
Cooperative gating network based on a single BERT encoder
for aspect term sentiment analysis

Yuqing Peng1
& Tengfei Xiao1

& Hongtao Yuan1

Accepted: 27 July 2021
# The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In recent years, BERT encoder methods have been widely used in aspect term sentiment analysis (ATSA) tasks. Many ways of
putting text and aspect term into a BERT sentence encoder separately aim to create vectors by obtaining context and aspect
words. However, the semantic relevance of these initially extracted context-hiding vectors and aspect word-hiding vectors is
poor. Moreover, they are easily affected by irrelevant words. Therefore, the CGBN model is proposed in this paper, which uses
only the sentence sequence as the input to the BERT encoder. Moreover, the context-hiding vectors and aspect word-hiding
vectors containing rich semantic association information were able to be extracted simultaneously for the first time. In addition,
this paper proposes a new interactive gatingmechanism called a co-gate. Compared with the general interactive feature extraction
mechanism, it can not only effectively reduce the interference of noisy words but also fuse the information of context and aspect
term better and capture emotional semantic features. To enhance the ability of BERT to be fine-tuned with domain data, the
pretraining file of BERT Post Training (BERT-PT) is used in this paper to fine-tune the CGBN model. A method of domain
adaptation is also applied with combined training sets, thus enhancing the training effect of the target domain data. Experiments
and analysis prove the validity of the model.
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1 Introduction

With the rapid development of social networks, e-commerce
and other online media, people are increasingly expressing
their opinions on services or products through online channels
such as blogs and forums. User-generated comment data show
an exponential growth trend, which not only greatly improves
the decision-making quality of organizations and individuals
but also greatly increases the quality of services and products.
[1–4]. To make full use of these extensive information re-
sources, emotion analysis has become an important tool for
extracting human emotion information [5].

Aspect-based sentiment analysis (ABSA) is a fine-tuning
task within sentiment analysis that aims to predict the senti-
ment polarity of target entities or aspect categories in text.
ABSA can be divided into four subtasks: (1) Opinion target

extraction (OTE)(‘Opinion target’ is synonymouswith ‘aspect
term’),(2) Aspect category detection (ACD),(3) Aspect Term
Sentiment Analysis (ATSA), and(4) Aspect Category
Sentiment Analysis (ACSA) [5, 6]. OTE and ACD detect a
target entity in a sentence and its corresponding aspect cate-
gory, respectively. ATSA determines the emotional polarity
of a target entity, and ACSA predicts the emotional polarity of
a related aspect category. For example, in the sentence frag-
ment “but the staff was so horrible to us”, ATSA judges the
emotional polarity of the target entity “staff”, and ACSA pre-
dicts the polarity of the aspect category “service” that corre-
sponds to the sentence, even if “service” does not appear in the
sentence [6]. This paper focuses on the ATSA task.

In recent years, deep learning, which can capture the syn-
tactic and semantic features of text, has been widely used in
ATSA tasks without the need for advanced feature engineer-
ing. The traditional neural network method uses GloVe [7] or
Word2Vec [8] to obtain the word embedding vector of each
token in the sentence sequence. It constructs task-related fea-
ture extraction layers through recurrent neural networks and
attention mechanisms. Recently, a model based on the BERT
[9] structure has achieved excellent results performing the
ATSA task. BERT, a deep bidirectional encoder structure
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based on Transformer [9, 10], avoids the need for task-specific
architectures by using pretraining.

However, there are some problems in these methods at
present. The first problem is the poor relevance of the initially
extracted context-hiding vectors and aspect word-hiding vec-
tors. The traditional methods of using context-independent
word embedding vectors are not enough to capture the com-
plex semantic dependencies in sentences, which will bring
performance bottlenecks [11]. Although most of the models
use the BERT encoder to capture the contextual representation
vector and the aspect term representation vectors, their asso-
ciated information is still insufficient, especially for the aspect
term. In addition, in the face of sentences containing multiple
aspect terms, the contextual representation vector may not be
able to accurately distinguish the emotional polarity corre-
sponding to a specific aspect term. Therefore, better results
can be obtained by more complex interactive feature extrac-
tion. Another problem is that many models based on the at-
tentionmechanism use the average pooling vector of an aspect
term to extract context features when extracting the relation-
ship between the context and the aspect term. However, the
pooling vector will inevitably bring in interference words if
the aspect term is composed of multiple words. For example,
in the target phrase “size of the screen”, “of” is an interference
word. In addition, the aspect term may be composed of mul-
tiple entities that have differing influences on sentiment clas-
sification. In the above example, “size” is more important than
“screen” [12]. To overcome these shortcomings and better
capture the semantic relationship between context and aspect
term, attention-based models have become increasingly com-
plex and computationally expensive. The third problem is that
the ATSA task is a fine-grained task that requires high corpus
labeling. However, the training set for ATSA is so small that
its model may not be able to complete sufficient training,
limiting its performance. For example, the SemEval 2014
dataset is a benchmark dataset for ATSA, but its training sets
in the restaurant field and the laptop field have only approxi-
mately 3600 and 2300 data points, respectively.

