, averaged over 10 seeds

performance. Ideally, the policy performance should not
be too sensitive to this hyperparameter. Especially, using
multiple demonstrators should not decrease the performance
of our agent. We perform a study for a various number
of demonstrators 1,2,3 on Montezuma’s Revenge and
Private Eye. Note that using / expert means that all the
preferences are queried to the same human. On the other
hand, when more than one expert is involved, each run is
randomly assigned to an expert. Table 4 shows that the HhP
performance is robust to the choice of this hyperparameter.
In the future, we anticipate using some forms of inter
agreement between the experts to improve the quality of
the preferences. In our experiments, preferences are queried
to one expert without considering his knowledge about
the situation, however, we can expect improvements by
selecting the expert that is the most familiar with the current
situation.

25000 -
1 500 queries

1500 queries
W 3000 queries
4000 queries
6000 queries

0

80000 500 queries

< 70000

% 60000

20000

15000

£ 40000
10000
£ 30000

Mean Episode Return

5000 = 20000

10000

5000 1

1500 queries
B 3000 queries
4000 queries
6000 queries

w500 queries
4000

3000

2000

Mean Episode Return

25-50
Training Steps (in millions)

50-75 75-100

(a) Montezuma’s Revenge

17501 mmm 500 queries

1500 queries
1500

Em 3000 queries

1250 4000 queries 15000
6000 queries 12500

1000
42 10000

750
7500

500
5000
250 2500
0 0

25-50 50 75 75 100
Training Steps (in millions)

(d) Pitfall

Mean Episode Return
Mean Episode Return

1500 queries

3000 queries
: 4000 queries
o< 6000 queries
£ 50000
3 I
Q
F bl |
©
5}

‘I 7I7 | ’

I |
1000 o {
o | i
0-25 25-50 50-75 75-100 0-25 25-50 50-75 75-100
Training Steps (in millions) Training Steps (in millions)
(b) Private Eye (c) Gravitar
500 queries I 500 queries

1500 queries i
EEE 3000 queries
4000 queries i
6000 queries I | l
gkl | .
, |
|

25-50 50-75 75-100
Training Steps (in millions)

(e) Seaquest

Mean Episode Return

4000

3000

2000

1000

1500 queries

s 3000 queries i ‘
4000 queries
6000 queries ‘ |

IIII I |

0-25 25-50 50-75
Training Steps (in millions)

(f) Solaris

75-100

Fig.6 Performance of our method on 6 Atari games after 100M agent steps, for different query budgets. Results are averaged over 10 runs (%std)

@ Springer

7474

N. Bougie and R. Ichise

5.3 Procedurally generated tasks

We now perform experiments on a set of four procedurally
generated tasks in the Minigrid environment to evaluate the
overall performance of our algorithm and its generalization
ability to unseen views or appearances. Please note that due
to a large number of random environment instances, this
domain requires a very large number of samples for tabular
algorithms. Figure 7 depicts the training performance on
Door & 16 x 16, KeyCorridorS4R3, ObstrMazelQ, and
MultiRoomN12S10. The results of each run are averaged
to provide a mean curve in each figure, and the standard
error is used to make the shaded region surrounding
each curve. In all cases, the use of the proposed method
results in significant improvements in the performance
of the policy, leading to near-optimal policies. Figure 7
shows that all the tasks can be solved with very few
queries (i.e. less than 200 queries). As can be further
seen, on Door & 16 x 16 and ObstrMazelQ, even
though HhP (50 queries) primarily progresses more slowly
than HhP trained with a larger query budget (HhP (150
queries), HhP (200 queries)), it is ultimately capable of
achieving similar performance. Overall, leveraging the
proposed form of human guidance - high-level preferences,
enables our agent to rapidly reach good performance
and generalize the provided domain knowledge to unseen
appearances.

