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Abstract
Searching for dense subgraphs is the crux of a variety of graph mining applications. It is also meaningful to investigate
problems of finding local dense subgraphs related to particular nodes, especially for large real-world graphs. However, none
of the problems focus on maximizing the average degrees of the found subgraphs. We formulate the MDS-N problem, which
aims to find such a subgraph with the maximum average degree, near or containing a given node in an undirected graph. We
propose the Slither algorithm and the Slither PageRank (PR) algorithm, built on a reduction from the MDS-N problem to the
minimum conductance problem and the Lovász-Simonovits Theorem of random walks. A simple hierarchically repetition
frame is also proposed to advance the two algorithms. Experiments conducted on both unipartite graphs and bipartite
graphs show the effectiveness, stability, and scalability of our algorithms. Additionally, we verify the MDS-N problem
and the proposed algorithms on a large social network Twitter, the experimental results of which show our algorithms can
successfully detect local fraud-related subgraphs based on particular fraudulent user accounts.

Keywords Dense subgraph mining · Local graph algorithm · Random walks · Targeted fraud detection

1 Introduction

Dense subgraphs reveal important information in graphs,
which give birth to many applications. On the one
hand, dense subgraphs serve as cornerstones of some
graph clustering algorithms [1] and graph partitioning
algorithms [2, 3]. On the other hand, they are independently
used in real-world scenarios to, e.g., extract research
communities in co-authorship networks [4] and detect
fraud groups in social or commercial networks [5]. For
the latter kind of applications, existing dense subgraph
finding methods are almost global-oriented, without prior
knowledge, finding dense subgraphs globally and providing
them as communities or groups. But sometimes, these
methods are expected to be local-oriented or targeted-
oriented, i.e., finding dense subgraphs that are related to
particular authors, user accounts or product IDs, called
targeted applications.

Methods to search dense subgraphs can be classified
by the density measure, i.e., the way of defining density.
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Consider an unipartite graph Gu = (V , E), a bipartite graph
Gb = (Vu, Vv, E), and a subset of nodes S ⊆ V or S = Su∪
Sv with Su ⊆ Vu and Sv ⊆ Vv . Let E(S) be the set of edges
in the subgraph induced by S. The average degree measure
of S is defined as |E(S)|/|S| for Gu and |E(S)|/(|Su|+|Sv|)
for Gb. The density measure of S presented in Kannan and
Vinay’s work [6] is defined as |E(S)|/√|Su||Sv| only for
Gb. The edge density measure of S is defined as |E(S)|/(|S|

2

)

for Gu and |E(S)|/(|Su||Sv|) for Gb. For global-oriented
methods, Charikar’s greedy algorithm [7] produces S for
either Gu or Gb with its average degree being at least
1/2 of that of the optimal subset of nodes. Kannan and
Vinay proposed a spectral algorithm for Gb, using their
customized density measure to identify S with its density
within a factor of O(log n) [6]. Lots of works in detecting
α-quasi-cliques, a kind of dense subgraph, are based on the
edge density measure and its variants [4, 8–10].

Take, for example, fraud detection in social networks.
The social networks are formed as bipartite user-user
networks. Many global-oriented methods are used to detect
extremely dense subgraphs in these networks, due to one
common type of fraudulent practices is that fraudsters
hire workers to add edges towards their customers. The
workers and the customers are users in these networks.
However, manually reported violations still exist. It is
necessary to develop local dense subgraph finding methods
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for assisting people with the discovery of fraud groups
related to individually reported user accounts. There are a
few of these methods [1, 10] based on density measures
of Kannan and Vinay’s and edge density, but without
average degree. Nevertheless, average degree is a very
useful density measure for a fraud detection application,
because fraudsters make profits by increasing the average
edges between their hired workers and their customers, and
for other similar real-world applications is the same.

In this paper, we formulate a new MDS-N problem,
aiming at finding a maximum density subgraph (MDS)
measured by the average degree, near or containing a given
node (N) in an undirected (unipartite or bipartite) graph. We
propose the Slither algorithm and the Slither PageRank (PR)
algorithm, both consisting of two steps. The first step is a
same graph transformation, which transforms the undirected
graph into a connected and weighted graph, and reduces
the MDS-N problem to the minimum conductance problem.
The second step is based on random walks, specifically the
lazy random walk for Slither and the personalized PageRank
for Slither PR. The theorem behind this step is the Lovász-
Simonovits Theorem. Lower bounds on the densities of
the subgraphs found by the two algorithms are given.
Additionally, we adopt a simple hierarchically repetition
frame over the two algorithms for advancing them. The
time complexity of these algorithms are analyzed. All these
algorithms are easy to implement.