This paper addresses the problems above. First, the contex-
tual representation vector and aspect term representation vec-
tors extracted by two BERT encoders have poor interactive
feature capability. To effectively overcome this, the CGBN
model uses only the sentence sequence as the input to its
BERT encoder. Next, the context and aspect word represen-
tation vectors that contain rich semantic information are si-
multaneously extracted from the last layer of the BERT en-
coder. Second, a new nonparallel interactive gating mecha-
nism co-gate (cooperative gating mechanism) is proposed in
this paper to capture the relationship between the context and
the aspect term more effectively. The shortcomings of tradi-
tional interaction feature extraction can be avoided, and the
high computational cost of the attention mechanism [13] can
be reduced. The gating mechanism fuses context information

into the aspect term representation vector and then computes
the context representation vector based on the specific aspect
term. It reflects the relevance of given aspect words as well as
context vectors in each dimension. Irrelevant emotional fea-
tures can also be blocked and filtered out. Third, this paper
fine-tunes its model with BERT-PT. BERT-PT applies a
domain-specific corpus to pretraining tasks, which is useful
for injecting domain knowledge and reducing the “domain
bias” of the BERT benchmark pretraining corpus. Moreover,
the model can grasp domain-related features better [14].
Additionally, the domain adaptability of the CGBN model is
explored in this paper. Themodel is tested onmultiple training
sets to assess the impact of different training sets on its per-
formance. It is found that the fusion of restaurant and laptop
training data can greatly enhance the performance of these two
target areas. To optimize its cross-domain performance, the
model adaptively adjusts its parameters according to the target
domain so that it can obtain more sufficient training. We also
find the reasons why the integration of the twitter training set
has a poor effect. The details can be seen in Section 4.4.2.
Finally, the performances of the model on the restaurant
dataset, laptop dataset, and ACL-twitter dataset are evaluated
[15].

The main contributions of this paper are as follows.

(1) We use only sentence sequences as the input to the
BERT encoder and then extract the hidden vectors of
the context and aspect words in the encoder at the same
time.

(2) We propose a new interactive gating mechanism co-gate,
which enhances the interactive feature extraction capa-
bilities of our model.

(3) We explore the influence of different combinations of
training sets and the BERT-PT pretraining parameters
on model performance.

2 Related work

In recent years, deep learning has shown excellent perfor-
mance in various NLP tasks and is also used in ATSA [16].
Recurrent neural networks (RNNs) have been widely applied
in ATSA tasks [17–21]. Thesemodels adopt RNNs for feature
encoding of context and aspect. Although RNN is good at
dealing with sequence problems, it has poor parallelization
and cannot handle the long-term dependence of complex
sentences. It may also cause gradient disappearance and gra-
dient explosion problems. To solve these problems, re-
searchers introduced the attention mechanism [10] which cal-
culates the semantic correlation between each word in a sen-
tence so that each word carries global semantic information.
Therefore, the attention mechanism is also widely used in
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ATSA [12, 21–26]. For example, the CAMNmodel proposed
by Lv et al. [21] introduced a multilayered multi-head atten-
tion (MHA) mechanism to continuously update the aspect
vector. The RAO-CNN model proposed by Wu et al. [22]
used a residual attention mechanism to reduce the problem
of losing original information in the original attention mecha-
nism. The coattention-LSTMmodel raised by Yang et al. [12]
adopted a nonparallel interactive attention mechanism that
calculated aspect representation vectors through the attention
mechanism. In addition, it also made full use of the key infor-
mation in the target word to study context representation.

In addition to the RNN and attention mechanisms, a gating
mechanism reflecting the relevance of given aspect words and
context vectors in each dimension [17] is also widely used in
ATSA. The mechanism can not only regulate information
flow and process context information but also block and filter
out irrelevant emotional features. Kai et al. [17] developed an
FDNmodel that applied a dual-gating mechanism to accurate-
ly distinguish the emotional characteristics of the context be-
longing to different aspect terms. Li et al. [27] proposed the
GBCN model which combined context-aware aspect embed-
ding vectors with the context representation vectors extracted
from BERT with the help of a gating mechanism. Avinash
Kumar et al. [28] adopted interactive gating to model aspect
words and context.

There have been many recent studies that associate feature
engineering (such as dependency trees, POS tags, and external
knowledge) with ATSA. For example, the CDT model pre-
sented by Sun et al. [29] and the ASGCN model proposed by
Zhang et al. [30] enhanced sentence representation vectors by
acting on the graph convolutional network (GCN) of a sen-
tence dependency tree. The R-GATmodel proposed byWang
et al. [19] constructed a dependency tree with aspect words as
the root nodes and dropped unnecessary relationships. Shuang
et al. [20] believed that adjectives, adverbs, and verbs
contained important information and regarded POS informa-
tion as the basis for calculating attention weights. Chen et al.
[31] incorporated the external knowledge of an emotional
knowledge graph into their model to alleviate its poor perfor-
mance when using a small training corpus.

Traditional deep learning models rely on context-free, stat-
ic GloVe or Word2Vec word embedding vectors. These vec-
tors cannot model polysemy words, limiting the performance
of the model. In the past two years, pretraining models such as
ELMo [32], GPT [33], BERT [9], and XLNET [34] have
achieved excellent ATSA task results, and the models that
are based on a BERT structure have been widely used. The
application of BERT takes three forms. The first form uses
BERT to obtain the embedding vectors of context and aspect
words. For example, the attention coding network AEN-
BERT proposed by Song et al. [26] extracted context-hiding
vectors and aspect word-hiding vectors by using two BERT
encoders. The relationship between them was obtained

through the attention mechanism. Zhang et al. [24] proposed
the interactive multi-head attention network IMAN. Using an
attention mechanism and convolution, IMAN dealt with the
representation vectors of context and aspect words obtained
from BERT. Another BERT application form transforms
ABSA into a sentence pair classification task. For example,
the BERT-SPC model of Song et al. [26] uses sentence pairs
composed of context and aspect words as the input to the
BERT encoder and then extracts the [CLS] token correspond-
ing to a hidden vector as its final vector representation. The
third form of BERT application enhances its domain adapt-
ability in the pretraining phase. Xu et al. [14] and Alexander
Rietzler et al. [35] both held that BERT lacked domain knowl-
edge and task-related knowledge, so they applied a domain-
specific corpus at the BERT pretraining stage. The use of
these task-related BERT pretraining models can greatly im-
prove performance. The first and third forms of BERT appli-
cations are the most widely used and are the subjects of this
article.