Fig.7 Performance of HhP for

=
=}

5.4 Robotic tasks

In this section we evaluate the agent on four different tasks
(Fetch) from the robotic domain built on top of MuJoCo:
Fetch Reach, Fetch Push, Fetch Pick and Place, and Fetch
Slide. We compare our method against several baselines
including DDPG [35], HER [3], DDPG+Demo [39], and
goalGail [19]. We show learning curves in Fig. 8. Our
method can learn comparable or superior policies using
a significantly smaller number of human feedback than
goalGAIL and DDPG+Demo. For instance, on Pick and
Place, on average only 156 queries were made by HhP.
As excepted, it ends up reaching similar final performance,
however, our method has a faster convergence rate, reducing
the amount of required interactions with the environment.
Furthermore, unlike our algorithm, DDPG+Demo passively
access the demonstration data, so we actively provide help
in the form of high-level preferences to our agent when
it struggles. That is, the agent receives human feedback
when its confidence in the sub-goal selection is low. At
the low-level, we make use of curiosity to guide the
agent’s learning. We can further observe that incrementally
querying preferences over sub-goals keeps the number of
required preferences very low, while enabling non-expert
demonstrations - it is more intuitive for a human to judge
in which direction to move the robotic arm than controlling
the robotic arm (see Section 5.2.2). We conclude that our

different numbers of queries
(labels) on a variety of
procedurally generated tasks in
MiniGrid: Door & 16 x 16,
KeyCorridorS4R3,
ObstrMaze1Q, and
MultiRoomN12S10. All curves
(mean=std) are averaged over
10 random runs

. = o
> o ©

o
N]

Extrinsic rewards per episode

e SRS EE S

1.0
TUEspEAtTReTI T
[N e N S AL A S o R A S
el
2 0.81
o
[
g
[
20.61
p
®
5
g 044 A A
—— 50 labels u —— 50 labels
100 labels 2 02 100 labels
—— 150 labels g A —— 150 labels
200 labels . _»/ 200 labels
- v,

0 1 2 3 4 5 &6

7 8 9 o 1 2 3 4 5 6 7 8 9

@ Springer

Extrinsic rewards per episode
(=]
N

9
(=)

Number of training steps (in millions)

(a) Door & 16 x 16

o
©

o
o

o
IS

2 3 4 5 6 71 8 9
Number of training steps (in millions)

(c) ObstrMazelQ

Extrinsic rewards per episode

1.0

Number of training steps (in millions)

(b) KeyCorridorS4R3

‘";M'\-M-_Vmp.«».z—; R A e e e g

—— 50 labels —— 50 labels
100 labels 100 labels

—— 150 labels —— 150 labels
200 labels 200 labels

S T | la.,s a8

8 10 12 14 16 18
Number of training steps (in millions)

(d) MultiRoomN12S10

Hierarchical learning from human preferences and curiosity 7475
Fig.8 Learning curves averaged 1.0 1.0
over 10 runs for different T H ===
models: HhP, DDPG, HER, 2081 8038
DDPG+Demo, and goalGail. § §
The models are trained on 20.61 2 0.6
. o
robotic tasks from the Fetch & o
environment 0.41 S 0.4 HER
g g —— DDPG
= i c
@ goalGail] DDPG+Demo
E 0.2 DDPG+Demo E 0.2 goalGail
& —— HhP o - HhP
0.0+— : - 0.0 = - —
0 50 100 0 500 1000
Number of Environment Steps (x 103) Number of Environment Steps (x 103)
(a) Fetch Reach (b) Fetch Push
1.0 1.0
o HER -
g —— DDPG g
20381 DDPG+Demo 208
< goalGail <
2 0.6 " —— HhP 2 0.6
o o
O (6]
6 G
© 0.41 © 0.4 HER
g 8 DDPG+Demo
2 2
@ bt goalGAIL
0 0.21 0 0.24
o = —— DDPG
& i . —— HhP
0.0 - — . 0.0 . -
0 500 1000 1500 0 500 1000 1500 2000

Number of Environment Steps (x 103)

(c) Fetch Pick & Place

Number of Environment Steps (x 103)

(d) Fetch Slide

method provides the capability to effectively learn from
multiple types of internal and external supervision.

