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Abstract
Graph convolutional networks (GCN) have received more and more attention in skeleton-based action recognition. Many
existing GCN models pay more attention to spatial information and ignore temporal information, but the completion of
actions must be accompanied by changes in temporal information. Besides, the channel, spatial, and temporal dimensions
often contain redundant information. In this paper, we design a temporal graph convolutional network (FTGCN) module
which can concentrate more temporal information and properly balance them for each action. In order to better integrate
channel, spatial and temporal information, we propose a unified attention model of the channel, spatial and temporal (CSTA).
A basic block containing these two novelties is called FTC-GCN. Extensive experiments on two large-scale datasets,
compared with 17 methods on NTU-RGB+D and 8 methods on Kinetics-Skeleton, show that for skeleton-based human
action recognition, our method achieves the best performance.

Keywords Graph convolutional networks · Skeleton-based action recognition · Temporal information ·
Unified attention model

1 Introduction

As a large research hotspot in the field of computer vision,
action recognition has important research significance
and wide application prospects in many fields, such as
intelligent monitoring [1, 2], human–computer interaction
[3, 4], virtual reality [5]. The method based on traditional
handcraft features [6, 7] is hard to deal with human
action recognition in a complex scene. With the great
success of deep learning in image classification [8], the
application of deep learning in human action recognition
has gradually become a development trend, but there are
still some difficulties and challenges. There are two kinds
of approaches to solving the problem of action recognition
based on deep learning: 1) video recognition method for
extracting and classifying spatial-temporal features; 2) pose
estimation method for extracting skeleton information for
retraining. Since neural networks can learn features from
data, and this form of learning mode is consistent with the
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process of human awareness of the world, semantic features
learned from neural networks can also be used for action
recognition.

Among the various deep learning models, the most
common is the convolutional neural networks (CNN) [8]
used for image recognition tasks. Recurrent neural networks
(RNN) [9] have been widely used in natural language
processing (NLP) [10, 11] due to its superiority in time
series modeling. Wang et al. proposed a relatively simple
method [12], by coding the joint trajectory (distance) and
its dynamic information into a texture pattern [13], called
joint trajectory maps (JTM). Donahue et al. put forward a
network [14] which combines CNN with LSTM, in which
the pre-processed depth image data is first sent to the
originally designed CNN to get the spatial features, and then
the optical flow information in the video data is sent to
the LSTM to get the temporal features. Finally, the spatial-
order feature and temporal-order feature are fused and the
mapping category of Sof tmax is adopted. Based on the
research of human body 3D skeleton motion representation
[15], more and more attention has been paid to it. Shao et
al. proposed a hierarchical model [16] of body part motion
recognition, which decomposes a skeleton into multiple
moving rigid bodies according to the motion characteristics
of the human body, the rotation speed invariant descriptor
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RRV (Rotation and Relative Velocity) is proposed to
represent the rotation and velocity invariant of each rigid
body in the skeleton, and the motion representation is
obtained.

In the case of skeleton-based action recognition, the
graph convolutional networks (GCN) [17–20] approach
were proposed and gained attention due to its high-
performance achievement. GCN is often used for learning
tasks, such as graph classification [21–23], graph regression
[24], and node classification [25–27]. According to the
topological structure of the human body itself, we can
construct a graph structure data with a human shape, and
treat it as a graph classification task, then we can use
graph convolution to process it. Yan et al. proposed the
spatial-temporal graph convolutional network (ST-GCN)
[28] that is the first time to apply the convolution to 3D
human action recognition. The model not only constructs
the spatial graph but also constructs the temporal graph
in the time dimension according to the human topological
structure, then the spatial-temporal features of human
body movements are extracted by graph convolution. To
reduce the redundant frames in skeleton video frames and
extract the most discriminating video frames, the deep
progressive reinforcement learning graph convolutional
network (DPRL-GCN) model proposed by Tang et al.
[29]. Then the keyframe is sent to GCN for recognition
and classification. To excavate the node association in
the local block of human body structure, Kalpit et al.
proposed a part-based graph convolutional network (PB-
GCN) [30] to divide the human body skeleton graph into
several different subgraphs according to certain principles,
and then perform graph convolution operation on each
subgraph separately. Finally, the results are fused by a fusion
function. To make full use of the potential connection of
skeleton node graph topology. Ye et al. designed a joints
relation inference network (JRIN) [31] to automatically
explore the relationship between skeleton nodes and nodes,
the relationship matrix is applied to the adjacency matrix
of the original skeleton data to supplement the potential
relationship between nodes of the original skeleton topology
to better understand the human action. Subsequently, many
GCN methods representing a more appropriate spatial
graph have been proposed and the performance have been
improved dramatically.