The domain adaptation method is not only applied to the
BERT pretraining stage but also has a wide range of applica-
tions in ABSA. Some researchers introduced domain adapta-
tion methods into the ABSA domain. For example, Rana et al.
[36] used a dictionary containing many concepts and aspect
words related to domains, thus improving the ability of aspect
extraction tasks. In addition, Alexander Rietzler et al. pro-
posed three combinations of training sets: using the same do-
main training set (in-domain training), using different domain
training sets (cross-domain training) and combining multiple
domain training sets (joint-domain training). These different
training set combinations enhanced the model’s feature learn-
ing ability in the BERT fine-tuning stage.

In general, a model can achieve better results if it is based
on a pretraining model combined with a gating or attention
mechanism and other structures.

3 Proposed methodology

The CGBNmodel architecture is shown in Fig. 1 and consists
of four layers: an input layer, a BERT encoder layer, a co-gate
layer, and an output layer. Different from the traditional model
in obtaining context and aspect encoding vectors, the single
BERT encoder used by the CGBN model is lighter and its
extracted context and aspect encoding vectors contain richer
semantic information. These two extraction methods are
shown in Figs. 2 and 3. The hidden context and aspect vectors
are fed into the co-gate layer to obtain their interactive repre-
sentation vectors. The context and aspect representation vec-
tors are combined in the output layer and then sentiment clas-
sification is performed. To enhance the fine-tuning ability of
BERT for downstream tasks and alleviate the problem of mis-
match between the pretraining and fine-tuning stages of the
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BERT training data, this paper uses the BERT-PT pretraining
parameters to fine-tune the CGBNmodel and uses fused train-
ing data to enhance the target field training.

3.1 Task definition

Given a review sentence Wc = {X1, X2, …, Xn} containing n
words and the aspect term sequence Wa = {Xi, …, Xm + i −

1} containing m words, the goal of ATSA is to predict the emo-
tional polarity y corresponding to the aspect term Wa in the re-
view sentenceWc, where y ∈ {positive, neutral, negative}.

3.2 Input layer

In this paper, a sentence sequence is used as the input to a
BERT encoder. Inspired by Gao et al. [35], an aspect embed-
ding vector is obtained from the hidden sequence after BERT
encoding, avoiding separate encoding of the aspect.

Next, the sentence token sequence is converted into the
format required by the BERT encoder. BERT uses the
[CLS] token as the start tag of the sequence and the [SEP]
token as the end tag of the sequence. The token sequence
entered is as follows: [CLS] + text sequence +[SEP].

Fig. 1 Structure of the CGBN
model

Fig. 2 Traditional models use two BERT encoders to extract context and aspect encoding vectors
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For the input token sequence, the input representation is the
combination of the token embedding vector, segment embed-
ding vector, and position embedding vector.

3.3 BERT encoder layer

Many models use two BERT encoders to encode context and
aspect words [24, 26]. However, the correlation between these
obtained context and aspect coding vectors is very poor. A
complex interactive feature extraction layer is needed to fur-
ther obtain their interactive relationship. The TD-BERT mod-
el of Gao et al. [35] extracts only the aspect vector from the
context hidden sequence as the representation vector and
achieves good results. Inspired by this study, our CGBNmod-
el extracts both the context hidden vector Hc and the aspect
hidden vector Ha with a BERT encoder for the first time.
Compared with traditional methods, the extracted Hc and Ha

contain rich semantically related information. The calculation
of Hc and Ha is shown in Eq. (1):

Hc;Ha ¼ BERT Sð Þ ð1Þ
where S represents a sentence token sequence with [CLS] and
[SEP] tags added at the beginning and end. BERT() represents
the model structure after the pretraining phase. We need to
input text sequences into BERT() for fine-tuning.

3.4 Co-gate layer

This section will introduce how the co-gate layer calculates
the interactive characteristics of aspect and context. Co-gate is
a nonparallel interactive gating mechanism. It obtains the con-
text initial pooling vector cinitpool, calculates the aspect term rep-

resentation vector a
0
pool according to cinitpool, and finally calcu-

lates the context representation vector c
0
pool according to a

0
pool.

Compared with the general parallel-structured interactive

gating mechanism, the co-gate mechanism effectively reduces
the problem of introducing noise words when calculating the
context representation vector from a specific aspect term.

3.4.1 Getting the context initial vector

To integrate the context information into the aspect term repre-
sentation vector, the initial representation vector of the context
needs to be obtained. As shown in Eq. (2), this paper first calcu-
lates the average pooling vector cpool of the context, then uses the
Tanh() activation function to adjust cpool adaptively to make it
more effective in combination with the aspect term hidden vector
Ha. The obtained context initial vector cinitpool is shown in Eq. (3):

cpool ¼ ∑n
i¼1H

c
i =n ð2Þ

cinitpool ¼ Tanh W1cpool þ b1
� � ð3Þ

where Tanh() is the activation function, W1∈RdH�dH and b1∈
RdH are learnable parameters, and RdH is the dimension of the
BERT hidden layer.

3.4.2 Get aspect term representation vector

The aspect term may not contain sentiment features. It is not
enough to capture emotional features by using only the aspect
pooling vector to represent the aspect term representation vec-
tor. Therefore, contextual information needs to be incorporat-
ed. This paper uses sigmoid gating to calculate the correlation
weight Wa between each word in the aspect term and the
context initial vector cinitpool in each dimension. Wa is mapped

to the (0, 1) interval, which reflects the importance of different
words in the aspect term for sentiment classification. The cal-
culation is shown in Eq. (4):

Wa
j ¼ Sigmoid W2Ha

j þW3cinitpool þ b2
� �

ð4Þ

where Ha
j∈R

dH is the hidden vector of the jth word in the

aspect term, Wa
j∈R

dH is the semantic relevance weight of Ha
j

and cinitpool,W2∈RdH�dH and W3∈RdH�dH are weights, and b2∈
RdH is the bias. These parameters are constantly updated dur-
ing the learning process to achieve optimization.