5.5 Hard exploration games

We also test the proposed method on six difficult
exploration Atari 2600 games from the Arcade Learning
Environment (ALE) [8]: Montezuma’s Revenge, Private
Eye, Gravitar, Pitfall, Seaquest, and Solaris. In the selected
games, training an agent with a poor exploration strategy
often results in a suboptimal policy. We compare our method

to the performance of PPO [47], PPO+RND [13], DQfD
[25], Imitation [25], Pref (No-Demo) [16], and Pref (Demo)
[28]. The results are shown in Table 5. We consider the final
mean performance of 10 training runs with the same set
of hyperparameters. It is observed the plain PPO algorithm
obtained a score close to zero and could not solve most of
the tasks. On the other hand, a hierarchical decomposition
of the tasks drastically reduces the number of required
interactions. We also found that human preferences is vital
- even with significantly more labels, DQfD fails to reach
scores comparable to our method. We hypothesize that

Table 5 Final mean performance (mean=std) of our method and baselines on Atari games

Maximum Mean Score (at convergence)

Method Montezuma’s Revenge Private Eye Gravitar Pitfall Seaquest Solaris

PPO [47] 1,259+610 50+£37 1,826+255 -21+6 664£258 1,021 £199
PPO+RND [13] 8,152+653 8,666£1051 3,906+246 -3+1 3,179£378 3,282£281
DQfD [25] 4,739 40,908 1,693 57 12,361 2,616
Imitation [25] 576 43,047 248 182 195 3,589

Pref (No-Demo) [16] 23£5 256 + 69 - - 1,011 £216 -

Pref (Demo) [28] 2,829 + 714 50,159 + 11,657 - - 515 142
Average Human [61] 4,753 69,571 3,351 6,464 20,182 12,327

HhP (ours) 19,914 £+ 979 68,874 + 8,265 3,100 £ 714 1,288 = 169 17,143 + 1,231 3,996 + 511

We report the results of our method achieved over total 100M timesteps of training, averaged over 10 seeds. Some historical papers did not

« %

consider games, in which case the score is displayed as

@ Springer

7476

N. Bougie and R. Ichise

human demonstrations often deviate from the agent’s goal
and do not enable efficient common sense reasoning - they
cannot be used by the agent for planning or reasoning but
are limited to specific situations. Please note that Gravitar
is an exception, the curiosity-based approach PPO+RND is
hard to beat. On Private Eye, our method achieves a mean
score higher than Pref (Demo) trained without curiosity.
Overall, on the six tasks, using human high-level guidance
enables our agent to achieve various forms of common sense
reasoning and avoids learning from scratch, surpassing
standard reinforcement learning baselines. Moreover, even
with access to a smaller number of labels, our method
outperforms other preference-based methods that make
use of low-level preferences. One reason is that HhP
requires much less human queries to efficiently drive the
agent’s learning. We observed a reduction by a factor of
~ 2 over models that use low-level preferences (Pref(No-
Demo), Pref(Demo)). The depicted method also drastically
reduces the total amount of feedback compared to DQfD
on Montezuma’s Revenge (17949), Private Eye (10899),
Gravitar (15377), Pitfall (35347), Seaquest (57453), and
Solaris (28552). We should also emphasize that comparing
pairs of sub-goals appears to be easier than providing
an optimal action or comparing low-level trajectories (see
Section 5.2.2). Moreover, comparing pairs of sub-goals
is more efficient per second of human time compared
to standard preference-based approaches that require the
demonstrator to visualize trajectory segments. For instance,
in Pref (No-Demo) the demonstrators responded to the
average query in 3-5 seconds [16]. On the other hand,
on average, the demonstrator responded to our queries
in 1.6 seconds. Besides, we further observed that using
curiosity is critical for reducing the number of low-level
interactions, especially in tasks with complex dynamics like
Montezuma’s Revenge or Private Eye.

6 Future research direction

In this paper, we presented hierarchical learning from
human preferences and curiosity, a method introducing
human preferences at the high-level along with curiosity
at the low-level. Precisely, to greatly reduce the human
involvement, we proposed to introduce human guidance
in the form of high-level preferences between sub-goals,
enabling non-expert feedback and alleviating the need for
demonstrating complex behaviors. Further benefits stem
from efficiently learning subpolicies by leveraging an
intrinsic reward. Unlike traditional hierarchical learning
methods where the agent passively receives a set of
sub-goals, our method actively discovers sub-goals based

@ Springer

on the agent’s curiosity progress - curiosity-driven sub-
goal discovery, which eliminates the need to handcraft
sub-goals. In the depicted work, human preferences provide
prior assumptions about the domain to the agent, avoiding
learning from scratch and facilitating various forms
of common sense reasoning. Precisely, grafting human
preferences onto the agent allows it to plan a sequence of
sub-goals based on its own common sense priors (without
having to experience a situation). On the other hand,
curiosity is used for control of sub-tasks too challenging
for even humans to perform well. We demonstrated the
effectiveness of our approach and compared it against
several baselines on Minigrid, MuJoCo, and Atari. Our
method shows substantial improvements over prior work
in terms of average scores and exploration efficiency.
Moreover, even very small amounts of preferences let us
outperform prior imitation-based approaches on multiple
sparse reward tasks.

