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Abstract
Assignment of confidence mass appropriately is still an open issue in information fusion. The most popular rule of
combination, Dempster’s rule of combination, has been widely used in various fields. In this paper, a belief interval negation
is proposed based on belief interval. The belief interval has a stronger ability to express basic probability assignment (BPA)
uncertainty. By establishing belief interval in an exhaustive frame of discernment (FOD), the negation is obtained in the form
of a new interval. Belief interval negation as an essential tool for measuring uncertainty builds the relationship among BPA,
belief interval and entropy. Furthermore, the new negation is applicable to various belief entropies and entropy increment is
verified in negation iterations. Two novel uncertainty measures proposed in this paper are applicable to the newly proposed
belief interval negation, too. Finally, convergent mass distribution is discussed. Some numerical examples and its application
in medical pattern recognition are exhibited.
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1 Introduction

Information fusion technology is now an important research
course [1]. Information fusion technology can lead to
more credible conclusions in the more reasonable way
through multiple different sensors, by integrating the fuzzy
set theory [2], evidence theory [3, 4], D-number theory,
evidential reasoning [5, 6], and Z-number theory [7], etc.
Because of the effectiveness in real applications, it has been
well used in various fields, such as decision-making [8],
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supplier selection [9], preventive maintenance planning [10]
and so on.

When confidence mass is assigned to multi-subsets, the
confidence mass of multi-subset belief acquisition becomes
a basic probability assignment (BPA). When the belief mass
is only assigned to singletons, it is consistent with the
Bayesian method [11]. Moreover, the model degenerates
into a Bayesian probability model. The negation of a
proposition can more intuitively measure the ambiguity
degree of information [12] in Fig. 1 (cardinality of
hypothesis (|Ω|) isN). Yager proposed a negation operation
based on the Bayesian probability model [13]. For an
exhaustive frame of discernment (close-world assumption),
Gao and Deng proposed a confidence mass decision-making
allocation scheme based on the power set [14]. Lefevre
et al. proposes a method of assigning the mass of conflicts
to power set relying on weights in the case of conflict
information fusion [15]. Similarly, Luo and Deng combine
the negation with the weight in frame of discernment
(FOD) [16]. What’s more, they propose a more intuitive
matrix negation method. Meanwhile, they verify that the
negation of matrix negation based on the total uncertainty
measure satisfies a property that entropy constant increment
after each negation operation [17]. After multiple negation
iterations, BPA tends to average according to cardinality.
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Fig. 1 Ambiguity degree. For a
Completely trustful message
(Mass=0), its negation is
Completely distrustful
(Mass=1), which cardinality of
hypothesis (|Ω|) is N. Because
of the huge Gap between
Completely distrustful and
Completely distrustful, the
hypothesis Ω is called the
Definite information. On the
contrary, when the confidence
mass perhaps tends to be
relatively average (Uniformly
trustful), negation explains that
the ambiguity of the information
is increasingly large (Definite
→ Ambiguous → Most
ambiguous)

The mass represents the belief degree of a certain
proposition, and also indicates how much the confidence
mass is assigned [18]. However, the mass cannot represent
the belief of every element in a hypothesis. Therefore, the
negation of the probability distribution is not suitable for
the BPAmodel [19]. Unfortunately, most previous negations
were proposed for the maximum entropy of Shannon
entropy in probability distribution or maximum Nguyen
entropy in BPA. As a tool of the uncertainty measure, the
negation is usually only suitable for a specific entropy.
However, there are currently many uncertain measures
applicable to BPA that is obtained in the open-world. In
contrast, there is no suitable negation method as a tool
for many uncertain measures to measure the ambiguity
degree. In particular, some entropies based on the belief
interval (belief function and plausibility function) [20, 21]
are difficult to find negation directly in the BPA framework.
Therefore, it is an important research course to establish the
belief interval framework and find the negation indirectly
under the BPA framework.