Our algorithms are mainly compared with other existing
local dense subgraph finding algorithms on both unipartite
graphs and bipartite graphs, in terms of the densities (i.e.,
the average degrees) of the found subgraphs, the stability
of the choice of the given nodes, and the scalability.
Experiments show our algorithms are the fastest among
those which can get subgraphs with high densities. Slither
tends to explore while Slither PR tends to exploit, which can
be inferred in the time consumed and other experimental
results. Experiments in terms of the hierarchy show that
a small hierarchy (no more than two) enables Slither and
Slither PR to achieve satisfactory results. Finally, we apply
the MDS-N problem in Twitter, a large social network.
Our proposed algorithms successfully detect four subgraphs
with high fraud rates according to four given fraudulent user
accounts.

2 Related work

2.1 Dense subgraph problems

The densest subgraph problem is generally defined as
finding a subset of nodes in an undirected graph whose
average degree is maximized. This problem is proved to be
a polynomial-time problem and can be optimally solved by

max-flow methods [11, 12]. Charikar [7] proposed a linear
time greedy algorithm guaranteeing a 1/2-approximation
result of this problem. Another frequently used density
measure is edge density, which is calculated by diving the
number of edges in a subgraph by the maximum possible
number of edges in it. Directly maximizing this density
measure is not meaningful, because a single edge, with two
nodes at its ends, obtains the maximum density. Therefore,
the α-quasi-clique is introduced, and requires the number
of edges to be no less than the maximum possible number
of edges times a threshold parameter α ∈ (0, 1). There are
ways to find single or all α-quasi-clique(s) at once [8, 9].
Other dense subgraph finding problems include maximum
clique problem [13, 14], maximal clique problem [15, 16],
K-core [17], K-plex [18], Kd-clique [19], K-club [20], etc.

2.2 Local dense subgraph finding

A local dense subgraph finding algorithm is to find an
approximation of the densest subgraph near or containing
a specified node, with a running time depending largely
on the number of edges in the subgraph rather than that in
the entire input graph. Andersen [1] proposed an algorithm
that finds local dense subgraphs in a bipartite graph, based
on the density measure presented in Kannan and Vinay’s
work [6]. This algorithm produces a subgraph with its
density proportional to that of the optimal subgraph and
with a running time proportional to the square of the node
size of the optimal subgraph times the maximum degree
of the input graph. Zhang et al. [10] proposed a set of
alternative projected gradient based algorithms HiDDen,
which can find local dense subgraphs in an undirected
graph, measured by edge density. There are some random-
walk-based heuristic algorithms [21, 22], relying on the
observation that shortened random walks starting from a
subgraph with low conductance are inclined to stay within
this subgraph, due to the narrow passage between it and
the remaining graph. Besides these heuristic algorithms,
some local clustering algorithms [2, 3, 23], including
PageRank-like algorithms, are further based on the Lovász-
Simonovits Theorem [24] and give some local bounds on
the conductance of their found subgraphs. However, our
work differs from all these algorithms in finding local dense
subgraphs measured by average degree.

2.3 Fraud detectionmethods

Existing fraud detection methods are globally oriented,
and do not support the application of detecting a fraud-
related subgraph according to a particular node. We simply
summarize several representative methods as follows. 1)
Feature-based methods [25–27] usually find fraud activities
according to the explicit analysis of various features that
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are topology-based or not. 2) Propagation-based methods
[21, 22, 28] leverage a set of labeled fraudulent nodes
and/or labeled normal nodes, and propagate beliefs of label
information throughout the graph for predicting labels of
other nodes. Our work and this kind of method are both
utilizing belief propagation and starting from particular
nodes. But, our work solves a local solution only based on
one particular node, and provides theoretical bounds on the
density of it. 3) Dense subgraph mining methods [5, 29–
31] are based on the key insight that fraudsters will not hire
enough workers to make them behave like normal users, but
will create lots of links (i.e., edges) towards their customers
to make money. That our algorithms can be used in fraud
detection is also based on this insight.

3 Problem formulation

For a targeted application, it is rational to assume that any
given node is in a specific dense subgraph, wanted by the
application.

Consider an undirected and unweighted graph G =
(V , E) with a set of nodes V and a set of edges E. Set
n = |V |. Let E(X) be the set of edges in the subgraph
induced by X ⊂ V .