That being said, we acknowledge that our approach
has certain limitations. The proposed method relies on a
terminal and a done function. Such functions are widely
used in prior hierarchical learning work [31, 33]. However,
it would be interesting to let the agent decide when to
change of active sub-goal. Another solution would be to
learn a function that decides when the active sub-goal is
terminated or done.

A key element in our method is leveraging human
preferences for selecting sub-goals. In the long run, it
would be desirable to introduce a predicate that requests
the teacher a new optimal next sub-goal. In other words,
if there is no optimal next sub-goal (among G), it would
be important to request a different sub-goal designed by a
teacher. Although automatically discovering sub-goals that
cover a wide range of options is relatively easy in most
tasks, we cannot expect our method to always discover all
meaningful options.

Another research direction is how to create preference in
order to further reduce human effort. In our experiments, we
compared human labels to a synthetic oracle. While human
labels consistently produced higher scores, our method
could still outperform most prior work when trained from
synthetic labels. One promising direction is to replace the
human expert by another agent’s advice. After the learner
determines when to query a prospective teacher, it may be
possible to query another agent that has already acquired
knowledge about the situation. This inter-agent teaching
strategy has been used to solve tasks such as video game
playing [56], but it remains an open problem in complex
tasks [17]. Another possible solution could be to train the
agent on a mixture of preference data collected from an
agent and a human. We believe that exploring multi-agent

Hierarchical learning from human preferences and curiosity

7477

collaboration is an important direction in order to further
reduce human involvement, making the proposed approach
easier to apply to real-world domains.

Finally, when running experiments, we needed to
choose a threshold to ensure storing significantly different
sub-goals. Even though we achieved improvements on
most tasks with a fixed value, it requires little tuning
of hyperparameters. One way to overcome the need
for parameter tuning is to incorporate the idea of
discriminability like done in DIAYN [20], but we leave it to
future work to explore this direction further. Another similar
avenue for future research is to incorporate an adaptive
confidence threshold to further improve query selection.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Abbeel P, Ng AY (2004) Apprenticeship learning via inverse
reinforcement learning. In: Proceedings of the international
conference on machine learning. p 1

2. Andreas J, Klein D, Levine S (2017) Modular multitask
reinforcement learning with policy sketches. In: International
conference on machine learning. pp 166—-175

3. Andrychowicz M, Wolski F, Ray A, Schneider J, Fong R,
Welinder P, McGrew B, Tobin J, Abbeel OP, Zaremba W (2017)
Hindsight experience replay. In: Advances in neural information
processing systems. pp 5048-5058

4. Argall BD, Chernova S, Veloso M, Browning B (2009) A survey
of robot learning from demonstration. Robot Auton Syst 57(5):
469-483

5. Bacon PL, Harb J, Precup D (2017) The option-critic architecture.
In: Proceedings of the AAAI conference on artificial intelligence,
vol 31

6. Baranes A, Oudeyer PY (2013) Active learning of inverse models
with intrinsically motivated goal exploration in robots. Robot
Auton Syst 61(1):49-73

7. Bellemare M, Srinivasan S, Ostrovski G, Schaul T, Saxton D,
Munos R (2016) Unifying count-based exploration and intrinsic
motivation. In: Proceedings of advances in neural information
processing systems. pp 1471-1479

8. Bellemare MG, Naddaf Y, Veness J, Bowling M (2013) The
arcade learning environment: An evaluation platform for general
agents. J Artif Intell Res 47:253-279

9. Bougie N, Ichise R (2020a) Exploration via progress-driven
intrinsic rewards. In: Proceedings of the international conference
on artificial neural networks, vol 22, pp 269-281

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Bougie N, Ichise R (2020b) Fast and slow curiosity for high-level
exploration in reinforcement learning. Appl Intell

Bougie N, Cheng LK, Ichise R (2018) Combining deep
reinforcement learning with prior knowledge and reasoning. ACM
SIGAPP Appl Comput Rev 18(2):33-45