Next,Wa
j andH

a
j aremultiplied by each element to obtain the

aspect term hidden vector aj which contains rich context seman-
tic information. The calculation process is shown in Eq. (5):

a j ¼ Wa
j⊙Ha

j ð5Þ

where aj∈RdH is the hidden vector of the jth word in the aspect
term obtained by the gating mechanism and represents the
elementwise multiplication operation.

Fig. 3 Only sentence text is used as the input to the BERT Encoder, and
context and aspect encoding vectors are extracted
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The pooling vector a
0
pool after the activation function is

used as the final aspect term representation vector. Equation
(6) shows the process of calculating the aspect pooling vector.
To enhance the learning ability of apool, the tanh() activation
function is used to adaptively adjust apool to combine it more
effectively with the context hidden vector Hc. The calculation

process of a
0
pool is shown in Eq. (7):

apool ¼ ∑m
j¼1aj=m ð6Þ

a
0
pool ¼ Tanh W4apool þ b3

� � ð7Þ

where W4∈RdH�dH and b3∈RdH are learnable parameters.

3.4.3 Getting the context representation vector

Many interactive feature extraction structures directly use the
average pooled vector of the aspect term to participate in the
calculation of the context representation vector, but some aspect
terms composed of multiple words may contain noise words. In
addition, if the aspect term contains multiple target entities, they
have different effects on sentiment classification. For this reason,

this paper uses the aspect term representation vector a
0
pool which

contains rich context relations for participation in the calculation

of the context representation vector. Since a
0
pool undergoes gated

calculation, it can reflect the most important word information in
aspect terms while avoiding the interference of noise words.

Sigmoid gating is used to calculate the semantic correlation
weight Wc

j between the hidden vector of each context word

and a
0
pool. W

c
j reflects the correlation degree of each context

word and aspect term in each dimension. The calculation is
shown in Eq. (8):

Wc
j ¼ Sigmoid W5Hc

j þW6a
0
pool þ b4

� �
ð8Þ

where HC
j ∈R

dH is the hidden vector of the jth context word,

Wc
j∈R

dH is the weight of semantic relevance between Hj and

a
0
pool, andW5∈RdH�dH ,W6∈RdH�dH and b2∈RdH are learnable

parameters.
Next, Wc and Hc are multiplied by each element to obtain

the context representation vector c based on the specific aspect
term. The calculation process is shown in Eq. (9):

c j ¼ Wc
j⊙Hc

j ð9Þ
where c j∈RdH is the jth context word representation vector,
and stands for the elementwise multiplication operation.

As shown in Eq. (10), the average pooling function is used to
calculate the context pooling vector cpool, and then the Tanh()
activation function is used to enhance the learning ability of the
context pooling vector to obtain the final context representation

vector c
0
pool. The calculation is shown in Eq. (11):

cpool ¼ ∑n
j¼1c j=n ð10Þ

c
0
pool ¼ Tanh W7cpool þ b5

� � ð11Þ

whereW4∈RdH�dH and b5∈RdH are learnable parameters.

3.5 Output layer

The final representation vector O is composed of the context

representation vector c
0
pool and the aspect term representation

vector a
0
pool. The combination vector O is shown in Eq. (12):

O ¼ merge c
0
pool; a

0
pool

� �
ð12Þ

where merge() represents combination methods. Experiments
are carried out in two combinations of elementwise multipli-
cation and concatenation.

As shown in Eqs. (13) and (14), the fully connected layer is
used to map the combined vector O into the classification
space C, and finally the softmax layer is used to calculate
the sentiment polarity.

x ¼ WO
TOþ bO ð13Þ

y ¼ softmax xð Þ ¼ exp xð Þ
∑C

K¼1exp xð Þ ð14Þ

where y ∈ RC is the predicted emotional polarity distribution
and WO ∈ R1 × C and bO ∈ RC are learnable parameters.

3.6 Model training

3.6.1 Objective function

As shown in Eq. (15), the CGBN model is trained by mini-
mizing the cross-entropy loss function and the L2 regular term:

L θð Þ ¼ −∑C
i¼1bylog yið Þ þ λ θk k2 ð15Þ

where by represents the real sample, y represents the predicted
sentiment distribution, and λ is the weight of the L2 regular
term.

3.6.2 BERT-PT and domain adaptation of training sets

To alleviate the “domain bias” problem caused by the BERT
language model in the pretraining phase, the BERT-PT
pretraining file is fine-tuned with the restaurant and laptop
datasets, which allows the model to learn domain-related fea-
tures better. BERT-PT employs the corpus of Amazon laptop
reviews (laptop domain) and Yelp Dataset Challenge reviews
(restaurant domain). Furthermore, it has two pretraining tasks:
MLM and NSP.
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TheMLM task is essential for injecting domain knowledge
and reducing the “domain bias” of the BERT benchmark
pretraining dataset. For example, in the sentence “The
[MASK] is bright”, the BERT using the Wikipedia corpus
for the pretraining task may predict [MASK] as “sun”, while
the BERT-PT using the domain-related corpus for the
pretraining task may predict [MASK] as “screen”. NSP tasks
can also allow the model to recognize domain-related features
better. When the BERT training data are very limited, fine-
tuning is not enough to ensure that the model fully under-
stands the task. Therefore, task knowledge needs to be con-
solidated in the pretraining stage, and BERT-PT employs the
SQuAD1.1 (large MRC dataset) dataset for pretraining tasks.
MRC is a general task that can answer almost all questions
about the content of documents; hence, a large MRC super-
vised corpus may also benefit the ATSA task [14].