Definition 1 We define the density of X

den(X) = |E(X)|
|X| (1)

Our goal is to find a X∗ ⊂ V , which induces a maximum
density subgraph near or containing a given node r (MDS-
N) in G. Particularly, for targeted applications with the
assumption of r ∈ X∗, the MDS-N problem is solved by
finding the X∗ such that

den(X∗) = max
r∈X⊂V

den(X) (2)

4 Approach

This section introduces the algorithmic details of our
approach to solve the MDS-N problem. The core of our
approach is in Section 4.1, which is to transform any
undirected (unipartite/bipartite) and unweighted graph into
a weighted and connected one, for finding the local densest
subgraph. This transformation finishes a reduction from the
MDS problem to the minimum conductance problem. The
equivalence relation of the two problems can be found in
the proof of Proposition 1 for two cases. For one case
sv ∈ S, due to the equivalence relation hidden in the later
defined (8) and (9) is difficult to formulate, we consolidate
the hidden equation and the other one for the other case

into a single inequity (the later defined (5)), which is in
a unified simple form and further simplifies the proof of
Theorem 2. Therefore, after we use local graph search
algorithms, e.g., random-walk-based algorithms, to solve
the transformed minimum conductance problem, the MDS-
N problem can then be solved. In Section 4.2, two random-
walk-based algorithms, Slither, based on the lazy random
walk, and Slither PageRank (PR), based on the personalized
PageRank, are proposed. The two subsections complete an
algorithmic flow of our approach. Additionally, we provide
a simple hierarchical framework in Section 4.3 to optimize
the results of the flow.

4.1 Graph transformation

To transform G into a weighted and connected graph Gc =
(Vc, Ec, W), we add a source node sv and a sink node tv

in the graph G. Then, for each node i ∈ V , we add two
edges to connect i with sv and tv respectively. Let d(i)

be the degree of node i, and let dmax be the maximum
degree of G. The weights on the edges connecting i with
sv and with tv are given as mc and mc − d(i) respectively,
where mc is a constant such that mc > dmax . We develop
this transformation inspired by the Goldberg’s max-flow
algorithm [11]. An example of this transformation with G

being a bipartite graph is depicted in Fig. 1. Formally, Gc is
written as

i. Vc = V ∪ {sv, tv}
ii. Ec = E ∪ {(sv, i)|i ∈ V } ∪ {(tv, i)|i ∈ V }

iii. wij = 1, (i, j) ∈ E

iv. wsv,i = mc, i ∈ V

v. wtv,i = mc − d(i), i ∈ V

vi. wij = 0, (i, j) /∈ Ec

Let S ⊂ Vc. After transforming G into Gc, we build a
bridge between subsets of nodes {X} in G and subsets of
nodes {S} in Gc. For Gc, there are four possible categories
of S derived by all possible cuts shown in Fig. 2: 1) sv /∈ S

and tv /∈ S; 2) sv ∈ S and tv /∈ S; 3) sv /∈ S and
tv ∈ S; 4) sv ∈ S and tv ∈ S. As the constructed node
tv is definitely not in X∗, according to the theory of local
Cheeger inequality [32], we adopt a specified subset of
nodes Vc −{tv} in Gc, and it is unnecessary to consider two
categories of S that include tv.

Definition 2 Let (S, Vc − S) be an arbitrary cut of graph
Gc with S ⊂ Vc and S �= ∅. We define the conductance of
(S, Vc − S) as

Φ(S) = μ(δ(S))

min(μ(S), μ(Vc − S))
(3)

where δ(S) = {(i, j) ∈ Ec|i ∈ S, j ∈ Vc − S} is a set of
edges called the edge boundary of S; μ(S) = ∑

i∈S μ(i)
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Fig. 1 Instance an unweighted
bipartite graph G being
transformed into a weighted
connected graph Gc. The added
edges are dashed lines in Gc

m − ( )

m

is the volume of S with μ(i) = ∑
j wij ; and μ(δ(S)) =∑

(i,j)∈δ(S) wij is the volume of δ(S).

Due to the subgraph derived by the targeted S is relatively
small compared to the entire graph Gc, it is rational to
assume μ(S) ≤ μ(Vc − S), and (3) is simplified as

Φ(S) = μ(δ(S))

μ(S)
(4)

Proposition 1 is then proposed to formally give the
quantitative relationship between {X} in G and {S ⊂ Vc −
{tv}} in Gc as follows.

Proposition 1 Let S be an arbitrary subset of nodes in
Gc = (Vc, Ec, W), satisfying that tv /∈ S and μ(S) ≤
μ(Vc − S). Set X = S − {sv}, which is a subset of nodes in
G = (V , E). A mc > dmax is given. Then

Φ(S) ≥ 1

1 + 2 |X|
n

− 1

mc

den(X) (5)

Proof For the case sv ∈ S, we can calculate

μ(δ(S)) =
∑

i∈S,j∈Vc−S

wij

=
∑

j∈V −X

wsv,j +
∑

i∈X,j∈V −X

wij +
∑

j∈X

wtv,j

= mc|V − X| +
∑

i∈X,j∈V −X

wij + (mc|X| −
∑

i∈X

d(i)) (6)

