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Abstract
The Relief algorithm is a feature selection algorithm that uses the nearest neighbor to weight attributes. However, Relief only
considers the correlation between features, which leads to a low classification accuracy on noisy datasets whose interaction effect
is weak. To overcome the weaknesses of Relief, a novel feature selection algorithm, named Multidirectional Relief (MRelief), is
proposed. TheMRelief algorithm includes four improvements. First, the multidirectional neighbor searchmethod, which finds all
neighbors within a distance threshold from different orientations, is included to obtain regularly distributed neighbors. Therefore,
the weights provided by MRelief are more accurate than those provided by Relief. Second, a novel objective function that
incorporates the instances’ force coefficients is introduced to reduce the influence of noise. Thus, the new objective function
improves the classification accuracy of MRelief. Third, subset generation is introduced to the MRelief algorithm and combined
with the maximum Pearson maximum distance (MPMD) to generate a promising candidate subset for feature selection. Finally, a
novel multiclass margin definition is proposed and introduced to the MRelief algorithm to handle multiclass data. As demon-
strated by extensive experiments on eleven UCI datasets and eleven real-world gene expression benchmarking datasets, MRelief
is significantly better than other algorithms including LPLIR, ReliefF, LLH-Relief, MultiSURF, MSLIR-NN, MRMR, MPMD
and STIR in our study.
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1 Introduction

An overwhelming amount of data is currently available [1,
2]. As the dimensionality of data increases, so does the
number of features. Therefore, to select an optimal feature
subset, feature selection is used [3, 4]. Feature selection [5,
6] is very effective in reducing dimensionality; and it is
applied in numerous fields, such as pattern recognition
[7], machine learning [8, 9], data mining [10] and some
other fields [11]. Feature selection includes four processes,
including subset generation, subset evaluation, stopping
criterion and result validation.

Typical feature selection methods are divided into three
classes: typical wrapper methods typical filter methods and
embedded methods [12–14]. A typical wrapper method uses
the performance of the classifier as an evaluation criterion
while a typical filter method depends on the characteristics
of the dataset to select a subset of features without evaluating
any classifier [15]. Embedded methods have the advantage
that they not only include the interaction with the classifier,
but also take less computational time than wrapper methods
[16]. Typical filter methods include the Maximum Relevance
Minimum Redundancy (MRMR) [17] and ReliefF [18].
Typical wrapper methods include Particle Swarm
Optimization (PSO) [19], the Genetic Algorithm (GA) [20],
Bacterial Foraging Optimization (BFO) [21], Ant Colony
Optimization (ACO) [22], Cuckoo Search (CS) [23], the
Artificial Bee Colony (ABC) [24], the Whale Optimization
Algorithm [25, 26] and the Dragonfly Algorithm (DA) [27].
Because the performance of a typical wrapper method heavily
relies on the specified mining algorithm, typical filter
methods are generally more popular than the wrapper
methods.

Relief is an extensively studied filter method because it is
simple and effective in high-dimensional feature space and
nonparametric [28]. The improved Relief algorithms mainly
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address two aspects. First, the weight estimation function is
improved. Second, different neighbor search methods are
proposed.

In order to alleviate the deficiencies of Relief, improved
algorithms with weight estimation functions, such as
Relief-MM [29] and I-Relief [30], have been proposed. To
improve the performance of the Relief algorithm, logistic local
hyperplane-based Relief (LLH-Relief) has been proposed as a
feature selection algorithm. LLH-Relief combines the advan-
tages of logistic iterative-Relief (LI-Relief) and local
hyperplane-Relief (LH-Relief). A multiclass semisupervised
feature selection named the local preserving logistic I-Relief
(LPLIR) algorithm that pays attention to the local characteris-
tics of data has been proposed [31]. However, instance force
coefficients are not considered in the above algorithms.

To avoid arbitrary selection of the nearest neighbors, recent
research improves the number of selected nearest neighbors,
such as using a fixed number of nearest neighbors in ReliefF,
the constant neighborhood radius in SURF [32], the adaptive
radius in MultiSURF [33] and a specific k for each feature in
ReliefSeq [34]. However, none of the above algorithms solve
the problem that neighborhoods of a center instance are irreg-
ularly distributed.

In summary, the above studies ignore four shortcomings.
First, the neighborhoods of a center instance are irregularly
distributed, thus, the neighborhoods that are far away from the
center instance from different orientations are not involved in
calculating the weights of Relief. Therefore, the weights of
Relief are inaccurate for feature selection. Second, because
the objective function assigns instances the same force coeffi-
cient based on their importance, noise and outliers affect the
classification accuracy rate of Relief. Third, Relief ignores the
correlation between features and classes. Furthermore, Relief
does not consider the redundancy among features. Thus,
Relief easily achieves the local optimal solution for classifica-
tion. Finally, Relief was originally designed to solve two-class
problems, and it is not applicable to multiclass data.

To address the above problems, a novel feature selection
algorithm called MRelief is proposed. First, to solve the
problem of irregularly distributed neighbors, MRelief
finds all neighbors within a distance threshold in differ-
ent orientations. The circle around the center instance
within the distance threshold is split into specific uni-
form regions, and MRelief selects neighbors from all
regions. Second, to improve the classification rate of
MRelief, instance force coefficients are introduced to
the margin-based objective function. This function inte-
grates the Pearson correlation coefficient to represent the
instance force coefficients. Third, a new subset genera-
tion process is proposed and combined with MPMD to
obtain a promising candidate subset. Finally, to handle
multiclass data, a novel multiclass margin definition is
proposed.

Overall, we present four corresponding improvements to
MRelief, as shown below.

1. Amultidirectional neighbor search method is proposed to
select regularly distributed neighbors in different
orientations.

2. A novel objective function that incorporates instance
force coefficients is formed to improve the classification
accuracy rate.

3. A subset generation method is proposed to obtain the
optimal candidate subset.

4. A multiclass margin definition is proposed to handle
multiclass data.

The remainder of our research is organized as follows. In
section 2, we introduce the theoretical background of our pa-
per. In section 3, we propose a novel feature selection algo-
rithm called MRelief. In section 4, we evaluate the perfor-
mance of MRelief compared with ReliefF, LLH-Relief,
LPLIR, MultiSURF and STIR. In section 5, the discussion
and conclusion are given in detail.

2 Theoretical backgrounds

We introduce two types of filter algorithms. The filter algo-
rithms are Relief-based algorithms and MPMD.

2.1 Relief-based algorithms

A number of Relief-based methods have been proposed.
Relief-based algorithms output individual feature weights.
In this section, some typical Relief-based methods, i.e.,
Relief, ReliefF, SURF, MultiSURF, and STIR, are briefly
introduced.

2.1.1 Relief and ReliefF

Relief is a feature weighting algorithm [35]. Relief evalu-
ates the weights of features consistent with the difference
between instances that are similar. Relief randomly selects
an instance X. According to a random sampling of in-
stances, Relief finds its nearest hit H from the same class
and its nearest miss M from the other different class. Then,
Relief calculates the difference between two similar in-
stances in order to influence the weights of attributes and
updates the quality estimation W[Ai] depending on their
values for X, M and H for all features A. In the same class,
the feature has a negative influence if the difference be-
tween two similar instances is caused by the feature. In a
different class, a feature has a positive influence if the dif-
ference between two similar instances is caused by the
feature. The weight of feature Ai is calculated using the
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formula given in (1).