In Section 2.1, the D-S evidence theory and the
Bayesian framework will be reviewed. In Section 2.2, the
negation of Bayesian probability model will be reviewed.
In Section 2.3, a series of BPA negation approaches will
be reviewed. In Section 2.4, distinct uncertainty measures
will be compared. In Section 3.1, two novel uncertainty
measures are proposed. In Section 3.2, a new belief interval

negation combination method is defined. In Section 3.3, the
calculation method of the newly proposed belief interval
negation method is defined. In Section 3.4, the property
of entropy increment is verified. In Section 4.1, the newly
proposed belief interval negation method is compared with
some previous negation methods. In Section 4.2, some
numerical examples are exhibited. In Section 4.3, the
application in medical pattern recognition is explained. In
Section 4.4, convergent mass distribution is discussed. In
Section 5, the paper draws a conclusion.

2 Preliminaries

2.1 Dempster Shafer theory

Uncertainty information processing is inevitable in real
applications [22]. So far, many methods have been proposed
to deal with uncertainty information, such as probabilistic
linguistic [23, 24], fuzzy sets [25], intuitionistic fuzzy sets
[26, 27], belief rule-based [28, 29], and so on [30]. As
one of the most useful methods to handle the uncertainty,
the evidence theory was first proposed by Dempster, then
developed by Shafer [31, 32]. The subjective Bayesian
method firstly has to give the prior probability. Moreover,
the evidence theory has the ability to directly express
uncertainty in dealing with conflicts [33]. When the
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probability is known, the evidence theory degenerates into
probability theory.

Suppose that there is a hypothesis Ω , the elements in Ω

are mutually exclusive, we call Ω a frame of discernment
(FOD). The cardinality of elements of Ω is N , and the
cardinality of elements of the power set 2Ω is 2N , satisfying

Ω = {A, B, C · · · } (1)

2Ω = {∅, {A} , {B} , {C} , · · · , {A, B} , · · · , Θ} (2)

where ∅ is an empty set. Proposition Θ consisting of all
elements is defined as the support set of Ω . For simplify
these symbols, the power set corresponds to

2Ω = {
A1, A2, · · · , A2N

}
(3)

where A2N has the same meaning as Θ . As a proposition Θ ,
thenm(Θ) suggests that the confidence mass is of ignorance
how to allocate. If m(Θ) = 1, confidence mass is of total
ignorance how to allocate [15]. Each subset regarded as
a proposition corresponds to a mass, and the magnitude
of the mass represents the precise belief of a proposition,
satisfying:

m(A) ∈ [0, 1] (4)

m(∅) = 0 (5)

∑

A⊆2Ω

m(A) = 1 (6)

The mass from the information fusion of 2 sources:

m⊕ = m1 ⊕ m2 (7)

m⊕(A) =
∑

B∩C=A m1(B) × m2(C)

1 − m(∅)
(8)

m(∅) =
∑

B∩C=∅
m1(B) × m2(C) (9)

The belief function (Bel) can be interpreted as confidence
that a proposition is correct. The plausibility function (Pl)
can be regarded as a belief assignment that a proposition
may be correct [34].

Bel(A) =
∑

B⊆A

m(B) (10)

P l(A) =
∑

A∩B �=∅
m(B) (11)

2.2 Negation of probability distribution

Uncertainty management has been widely used in fault
diagnosis [35], as well as pattern classification [36], data
fusion [37], and so on [38, 39]. The negation is an essential
tool of uncertainty measures.

Example 1 In the medical field, hormones act on specific
target cells to regulate their metabolism. It is worth
mentioning that the target cell tracking event is assumed to
be hypothesis X. Each mutually exclusive element is the
target cell X = {x1, x2, · · · , xn} probably being traced.

In Beyesian probability model, hypothesisX corresponds
to sample space, elements in X corresponds to samples. The
target cell is x1, which will be recorded as “On trace x1”
in the fuzzy set and probability is P(x1). In contrast, if the
target cell is not x1, it is recorded as “Not on trace x1” and
probability is P(x1).