= mcn +
∑

i∈X,j∈V −X

wij −
∑

i∈X

d(i)

and

μ(S) =
∑

i∈S,j∈Vc−S

wij + (
∑

i∈X

d(i) −
∑

i∈X,j∈V −X

wij ) + 2
∑

j∈X

wsv,j

= (mcn +
∑

i∈X,j∈V −X

wij −
∑

i∈X

d(i)) + (
∑

i∈X

d(i) (7)

−
∑

i∈X,j∈V −X

wij ) + 2mc|X| = mcn + 2mc|X|

Substituting (6) and (7) into (4), we have

Φ(S) = mcn + ∑
i∈X,j∈V −X wij − ∑

i∈X d(i)

mcn + 2mc|X|
= 1

1 + 2 |X|
n

− 1

mc

∑
i∈X d(i)−∑

i∈X,j∈V −X wij

n+2|X| (8)

Note that

den(X) = |E(X)|
|X| =

∑
i∈X d(i) − ∑

i∈X,j∈V −X wij

2|X| (9)

and constant n > 0. Thus (8) implies

Φ(S) ≥ 1

1 + 2 |X|
n

− 1

mc

den(X) (10)

For the case sv /∈ S, similarly we get

Φ(S) = 2mc|X| + ∑
i∈X,j∈V −X wij − ∑

i∈X d(i)

2mc|X|
= 1 − 1

mc

den(X) (11)

≥ 1

1 + 2 |X|
n

− 1

mc

den(X)
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Fig. 2 Four categories of
subsets of nodes derived by two
kinds of cuts

= ( , )

4.2 The slither and slither PR algorithms

After we have finished the transformation between the two
problems in Section 4.1, next is to solve the minimum
conductance problem on Gc.

Before going into the details of the definitions of the
variables and the parameters of our forthcoming Slither
and Slither PR algorithms (in Alg. 1), we state that
our algorithms differ from the algorithms formed by
Lovász-Simonovits Theorem only in the addition of a
transformation (in Line 1 of Alg. 1) and the arg maxj den

(in Line 8 of Alg. 1) where the latter are to minimize a
conductance. Besides, the two kinds of algorithms share the
same rules of random walks and the same calculation of a
important term St

j , called the sweep-cut.
Here we first present the rules of the lazy random

walk. A step of the lazy random walk stays where it is

with probability 0.5 and goes from a node i ∈ Vc to its
neighboring node j ∈ Vc with probability 0.5wij /μ(i).
Set the diagonal matrix D = diag(μ(1), μ(2), . . . , μ(nc))

with nc = |Vc|, and the nc-dimensional column vector pt

as the probability distribution over Vc at time t . The lazy
random walk, beginning at time 0, can be expressed as

pt = Mpt−1 = Mtp0 (12)

where the matrix M is calculated as

M = (WD−1 + I )/2 (13)

with I being the nc × nc identity matrix. We set the initial
probability distribution p0 as

p0 = (0, · · · , 1, · · · , 0)T st . p0(i) =
{

1, i = r

0, otherwise
(14)

with a given node r ∈ Vc − {sv, tv}.
Gc is a connected graph. On a connected graph, it is

known that a random walk finally converges to a stationary
distribution p∞, and the convergence is not affected by
whatever the value of p0. Set 2m = ∑

j∈Vc
μ(j). For a node

i, the stationary probability

p∞(i) = μ(i)/(2m) (15)

is proportional to μ(i).
At each t , sort pt (i)/μ(i) in descending order for {i ∈

Vc}. Let π(k) be the identifier of the node at position k in
the sorted sequence and we obtain

pt (π(k))

μ(π(k))
≥ pt (π(k + 1))

μ(π(k + 1))
(k = 1, 2, · · · , nc) (16)

Then we set the sweep-cut

St
j = {π(1), π(2), . . . , π(j)} (1 < j ≤ nc) (17)

Theorem 1 For some non-negative integer T , let

Φ∗ = min
0≤t≤T

min
1<j≤nc

Φ(St
j ) (18)
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Then for each S ⊂ Vc,

∑

i∈S

pt (i) − μ(S)/2m ≤ βt + √
μ(S)(1 − 1

8
Φ∗2)t (19)

with μ(S) ≤ μ(Vc−S) = 2m−μ(S) as we assumed before.

Theorem 1 can be seen as a generalization of the clas-
sical Lovász-Simonovits Theorem [24], which additionally
introducing a parameter β ∈ [0, 1). The classical one is
built based on merely lazy random walks corresponding to
β = 0, and the range of this parameter is extended with the
popularity of the personalized PageRank [3, 23, 33] by later
researches [3]. For the general β ∈ [0, 1), (12) is written as

pt = βp0 + (1 − β)Mpt−1 (20)

The characteristics of the two different kinds of random
walks decide that a bigger β makes the corresponding
random walk be more inclined to exploit than explore during
graph searching. Take these words in mind while tuning
β, which is applicable to both the algorithms formed by
Lovász-Simonovits Theorem and our algorithms.