The contributions of this paper are summarized as
follows:

– We propose a temporal graph convolutional module
(FTGCN) which can focus more temporal information
and properly balance them for each action.

– To better integrate channel, spatial, and temporal
information, we propose a unified attention model of
the channel, spatial, and temporal (CSTA).

– Compared with 17 methods on NTU-RGB+D and 8
methods on Kinetics-Skeleton, our method achieves the
best performance.

2 Related work

2.1 Skeleton-based action recognition

There are 2 ideas in the field for skeleton-based human
action recognition. The early handcraft-based ideas and
the current standard deep-learning-based methods. The
accuracy of handcraft-based ideas is unacceptable and
therefore the deep learning methodology has become the
thought methodology during this field for its smart strength
and superior performance. There are basically 3 types of
network RNNs, CNNs, and GCNs in the recognition of
human actions based on deep learning. (1) The RNN-
based idea [32] symbolizes the joint coordinates of the
skeleton sequence as a vector sequence and feed into
the networks. (2) The CNN-based idea [33] converts the
skeleton sequence into a corresponding 2D pseudo-image
is input into the network, which is similar to the method
of image classification. (3) The GCN-based idea takes the
joint points of the human body as vertices and the natural
connections of the human body as edges to represent the
skeleton sequence as a graph. At the same time, it takes
into account time information and is widely used due to its
superior performance. The first idea to use GCN in this area
was ST-GCN [28], which made great progress at the time.
Spatial connects the joint points according to the human
body structure to form a spatial graph, and connect the same
joints in adjacent frames in time, spatially, and temporally
the connections form a spatial-temporal graph and send it to
the network. However, the spatial graph of ST-GCN [28] is
a fixed graph, as it will not demonstrate the relation between
the two hands while clapping hands. Therefore, a two-
stream adaptive graph convolutional network (2s-AGCN)
[34] is proposed.

2.2 Graph convolutional networks

The essential purpose of GCN is to extract the spatial
features of the topological graph. There are two main
types of graph convolutional neural networks. One type is
based on the spatial domain or vertex domain, the other
is based on the frequency domain or spectral domain [35].
The method based on spatial convolution directly defines
the convolution operation on the connection relationship
of each node, which is more similar to the convolution
in the traditional convolutional neural network. Different
from the spatial perspective method, the spectral perspective
method uses the eigenvalues and eigenvectors of the
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Laplacian matrix of the graph to study the properties of the
graph.

3 Approach

In this section, we will introduce the basic background
knowledge of this work. Then describe our proposed focus
on the temporal graph convolutional network (FTGCN)
module and a unified attention model of the channel, spatial
and temporal (CSTA) in detail.

3.1 Graph convolution

We use G = (V , E) to describe the human structure
graph in which V is the number of human joints and E

is the number of edges connected by these joints, that is,
the number of human bones. The adjacent matrix of the
human structure graph is defined as A{∈} {0, 1}v×v , where
Ai,j = 0 if the ith and the jth joints are unconnected and
1 otherwise. Let D ∈ Rv×v be the diagonal degree matrix,
where Di,i = ∑

j Ai,j is the degree matrix of vertices, and
the elements on the diagonal are degrees of each vertex in
turn. We use x represent the multidimensional coordinates
of joints in human body structure. The adjacency matrix A
can be used to aggregate the information of the adjacent
nodes. The graph convolution operation of each layer can be
expressed as follows:

x(l+1) = σ
(
ÂxlW l

)
(1)

where Â = D− 1
2 (A + Iv)D

− 1
2 is the matrix after the

adjacency matrix A plus the self-connection matrix Iv and
then normalized. xl is the output tensor of layer l, and
x0 = x. Wl is the weight matrix that changes with training.
σ(·) is used to increase the nonlinearity of the neural
network and called the activation function. Following the
ST-GCN [28], we will implement a three-partition strategy
on the human skeleton graph, that is, the neighbor set is
divided into three subsets. The first subset is the root node
itself. The second subset is the adjacent node closer to
the center of gravity of the human skeleton than the root
node. The third subset is adjacent nodes that are farther
from the center of gravity of the human skeleton than
the root node. In this way, A is accordingly classified
to be root node set Aroot , centripetal group Acentripetal ,
and centrifugal group Acentrif ugal , which similar to the
movement of body parts. Then there is