Under the circumstance where the probability of each
element xi is known, it degenerates from FOD into a
Bayesian model, corresponding to the probability P =
{p1, p2, · · · , pn}:
n∑

i=1

pi = 1 (12)

where pi ∈ [0, 1].
P̄ = [p̄1, p̄2, · · · , p̄n] (13)

p̄i = 1 − pi

n − 1
(14)

p̄j is defined as probability distribution negation after j

negation iterations. We suppose that

pi+1 = p̄i = 1 − pi

n − 1
(15)

Then,

pi+1 − 1

n
= 1 − pi

n − 1
− 1

n
(16)

= 1

n − 1
− n × pi + n − 1

n × (n − 1)

= pi − 1
n

1 − n

Thus, pi − 1
n
is a series of ratios with a common ratio of 1

1−n

pj = (p1 + 1

n
) × (

1

1 − n
)j−1 + 1

n
(17)

We conclude

pj = np1 − 1

n(n − 1)j−1
+ 1

n
(18)

lim
j→∞ pj = 1

n
(19)

Yager suggests that the maximal uncertainty measure
corresponds to a unique distribution.

Example 2 To be continued of Example 1, supposed
that hormones act on 3 kinds of specific target cells to
regulate their metabolism, X = {x1, x2, x3}. Initially, prior
probability distribution is P = {0.1, 0.3, 0.6}.
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Owing to the known prior probability and cardinality
n = 3, probability negation is obtained as:

P(x̄1) = 1 − P(x1)

n − 1
= 0.45

P(x̄2) = 1 − P(x2)

n − 1
= 0.35

P(x̄3) = 1 − P(x3)

n − 1
= 0.20

After multiple negation iterations, it converges to the maxi-
mal uncertainty, which corresponds to the uniform distribution.

2.3 Negation of basic probability assignment
method

A large number of approaches to belief mass allocation in
information fusion under D-S framework. Entropy is able to
describe the uncertainty or reliability of a system [40]. The
application of entropy in artificial intelligence and neural
network has been paid more attention [41, 42]. The negation
of probability distribution cannot solve the BPA negation
problems of multi-subsets under the exhaustive FOD:

2Ω = {∅, A2, A3, · · · , A2N−1 , Θ
}

(20)

where empty set ∅ = A1 and support set Θ = A2N . All
subsets satisfy

m(A) = m(A) ∀A ⊆ 2Ω (21)

Example 3 To be continued of Example 2, supposed that
there is a exhaustive FOD that 3 kinds of target cells are
marked as Ω = {x1, x2, x3}. There are 4 propositions as
focal elements in hypothesis Y

Y = {{x1} , {x3} , {x1, x2} , {x1, x2, x3}} = {y1, y2, y3, y4}
which satisfies yi ∈ Y and BPAs are m(Y) = {0.5, 0.3,
0.15, 0.05}.

Yin and Deng proposed to assign the yi’s residual mass
1 − m(yi) to other focal elements except itself [43] as:

m(yi) = 1 − m(yi)

n − 1
(22)

whose cardinality of focal elements satisfies n = 4.
After multiple negation iterations, belief mass converges to
uniform distribution as m(yi) = 1

4 .
Gao and Deng proposed to assign the yi’s residual mass

1−m(yi) to the power set except empty set ∅ and itself [14] as

m(yi) = 1 − m(yi)

2n − 2
(23)

After multiple negation iterations, belief mass converges to
uniform distribution as m(yi) = 1

23−1
= 1

7 .
After that, Luo and Deng proposed a negation matrix

([G]2N×2N ) method in basic belief assignment vectors

(BBAVs) space to simplify this problem, which almost all
belief mass is assigned to the support set Θ [16].

g(i,j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 i = j, j �= 2N

|Ai∩Aj |
∑

Ak �=Aj ,Ak∈2Θ |Ak∩Aj | i �= j, j �= 2N

1 i = j, j = 2N

0 i �= j, j = 2N

(24)

where g(i, j) is an element in negation matrix G. This
algorithm manifests conflict (m(∅) by (9)) increment during
the negation iterations.