W Ai½ � ¼ W Ai½ �−diff Ai;Xm;Hð Þ=T þ diff Ai;Xm;Mð Þ=T ð1Þ

Function diff(Ai, X1, X2) calculates the differencebetween
two instances X1 and X2 for featureAi. W[Ai] is the weight of
feature Ai. T is number of the maximum iterative times.

The numerical attributes are calculated as follows.

diff Ai;X 1;X 2ð Þ ¼ value Ai;X 1ð Þ−value
�
Ai;X 2

���� ���= max Aið Þ−min Aið Þð Þ
ð2Þ

where value(Ai, X1) is the value of feature Ai for instance
X1.

The nominal attributes are calculated as follows.

If value Ai;X 1ð Þ ¼ value Ai;X 2ð Þ; diff Ai;X 1;X 2ð Þ ¼ 0;

otherwise; diff Ai;X 1;X 2ð Þ ¼ 1

ð3Þ

The original Relief can handle both nominal and numerical
attributes. However, it is limited to solving datasets that are
two-class. In addition, the original Relief cannot handle in-
complete data.

The ReliefF algorithm is able to handle problems with
multiclass datasets that contain noisy data. Based on Relief,
ReliefF finds itsK nearest hitsHj from the same class and itsK
nearest missesMj(Class) from a different class according to a
randomsampling of instances. It updates the weight W[Ai]
relying on , Mj(Class) and Hj for all features A.

W Ai½ � ¼ W Ai½ �− ∑
K

j¼1
diff Ai;Xm;H j
� �

= T � Kð Þ

þ ∑
C≠Class Xmð Þ

P Cð Þ
1−P Cð Þ ∑

K

j¼1
diff
�
Ai;Xm;M j Cð Þ

�" #
= T � Kð Þ

ð4Þ
whereP(C)is the prior probability of class C. T is the maxi-
mum number of iterations. Class(Xm) is the class of instance
Xm.

2.1.2 SURF and MultiSURF

The SURF algorithm [32] is similar to the ReliefF algorithm.
Different from ReliefF, SURF implements a new neighbor
search method. Instead of using a fixed parameter k, SURF
adopts a distance threshold T to determine which instances are
selected. The radius T of a given target instance is calculated
as the average of two instances.

MultiSURF defines a threshold Ti − σi/2 to determine
which instances are considered neighbors [32]. Ti is the mean
pairwise distance between the target instance and all others. σi
is the standard deviation of the pairwise distances between the
target instance and all others.

2.1.3 STIR

Combined with the pooled standard deviations, this novel
Relief-based algorithm transforms the Relief-based score
WSTIR into a pseudo t-statistic [36]. For feature A, the STIR
weight is calculated as the difference of the means and the
standard error.

WSTIR A;M ;H½ � ¼ MA−HA

Sp M ;H½ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= Mj j þ 1= Hj jp ð5Þ

where |M| and |H| are the total numbers of nearest misses and
hits, respectively. The pooled standard deviation is calculated

by the following formula. MA is the mean difference for fea-

ture A averaged over of all pairs of nearest misses. HA is the
mean difference for feature A averaged over of all pairs of
nearest hits.

Sp M ;H½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mj j−1ð ÞS2MA

þ Hj j−1ð ÞS2HA

Mj j þ Hj j−2

s
ð6Þ

where S2MA
and S2HA

are the pooled standard deviations.

2.2 MPMD

Zheng et al. proposed a new filter algorithm called the
MPMD [37]. The relevance between classes and features
is calculated using the Pearson correlation coefficient, and
the redundancy among features is calculated using the
correlation distance.

The value of the maximum Pearson correlation coef-
ficient between the feature set A = {A1, A2,…Ai, AD} and
the class set Class = {Class(X1), Class(X2),…Class(Xj),
Class(XN)} is calculated by the maximum of Pearson
correlation coefficient between the feature and the class
using (7).

MP A;Classð Þ ¼ max PE Ai;Classð Þð Þ ð7Þ
where PE(Ai, Class) is calculated using (8).

PE Ai;Classð Þ ¼ cov Ai;Classð Þ
σ Aið Þ � σ Classð Þ ð8Þ

where cov(Ai, Class)is the covariance between feature Ai
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and class Class in (9), σ(Ai) is defined by (10) and
σ(Class) is defined by (11).

cov Ai;Classð Þ ¼
∑
N

j¼1
Aj
i−Ai

� �
Class X j

� �
−Class

� �
N

ð9Þ

whereAj
i is value of jth instance for feature Ai, Ai is the

average of feature Ai,Class is the average of class Class.

σ Aið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

j¼1
Aj
i−Ai

� �
N

vuuut
ð10Þ

σ Classð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

j¼1
Class X j

� �
−Class

� �
N

vuuut
ð11Þ

where N is the number of instances.
The maximum correlation distance between remaining fea-

ture Rm and selected feature Sk is calculated by the maximum
correlation coefficient in (12).

MD S;Rð Þ ¼ max D Sk ;Rmð Þð Þ ð12Þ

where the remaining feature set is defined by R = {R1,
R2,…Rm, RM}, the selected feature set is defined by S =
{S1, S2,…Sk, SW} and D =M +W. D(Sk, Rj) is calculated
using (13).

D Sk ;Rmð Þ ¼
∑
M

m¼1
1− PE Sk ;Rmð Þj jð Þ

M
ð13Þ

MPMD is generated by the maximum Pearson correlation
coefficient and maximum correlation distance. Two factors, r1
and r2, are introduced to balance MP and MD.

MPMD ¼ r1 �MP A;Classð Þ þ r2 �MD S;Rð Þ ð14Þ

where r1 and r2 are calculated using (15) and (16), respective-
ly.

r1 ¼ cos
t � a
T

� �
� 10 ð15Þ

r2 ¼ sin
t � a
T

� �
� 10 ð16Þ

where t represents the current number of iterations, T repre-
sents the total number of iterations and a is a constant.

3 The proposed algorithm

In this part, we introduce the multidirectional neighbor search
method, the new relief-feature weighting objective function,
the subset generation and the multiclass extension.

3.1 Multidirectional neighbor search method

Because neighbors far away from the center instance are
useless, MRelief finds all neighbors within a distance
threshold r instead of selecting a fixed number of
neighbors. However, the neighborhoods of a center in-
stance are irregularly distributed, and we endeavor to se-
lect neighbors in different orientations. The circle around
the center instance within the distance threshold r is split
into 5 uniform regions. In Fig. 1, each region represents a
direction, and region has an azimuth angle θ that is set to
72∘. We select m nearest neighbor instances from a region
to represent the region. For example, when m = 1, 2, 3. ..,
K = 5, 10, 15. .. ., where K is the number of selected neigh-
bors. To avoid insufficient instances inside a region, we
use iterative farthest point sampling (FPS) to choose the
neighbor set X i1 ;X i2 ;…;X imf g of the center instance.
Given input instances {X1, X2,…, XN}, N is the total num-
ber of instances. Thus, X i j is the most distant point from

the set X i1 ;X i2 ;…;X i j−1

� 	
with regard to the remaining

instances.
In Fig. 1, the circle is drawn with the center instance as

the circle center and the search radius as the circle radius.
The circle is divided into 5 uniform directions. The azi-
muth θ, radius r and m selected instances are marked in
one region. The existing methods use some neighbor
search methods. ReliefF selects a fixed number of nearest
neighbors. SURF uses a constant neighborhood radius to
select neighbors. MultiSURF uses the adaptive radius for
neighbor searches. ReliefSeq assigns a specific k to each

Fig. 1 Multidirectional search method
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feature. However, none of the existing methods solve the
problem that the neighborhoods of a center instance are
irregularly distributed.