Theorem 2 is obtained by combining Theorem 1 with
Proposition 1.

Theorem 2 For some non-negative integer T , let

den∗ = max
0≤t≤T

max
1<j≤nc

den(St
j − {sv, tv}) (21)

Then for each S ⊂ Vc,

den∗ ≥ βt + mc

1 + 2 |X|
n

− 2
√

2mc[1

−μ(S)−
1
2t (

∑

i∈S

pt (i) − μ(S)/2m)
1
t ] 1

2 (22)

with X = S − {sv, tv} and the assumption μ(S) ≤ 2m −
μ(S).

To more clearly identify the lower bounds of den∗,
compared to the elegant implicit expression of Φ∗ in (19),
we place den∗ on the left-hand side of (22) and leave the
lower bounds of it on the other side. The definitions of the
variables and the parameters in the lower bounds have been
given before. Like Theorem 1, Theorem 2 also has a strong
algorithmic implication, i.e., it can be directly formed into
algorithms. The algorithms, Slither corresponding to β = 0
and Slither PR corresponding to β ∈ (0, 1), are formally
presented in Alg. 1 for solving the MDS-N problem.

According to (22), in order to get big lower bounds
of den∗, it suggests setting S = St

j for each time t ,
i.e., ordering pt (i)/μ(i) for all nodes i ∈ Vc. Then, to

choose from these bounds, for each t , the corresponding
bound increases with the increase of

∑
i∈St

j
pt (i) or

the decrease of μ(St
j ) and |X| = |St

j − {sv, tv}|.
Thus, to obtain the maximum den(X), all the values of
(
∑

i∈St
j
pt (i), μ(St

j ), |X|) should be evaluated for each t .

4.3 The Hierarchical Algorithms

Inspired by the hierarchical algorithmic structure adopted
in [10] for advancing graph mining, we improve the Slither
(PR) algorithm by putting it into a hierarchical frame with
K levels, called the hierarchical Slither (PR) algorithm,
summarized in Alg. 2. It is a heuristic technique, which only
repeats the procedure of Slither (PR), but at each round k

(k = 1, · · · , K) in Alg. 2, a new MDS-N problem with
the same given node r is solved, and a new G is derived
by the subset of nodes X obtained from the last round, till
r /∈ X. Slither and Slither PR are the special cases of their
hierarchical versions with setting K = 1. With the increase
of K , the hierarchical algorithms will not get worse results
than the non-hierarchical ones, meaning that the former
have the same lower bounds as the latter.
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4.4 Time complexity

Line 7 in Alg. 1 runs in O(|Ec|) for both lazy random
walk and PageRank, and Line 8 runs in O(|Vc| log(|Vc|) for
sorting, with |Ec| = |E|+2n and |Vc| = |V |+2. Therefore,
Slither (PR) runs in a total of O(T (|Ec| + |Vc| log(|Vc|))),
and hierarchical Slither (PR) runs in a total of O(KT (|Ec|+
|Vc| log(|Vc|))). Note that, hierarchical Slither (PR) runs
more optimistically than what its time complexity looks
like, because even the first round of the k-for-loop reduces
the size of G largely.

Importantly, if we move Line 8-12 in Alg. 1 (and the
same procedure in Alg. 2) out of the t-for-loop, Slither (PR)
obtains an O(T |Ec|+|Vc| log(|Vc|)) and hierarchical Slither
(PR) obtains an O(K(T |Ec| + |Vc| log(|Vc|))). This move
will replace all t in Theorem 2 with T , leaving only one
lower bound of den∗ with respect to T . This lower bound
is no less than the minimum one of the original bound
set. Nevertheless, this move saves T − 1 times of sorting
in calculating St

j , which significantly reduces algorithms’
runtime. We recommend to adopt this move in tasks with
their bottlenecks being time, i.e., tasks taking large graphs
as inputs. In one of this kind of tasks, T is often set to a small
value for saving time too. This small T makes the lower
bound with respect to T close to the minimum one, and
makes the adoption of the move in our algorithms succeed
in both effectiveness and efficiency for these tasks.

5 Experiments

In this section, we use HS and HSPR to represent the
hierarchical Slither algorithm and the hierarchical Slither
PR algorithm respectively, for short. mc = dmax + 1 is
set for both HS and HSPR, and β = 0.74 is set for
HSPR. Although any β ∈ (0, 1) can be set for HSPR, we
choose the comparatively big β to clearly show the different
search style of HSPR than HS. As there is no existing
work that handles the MDS-N problem, we compare our
proposed algorithms mainly with two local dense subgraph
finding algorithms: FindDense [1] and HiDDen [10], which
are using different density measures. All experiments are
carried out on a 2.2GHZ Intel Xeon E5-2407 server with 18
GB RAM.