The CGBNmodel also applies domain adaptation methods
to the restaurant and laptop datasets during the training pro-
cess. Domain adaptation is a representative method of transfer
learning. The idea is to map data features of different domains
(such as two different data sets) to the same feature space.
Two advantages are as follows. First, data from other domains
can be applied to enhance the training of the target domain,
and second, the information-rich source domain samples can
be used to improve the performance of the target domain
model. The model cannot be fully trained due to the small
training set of restaurant and laptop, and the CGBN model
combines the training set of restaurant with laptop to address
this problem. The model can adjust the parameters of the
target field adaptively, allowing itself to be more fully trained.
Moreover, BERT’s ability to learn semantic features can be
improved in the fine-tuning stage. The impact of various train-
ing sets on the target training set is presented in Section 4.4.2.

4 Experiments

4.1 Datasets and experimental settings

The CGBN model is evaluated on three public datasets. They
are the Restaurant and Laptop datasets of SemEval-2014
Task4 and the ACL − 14 Twitter dataset, which are labeled
as three emotional polarities: Positive, Neutral, and Negative.
The specific statistics are shown in Table 1.

For our experiment, the batch size is set to 32, the epoch is
set to 5, the dimension of the BERT hidden vector is set to
768, the optimizer is Adam, and the weights and deviations of
the model are initialized with a Xavier uniform distribution.
For laptop and Twitter fields, the learning rate is set to 2e-5,
dropout is set to 0.1, and the L2 regularization coefficient λ is
set to 0.01. For the restaurant domain, the learning rate is set to
3e-5, dropout is set to 0.025, and λ is set to 2e-3. The BERT-
Base (uncased) framework is the basis of the entire model, and

the BERT-PT pretraining files enhance fine-tuning capabili-
ties. To strengthen domain adaptation, the training sets of
restaurants and laptops are combined. Then, their data do-
mains are analyzed separately.

4.2 Model comparisons

Classification accuracy and macro-F1 metrics are used as
evaluation indicators to evaluate the performance of the
CGBN model. To test the effectiveness of the model, this
paper compares the CGBN model with many benchmark
methods. A random initialization method is adopted to run
each program 10 times and demonstrate the performance with
“mean ± std”. Table 2 shows the comparison results, and the
best score for each column is shown in boldface. The intro-
duction to the benchmark model is as follows:

FDN [17] proposes a double-layer gating mechanism to
realize the interaction between aspect and context. It can
also filter noise unrelated to aspect and highlight relevant
features.
MSAT [18] designs a dynamic target representation
module, which dynamically calculates the target repre-
sentation vector based on each word in a sentence.
IPAN [19] regards POS information as the basis for cal-
culating attention weights, strengthening the weight of
words with specific parts of speech and finding more
relevant opinion words.
R-GAT [20] reshapes and prunes the ordinary dependen-
cy tree and constructs a dependency tree with aspect as
the root node to focus more on aspect words.
RAO-CNN [22] adopts the residual attention mechanism
to control the flow of emotional information and encodes
other words to reduce its interference in the feature fusion
stage.
IMAN [24] uses an attention mechanism and convolu-
tion to encode context and aspect words. It adopts an
attention mechanism to extract interactive features.
MGAN [25] uses multigrained attention to capture the
interaction between aspect and context at the word level.
AEN-BERT [26] extracts the representation vectors of
the context and aspect words by using a BERT encoder. It

Table 1 Statistics of datasets

Datasets Positive Neutral Negative

Train Test Train Test Train Test

Restaurant 2164 728 637 196 807 196

Laptop 994 341 464 169 870 128

Twitter 1561 173 3127 346 1560 173
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also adopts a mechanism to extract features of the rela-
tionship between the vectors.
TD-BERT [37] proposed a new method of modeling
aspect words. It explores the performance of extracting
aspect word vectors from context hidden vectors.
BERT-ADA [35] adopts domain-related knowledge
to pretrain BERT and applies domain adaptation to
ATSA tasks. The researchers propose three combi-
nations of training sets: in-domain training sets,
cross-domain training sets, and joint-domain train-
ing sets. These different combinations enhance the
domain adaptability of the model.
LCF-BERT [38] focuses on the local context informa-
tion for specific aspect words by applying the context
features dynamic mask (CDM) and context features dy-
namic weighted (CDW) layers. It also uses MHSA to cap-
ture both local context and global context information.

Table 2 compares the results from each model. The perfor-
mances of models using traditional GloVe or Word2Vec em-
bedding vectors are generally inferior to those of BERT-based
models. The performances, which construct complex feature
extraction modules, are constrained by the shortcomings of
traditional word embedding vectors. When the three models,

IPAN, R-GAT, and MAST, use BERT to calculate the em-
bedding vector, the performance is significantly improved.

AEN-BERT, MAST-BERT, IPAN-BERT, and IMAN are
models based on the BERT encoder. Although their feature
extraction layers are carefully designed to capture the seman-
tic relationship between context and aspect, their average per-
formances are worse than or equivalent to that of TD-BERT.
In the TD-BERT model, the aspect vector extracted from the
context hidden vector contains rich contextual semantic-
related information that can avoid the interference of irrele-
vant words. This reflects the advantage of extracting aspect
word embedding information from context hidden vectors.