In Fig. 2, Relief finds the nearest neighbor in the same
class (green circle) and the nearest neighbor in the other
class (orange rectangle). ReliefF finds a specified number
of neighbors (five in this example) that are used to calcu-
late the weights. MRelief finds all neighbors that are di-
vided into 5 uniform regions within a distance threshold,
which is expressed as a circle. The center instance that
selects neighbors to be used for weighting is expressed
as a filled red circle. The neighbors from the same class
are highlighted in green and the neighbors from the other
class are highlighted in orange for each algorithm. Parts
A, B, and C represent Relief, ReliefF and MRelief,
respectively.

3.2 New relief-feature weighting objective function

In Relief, each instance in a given dataset is equally impor-
tant for constructing optimization objective functions.
However, a reasonable objective function should assign
instances different force coefficients based on their impor-
tance. Thus, two instance force coefficients are introduced
to generate a new objective function to reduce the influence
of noise.

As shown in (17), when the degree of coincidence is
large between the instance and the farthest miss, the in-
stance needs to be given a small instance force coefficient
um for Xm

um ¼ PE Xm;M 1 Class Xmð Þð Þð Þr1
∑N

m¼1PE Xm;M 1 Class Xmð Þð Þð Þr1
s:t: umk k ¼ 1; um≥0

ð17Þ

where M1(Class(Xm)) is the farthest miss of Xm from other

different classes, coefficient r1 is used to adjust um. PE is
the Pearson correlation coefficient calculated by (8). The
constraints ‖um‖ = 1 prevent the maximization from in-
creasing without bound, and um ≥ 0 ensures that the in-
stance force coefficient induces a distance measure.

In (18), when the degree of coincidence between the in-
stance and farthest hit is large, the instance needs to be given a
large instance force coefficient.

hm ¼ PE Xm;H1 Class Xmð Þð Þð Þ 1
r2

∑N
m¼1PE Xm;H1 Class Xmð Þð Þð Þ 1

r2

s:t: hmk k ¼ 1; hm≥0

ð18Þ

where H1(Class(Xm)) is the farthest hit of instance Xm, co-
efficient r2 is used to adjust hm. PEis the Pearson correlation
coefficient calculated by (8). The constraint ‖hm‖ = 1 prevents
the maximization from increasing without bound, and hm ≥ 0
ensures that the instance force coefficient induces a distance
measure.

When the instance force coefficient is introduced, the ob-
jective function for instance Xm is expressed as follows:

ρm ¼ um ∑
K

j¼1
∑
D

i¼1
diff Ai;Xm;M j Class Xmð Þð Þ� �

−hm ∑
K

j¼1
∑
D

i¼1
diff Ai;Xm;H j
� �

ð19Þ
wherefunction diff(Ai, X1,X2) calculates thedifference for
feature Ai between two instances X1 and X2. K is
thenumber of nearest hits and misses. Mj(Class) is the
selected nearest misses from other different classes. Hj

is the selected nearest hits from the same class. N is the
number of instances. Class(Xm)is the class of instance
Xm.

J(w) is the objective function for a given training dataset
computed with respect tow. (20) is constructed to optimize um
and hm.

Fig. 2 The selected neighbors for
three algorithms
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J wð Þ ¼ ∑
m¼1

N1

w � ρm ¼ ∑
m¼1

N1

um ∑
K

j¼1
∑
D

i¼1
widiff Ai;Xm;M j Class Xmð Þð Þ� �

−hm � ∑
K

j¼1
∑
D

i¼1
widiff Ai;Xm;H j

� � !

s:t: wk k2 ¼ 1;w≥0

ð20Þ

where w is the weight vector. w is defined by w = {w1,w2,
…, wi, wD}. ρm is calculated by (19). N1 is the number of
instances in a given training dataset.

3.3 Subset generation method

Better classification can be achieved if some features with
small but important weights are added in the process of
generating feature subsets. Relief uses a fixed threshold to
select attributes directly according to the feature weight.
However, some features whose weight is small but impor-
tant cannot be selected. Therefore, MPMD is used to se-
lect features in MRelief. MPMD balances the maximum
Pearson correlation coefficient and the maximum correla-
tion distance in order to enrich candidate subsets. In (21),
the probability of a feature Ai being selected is expressed
by the result of combining the weights of MRelief and the
weights of MPMD.

PP Ai½ � ¼ 1þ β2
� �

MPMD Ai½ �*W Ai½ �
β2MPMD Ai½ � þW Ai½ � ð21Þ

where β is a coefficient that is used to balance the degree
of importance between MPMD and MRelief. When β is
set to 1, it means that MPMD and MRelief are equally
important. For example, when β is set to 0.5, it means that
the force coefficient of MPMD is 0.25 while the force
coefficient of MRelief is 1. Thus, MPMD is less impor-
tant than MRelief. For example, when β is set to 1.5, it
means that the force coefficient of MPMD is 1.25 while
the force coefficient of MRelief is 1. Therefore, MPMD is
more important than MRelief.

3.4 Multiclass extension

In order to handle multiclass data, the margin of an instance is
calculated by MReliefF as follows:

ρm ¼ um � ∑
C∈Y ;C∉y Xmð Þf g

P Cð Þ
1−P y Xmð Þð Þ ∑

K

i¼1
∑
D

j¼1
diff Ai;Xm;M j Class Xmð Þð Þ� �

−hm � ∑
K

i¼1
∑
D

j¼1
diff Ai;Xm;H j
� � ð22Þ

where Y ∈ Class is the set of class labels, y(Xm) is the label
of instance Xm, Mj(C) is the nearest miss of Xm from class
C, Hj is the selected nearest hits from the same class, hm
and um are the instance force coefficients, P(C) is the a
priori probability of class C and Class(Xm) is the class of
instance Xm.

As summarized by the pseudocode in Algorithm 1,
MRelief randomly selects M instances in each cycle. For

each selected instance, MRelief finds its K nearest hits Hj

and its K nearest misses Mj(Class) according to the mul-
tidirectional neighbor search method. For each feature,
MRelief uses a new Relief-Feature weighting objective
function to update the weights. Moreover, the value of
MPMD is calculated by (14). Finally, the probability of
a feature is determined using (21) according to subset
generation.
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4 Experiment results

4.1 Benchmark data

We selected eleven UCI datasets and eleven microarray
datasets in the following experiments. UCI datasets are
downloaded from http:// archive.ics.uci.edu/ml. The
microarray datasets are downloaded from http://datam.i2r.a-
star.edu.sg/datasets/krbd/. The characteristics of the datasets,
which contain numeric data, nominal data and mixed data, are
introduced in Tables 1 and 2. As we can see from Tables 1 and
2, the number of instances varies from 72 to 10,992, the

number of features varies from 13 to 16,063 and the number
of classes varies from 2 to 26.