Burda Y, Edwards H, Pathak D, Storkey A, Darrell T (2019a)
Large-scale study of curiosity-driven learning. In: Proceedings of
the the international conference on learning representations
Burda Y, Edwards H, Storkey A, Klimov O (2019b) Explo-
ration by random network distillation. In: Proceedings of the
international conference on learning representations

Chernova S, Veloso M (2007) Confidence-based policy learning
from demonstration using gaussian mixture models. In: Proceed-
ings of the international joint conference on autonomous agents
and multiagent systems. pp 1-8

Chevalier-Boisvert M, Willems L, Pal S (2018) Minimalistic
gridworld environment for openai gym. https:/github.com/
maximecb/gym-minigrid

Christiano PF, Leike J, Brown T, Martic M, Legg S, Amodei
D (2017) Deep reinforcement learning from human preferences.
In: Advances in neural information processing systems. pp 4299—
4307

Da Silva FL, Warnell G, Costa AHR, Stone P (2020) Agents
teaching agents: a survey on inter-agent transfer learning. Auton
Agent Multi-Agent Syst 34(1):1-17

Dietterich TG (2000) Hierarchical reinforcement learning with the
maxq value function decomposition. J Artif Intell Res 13:227-303
Ding Y, Florensa C, Abbeel P, Phielipp M (2019) Goal-
conditioned imitation learning. In: Advances in neural information
processing systems. pp 15298-15309

Eysenbach B, Gupta A, Ibarz J, Levine S (2019) Diversity is
all you need: Learning skills without a reward function. In:
International conference on learning representations

Florensa C, Held D, Geng X, Abbeel P (2018) Automatic goal
generation for reinforcement learning agents. In: International
conference on machine learning. pp 1515-1528

Fruit R, Lazaric A (2017) Exploration-exploitation in mdps with
options. In: Artificial intelligence and statistics. pp 576-584

Gal Y, Ghahramani Z (2016) Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learning. In:
Proceedings of the international conference on machine learning.
pp 1050-1059

Garnelo M, Arulkumaran K, Shanahan M (2016) Towards
deep symbolic reinforcement learning. arXiv:http://arxiv.org/abs/
160905518

Hester T, Vecerik M, Pietquin O, Lanctot M, Schaul T, Piot B,
Horgan D, Quan J, Sendonaris A, Osband I, Dulac-Arnold G,
Agapiou J, Leibo JZ, Gruslys A (2018) Deep g-learning from
demonstrations. In: Annual meeting of the association for the
advancement of artificial intelligence

Ho J, Ermon S (2016) Generative adversarial imitation learning.
In: Advances in neural information processing systems. pp 4565—
4573

Hsu D (2019) A new framework for query efficient active
imitation learning. arXiv:http://arxiv.org/abs/191213037

Ibarz B, Leike J, Pohlen T, Irving G, Legg S, Amodei D (2018)
Reward learning from human preferences and demonstrations in
atari. In: Advances in neural information processing systems.
pp 8011-8023

Kendall MG, Smith BB (1940) On the method of paired
comparisons. Biometrika 31(3/4):324-345

Kingma DP, Ba J (2014) Adam: A method for stochastic
optimization. arXiv:http://arxiv.org/abs/14126980

Kulkarni TD, Narasimhan K, Saeedi A, Tenenbaum J (2016)
Hierarchical deep reinforcement learning: Integrating temporal

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid
http://arxiv.org/abs/160905518
http://arxiv.org/abs/160905518
http://arxiv.org/abs/191213037
http://arxiv.org/abs/14126980

7478

N. Bougie and R. Ichise

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

abstraction and intrinsic motivation. In: Advances in neural
information processing systems. pp 3675-3683

Laversanne-Finot A, Péré A, Oudeyer PY (2021) Intrinsically
motivated exploration of learned goal spaces. Front Neurorobot
14:109

Le H, Jiang N, Agarwal A, Dudik M, Yue Y, Daumé HIII (2018)
Hierarchical imitation and reinforcement learning. In: Proceedings
of machine learning research, pp 2917-2926

Levy A, Konidaris G, Platt R, Saenko K (2017) Learning
multi-level hierarchies with hindsight. arXiv:http://arxiv.org/abs/
171200948