R-GAT-BERT obtains its embedding vector from BERT.
It obtains dependencies directly related to specific aspect
terms by means of an aspect-oriented dependency tree.
Therefore, it has the greatest improvement using the restaurant
dataset. However, there are still shortcomings in feature inter-
action due to the employment of the traditional BERT
encoding method. The BERT-ADA model applies domain
knowledge and a training set fusion method to enhance the
feature learning ability in the pretraining and fine-tuning
stages of the BERT encoder, so it achieves a good result.
However, it only employs H[CLS] as the final representation
vector without considering the semantic information of con-
text and aspect. LCF-BERT captures both local and global

Table 2 The comparison of
different models’ performance Models Restaurant Laptops Twitter

Accuracy F1 Accuracy F1 Accuracy F1

Embedding

FDN 82.3 75.0 76.8 72.5 73.7 72.2

MSAT 81.43 72.63 78.21 74.31 74.63 73.22

IPAN-LSTM 82.8 73.8 77.2 73.5 74.3 72.5

R-GAT 83.30 76.08 77.42 73.76 75.57 73.82

RAO-CNN 80.98±0.52 71.34±0.65 74.45±0.73 69.72±1.18 73.12±0.95 71.20±1.42

MGAN 81.25 71.94 75.39 72.47 72.54 70.81

BERT Models

MAST-BERT 83.39 76.10 80.25 76.79 75.87 74.36

IPAN-BERT 85.9 76.4 78.5 76.0 76.7 75.9

R-GAT-BERT 86.60 81.35 78.21 74.07 76.15 74.88

IMAN 83.95 75.63 80.53 76.91 75.72 74.50

AEN-BERT 82.50±0.45 72.72±0.87 79.07±0.87 75.54±0.81 74.20±0.51 73.00±0.68

TD-BERT* 85.10±0.20 78.35±1.34 78.87±1.13 74.38±0.81 76.69±0.58 74.28±0.68

BERT-ADA 87.89 81.05 80.23 75.77 – –

LCF-BERT 87.14 81.74 82.45 79.59 77.31 75.78

Ours

CGBN 86.47±0.85 80.34±1.09 80.33±0.86 76.57±1.32 77.53±0.65 76.16±0.55

CGBN-PT-DA 89.15±0.49 84.40±0.80 82.76±0.63 79.62±0.87 – –

(1) “*” indicates that the model has multiple architectures, with the highest performance in the Table. (2) “-”
means unreported experimental results
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context information, so it has strong performance but does not
consider the use of domain-related knowledge.

The CGBN model extracts both context and aspect hidden
vectors simultaneously in the last hidden layer of the BERT
encoder. It employs the cogate network to further extract the
interactive features of context and aspect terms. It also im-
proves the domain adaptability of the BERT pretraining and
fine-tuning stages using the restaurant and laptop datasets, so
it achieves the best results.

4.3 Exploring different ways to obtain embedding
vectors

To explore the impact of different forms of embedding vector
acquisition methods onmodel performance, experiments were
conducted on four models. Table 3 shows the experimental
results. The performance of models based on two BERT en-
coders is much worse than that of models based on one BERT
encoder. This is because the correlation between the context
and aspect hidden vectors extracted by two independent
BERT encoders is poor. When dealing with complex
sentences containing multiple aspect words, these hidden vec-
tors have difficulty judging the emotional polarity of a specific
aspect word. For models that only use context as the input of
the BERT encoder, the extracted context and aspect hidden
vectors have rich semantic correlation with each other, so a
model that uses the BERT single sentence encoder can have
greatly improved performance.

4.4 Analyze the CGBN model

4.4.1 Ablation experiment

To analyze the importance of each module of the CGBN, an
ablation experiment was designed. The experimental variables
are shown below, and the experimental results are shown in
Table 4.

w/o gate-a: Gating is not used for feature extraction of the
aspect term, and the aspect average pooling vector after
Tanh() activation function is directly used as its represen-
tation vector.
w/o gate-c: Gating is not used when extracting context
features, and the pooling vector cinitpool is used as the con-

text representation vector.
w/o gate: Instead of using co-gate network feature extrac-
tion, the average pooling vector of aspect and context
after tanh() activation function is taken as the final repre-
sentation vector.
w/o aspect: The final representation vector O does not

combine the aspect pooling vector a
0
pool.

w/o context: The final representation vector O does not

combine the context pooling vector c
0
pool.

w/oH[CLS]:The final representation vector does not com-
bine H[CLS] vector.
CGBN-PT: Use BERT-PT pre-training files in restaurant
and laptop experiments
CGBN-DA: Use the combined training set of restaurant
and laptop, and test these two target areas.

Table 4 shows that in terms of accuracy and macro-F1, the
performance of each CGBN ablation model is inferior to that
of the CGBN model.

Compared with the CGBN model, the performance of the
‘w/o gate-c’ experiment is poor, which indicates that using the
average pooling vector of the aspect term to model the context
will introduce noise words. It also shows that the cogate
mechanism can more effectively capture the relationship
between context and the aspect term than the traditional
interactive gating mechanism. According to the results of
the ‘w/o gate-c’ experiment, it is necessary to use the
gating mechanism to calculate the context representation
vector based on a specific aspect term because the gating

Table 3 We explored the impact on performance of different ways of using the BERT encoder to obtain the context and aspect hidden vectors on the
four models

Models Restaurant Laptops Twitter

acc f1 acc f1 acc f1

Use two independent BERT encoders
FDN-double-BERT 83.35 ± 0.85 75.56 ± 1.75 78.45 ± 1.18 74.54 ± 1.59 73.48 ± 0.65 71.95 ± 0.53
MGAN-double-BERT 84.06 ± 0.45 77.69 ± 0.81 79.23 ± 0.39 75.61 ± 0.54 75.25 ± 0.45 73.86 ± 0.50
AEN-double-BERT 82.50 ± 0.45 72.72 ± 0.87 79.07 ± 0.87 75.54 ± 0.81 74.20 ± 0.51 73.00 ± 0.68
CGBN-double-BERT 83.66 ± 0.98 75.69 ± 1.38 79.55 ± 0.55 75.26 ± 1.01 74.57 ± 0.73 73.49 ± 0.89
Use a single BERT encoder
FDN-single-BERT 86.21 ± 0.50 80.19 ± 0.70 80.10 ± 0.79 76.98 ± 0.89 77.24 ± 0.65 75.76 ± 0.60
MGAN-single-BERT 85.89 ± 0.81 80.04 ± 1.14 79.62 ± 0.94 75.70 ± 0.72 76.58 ± 0.65 74.95 ± 0.42
AEN-single-BERT 85.09 ± 0.54 78.48 ± 1.24 79.78 ± 0.63 75.90 ± 0.52 75.65 ± 0.51 74.15 ± 0.60
CGBN 86.47 ± 0.85 80.34 ± 1.09 80.33 ± 0.86 76.57 ± 1.32 77.53 ± 0.65 76.16 ± 0.55

These two methods are shown in Figs. 2 and 3 respectively
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mechanism determines the degree of relevance between
the given aspect term and the context representation vec-
tor. Therefore, the mechanism can effectively avoid the
influence of irrelevant words in the context of the results.
The effect of the ‘w/o gate’ experiment is inferior to that
of ‘w/o gate-a’ and ‘w/o gate-c’ because this ‘w/o gate’
experiment adopts only the pooling vector of context and
aspect terms as its representation vector without further
extracting interactive features.