4.2 Parameter settings

The experiments include state-of-the-art Relief-based
methods and mutual-information-based feature selection
methods. The detailed parameter values of each algorithm
are described in Table 3. For ReliefF, the number of iterations
is set to 10, and the number of selected instances is set to 5.
For LLH-Relief, the number of iterations is set to 10, the
number of selected instances is set to 5, θ = 0.01, λr =
0.001,λ = 1 and η = 0.1. For LPLIR, the number of iterations

5069A novel filter feature selection algorithm based on relief
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is set to 10, the number of selected instances is set to 5, λ1 = 1
and λ2 = 0.01. For MultiSURF, the number of iterations is set
to 10, and the number of selected instances is set to 5. For
MSLIR-NN, the number of iterations is set to 10, and the
number of selected instances is set to 5. For MRMR, the
number of iterations is set to 10. For MPMD, the number of
iterations is set to 10. For STIR, the number of iterations is set
to 10, and the number of selected instances varies for each
instance. For MRelief, the number of iterations is set to 10,
the number of selected instances is set to 5, r1=1.1 and r2=0.9.

4.3 Experiments and analysis

The experiments are conducted by implementing ReliefF,
LLH-Relief, LPLIR, MultiSURF, STIR, MSLIR-NN,
MRMR, MPMD and MRelief using MATLAB R2014a.
Each algorithm is run 10 times, and the average classification
accuracy rate is calculated as the final result. The SVM

classifier is used to evaluate the classification performance
for each filter algorithm [38, 39]. The kernel function of the
SVM classifier is the radial basis function (RBF). Penalty
parameter C and RBF parameter gamma are obtained through
the grid search method. Ten-fold cross validation is applied to
test the algorithmsmentioned above. Ten-fold cross validation
consists of 10 cycles. The datasets are divided into 10 folds for
every cycle. Then, 9 folds are used for training, and the re-
maining fold is used for testing. In our experiments, two
criteria are considered including the classification accuracy
rate Acc and the F1 value. Acc and the F1 value are calculated
in every cycle. Therefore, we obtain the average classification
accuracy rate of 10 cycles. The Acc criterion is computed by
the following formula.

Acc ¼ TP þ TN
TP þ FN þ TN þ FP

ð23Þ

where TP (TN) represents the number of positive (negative)
instances that are classified correctly and FP (FN) is the num-
ber of positive (negative) instances that are classified
incorrectly.

The F1 value is calculated in every cycle. Therefore, we
obtain the average F1 value of 10 cycles. The F1 criterion is

Table. 1 UCI datasets

舃Datasets 舃Instances 舃Features 舃Class 舃Abbreviation

舃Parkinson’s 舃195 舃22 舃2 舃Pa

舃Sonar 舃208 舃60 舃2 舃So

舃HEART_SPECTF 舃187 舃44 舃2 舃HE

舃Vehicle Silhouettes 舃846 舃18 舃4 舃Ve

舃Wine 舃178 舃13 舃3 舃Wi

舃Vowel 舃990 舃13 舃11 舃Vo

舃Secom 舃1567 舃590 舃2 舃Se

舃Arrhythmia 舃452 舃279 舃13 舃Ar

舃Waveform 舃5000 舃21 舃3 舃Wa

舃Pendigits 舃10,992 舃16 舃10 舃Pe

舃Musk 舃6598 舃168 舃2 舃Mu

Table. 2 Microarray datasets

舃Datasets 舃Instances 舃Features 舃Class 舃Abbreviation

舃LUNG_
Cancer

舃203 舃12,600 舃5 舃LU

舃Leukemia2 舃72 舃7129 舃2 舃Le2

舃Leukemia3 舃72 舃7129 舃3 舃Le3

舃Lymphoma 舃45 舃4026 舃9 舃Ly

舃DLBCL 舃77 舃7129 舃2 舃DL

舃Colon 舃62 舃2000 舃2 舃Co

舃GCM 舃280 舃16,063 舃2 舃GCM

舃Pros1 舃102 舃12,600 舃2 舃Pr1

舃Pros2 舃88 舃12,625 舃2 舃Pr2

舃11-Tumors 舃174 舃12,533 舃11 舃11-T

舃14-Tumors 舃308 舃15,009 舃9 舃14-T

Table. 3 Parameter settings

舃Algorithm 舃Parameters 舃Reference 舃Year

舃ReliefF 舃Number of iterations =10 舃[18] 舃2003
舃Selected instances =5

舃LLH-Relief 舃Number of iterations =10 舃[41] 舃2019
舃Selected instances =5

舃θ=0.01

舃λr=0.001

舃λ=1

舃η=0.1

舃LPLIR 舃Number of iterations =10 舃[31] 舃2020
舃Selected instances =5

舃λ1=1

舃λ2=0.01

舃STIR 舃Number of iterations =10 舃[36] 舃2018
舃K varies for each instance

舃MultiSURF 舃Number of iterations =10 舃[33] 舃2018
舃Selected instances=5

舃MSLIR-NN 舃Number of iterations =10 舃[40] 舃2019
舃Selected instances (θ=0.01)=5

舃MRMR 舃Number of iterations =10 舃[17] 舃2005

舃MPMD 舃Number of iterations =10 舃[37] 舃2019
舃a=1.57

舃MRelief 舃Number of iterations =10 舃Our paper
舃Selected instances =5

舃r1=1.1, r2=0.9
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computed by the following formula.

F1 ¼ 2*TPrate*PPrate

PPrate þ TPrate
ð24Þ

where TPrate and PPrate are calculated by the following for-
mulas.

TPrate ¼ TP
TP þ FN

ð25Þ

PPrate ¼ TP
TP þ FP

ð26Þ

Table 4 shows the average classification accuracies of
ReliefF, ReliefF with subset generation in (21) and ReliefF
with new relief-feature weighting objective function in (22)
applied to ten datasets. The results show the effectiveness of
the formulas in (21) and (22) is able to work better than the
traditional method. The subset generation in (21) generates a
promising candidate subset for feature selection combined
with MPMD. The novel objective function that incorporates
the instances’ force coefficients in (22) improves the classifi-
cation accuracy of MRelief.

Figure 3 indicates that MRelief performs the best on the
general trend of the average classification accuracy. The result
of Musk clearly shows that MRelief achieves the highest clas-
sification accuracy over the entire process. LLH-Relief ob-
tains the local optimal classification accuracy other than that
of MRelief. In addition, LLH-Relief achieves the highest clas-
sification accuracy in Wine and Vowel. As the Waveform
results show, the classification accuracy of LPLIR is higher
than those of the other algorithms except MRelief. The results
of Sonar show that the classification accuracies of MRelief
and STIR both achieve excellent performance. In Vowel and
Pendigits, there are overlaps among curves. Furthermore,
there are crosses in Parkinson’s and Heart. Although the nine
algorithms sometimes obtain the same accuracy rate, we know
that MRelief has excellent performance among the nine

algorithms. The results of Fig. 3 show that the novel prepro-
cessing method significantly promotes the classification accu-
racy of MRelief, and the improved objective function makes a
huge contribution to jumping out of the local optimum for
MRelief.