Furthermore, Xie and Xiao [44] hasmade greater improve-
ments in the weight assignment problem. This method with the
negation matrix E preserves the support set after negation
iterations.

E =

⎡

⎢⎢⎢
⎣

e1,1 e1,2 · · · e1,2N

e2,1 e2,2 · · · e2,2N

...
...

. . .
...

e2N ,1 e2N ,2 · · · e2N ,2N

⎤

⎥⎥⎥
⎦

(25)

When j �= 2N and j �= 1, satisfy:

ei,j =
⎧
⎨

⎩

0 i = j∣∣Ai∩Āj

∣∣
∑

Ak �=Θ,Ak �=∅,Ak⊆2Ω
∣∣Ak∩Āj

∣∣ i �= j
(26)

The new method re-allocates the mass m(yi) according
to the cardinality of intersections of proposition yi and other
focal elements. It explainswith a better physicalmeaning, much
more intuitively. Also satisfy convergence according to the
cardinality of elements after multiple negation iterations. The
case comes from Example 3, cardinality of hypothesis Y satis-
fies

{|y1|, |y2|, |y3|, |y4|} = {2, 2, 1, 0}
{|A2|, |A3|, |A4|, |A5|, |A6|, |A7|

} = {2, 2, 2, 1, 1, 1}
After multiple negation iteration, m(A1) = m(∅) = 0 and
m(A2N ) = m(Θ) = 0.05 preserves and don’t assign itself to
any subset else. Distinctly, it converges to m(A2) : m(A3) :
m(A4) : m(A5) : m(A6) : m(A7) = 1 : 1 : 1 : 2 : 2 : 2 after
multiple negation iterations. It satisfies entropy increment
during negation iterations, as well.

There are three completely different methods to allocate
belief mass during the negation iterations. These three
methods are compared in Section 4.

2.4 Uncertainty measuremethods

Uncertainty measures have an important contribution in
measuring ambiguity degree of the system. Uncertainty
measures are applied to medical fields [45], prediction [46,
47], recognition [48], classification [49, 50], awareness [51]
and decision making [52, 53].
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Entropy is originally derived from thermodynamics.
In 1948, Claude Elwood Shannon introduced entropy
in thermodynamics into information theory. Therefore,
it was widespread well-known as Shannon entropy and
information entropy [54, 55]. Provided a random variable
X = {x1, x2, · · · , xn}, the probability distribution is P(X =
xi) = pi , where i = 1, 2, · · · , n. Shannon entropy satisfies

HS(X) = −
n∑

i=1

P(xi) × log2(P (xi)) (27)

Information refers to the objects transmitted and pro-
cessed by messages and communication systems, and refers
to everything that human society spreads [56]. A “message”
represents an event, sample, or feature from a distribution or
data stream. Entropy is a measure of uncertainty. The more
information a hypothesis contains, the greater the entropy
will be [57]. The concept of entropy allows information to
be quantified. The probability distribution of the sample is
yet another feature of the information.

Nguyen defines an entropy of BPA based on mass in
FOD [58] as follow:

HN(m) =
∑

A⊆2Ω

m(A) × log2(
1

m(A)
) (28)

It is different from Shannon entropy. The entropy defined
by Nguyen is based on a weaker framework than the Bayesian
model, which lays a foundation for determining the uncer-
tainty measure of BPA. It does satisfy the probabilistic consis-
tency property. When the BPA of each proposition is uni-
form distribution, the entropy takes the maximum. One of
the earliest entropies is defined by Höhle [59] based on
belief function as

HO(m) =
∑

A⊆2Ω

m(A) × log2(
1

Bel(A)
) (29)

Another entropy is defined by Yager based on plausibility
function [60] as

HY (m) =
∑

A⊆2Ω

m(A) × log2(
1

P l(A)
) (30)

3 New belief interval negation of BPA

3.1 Newly proposed uncertainty measure
approaches under D-S structure

This paper proposes two new methods of uncertainty
measures, based on the belief function (HB ) and plausibility
function (HP ). They are defined as:

HB = −
∑

A⊆2Ω

Bel(A) × log2(Bel(A)) (31)

HP = −
∑

A⊆2Ω

P l(A) × log2(P l(A)) (32)

Belief interval [Bel, Pl] represents that the proposition
is completely correct and the proposition may be correct.
The two new entropies are suitable for the belief interval
negation method. Therefore, this paper defines two new
approaches to measuring uncertain to prove the wide
applicability of belief interval negation method.