∑3
k=1 Ak = Awhere

k = {root, centripetal, centrif ugal}
ST-GCN [28] is composed of 10 basic blocks. In order

to alternately extract spatial and temporal information, each
basic block is composed of a spatial GCN and a temporal

GCN. In the spatial layer, the convolution operation on the
human skeleton structure graph is:

xout =
3∑

k=1

ÂkxinWk (2)

Where k = 3 represents the three partitions mentioned
above, each partition performs the same convolution
operation, Wk ∈ Rcin×cout is a weight matrix that can be
changed with training, xin ∈ Rv×cin is the input feature of
the spatial layer, and xout ∈ Rv×cout is the output feature
of the spatial layer. cin represents the channel dimension
of the input feature, cout represents the channel dimension

of the output feature. Âk = Dk
− 1

2 (Ak + Ivk)Dk
− 1

2 ∈
Rv×v is the normalized adjacent matrix of each partition.
The adjacency matrix A in ST-GCN [28] only considers
the natural connection of the human skeleton graph, but
the completion of some actions sometimes requires the
interaction of non-adjacent joints. In order to solve this
problem, the two hand joints that are not adjacent in the
clapping action can be connected, AGCN [34] is proposed,
constructing the equation as follows:

xout =
3∑

k=1

(Âk + Bk + Ck)xinWk (3)

Where Bk ∈ Rv×v is initially set as a V × V matrix.
The parameters in the matrix are constantly changing with
training. It serves as a supplement to the adjacency matrix
A. Different joints are connected to different actions during
training. Ck ∈ Rv×v is a data-dependent V × V matrix, and
the parameters in the matrix are normalized to a value of 0-
1. If the value is not zero, it means that the two joints are
connected to each other, otherwise they are not connected.
The larger the value, the stronger the connection strength of
the two joints and the higher the correlation with the action.

For the temporal layer, only the same joints of the front
and rear frames are connected, so common convolution
operations are performed in the time dimension, specifically
a Kt × 1 convolution kernel, where Kt is the convolution
kernel size in the temporal dimension, set to 9.

3.2 The architecture of the networks

In the early days, the input of this task was only joint
information, but the human skeleton graph contains joints
and bones at the same time. This makes the two-stream
network structure suitable for joints and bones as input. The
completion of the action is accompanied by the movement
of joints and bones, and the two kinds of information are
used as input. Improved recognition performance. In our
work, like 2s-AGCN [34]. Joint information is first-order
information, bone information is second-order information,
and two kinds of information are used as inputs to promote
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Fig. 1 The illustration of two-
stream fusion architecture.
The top is the bone flow and the
bottom is the joint flow. The
two-stream scores are fused to
get the final prediction result

each other to improve recognition accuracy. The two-
stream architecture is shown in Fig. 1, they are trained
independently. Given a sample, we first calculate the data
of bones based on the data of joints. Then, the joint data
and bone data are fed into the joint stream and bone stream,
respectively. Finally, the sof tmax scores of the two streams
are added to obtain the fused score and predict the action
label. The details of a basic block (FTC-GCN) are listed in
Table 1.

A basic block (FTC-GCN) is shown in Fig. 2. In Fig. 1,
the joint flow and bone flow both contain 10 basic blocks
(FTC-GCN), and the structure is exactly the same. The
output channel from the first layer to the fourth layer is 64.
The fifth to seventh layers include 128 output channels. The
output channels from the eighth layer to the tenth layer are
256. The strides of the fifth and eighth layers is 2 and the
other layers are 1. At last, the FC layer is used to generate
the final recognition score.

3.3 The FTC graph convolutional networks

As shown in Fig. 2, one basic block is the series of
one spatial GCN (FTGCN), one unified attention module
(CSTA), and one temporal GCN (TCN). The FTGCN is
used to concentrate more temporal information in the spatial
layer. BN layer and Relu layer are regular operations. TCN
will perform a Kt × 1 convolution operation along the time
dimension on the feature map with dimension C × T × V

obtained in FTGCN. C denote the number of channels, T

denote the number of keyframes and V denote the number
of joints. Use residual connections to optimize training and
gradient propagation.

3.4 Focus on temporal graph convolutional module

Many existing GCN models pay attention to the spatial
information and neglect the temporal information. To solve
the above problems in this work, we propose a focus on
temporal graph convolutional module which can focus more
temporal information and properly balance them for each
action.