Table 5 and Table 6 show the mean accuracies and stan-
dard deviations (%) of the algorithms on the UCI and micro-
array datasets. The tables compare the average accuracies and
standard deviations on the target sets among nine algorithms
including ReliefF, LLH-Relief, LPLIR, MultiSURF, STIR,
MSLIR-NN, MRMR, MPMD and MRelief. In Table 5, nine
algorithms are tested on eleven UCI datasets. To compare the
nine feature selection algorithms, 50-dimensional irrelevant
data, which are obtained from a zero mean and unit variance
Gaussian distribution, are added to the original UCI datasets.
In Table 6, 200 top-rankedmicroarray features are selected for
feature selection.Microarray datasets have redundant features,
so we do not need to add extra noise to the original microarray
datasets. The results show that MRelief achieves the highest
average classification accuracy on most datasets except
Vehicle Silhouettes, Wine and GCM. The results show that
the instance force coefficient improves MRelief significantly,
and subset generation greatly promotes MRelief. Moreover,
the results show that MRelief obtains the lowest average stan-
dard deviation on six datasets. The multidirectional neighbor
search method improves the stability of MRelief.

Friedman test are conducted with the corresponding
post-hoc tests. The Bonferroni–Dunn test is selected as
post-hoc tests, which is calculated by the differences between
MRelief and other algorithms [42]. The performance of
pairwise algorithms is significantly different if the correspond-
ing differences between MRelief and other algorithms is
higher than the critical difference (CD). The CD is calculated
by (27).

CDα ¼ qα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NA NAþ 1ð Þ

6ND

r
ð27Þ

Table. 4 The average
classification accuracies (%) of
ReliefF, ReliefF with subset
generation, ReliefF with new
relief-feature weighting objective
function applied to ten datasets

舃Datasets 舃ReliefF 舃ReliefF with subset generation 舃ReliefF with new relief-feature weighting
objective function

舃Pa 舃82.78 舃83.37 舃84.18

舃So 舃70.43 舃74.22 舃73.68

舃HE 舃75.25 舃80.13 舃76.86

舃Ve 舃84.15 舃84.19 舃85.14

舃Wi 舃97.16 舃98.24 舃98.27

舃LU 舃79.93 舃94.17 舃94.88

舃Le2 舃74.12 舃92.47 舃96.38

舃Le3 舃75.35 舃97.51 舃95.22

舃Ly 舃63.56 舃96.39 舃87.27

舃DL 舃73.93 舃86.75 舃94.28

5071A novel filter feature selection algorithm based on relief



where NA is the number of algorithms, ND is number of
datasets. Generally, α is set to 0.1, q0.10 = 2.326. In this paper,
NA = 9, ND = 11. Thus, CD0.1 = 2.72.

Table 7 and Table 8 show the Friedman test
results. In UCI datasets, LPLIR has significant differ-
ence compared with ReliefF, LLH-Relief, LPLIR,

Fig. 3 The average classification accuracy achieved on eleven UCI datasets
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MSLIR-NN and MRMR. In microarray datasets,
LPLIR has significant difference compared with other
eight algorithms.

Figure 4 shows that MRelief has a performance advantage
over the compared Relief-based methods in average classifi-
cation accuracy. According to the results of LUNG,

Fig. 3 (continued)
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Leukemia3, Pros1, Pros2, 11-Tumors, and 14-Tumors, it is
clear that MRelief achieves the highest classification accuracy
over the entire process. In Leukemia2, Lymphoma, DLBCL
and Colon, there are crosses among curves. Furthermore, there
are overlaps in GCM. In the case of microarray datasets,
MRelief is able to achieve the best performance among the
compared methods. This implies that MRelief is able to ex-
tract useful information from a large number of features. Thus,
MRelief achieves better classification performance. The re-
sults of Fig. 4 show that the novel subset generation method
significantly promotes the classification accuracy rate of
MRelief.

Table 9 shows that MRelief achieves superior F1 results in
ten out of eleven datasets. Table 10 shows that MRelief out-
performs other algorithms over all datasets. In conclusion,
MRelief is competitive among Relief-based methods, regard-
less of what criteria are adopted.

Tables 11 and 12 show the Friedman test results with the F1

values. In UCI datasets, MRelief has significant difference
compared with ReliefF, LPLIR, MRMR and MPMD. In mi-
croarray datasets, LPLIR has significant difference compared
with other eight algorithms.

The computational complexity of MRelief is O(T1N
2D +

T2N
2D), which consists of two parts. In the first part, the

Table. 5 The means, standard deviations and ranks of the classification accuracies (%) of nine algorithms applied to eleven UCI datasets