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver
D, Wierstra (2015) Continuous control with deep reinforcement
learning. arXiv:http://arxiv.org/abs/150902971

Machado MC, Bellemare MG, Bowling M (2018) Count-based
exploration with the successor representation. arXiv:http://arxiv.
org/abs/180711622

Mathewson KW, Pilarski PM (2017) Actor-critic reinforce-
ment learning with simultaneous human control and feedback.
arXiv:http://arxiv.org/abs/170301274

Nachum O, Gu S, Lee H, Levine S (2018) Data-efficient
hierarchical reinforcement learning. arXiv:http://arxiv.org/abs/
180508296

Nair A, McGrew B, Andrychowicz M, Zaremba W, Abbeel
P (2018) Overcoming exploration in reinforcement learning
with demonstrations. In: Proceedings of the IEEE international
conference on robotics and automation. pp 6292-6299

Ng AY, Russell SJ, et al. (2000) Algorithms for inverse
reinforcement learning. In: Proceedings of the international
conference on machine learning. pp 663-670

Ostrovski G, Bellemare MG, van denOordA, Munos R (2017)
Count-based exploration with neural density models. In: Pro-
ceedings of the international conference on machine learning.
pp 2721-2730

Pathak D, Agrawal P, Efros AA, Darrell T (2017) Curiosity-
driven exploration by self-supervised prediction. In: International
conference on international conference on machine learning.
pp 2778-2787

Pomerleau DA (1991) Efficient training of artificial neural
networks for autonomous navigation. Neural Comput 3(1):88-97
Roder F, Eppe M, Nguyen PD, Wermter S (2020) Curious
hierarchical actor-critic reinforcement learning. arXiv:http://arxiv.
org/abs/200503420

Saunders W, Sastry G, Stuhlmueller A, Evans O (2018) Trial
without error: Towards safe reinforcement learning via human
intervention. In: Proceedings of the international conference on
autonomous agents and multiagent systems. pp 2067-2069
Savinov N, Raichuk A, Marinier R, Vincent D, Pollefeys
M, Lillicrap T, Gelly S (2019) Episodic curiosity through
reachability. In: Proceedings of the international conference on
learning representations

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017)
Proximal policy optimization algorithms. arXiv:http://arxiv.org/
abs/170706347

Shon AP, Verma D, Rao RP (2007) Active imitation learning.
In: Proceedings of the AAAI conference on artificial intelligence.
pp 756-762

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den
Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V,
Lanctot M, et al. (2016) Mastering the game of go with deep neural
networks and tree search. Nature 529(7587):484

Stone P, Veloso M (2000) Layered learning. In: European
conference on machine learning. Springer, pp 369-381

Strehl AL, Littman ML (2008) An analysis of model-basedinterval

Springer

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

estimation for markov decision processes. J Comput Syst Sci
74(8):1309-1331

Sutton RS (1988) Learning to predict by the methods of temporal
differences. Machine Learn 3(1):9-44

Sutton RS, Barto AG (1998) Reinforcement learning: an
introduction. MIT press, Cambridge

Sutton RS, Precup D, Singh S (1999) Between mdps and semi-
mdps: A framework for temporal abstraction in reinforcement
learning. Artif Intell 112(1-2):181-211

Tang H, Houthooft R, Foote D, Stooke A, Chen X, Duan Y,
Schulman J, De TurckF, Abbeel P (2017) # exploration: a
study of count-based exploration for deep reinforcement learning.
In: Proceedings of the 31st international conference on neural
information processing systems. pp 2750-2759

Taylor ME, Carboni N, Fachantidis A, Vlahavas I, Torrey L (2014)
Reinforcement learning agents providing advice in complex video
games. Connect Sci 26(1):45-63

Todorov E, Erez T, Tassa Y (2012) Mujoco: A physics engine for
model-based control. In: 2012 IEEE/RSJ international conference
on intelligent robots and systems. pp 5026-5033

Vecerik M, Hester T, Scholz J, Wang F, Pietquin O, Piot
B, Heess N, Rothorl T, Lampe T, Riedmiller M (2017)
Leveraging demonstrations for deep reinforcement learning on
robotics problems with sparse rewards. arXiv:http://arxiv.org/abs/
170708817