In (3), the Ak , Bk , and Ck matrices only focus on
the possible connections and connection strengths between
joints for a certain action without considering time. To pay
more attention to the temporal information, we modify (3)
into the following form:

xout =
3∑

k=1

(Âk + Bk + Sk + λTk)xinWk (4)

As illustrated in (3), xin ∈ RCin×T ×V denote the input
feature, xout ∈ RCout×T ×V denote the output feature. Here
Cin and Cout denote the number of channels. V denote the
number of joints and T denote the length of the skeleton
action sequence. As mentioned earlier, in (3), Ak ∈ V × V

represents the adjacency matrix of the human body structure
graph. Before adding to Bk , Ak is normalized to Âk =
Dk

− 1
2 (Ak + Ivk)Dk

− 1
2 ∈ Rv×v , and Bk is initially set to the

matrix of V × V based on Ak . The parameters in the Bk are
constantly changing with training. It serves as a supplement
to the adjacency matrix Ak . Different joints are connected
to different actions during training. Sk ∈ Rv×v is a data-
dependent V × V matrix, and the parameters in the matrix
are normalized to a value of 0-1. If the value is not zero, it
means that the two joints are connected or not. The larger the

Table 1 The backbone network of FTC-GCN,which includes ten FTC-GCN blocks

FTC-GCN Block Block 1 Block 2-4 Block 5 Block 6-7 Block 8 Block 9-10

(Cin, Cout ,stride) (3,64,1) (64,64,1) (64,128,2) (128,128,1) (128,256,2) (256,256,1)

The feature dimensions are presented. (Cin and Cout denote the number of channels)
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Fig. 2 The illustration of a
basic block (FTC-GCN). The
FTGCN is used to concentrate
more temporal information in
the spatial layer, and TCN
means 9 × 1 temporal
convolution. BN layer and Relu
layer are regular operations.
CSTA represents the unified
attention module. Use residual
connections to optimize training
and gradient propagation

value, the stronger the connection strength of the two joints
and the higher the correlation with the action. Tk ∈ Rv×v is
a dynamic graph, as a supplement to temporal information,
we use Tk to concentrate as much temporal information as
possible. The spatial information at the beginning of the
action changes greatly, and as the action progresses, the time
information becomes more and more important. According
to this characteristic, we use a λ to adjust the importance
of the temporal graph for different layers. Convs denote the
1 × 1 convolution operation. Obtain the Sk matrix through
the two Convs in Fig. 3. Convt denote the 9× 1 convolution
operation. Get the Tk ∈ Rv×v matrix through two Convt

Sk = sof tmax
((

xT
inw

T
θk

) (
wφkxin

))
(5)

Tk = sof tmax
((

xT
inw

T
ηk

) (
wξkxin

))
(6)

where wφk ∈ Rcin×v and wθk ∈ Rcin×v correspond to
the two Convs in Fig. 3. wθk and wφk denote the 1 × 1
convolution operation with C convolution kernels. wηk ∈

Rcin×v and wξk ∈ Rcin×v correspond to the two Convs in
Fig. 3. wηk and wξk denote the 9 × 1 convolution operation
with C convolution kernels.

3.5 Attentionmodule

The channel, spatial, and temporal dimensions often contain
redundant information. To better integrate channel, spatial
and temporal information, we propose a unified attention
model of the channel, spatial and temporal (CSTA).

As shown in Fig. 4. Channel attention focuses on
important channels, the area of Adaptive Avgpool is 1 ×
1, and the dimension of the feature map after passing
the channel attention module remains unchanged. Spatial
attention focuses on important spatial information. In spatial
attention, the spatial information column is averaged and
then the convolution operation is performed, the size of
the convolution kernel is set according to the number of
joint points in different datasets. After spatial attention, the
feature map dimension changes fromC×T ×V to 1×1×V .
Temporal attention can help the model pay different levels

Fig. 3 The illustration of
Focus on Temporal Graph
Convolutional Networks
(FTGCN). Ak is a fixed graph,
Bk , Sk and Tk are dynamic
graphs. The Convs indicates that
the 1 × 1 convolution operation.
The Convt denotes the 9 × 1
convolution operation. ⊕
denotes the element-wise
addition. ⊗ denotes the matrix
multiplication. Use λ to adjust
the importance of the temporal
graph for different layers. The
residual connection is only
needed when Cin is not the same
as Cout
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Fig. 4 Illustration of the unified attention module. � denotes the element-wise multiplication. ⊕ denotes the element-wise addition

of attention for each of the frames. After temporal attention,
the feature map dimension changes from 1 × 1 × V to
1×T ×1. Finally, the dimension becomes C×1×1 through
two fully connected layers.