5.1 Experiments on real-world graphs

In this set of experiments, we configure our algorithms
with the setting of K = 10 and T = 100. K = 10
is also set for HiDDen. We evaluate algorithms on six
publicly-available real-world graphs, of which, three are
unipartite graphs including Co-Author [10], Crocodile [34],
and Brightkite [35], and another three are bipartite graphs

including Epinions [36], Facebook [37], and Amazon [38].
Co-Author is built on a snapshot of AMiner citation dataset
[39] collected until the year 2011, covering five research
areas: data mining, machine learning, database, information
retrieval and bioinformatics. Crocodile is a Wikipedia
page-page network on the topic crocodiles. Brightkite is
a location-based online social network. Epinions is an
Epinions signed who-trust-whom online social network.
Facebook consists of social circles from Facebook. Amazon
is built on the category Computers of the Amazon product
dataset, crawled from May 1996 to July 2014. The main
characteristics of the six real-world graphs are shown in
Table 1. Note that a bipartite graph has two sets of nodes.

Table 2 shows the densities of subgraphs found by
algorithms. For each real-world graph, Charikar’s greedy
algorithm was used to search the global densest subgraph.
Then we randomly sampled ten nodes from it as the given
nodes of MDS-N for local subgraph finding algorithms, and
averaged the results out. The densities of subgraphs found
by the greedy algorithm, labeled as Greedy, are presented
as baselines. HS or HSPR achieves the maximum densities
among all algorithms, even better than the baselines.
Between HS and HSPR, HS wins when densest subgraphs
are more easy to be found by exploration search, while
HSPR wins when exploitation search is better. To further
explain the performance of HS and HSPR, we also show
the results of hierarchical PageRank (HPR) in Table 2.
HPR is a hierarchical version of PageRank and has the
same parameter setting as HSPR, which locally finds
the subgraphs that are related to cuts with minimum
conductance. Most of the time, HPR performs the worst.
Except for Co-Author, the only acceptable result of HPR is
from Crocodile, and for Crocodile, HSPR performs better
than HS, showing the superiority of exploitation search of
both HPR and HSPR in Crocodile. For each of the other four
graphs, HSPR performs not always the best, but achieves
more than 90% density of the subgraph found by HS,
compared to the worst result of HPR, owing to the function
of graph transformation used in HSPR.

Table 3 presents the results of the top five hierarchies
of three hierarchical algorithms: HiDDen, HS, and HSPR.
It can be seen that the bigger β of HSPR enables it to

Table 1 Some real-world graphs used in our experiments

Graph Nodes Edges

Unipartite Co-Author 38622 200332

Crocodile 11631 341691

Brightkite 58228 428156

Bipartite Epinions (95318,84601) 841372

Facebook (3663,4037) 88234

Amazon (28158,4266) 28603
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Table 2 The densities of subgraphs found by algorithms, averaged among given nodes sampled from the global densest subgraphs detected by
Charikar’s Greedy algorithm

Greedy FindDense HiDDen HPR HS HSPR

Co-Author 13 13 13 13 13 13

Crocodile 50.79 14.85 42.94 42.93 42.15 50.99

Brightkite 30.99 27.90 30.84 13.61 31.11 34.08

Epinions 66.05 52.77 54.21 32.24 68.16 66.24

Facebook 44.23 40.64 37.44 22.89 46.15 42.20

Amazon 1.38 1.21 1.00 0.88 1.38 1.38

Best results are in bold

converge faster than HS (with smaller k to get its optimum).
Both HS and HSPR reach or approach their optimum in
two hierarchies, indicating that we could set far smaller
hierarchies (k 
 10) for them.

5.2 Experiments on Synthetic Graphs

In this set of experiments, we configure our algorithms with
the setting of K = 10 and T = 100. K = 10 is also set for
HiDDen. From the real-world bipartite graph Epinions, we
sampled a random (2000,2000) scale of nodes as the base of
two synthetic bipartite graphs, depicted in Fig. 3a with the
label “Separate” and in Fig. 3b with the label “Overlapping”
separately. Each synthetic graph was constructed by
injecting two dense subgraphs. In “Separate”, injected
a dense subgraph with edge density 0.04 ranged nodes
([0, 150], [0, 150]) and a dense subgraph with edge
density 0.01 ranged nodes ([150, 300], [150, 300]). In
“Overlapping”, injected a dense subgraph with edge density
0.04 ranged nodes ([0, 150], [0, 150]) and a dense subgraph
with edge density 0.0025 ranged nodes ([0, 450], [0, 450]).
For a synthetic graph, we tested each of the 300 nodes
in ([0, 150], [0, 150]) as a given node of MDS-N, and the
results were averaged and shown in Table 4. Two metrics,
accuracy

(
AC = T P+T N

T P+FN+FP+T N

)
and F-measure

(
F =

2
1/precision+1/recall

)
, are used.