舃Datasets 舃ReliefF 舃LLH-
Relief

舃MultiSURF 舃LPLIR 舃STIR 舃MSLIR-
NN

舃MRMR 舃MPMD 舃MRelief

舃Pa 舃mean 舃82.78 舃84.34 舃84.86 舃84.89 舃85.39 舃83.28 舃84.25 舃84.10 舃87.92

舃std. 舃3.16 舃2.86 舃2.65 舃0.15 舃3.21 舃1.28 舃1.36 舃1.49 舃1.25

舃rank 舃9 舃5 舃4 舃3 舃2 舃8 舃6 舃7 舃1

舃So 舃mean 舃70.43 舃72.83 舃73.31 舃75.98 舃74.52 舃76.14 舃73.18 舃73.57 舃76.26

舃std. 舃1.52 舃1.24 舃1.26 舃0.41 舃1.35 舃1.16 舃0.89 舃0.26 舃0.17

舃rank 舃9 舃8 舃5 舃3 舃4 舃2 舃7 舃5 舃1

舃HE 舃mean 舃75.25 舃79.62 舃76.75 舃76.50 舃76.96 舃76.25 舃79.21 舃80.13 舃83.33

舃std. 舃4.76 舃4.23 舃3.54 舃0.53 舃5.24 舃1.27 舃1.25 舃1.94 舃0.28

舃rank 舃9 舃3 舃6 舃7 舃5 舃8 舃4 舃2 舃1

舃Ve 舃mean 舃84.15 舃85.05 舃85.70 舃84.05 舃85.75 舃85.15 舃85.19 舃84.19 舃85.70

舃std. 舃1.32 舃1.09 舃0.77 舃0.31 舃0.93 舃0.68 舃0.49 舃0.37 舃0.24

舃rank 舃8 舃6 舃2.5 舃9 舃1 舃5 舃4 舃7 舃2.5

舃Wi 舃mean 舃97.16 舃99.53 舃98.33 舃98.06 舃98.33 舃98.24 舃98.35 舃98.24 舃97.36

舃std. 舃3.93 舃3.79 舃2.63 舃0.42 舃2.32 舃1.28 舃1.38 舃1.67 舃1.18

舃rank 舃9 舃1 舃3.5 舃7 舃3.5 舃5.5 舃2 舃5.5 舃8

舃Vo 舃mean 舃66.30 舃69.49 舃68.99 舃67.29 舃68.89 舃68.57 舃68.98 舃69.17 舃69.49

舃std. 舃2.93 舃2.46 舃2.23 舃0.58 舃2.32 舃1.35 舃0.78 舃1.04 舃0.26

舃rank 舃9 舃1.5 舃4 舃8 舃6 舃7 舃5 舃3 舃1.5

舃Se 舃mean 舃93.42 舃93.42 舃93.43 舃93.42 舃93.42 舃93.42 舃93.42 舃93.42 舃93.43

舃std. 舃0 舃0 舃0.01 舃0 舃0 舃0 舃0 舃0 舃0.01

舃rank 舃6 舃6 舃1.5 舃6 舃6 舃6 舃6 舃6 舃1.5

舃Ar 舃mean 舃72.24 舃72.36 舃73.29 舃73.19 舃72.97 舃73.29 舃73.49 舃73.95 舃74.77

舃std. 舃1.23 舃1.47 舃0.47 舃1.68 舃1.04 舃0.67 舃0.85 舃0.39 舃0.27

舃rank 舃9 舃8 舃4.5 舃6 舃7 舃4.5 舃3 舃2 舃1

舃Wa 舃mean 舃86.47 舃87.46 舃88.94 舃89.28 舃88.29 舃88.27 舃88.28 舃88.95 舃90.21

舃std. 舃1.98 舃0.94 舃0.87 舃0.69 舃0.38 舃0.27 舃0.36 舃0.48 舃0.46

舃rank 舃9 舃8 舃4 舃2 舃5 舃7 舃6 舃3 舃1

舃Pe 舃mean 舃99.56 舃99.29 舃99.56 舃99.56 舃97.28 舃97.14 舃95.79 舃96.56 舃99.56

舃std. 舃0.06 舃0.05 舃0.03 舃0.05 舃0.06 舃0.06 舃0.04 舃0.03 舃0.02

舃rank 舃2.5 舃5 舃2.5 舃2.5 舃6 舃7 舃9 舃8 舃2.5

舃Mu 舃mean 舃95.31 舃97.48 舃96.02 舃97.26 舃97.28 舃98.57 舃97.86 舃97.29 舃99.77

舃std. 舃1.68 舃1.37 舃1.56 舃1.27 舃1.03 舃0.48 舃0.53 舃0.35 舃0.18

舃rank 舃9 舃4 舃8 舃7 舃6 舃2 舃3 舃5 舃1

舃Mean Rank 舃8.05 舃5.05 舃4.23 舃5.50 舃4.68 舃5.64 舃5.00 舃4.86 舃2.00
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computational complexity of MRelief is O(T1N
2D). T1 repre-

sents the maximum number of iterations of MRelief without
subset generation. D represents the number of features. N

represents the number of instances. The computational com-
plexity is the same as ReliefF because the multidirectional
neighbor search method, new relief-feature weighting

Table. 6 The means, standard deviations and ranks of the classification accuracies (%) of nine algorithms applied to the top 200 features selected from
eleven microarray datasets

舃Datasets 舃ReliefF 舃LLH-
Relief

舃MultiSURF 舃LPLIR 舃STIR 舃MSLIR-
NN

舃MRMR 舃MPMD 舃MRelief

舃LU 舃mean 舃79.93 舃99.35 舃77.86 舃94.84 舃83.04 舃86.29 舃90.24 舃94.79 舃99.87

舃std. 舃3.42 舃3.17 舃1.92 舃1.14 舃2.18 舃2.14 舃2.05 舃2.87 舃1.54

舃rank 舃8 舃2 舃9 舃3 舃7 舃6 舃5 舃4 舃1

舃Le2 舃mean 舃74.12 舃98.59 舃97.14 舃98.15 舃96.82 舃91.46 舃92.46 舃92.76 舃98.99

舃std. 舃7.62 舃3.34 舃2.24 舃0.61 舃3.43 舃2.46 舃1.47 舃2.89 舃1.13

舃rank 舃9 舃2 舃4 舃3 舃5 舃8 舃7 舃6 舃1

舃Le3 舃mean 舃75.35 舃96.36 舃95.64 舃95.83 舃98.00 舃95.67 舃96.81 舃97.34 舃99.71

舃std. 舃6.25 舃3.55 舃1.07 舃0.47 舃4.53 舃3.47 舃2.18 舃4.67 舃0.19

舃rank 舃9 舃5 舃8 舃6 舃2 舃7 舃4 舃3 舃1

舃Ly 舃mean 舃63.56 舃82.36 舃83.22 舃87.36 舃93.78 舃94.85 舃95.18 舃96.46 舃98.89

舃std. 舃6.27 舃4.67 舃2.14 舃0.39 舃3.43 舃1.76 舃2.75 舃1.56 舃0.58

舃rank 舃9 舃8 舃7 舃6 舃5 舃4 舃3 舃2 舃1

舃DL 舃mean 舃73.93 舃98.40 舃94.25 舃99.20 舃83.01 舃98.40 舃92.46 舃86.49 舃100

舃std. 舃1.54 舃1.26 舃0.53 舃0.07 舃0.43 舃0.76 舃0.95 舃2.46 舃0

舃rank 舃9 舃3.5 舃5 舃2 舃8 舃3.5 舃6 舃7 舃1

舃Co 舃mean 舃70.38 舃90.45 舃87.39 舃93.55 舃93.47 舃90.25 舃90.58 舃91.49 舃93.74

舃std. 舃5.67 舃5.48 舃5.27 舃3.38 舃3.89 舃3.57 舃4.28 舃3.79 舃2.48

舃rank 舃9 舃6 舃8 舃2 舃3 舃7 舃5 舃4 舃1

舃GCM 舃mean 舃71.45 舃90.89 舃82.46 舃83.97 舃87.59 舃85.69 舃82.19 舃82.59 舃90.78

舃std. 舃6.98 舃1.08 舃3.67 舃2.84 舃2.39 舃2.49 舃3.98 舃5.28 舃1.47

舃rank 舃9 舃1 舃7 舃5 舃3 舃4 舃8 舃6 舃2

舃Pr1 舃mean 舃79.42 舃96.89 舃92.14 舃93.56 舃94.57 舃92.09 舃73.26 舃74.68 舃98.57

舃std. 舃5.89 舃3.02 舃6.37 舃2.89 舃4.27 舃3.28 舃2.78 舃3.43 舃2.33

舃rank 舃7 舃2 舃5 舃4 舃3 舃6 舃9 舃8 舃1

舃Pr2 舃mean 舃65.44 舃86.36 舃65.78 舃68.47 舃70.46 舃72.48 舃75.39 舃76.44 舃88.49

舃std. 舃7.48 舃3.56 舃3.87 舃4.56 舃5.87 舃6.48 舃6.98 舃7.28 舃3.46

舃rank 舃9 舃2 舃8 舃7 舃6 舃5 舃4 舃3 舃1

舃11-T 舃mean 舃90.32 舃90.44 舃90.33 舃91.47 舃91.59 舃92.37 舃92.57 舃93.14 舃94.78

舃std. 舃7.37 舃3.54 舃4.68 舃4.76 舃6.26 舃5.14 舃3.77 舃4.36 舃3.28

舃rank 舃9 舃7 舃8 舃6 舃5 舃4 舃3 舃2 舃1

舃14-T 舃mean 舃64.53 舃71.24 舃69.36 舃70.22 舃70.47 舃70.88 舃72.24 舃73.13 舃76.22

舃std. 舃6.47 舃1.28 舃7.58 舃3.96 舃3.77 舃4.52 舃6.38 舃6.24 舃2.31

舃rank 舃9 舃4 舃8 舃7 舃6 舃5 舃3 舃2 舃1

舃Mean Rank 舃8.73 舃3.86 舃7.00 舃4.64 舃4.82 舃5.41 舃5.18 舃4.27 舃1.09

Table. 7 Friedman tests with the
classification accuracies to
compare MRelief with other eight
methods applied to eleven UCI
datasets