The representation vectors of context and aspect calculated by
the co-gate mechanism contain rich global semantic information.
The CGBN model takes the combined vector of context and
aspect as the final representation vector. According to the exper-
iments ‘w/o aspect’ and ‘w/o context’, the performance of the
model in either case is worse than the performance of CGBN
with both attributes, which shows that both are effective.

The CGBN model applies the pretraining parameters of
BERT-PT to fine-tuning using the restaurant and laptop
datasets. Based on the results, we can see that the BERT-PT
pretraining parameters improve the study model domain-
related features and greatly improve the model performance.
To explore the domain adaptation of the model, the training
sets of restaurants and laptops are combined and tested in
those two domains. The performance of the model is signifi-
cantly improved, which indicates that the CGBN model can
improve the performance of the target domain by using source
domain samples with rich information. The model cannot be
fully trained because of the limited original training; however,
the fused training set can fill the gap. When the BERT-PT
pretraining files and fusion training sets are used simulta-
neously, the model achieves the best performance in these

two areas, which shows that it is very effective in using do-
main knowledge to enhance the learning of related domain
knowledge. A more detailed description is in Section 4.4.2.

4.4.2 Domain adaptation of training set

To explore the domain adaptability of the CGBN model and
test the impact of different training sets on performance, the
model was tested with multiple training sets. As shown in
Table 5, ‘rest.’, ‘lap.’ and ‘twi.’ represent the datasets restau-
rants, laptops and twitter, respectively. ‘rest. + lap.’,‘rest. +
twi.’,‘lap. + twi.’ and ‘rest. + lap. + twi.’ represent four
different combined training sets. According to the different
test sets, the three single training sets can be divided into in-
domain and cross-domain types, and the four combined train-
ing sets are of the joint-domain type [36].

The effect of a cross-domain training set is worse than that
of an in-domain training set, which may be due to the differ-
ence of domain knowledge between different domain data
sets; this weakens the feature learning ability of the model
for the target domain. Specifically, the restaurant domain is
about food, service, atmosphere, price, quality, etc., while the
laptop domain is about quality, price, memory, weight, stor-
age space, CPU, etc., and the twitter domain contains even
more complex domain knowledge, such as entertainment
stars, politicians, news and current events. There are different
degrees of knowledge deviation between fields, so their im-
pact on performance is also varied.

For the restaurant and laptop target areas, the joint-domain
training set combined with ‘twi’ seems to have an adverse
effect on performance. This may be a large difference in the

Table 4 Ablation experiment of
CGBN Models Restaurant Laptops Twitter

Accuracy F1 Accuracy F1 Accuracy F1

CGBN ablations

w/o gate-a 86.03 ± 0.32 79.55 ± 0.79 79.86 ± 0.69 75.98 ± 0.86 77.25±
0.58

75.84±
0.67

w/o gate-c 86.16 ± 0.98 80.05 ± 0.99 79.39 ± 0.71 76.08 ± 0.87 77.13±
0.44

75.89±
0.74

w/o gate 85.94 ± 0.49 79.94 ± 1.04 79.25 ± 0.55 75.56 ± 0.64 77.07±
0.58

75.89±
1.00

w/o aspect 85.40 ± 0.67 79.85 ± 1.41 79.39 ± 0.71 75.37 ± 1.07 75.07±
0.94

73.88±
1.31

w/o context 85.54 ± 0.36 79.52 ± 0.64 79.08 ± 0.71 75.41 ± 1.01 76.88±
0.29

75.60±
0.37

CGBN-PT 88.53 ± 0.58 83.27 ± 0.90 81.03 ± 0.94 77.52 ± 1.25 – –

CGBN-DA 87.50 ± 0.71 82.02 ± 1.36 81.11 ± 0.86 77.98 ± 0.95 – –

Ours

CGBN 86.47 ± 0.85 80.34 ± 1.09 80.33 ± 0.86 76.57 ± 1.32 77.53±
0.65

76.16±
0.55

CGBN-PT-DA 89.15 ± 0.49 84.40 ± 0.80 82.76 ± 0.63 79.62 ± 0.87 – –
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label distribution and data distribution between the twitter data
set and the restaurant and laptop data sets. Twitter’s training
sets of neutral label samples accounted for 50% of their total,
much higher than in the other two data sets, and neutral emo-
tion is a vague emotional state; a high proportion of neutral
training samples will increase the difficulty of model training
[26]. Regarding the difference in data distribution, on the one
hand, the twitter dataset contains many complex sentences
(such as satirical sentences), and its grammatical correctness
is low. On the other hand, the domain knowledge of
twitter is quite different than the domain knowledge of
Restaurant and Laptop.

In addition, the performance from a joint-domain training
set that includes the same field as the target is better than that
of one that does not. For example, when testing the restaurant
target field, the performance from using the ‘rest. + lap.’,
‘rest. + twi.’ and ‘rest. + lap. + twi.’ training sets is better
than it is from using ‘lap. + twi.’.