In Table 4, algorithms FindDense, HiDDen, HS
and HSPR all find subgraphs derived by nodes
([0, 150], [0, 150]) with high accuracy (> 0.95). But, for F-
measure, only HS and HSPR get values > 0.84 on both two
synthetic graphs. HS performs better than HSPR here, due
to their algorithmic characteristics. Compared with HSPR,
especially which with big β, HS is more inclined to explore
than exploit when searching local densest subgraphs, which
seems to make HS be beneficial in experiments of this
subsection.

Additionally, Fig. 4 depicts a box plot to show the
concentration of 300 values of F-measure for each algorithm
evaluated on each synthetic graph. It can be seen that with
more exploitation, HSPR gets the narrowest range of values
of F-measure for each synthetic graph, demonstrating its
great stability.

5.3 Scalability

In this set of experiments, we configure our algorithms with
the setting of K = 10 and T = 100. K = 10 is also set for
HiDDen. We used the category “Apps for Android” of the
Amazon product dataset to construct a user-product bipartite
graph, from which we sampled a series of subgraphs with
an increasing number of edges for evaluating the scalability
of algorithms. As depicted in Fig. 5, HiDDen runs the

Table 3 The densities of the found subgraphs vs. the hierarchies

Graph Algorithm k = 1 k = 2 k = 3 k = 4 k = 5

Crocodile HiDDen 34.10 42.94 39.59 3.53 3.53

HS 27.97 42.15 42.15 42.15 42.15

HSPR 50.99 50.99 50.99 50.99 50.99

Epinions HiDDen 28.14 40.00 49.55 53.85 54.16

HS 4.68 66.40 68.16 68.16 68.16

HSPR 66.24 66.24 66.24 66.24 66.24

Best results are in bold
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Fig. 3 The scatter plots of two
synthetic bipartite graphs, each
injected with two dense
subgraphs: (a) Separate: a dense
subgraph with edge density 0.04
ranged nodes ([0, 150], [0, 150])
and a dense subgraph with edge
density 0.01 ranged nodes
([150, 300], [150, 300]); (b)
Overlapping: a dense subgraph
with edge density 0.04 ranged
nodes ([0, 150], [0, 150]) and a
dense subgraph with edge
density 0.0025 ranged nodes
([0, 450], [0, 450])

Table 4 The accuracy (AC) and F-measure (F) of algorithms to find the known densest subgraphs, derived by nodes ([0, 150], [0, 150]), of the
two synthetic bipartite graphs in Fig. 3, averaged among the given nodes in these two subgraphs

Separate Overlapping

AC F AC F

FindDense 0.9578 0.6129 0.9635 0.6791

HiDDen 0.9695 0.7764 0.9811 0.8566

HS 0.9819 0.8798 0.9873 0.9121

HSPR 0.9779 0.8404 0.9825 0.8700

Best results are in bold

Fig. 4 The stability of algorithms to find the known densest subgraphs, derived by nodes ([0, 150], [0, 150]), of the two synthetic bipartite graphs
in Fig 3, with respect to F-measure
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Fig. 5 The scalability of algorithms

slowest, and the gap between its running time and that of
the other three algorithms grows rapidly with the number
of edges. HSPR shows its faster convergence than HS when
the number of edges becomes large. The running time of
FindDense increases the slowest with the number of edges.

5.4 Large graph application: targeted fraud
detection on twitter

In social/commercial networks, fraudsters often hire work-
ers, being users of these networks, to add links to particular
users/products, which leads to unusually dense subgraphs in
these networks. These links are added through user behav-
iors like following, buying, and reviewing. Compared with
finding subgraphs sparsely connected to the remaining net-
work, detecting fraud based on dense subgraph finding is
naturally camouflage-resistant [5]. This paper provides a
way to detect a particular fraud-related subgraph according
to a given node, named as targeted fraud detection. Take the
large follower-followee social network Twitter as an exam-
ple. We use the Twitter dataset, which contains 41.7 million
users and 1.47 billion social relations crawled in July 2009
[40]. We adopt the criteria in [30] with some modifications
for labeling fraudulent user accounts, which is summarized
below.

– The account is suspended or deleted.
– The text information of the account is associated with

malware or adware, or the account is a follower of such
an account.

– The account has a suspicious username, or is followed
by users with suspicious usernames, e.g., usernames
having identical prefixes/suffixes.

– The account has very few tweets or very few different
tweets (< 5), but relatively more followees (> 20).