舃CD0.1 舃ReliefF 舃LLH-
Relief

舃MultiSURF 舃LPLIR 舃STIR 舃MSLIR-
NN

舃MRMR 舃MPMD

舃2.72 舃6.05 舃3.05 舃2.23 舃3.50 舃2.68 舃3.64 舃3.00 舃2.86
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Table. 8 Friedman tests with the classification accuracies to compare MRelief with other eight methods applied to eleven microarray datasets

舃CD0.1 舃ReliefF 舃LLH-
Relief

舃MultiSURF 舃LPLIR 舃STIR 舃MSLIR-
NN

舃MRMR 舃MPMD

舃2.72 舃7.64 舃2.77 舃5.91 舃3.55 舃3.73 舃4.32 舃4.09 舃3.18

Fig. 4 The average classification accuracy achieved on eleven microarray datasets
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objective function andmulticlass extension do not increase the
computational complexity of MRelief. In the second part, the
computational complexity of MRelief is O(T2N

2D) because
subset generation is combined with MPMD. T2 represents

the maximum number of MPMD. The experiments include
s t a t e - o f - t h e - a r t r e l i e f - b a s e d m e t h o d s a n d
mutual-information-based methods. The representative
relief-based method is ReliefF, and the representative

Fig. 4 (continued)
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mutual-information-based method is MRMR. Thus, ReliefF
and MRMR are selected as comparison algorithms. The com-
putational complexity of MRMR and ReliefF is O(N2D).
Therefore, the computational complexity of MRelief is the
highest compared to ReliefF and MRMR.

In Tables 13 and 14, without calculating the execution time
of the classifier, the execution time consumption is calculated
in one iteration. Table 13 shows the mean running times of
nine algorithms on the top 200 features selected from eleven
UCI datasets. Table 14 shows the mean running times of nine
algorithms on the top 200 features selected from eleven mi-
croarray datasets. It can be observed that the mean running
times of MRelief is higher than the other two algorithms in
both UCI and microarray datasets. Since MRelief combines

ReliefF and MRMR, the running time of MRelief is almost
equal to the sum of the running time of ReliefF and MRMR.

Table 15 shows the results of eight pairs of Wilcoxon
signed-rank tests performed on the Colon dataset. The results
show that the performance of MRelief is statistically signifi-
cantly better than those of ReliefF, LLH-Relief, MultiSURF,
LPLIR, STIR, MSLIR-NN, MRMR and MPMD at a signifi-
cance level of 0.05. MRelief has demonstrated its robustness
in handling noisy datasets whose interaction effect is weak.
MRelief is able to extract useful information from a large
number of features. Therefore, the multidirectional neighbor
search method, new relief-feature weighting objective func-
tion, subset generation and multiclass extension make contri-
bution to MRelief.

Table. 9 The mean F1 values and ranks of nine algorithms applied to the top 200 features selected from eleven UCI datasets

舃Datasets 舃ReliefF 舃LLH-
Relief

舃MultiSURF 舃LPLIR 舃STIR 舃MSLIR-
NN

舃MRMR 舃MPMD 舃MRelief

舃Pa 舃0.83(8) 舃0.86(2.5) 舃0.85(5) 舃0.85(5) 舃0.86(2.5) 舃0.84(7) 舃0.85(5) 舃0.81(9) 舃0.88(1)

舃So 舃0.72(8) 舃0.74(4.5) 舃0.74(4.5) 舃0.73(6.5) 舃0.75(3) 舃0.78(1.5) 舃0.71(9) 舃0.73(6.5) 舃0.78(1.5)

舃HE 舃0.71(9) 舃0.75(6) 舃0.73(7.5) 舃0.73(7.5) 舃0.85(1.5) 舃0.80(4) 舃0.82(3) 舃0.78(5) 舃0.85(1.5)

舃Ve 舃0.86(3.5) 舃0.85(5.5) 舃0.81(8.5) 舃0.85(5.5) 舃0.86(3.5) 舃0.87(2) 舃0.82(7) 舃0.81(8.5) 舃0.88(1)

舃Wi 舃0.95(9) 舃0.99(3) 舃0.99(3) 舃0.97(7.5) 舃0.99(3) 舃0.98(6) 舃0.99(3) 舃0.99(3) 舃0.97(7.5)

舃Vo 舃0.71(4.5) 舃0.75(1) 舃0.70(6.5) 舃0.68(8) 舃0.65(9) 舃0.72(3) 舃0.71(4.5) 舃0.70(6.5) 舃0.74(2)

舃Se 舃0.92(5) 舃0.92(5) 舃0.92(5) 舃0.92(5) 舃0.92(5) 舃0.92(5) 舃0.92(5) 舃0.92(5) 舃0.92(5)

舃Ar 舃0.70(9) 舃0.74(4.5) 舃0.75(2) 舃0.74(4.5) 舃0.71(8) 舃0.75(2) 舃0.72(7) 舃0.73(6) 舃0.75(2)

舃Wa 舃0.88(5.5) 舃0.87(8.5) 舃0.89(2.5) 舃0.87(8.5) 舃0.89(2.5) 舃0.88(5.5) 舃0.88(5.5) 舃0.88(5.5) 舃0.92(1)

舃Pe 舃0.99(4) 舃0.99(4) 舃0.99(4) 舃0.99(4) 舃0.99(4) 舃0.99(4) 舃0.85(8) 舃0.81(9) 舃0.99(4)

舃Mu 舃0.94(9) 舃0.97(3.5) 舃0.97(3.5) 舃0.96(6) 舃0.96(6) 舃0.98(2) 舃0.95(8) 舃0.96(6) 舃0.99(1)

舃Mean rank 舃6.77 舃4.36 舃4.72 舃6.18 舃4.36 舃3.81 舃5.91 舃6.36 舃2.50

Table. 10 Themean F1 values and ranks of nine algorithms applied to the top 200 features selected from eleven microarray datasets by nine algorithms

舃Datasets 舃ReliefF 舃LLH-
Relief

舃MultiSURF 舃LPLIR 舃STIR 舃MSLIR-
NN

舃MRMR 舃MPMD 舃MRelief

舃LU
舃Le2
舃Le3

舃0.75(8)
舃0.70(9)
舃0.77(9)

舃0.99(1.5)
舃0.99(1.5)
舃0.95(5)

舃0.75(8)
舃0.98(3.5)
舃0.92(8)

舃0.92(3)
舃0.98(3.5)
舃0.94(7)

舃0.75(8)
舃0.95(5)
舃0.96(3)

舃0.88(6)
舃0.87(8)
舃0.98(2)

舃0.91(4)
舃0.89(7)
舃0.95(5)