Vezhnevets AS, Osindero S, Schaul T, Heess N, Jaderberg M,
Silver D, Kavukcuoglu K (2017) Feudal networks for hierarchical
reinforcement learning. In: Internationasearning. pp 3540-3549
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image
quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process 13(4):600-612

Wang Z, Schaul T, Hessel M, Van HasseltH, Lanctot M, De Freitas
N (2016) Dueling network architectures for deep reinforcement
learning. In: International conference on machine learning.
pp 1995-2003

Warnell G, Waytowich N, Lawhern V, Stone P (2018) Deep
tamer: Interactive agent shaping in high-dimensional state spaces.
In: Thirty-Second AAAI conference on artificial intelligence.
pp 1545-1554

Wilson A, Fern A, Tadepalli P (2012) A bayesian approach for
policy learning from trajectory preference queries. In: Advances
in neural information processing systems. pp 1133-1141

Wirth C, Akrour R, Neumann G, Fiirnkranz J (2017) A survey of
preference-based reinforcement learning methods. J Mach Learn
Res 18(1):4945-4990

Zagoruyko S, Komodakis N (2015) Learning to compare image
patches via convolutional neural networks. In: Proceedings of
the IEEE conference on computer vision and pattern recognition.
pp 43534361

Zhang R, Torabi F, Guan L, Ballard DH, Stone P (2019)
Leveraging human guidance for deep reinforcement learning
tasks. In: Proceedings of the international joint conference on
artificial intelligence. pp 6339-6346

Zhang X, Ma H (florensa2018automatic) Pretraining deep actor-
critic reinforcement learning algorithms with expert demonstra-
tions. arXiv:http://arxiv.org/abs/180110459

Ziebart BD, Maas A, Bagnell JA, Dey AK (2008) Maximum
entropy inverse reinforcement learning. In: Proceedings of the
national conference on artificial intelligence. pp 1433-1438

Zuo G, Zhao Q, Lu J, LiJ (2020) Efficient hindsight reinforcement
learning using demonstrations for robotic tasks with sparse
rewards. Int J Adv Robot Syst 17

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/171200948
http://arxiv.org/abs/171200948
http://arxiv.org/abs/150902971
http://arxiv.org/abs/180711622
http://arxiv.org/abs/180711622
http://arxiv.org/abs/170301274
http://arxiv.org/abs/180508296
http://arxiv.org/abs/180508296
http://arxiv.org/abs/200503420
http://arxiv.org/abs/200503420
http://arxiv.org/abs/170706347
http://arxiv.org/abs/170706347
http://arxiv.org/abs/170708817
http://arxiv.org/abs/170708817
http://arxiv.org/abs/180110459

Hierarchical learning from human preferences and curiosity

7479

Nicolas Bougie graduated
from the University of Paris
Sud, France in 2017. He stud-
ied about machine learning
and artificial intelligence. He
is currently a PhD student
at the National Institute of
Informatics in Japan and a
student at the Sokendai Uni-
versity. His research area
covers reinforcement learning,
deep learning and machine
learning.

Ryutaro Ichise received his
Ph.D. degree in computer
science from Tokyo Insti-
tute of Technology, Tokyo,
Japan, in 2000. From 2001
to 2002, he was a visit-
ing scholar at Stanford Uni-
versity. He is currently an
associate professor in Princi-
ples of Informatics Research
Division at National Insti-
tute of Informatics in Japan.
His research interests include
machine learning, semantic
web, and data mining.

@ Springer

	Hierarchical learning from human preferences and curiosity
	Abstract
	Introduction
	Background
	Reinforcement learning
	Hierarchical learning

	Related work
	Imitation learning
	Interactive human feedback
	Hierarchical reinforcement learning
	Sample-efficient hierarchical reinforcement learning
	Self-generating goals
	Curiosity-driven exploration

	Method
	High-level preferences
	Training the predictor network
	Optimizing the meta-controller
	Selecting queries

	Combining low-level policies with curiosity
	Curiosity-driven sub-goal discovery

	Experiments
	Implementation details
	Preferences
	Environments

	Ablation study
	Robustness to imperfect preferences
	Preferences from a non-expert
	Synthetic oracle for preference elicitation
	Impact of the sub-goal discovery strategy
	Impact of the components on the performance
	Query budget of preferences
	Number of experts

	Procedurally generated tasks
	Robotic tasks
	Hard exploration games

	Future research direction
	References