Algorithms, FindDense, HiDDen, HS and HSPR, were
verified on the Twitter dataset with four user accounts as
the given nodes: “@tweepme”, “@twitbacks”, “@tweepi”
and “id = 14868835”. The first three accounts, publishing
obvious follower buying advertisements like “helps you
get more followers on twitter quick and easy”, are still
active in gaining followers. id = 14868835 is a suspended
account found in a forum. Due to the memory limitation
of our 18 GB RAM, we cannot load the entire Twitter
dataset that contains 24.3 GB of unstructured follower-
followee data. For a given node, we cut off a piece from
the Twitter dataset as an extracted dataset, with consecutive
follower account IDs that contains the given node’s ID, and
all their followees. An extracted dataset has 100 million
edges. For instance, the ID of @tweepme is 23711158,
and the follower IDs of its corresponding extracted dataset
range from 22563769 to 24907792. The node scales of four
extracts corresponding to four accounts are given in Table 5.

For large datasets, we set k = 1 for three hierarchical
algorithms (i.e., HiDDen, HS and HSPR), and for HS and
HSPR, set T = 10 and moved Line 10-14 in Alg. 2
out of the t-for-loop. For each algorithm, the densities of
the detected fraud-related subgraphs corresponding to four
accounts are listed in Table 6. Averaged over the four
accounts, the running time of FindDense is 2475s, of HS
is 1545s, and of HSPR is 1488s. The results of HiDDen
are not shown in Table 6, because HiDDen cannot get any
result in 5h. Note that the setting of k = 1, etc. makes HS
and HSPR run faster even than FindDense, and the results
of them are still much better than FindDense, which means
HS and HSPR can get acceptable results, that are better than
the results of other algorithms used to solve the MDS-N
problem, with very small hierarchies (e.g., k = 1) and well
before convergence (e.g., with T = 10). The algorithmic
characteristic of more exploitation often causes HSPR to
have an advantage in time, but in this set of experiments, HS
with more exploration achieves the best results.

Table 5 The node scales of the extracts corresponding to four given
nodes in Twitter network

Account Extract

@tweepme (1964922,15789443)

@twitbacks (944378,15710119)

@tweepi (711255,10975331)

id = 14868835 (816078,15995935)
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Table 6 The densities of the detected fraud-related subgraphs corresponding to four given nodes in Twitter network

FindDense HiDDen HS HSPR

@tweepme 178.62 - 297.90 296.22

@twitbacks 22.09 - 43.91 33.27

@tweepi 23.47 - 26.77 26.77

id = 14868835 17.19 - 31.72 25.00

Best results are in bold

Then, we focus on subgraphs detected by HS. The node
scales of these subgraphs are: (598,2726) for @tweepme,
(812,2200) for @twitbacks, (732,1756) for @tweepi, and
(273,2304) for id = 14868835. From nodes in each
detected subgraph, we randomly selected 50 workers and
50 fraudulent followees, and labeled them according to
the previously listed criteria and their profiles and tweets
publicly available in https://twitter.com/. The ratios of
determined workers and determined fraudulent followees
are presented in Fig 6. For comparison, we add another
case “Random” by randomly labeling 100 users, consisting
of 50 followers and 50 followees, and display its ratios of
determined fraud in Fig. 6.

Except for “Random”, the ratios of other cases in
Fig. 6(a) are over 30% (@tweepme achieves the highest
56%). Three ratios in Fig. 6b are over 30% and id =
14868835 is 24%. “Random” obtains the lowest ratios: 8%
for determined workers and 0 for determined fraudulent
followees. That shows HS can target fraud effectively
according to a given node in a real-world network.

6 Conclusion and future work

This paper introduces the MDS-N problem, a local
dense subgraph finding problem based on the average
degree measure. We present a graph transformation, which
transforms an undirected and unweighted graph into a
connected and weighted graph, and reduces the MDS-
N problem to the minimum conductance problem. After
the transformation, the proposed lazy-random-walk-based
Slither algorithm and PageRank-based Slither PR algorithm
“walk” on the connected and weighted graph to find the
densest subgraph according to a particular node. A simple
hierarchically repetition frame is used to further advance the
two algorithms. Experiments conducted on both unipartite
graphs and bipartite graphs show our algorithms are the
fastest among algorithms that can find subgraphs with high
densities. Slither tends to explore while Slither PR tends
to exploit during their “walks”. A small hierarchy (no
more than two) enables Slither and Slither PR to achieve
satisfactory results. We verify the MDS-N problem and

Fig. 6 The ratios of determined workers and determined fraudulent followees in subgraphs detected by HS and in 100 randomly selected nodes
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the proposed algorithms on a large social network Twitter,
the experimental results of which show our algorithms can
successfully detect local fraud-related subgraphs based on
particular fraudulent user accounts.

In the future, we plan to: (I) combine our two hierarchical
algorithms into an algorithm with a dynamically adjusted β

for being better applied in different graphs, and (II) utilize
graph partition techniques before belief propagation (i.e.,
walks) to decrease time complexity.
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