4 Experiments

We first introduced two large-scale datasets NTU-RGB+D
[36] and Kinetics-Skeleton [37] in this field, and then
introduced the details of the experiment and some

hyperparameters. Then we conducted a large number of
experiments on two large-scale datasets and compared 17
methods on NTU-RGB+D [36] and 8 methods on Kinetics-
Skeleton [37], and finally we show the results of ablation
experiments and tributary results.

4.1 Datasets

NTU-RGBD: NTU RGB+D [36] is a large-scale and multi-
modality indoor-captured dataset for skeleton-based action
recognition, it contains four modalities of data. Here, we

Table 2 Comparison with the state-of-the-art methods on NTU-RGB + D dataset

Methods Year Cross-Subject(%) Cross-View(%)

H-RNN [32] 2015(CVPR) 59.1 64.0

Part-aware LSTM [36] 2016(CVPR) 62.9 70.3

ST-LSTM [39] 2016(ECCV) 69.2 77.7

Two-stream RNN [40] 2017(CVPR) 71.3 79.5

Ensemble TS-LSTM [41] 2017(ICCV) 74.6 81.3

Visualization CNN [42] 2017(CVPR) 76.0 82.6

C-CNN + MTLN [15] 2017(CVPR) 79.6 84.8

Temporal Conv [43] 2017(CVPR) 74.3 84.1

VA-LSTM [44] 2017(ICCV) 79.4 87.6

ST-GCN [28] 2018(CVPR) 81.5 88.3

DPRL [29] 2018(CVPR) 83.5 89.8

PB-GCN [30] 2018(BMVC) 87.5 93.2

RA-GCN [45] 2019(ICIP) 85.9 93.5

AS-GCN [46] 2019(CVPR) 86.8 94.2

2s-AGCN [34] 2019(CVPR) 88.5 95.1

DGNN [47] 2019(CVPR) 89.9 96.1

CGCN [48] 2020(CVPR) 90.3 96.4

FTC-GCN(Ours) 2020 90.4 96.5
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Table 3 Comparison with the state-of-the-art methods on Kinetics dataset

Methods Year Top-1(%) Top-5(%)

Feature Enc [7] 2015(CVPR) 14.9 25.8

Deep LSTM [36] 2016(CVPR) 16.4 35.3

Temporal Conv [43] 2017(CVPR) 20.3 40.0

ST-GCN [28] 2018(CVPR) 30.7 52.8

AS-GCN [46] 2019(CVPR) 34.8 56.5

2s-AGCN [34] 2019(CVPR) 36.1 58.7

DGNN [47] 2019(CVPR) 36.9 59.6

CGCN [48] 2020(CVPR) 37.5 60.4

FTC-GCN(Ours) 2020 37.8 60.7

use only the skeleton data, it is formed by three Microsoft
Kinect v2 cameras to capture 3D skeleton data at the same
time and marked 25 points as joint points. There are 56,880
action clips in 60 classes. The action clips are performed
by 40 volunteers whose ages range from 10 to 35. These
cameras have the same height but with different horizontal
angles. There are two benchmarks for this dataset: (1)
Cross Subject (CS), where the subjects are divided into two
groups of 20 people each. The training sets included 40,320
samples from 20 subjects and the test sets included 16,560
samples from the remaining 20 subjects. (2) Cross View
(CV): Divided by camera angle, the training sets consisted
of 37,920 samples captured by camera 2(0◦) and 3(45◦),
while the test sets consisted of 18,960 samples captured by
camera 1(-45◦).

Kinetics-Skeleton: Kinetics400 [37] is a large-scale
dataset that contains about 300,000 video clips in 400
classes from YouTube for human action recognition. The
dataset is obtained on Kinetics400 through the OpenPose
toolbox, it predicts 18 2D joint nodes and confidence score
for each person. The data is divided into training sets and
test sets at a ratio of about 12 : 1, with each data cut to 300
frames. We report the accuracy of the top 1 and top 5 against
the benchmark.