舃0.90(5)
舃0.93(6)
舃0.95(5)

舃0.99(1.5)
舃0.99(1.5)
舃0.99(1)

舃Ly
舃DL

舃0.65(9)
舃0.70(9)

舃0.85(7)
舃0.98(3.5)

舃0.81(8)
舃0.92(5)

舃0.91(5)
舃0.99(2)

舃0.90(6)
舃0.81(8)

舃0.95(4)
舃0.98(3.5)

舃0.96(3)
舃0.88(6)

舃0.97(2)
舃0.85(7)

舃0.99(1)
舃1(1)

舃Co 舃0.65(9) 舃0.94(4) 舃0.90(6) 舃0.95(2) 舃0.95(2) 舃0.87(7) 舃0.86(8) 舃0.93(5) 舃0.95(2)

舃GCM 舃0.73(9) 舃0.92(1.5) 舃0.85(4.5) 舃0.81(6) 舃0.85(4.5) 舃0.86(3) 舃0.78(8) 舃0.79(7) 舃0.92(1.5)

舃Pr1 舃0.82(9) 舃0.97(2) 舃0.90(8) 舃0.94(6.5) 舃0.95(4.5) 舃0.94(6.5) 舃0.95(4.5) 舃0.96(3) 舃0.99(1)

舃Pr2 舃0.68(9) 舃0.88(2) 舃0.69(8) 舃0.71(7) 舃0.74(5) 舃0.73(6) 舃0.77(4) 舃0.78(3) 舃0.92(1)

舃11-T 舃0.85(9) 舃0.87(8) 舃0.91(7) 舃0.92(5.5) 舃0.92(5.5) 舃0.93(3.5) 舃0.93(3.5) 舃0.94(2) 舃0.96(1)

舃14-T 舃0.58(9) 舃0.67(8) 舃0.72(5.5) 舃0.72(5.5) 舃0.75(2.5) 舃0.69(7) 舃0.74(4) 舃0.75(2.5) 舃0.78(1)

舃Mean rank 舃8.91 舃4.00 舃6.50 舃4.82 舃4.91 舃5.14 舃5.18 舃4.32 舃1.23
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5 Discussion

Tables 5 and 6 show that MRelief achieves the highest aver-
age classification accuracy rate on most datasets except
Vehicle Silhouettes, Wine and GCM. Although MRelief does
not obtain the best learning accuracies compared with other
algorithms on all datasets, the learning accuracies of MRelief
are better than those of other algorithms on ten microarray
datasets except GCM. MRelief is more suitable for
high-dimensional datasets. In addition, Tables 5 and 6 show
that MRelief achieves the highest Rank compared with other
algorithms on both UCI datasets and microarray datasets.
Furthermore, Figs. 3 and 4 show that MRelief performs the
best on the general trend with respect to the average classifi-
cation accuracy. The results show that the instance force co-
efficient improves MRelief significantly, and subset genera-
tion greatly promotes MRelief. Moreover, Tables 5 and 6
show that MRelief obtains the lowest average standard devi-
ation in most datasets. Therefore, the proposed multidirection-
al neighbor search method is able to select representative
neighbors for feature selection.

6 Conclusion and further work

Relief is a feature selection method that reduces the number of
features. Relief is the only individual evaluation filter algo-
rithm that is capable of detecting feature dependencies. Due to
the low classification accuracy rate of Relief, a novel filter
feature selection algorithm named MRelief is proposed in this
paper. First, the multidirectional neighbor search method with
a distance threshold is designed. Second, to improve the clas-
sification accuracy, a reasonable objective function assigns
instances different force coefficients based on instances’ con-
tribution to classification. Third, subset generation is proposed
to obtain the optimal candidate subset. Last, the MRelief al-
gorithm implements a multiclass margin definition to handle
multiclass data.

To demonstrate the effectiveness of MRelief, experiments
were conducted on 11 UCI and 11 microarray datasets.
MRelief is compared with LPLIR, ReliefF, LLH-Relief,
MultiSURF, MSLIR-NN, MRMR, MPMD and STIR. The
results show that the multidirectional neighbor search method,

Table. 11 Friedman tests with the F1 values to compare MRelief with other eight methods applied to eleven microarray datasets

舃CD0.1 舃ReliefF 舃LLH-
Relief

舃MultiSURF 舃LPLIR 舃STIR 舃MSLIR-
NN

舃MRMR 舃MPMD

舃2.72 舃4.27 舃1.86 舃2.22 舃3.68 舃1.86 舃1.31 舃3.41 舃3.86

Table. 12 Friedman tests with the F1 values to compare MRelief with other eight methods applied to eleven microarray datasets

舃CD0.1 舃ReliefF 舃LLH-
Relief

舃MultiSURF 舃LPLIR 舃STIR 舃MSLIR-
NN

舃MRMR 舃MPMD

舃2.72 舃7.68 舃2.77 舃5.27 舃3.59 舃3.68 舃3.91 舃3.95 舃3.09

Table. 13 Themean running times (s) of nine algorithms on the top 200
features selected from eleven UCI datasets

舃Datasets 舃ReliefF 舃MRMR 舃MRelief

舃Pa 舃0.03 舃0.01 舃0.05

舃So 舃0.08 舃0.11 舃0.27

舃HE 舃0.03 舃0.01 舃0.05

舃Ve 舃0.08 舃0.03 舃0.14

舃Wi 舃0.04 舃0.01 舃0.05

舃Vo 舃0.10 舃0.02 舃0.13

舃Se 舃4.92 舃15.16 舃20.23

舃Ar 舃3.15 舃8.28 舃12.43

舃Wa 舃0.53 舃0.04 舃0.61

舃Pe 舃1.12 舃0.05 舃1.32

舃Mu 舃5.16 舃7.56 舃12.47

Table. 14 The mean running times of nine algorithms on the top 200
features selected from eleven microarray datasets

舃Datasets 舃ReliefF 舃MRMR 舃MRelief

舃LU 舃5.27 舃9.57 舃14.86

舃Le2 舃3.81 舃8.61 舃11.89

舃Le3 舃4.13 舃8.36 舃12.65

舃Ly 舃2.13 舃8.47 舃11.57

舃DL 舃4.12 舃7.94 舃12.53

舃Co 舃0.76 舃8.27 舃9.26

舃GC 舃5.65 舃9.86 舃15.78

舃Pr1 舃4.38 舃8.46 舃13.36

舃Pr2 舃4.03 舃8.57 舃12.44

舃11-T 舃6.23 舃9.27 舃15.83

舃14-T 舃7.35 舃10.35 舃18.56
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new relief-feature weighting objective function, subset gener-
ation and multiclass extension significantly improve MRelief.

In the future, we will improve running time of the MRelief
in handling with largescale datasets and high dimensional
datasets, which is important to their application to gene ex-
pression. Since MRelief combines ReliefF and MRMR, the
running time of MRelief is consist of the running time of
ReliefF and MRMR. To deal with this shortage, we will im-
prove mRMR to save the execution time. Moreover, we will
improve the classification accuracy rate of MRelief combined
with wrapper method. Furthermore, we robustMRelief to deal
with multiple types of datasets, such as missing datasets, un-
labeled datasets and muti-label datasets.
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