To improve the training effect of a joint domain, the
combined training set should contain the target domain
training set, which allows the model to obtain enough
knowledge in its field of interest. Furthermore, the dif-
ferences of domain and label distribution in these com-
bined training sets should not be too large, so that the
model can be trained more fully, and the semantic fea-
tures of BERT in the fine-tuning stage can have im-
proved learning ability.

4.4.3 Pooling method and connection strategy

This section will explore the impact of the poolingmethod and
the connection method of the final representation vector on
performance to confirm the effectiveness of the CGBNmodel.
The experimental results are summarized in Table 6. The re-
sults show that the model with ‘Con’ connection strategy and
‘avg’ pooling method has the best performance.

4.4.4 Case study

We select example sentences from the restaurant and laptop
data sets to further study the impact of the co-gate mechanism
and the BERT hidden vector extraction method on perfor-
mance. For Table 7, CGBN-W/O-gate removes the co-gate
mechanism but directly connects the average pooling vector
of context and aspect words. CGBN-double-BERT uses two
independent BERT encoders to extract features of context and
aspect words.

From sentences 1 to 4, only the CGBN and CGBN W/O-
gate can correctly judge the emotional polarity of all aspect
words, which reflects the advantage of extracting context and
aspect hidden vectors from a BERT encoder at the same time.
CGBN-double-BERT is easily disturbed by opinion words
with different emotions. It is difficult to accurately find key
information when dealing with complex sentences.

Table 5 Test the CGBN model on 7 training sets

Training set Restaurant Laptops Twitter

Train type Accuracy F1 Train type Accuracy F1 Train type Accuracy F1

rest. In 86.47 ± 0.85 80.34 ± 1.09 Cross 79.47 ± 0.79 76.04 ± 0.93 Cross 56.29 ± 2.53 56.08 ± 2.14

lap. Cross 82.19 ± 1.12 74.20 ± 1.07 In 80.33 ± 0.86 76.57 ± 1.32 Cross 58.24 ± 1.45 58.26 ± 1.25

twi. Cross 75.89 ± 1.34 68.21 ± 1.73 Cross 73.67 ± 1.41 68.56 ± 1.58 In 77.53 ± 0.65 76.16 ± 0.55

rest.+lap. joint 87.50 ± 0.71 82.02 ± 1.36 joint 81.11 ± 0.86 77.98 ± 0.95 joint 59.33 ± 0.79 59.44 ± 0.64

rest.+twi. joint 85.76 ± 0.58 80.09 ± 0.56 joint 78.68 ± 0.47 75.04 ± 0.99 joint 76.85 ± 0.65 75.45 ± 1.14

lap.+twi. joint 80.94 ± 0.49 74.49 ± 1.53 joint 79.70 ± 0.55 75.86 ± 0.69 joint 76.59 ± 0.58 74.88 ± 0.97

rest.+lap.+twi. joint 86.26 ± 0.63 80.04 ± 0.88 joint 80.49 ± 0.40 76.98 ± 0.48 joint 76.59 ± 0.72 75.36 ± 0.52

Table 6 Experiments on pooling methods and connection strategies

Combination strategy Pooling method Restaurant Laptops Twitter

Accuracy F1 Accuracy F1 Accuracy F1

Mul max 85.94 ± 0.67 79.88 ± 0.95 79.47 ± 0.79 75.84 ± 1.13 77.32 ± 0.44 75.79 ± 0.55

avg 85.90 ± 0.81 79.94 ± 1.28 79.47 ± 0.47 76.23 ± 1.17 76.81 ± 0.80 75.11 ± 0.81

Con max 86.11 ± 0.51 79.73 ± 1.21 79.94 ± 0.94 76.50 ± 1.24 77.25 ± 0.51 75.73 ± 0.61

avg 86.47 ± 0.85 80.34 ± 1.09 80.33 ± 0.86 76.57 ± 1.32 77.53 ± 0.65 76.16 ± 0.55

In the combination strategy, ‘Mul’ means element-wise multiplication, and ‘Con’ means concatenation
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In sentence 5, for the aspect word “taste”, only CGBN W/
O-gate model makes a wrong judgment. In this model, the
pooling vector of context and aspect word is taken as the final
representation vector. Sigmoid gating is not used to further
compute deep semantic features. Therefore, the influence of
more important words in context is ignored.

From Sentence 6 to Sentence 8, only the CGBN model
makes correct judgments for all examples. Sentence 7 in-
cludes seven aspects with negative or neutral polarity. This
sentence contains more negative opinion words, so CGBN-
double-BERT judges all polarities as negative; CGBN W/O-
gate also judges the polarity of the two neutral emotion aspect
words as negative.

The above example sentences prove that the co-gate mech-
anism and the use of a BERT encoder for feature extraction
are effective. The CGBN model can make accurate predic-
tions when facing some complex sentences.

5 Conclusion

CGBN models based on a single BERT encoder, co-gate
mechanism, and domain adaptation are proposed in this paper.
Unlike general models that use two BERT encoders to extract
context and aspect vectors, the CGBN model only adopts
sentence sequences as the input to the BERT encoder to obtain
both context and aspect hidden vectors. This not only reduces
the computational load but also allows the initial vector to
contain rich semantic interaction information, which is helpful
for the final emotion prediction. A new type of nonparallel
interactive gating mechanism called a co-gate is also pro-
posed. This mechanism first fuses context information into

the aspect vector to highlight the influence of important words
on the aspect word. After that, it calculates the context repre-
sentation based on the aspect representation vector. The deep
semantics of the context can be explored, thus reducing un-
necessary interference from the context. In addition, the
CGBN model explores the impact of different combinations
of training sets and BERT-PT on model performance.
Experiments show that our CGBN model is always superior
to the latest technology on SemEval2014 and twitter datasets.

In our future research, we will experiment with the model
in a multilingual environment. We will also explore the influ-
ence of different pretraining models on performance.
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