Table 4 The importance of FTGCN and unified Attention (CSTA)
were evaluated on NTU-RGB + D dataset

Stream Model Accuracy(%)

AGCN 93.83

FTGCN wo/λ 94.34

Joint stream only FTGCN 94.59

FTGCN-CSTA 95.14

Two stream AGCN 95.10

Two stream FTC-GCN 96.50

4.2 Implementation details

Our framework is implemented on PyTorch [38] and the
code will be released later (https://github.com/dongle329/
FTC-GCN). All experiments use stochastic gradient descent
with a Nesterov momentum of 0.9. We use two NVIDIA
GeForce 1080Ti GPUs for the model training and the batch
size is 16, the weight decay is 0.0001 and the initial learning
rate is 0.1.

In our experiment, we trained two flows successively, and
each stream occupied two GPUs during training. Finally, we
fused the join flow and the bone flow.

For NTU RGB+D [36], the learning rate is divided by
10 at the 30th and 40th epochs. 60 epochs in total. The
training time of joint flow on the Cross-Subject benchmark
is about 41 hours, the training time of bone flow is about
41 hours. The training time of joint flow on the Cross-View
benchmark is about 40 hours, and the training time of bone
flow is about 40 hours.

For Kinetics-Skeleton [37], the learning rate is divided
by 10 at the 45th and 55th epochs. 65 epochs in total.
The training time of joint flow is about 203 hours, and the
training time of bone flow is about 202 hours.

4.3 Comparisons to the state-of-the-arts

The results are listed in Tables 2 and 3, respec-
tively. Extensive experiments on two large-scale datasets,

Table 5 Two-stream fusion results on NTU-RGB + D dataset

Methods Cross-Subject(%) Cross-View(%)

FTC-GCN (Joint) 87.9 95.1

FTC-GCN (Bone) 88.2 95.0

FTC-GCN (Joint&Bone) 90.4 96.5
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compared with 17 methods on NTU-RGB+D [36] and 8
methods on Kinetics-Skeleton [37]. These all show that
for skeleton-based human action recognition, our method
achieves the best performance, which suggests the superior-
ity of our model.

4.4 Ablation study

As shown in Table 4, we conducted ablation experiments
about FTGCN, λ and CSTA on NTU-RGB+D [36] .

The accuracy of AGCN is 93.83%. First, we replace
the spatial GCN with our proposed FTGCN without the
λ parameter, and the obtained accuracy is 94.34%. The
increase in accuracy proves the effectiveness of focusing
on time information as much as possible. The accuracy
of FTGCN of 94.59% proves the effectiveness of the λ

parameter, that is the deeper the layer, the more important
the temporal information. Finally, the accuracy obtained by
adding the CSTA module(FTC-GCN) is 95.14%, which is
increased by 0.55%. Combining the scores of joint flow and
bone flow to obtain the final accuracy of our network is
96.50%

4.5 The results of two-stream fusion

In this section, we show the results of two streams fused
according to different benchmarks on two datasets NTU-
RGB+D [36] and Kinetics [37] .

Table 5 shows the two-stream fusion results for different
benchmarks on NTU-RGB+D [36] dataset. For cs [36]
benchmark, the accuracy of joint flow is 87.9%, the
accuracy of bone flow is 88.2%, and the accuracy after
fusion is 90.4%. For the cv [36] benchmark, the accuracy of
joint flow is 95.1.9%, the accuracy of bone flow is 95.0%,
and the accuracy after fusion is 96.5%.

Table 6 shows the two-stream fusion results for different
benchmarks on Kinetics [37] dataset. For Top-1 [37]
benchmark, the accuracy of joint flow is 36.1%, the
accuracy of bone flow is 35.6%, and the accuracy
after fusion is 37.8%. Based on this, the two-stream
fusion can further boost the performance of the proposed
method.

Table 6 Two-stream fusion results of Top-1 accuracy on Kinetics
dataset

Methods Accuracy(%)

FTC-GCN (Joint) 36.1

FTC-GCN (Bone) 35.6

FTC-GCN (Joint&Bone) 37.8

5 Conclusions

We design a novel temporal graph convolutional mod-
ule(FTGCN) which can focus more temporal information
and properly balance them for each action. This approach
increases the flexibility and generalization capacity of the
model. It is also confirmed that the temporal information
of graph is more suitable for the action recognition task
than the human-body-based graph. To integrate channel,
spatial and temporal information, we propose a unified
attention (CSTA) module, which helps the model pay-
ing more attention to the important joints, frames and
features. In addition, both the FTGCN module and the
CSTA module can be easily incorporated into the adap-
tive graph convolutional networks (AGCN), and signifi-
cantly improve the performance of AGCN. Due to the
contribution of these two modules, our FTC-GCN achieves
the best performance compared to the methods listed
in the table on the two large-scale action recognition
datasets.
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