3.2 Definition of belief interval negation

The belief interval of D-S evidence theory is widely used in
various fields. D-S structure is different from the Bayesian
probability model. BPA is a kind of weaker than probability
theory [61]. It expresses more uncertainty with the mass,
belief function and plausibility function in the FOD.

This paper proposes a belief interval negation based on
the belief interval [Bel, Pl]. The newly proposed method
first establishes belief intervals for all sets in the power set
(∀A ⊆ 2Ω ). Then find the negations of belief intervals.
Next, the belief interval after the negation is converted into a
BPA. Afterwards, we complete the entire negation process.
Meanwhile, the process of mass → belief interval → belief
interval negation → mass is realized. The negation of the
belief interval is defined as follows. Its rationality is proved.

P l(Ā) = P l(Ω − A) (33)

=
∑

B∩(Ω−A)�=∅
m(B)

Thus,

P l(Ā) =
∑

B⊆2Ω

m(B) −
∑

C∩A�=∅
m(C) (34)

= 1 − Bel(A)

Similarly, replace A with A, then we obtain

Bel(Ā) = 1 − P l(A) (35)

which satisfies

Bel(Ā) = Bel(A) (36)

P l(Ā) = P l(A) (37)
Therefore, belief interval negation [Bel, P l] is defined

as

[Bel(A), P l(A)] = [1 − P l(A), 1 − Bel(A)] ∀A ⊆ 2Ω

(38)

Besides, We define m⊕ as orthogonal mass function and
P l⊕ as the orthogonal plausibility function

Km =
∑

A⊆2Ω

m(A) (39)

m⊕(A) = m(A)

Km

(40)
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KP =
∑

A⊆2Ω

P l(A) (41)

P l⊕(A) = P l(A)

KP

(42)

The newly proposed belief interval negation method is
not only applicable to the belief entropy and plausibility
entropy proposed above, but also applicable to Nguyen
entropy, Höhle entropy, Yager entropy. A total of 5 uncertain
measure methods are suitable for belief interval negation
calculations. From a global perspective, during the negation
iterations, the belief interval negation method satisfies the
entropy increment.

3.3 Calculation and properties of Belief interval
negation

In an exhaustive FOD, the process of belief interval
negation includes mass → belief interval → belief interval
negation → mass. We have a simple numerical case as an
introduction to the derivation, for a better understanding.

Example 4 There is a hypothesisΩ = {A, B, C}, and initial
BPA satisfies:

m(A) = 0.2

m(B) = 0.1

m(A, C) = 0.3

m(A, B, C) = 0.4

3.3.1 Step 1: belief interval establishment

Establish belief intervals for all subsets in the power set
(except for the empty set ∅) by (10) and (11).

3.3.2 Step 2: belief interval negation

Establish the belief interval of power set by (34), (35), and
(38).

3.3.3 Step 3: transformation from belief interval negation
to BPA

We regard all the belief function (Bel) obtained from
the belief interval negation method as the new BPA (m).
Although this method is contrary to the definition of the
belief function. Because the belief interval negation method
has its own irrationality. This irrationality will be discussed
in detail in the Section 3.4.

Therefore, in order to deal with such irrationality, we
directly regard Bel obtained by belief interval negation as
BPA.

Fig. 2 Mass in belief interval negation iterations

3.3.4 Step 4: BPA orthogonalization

BPA is orthogonalized after step 3. Orthogonal BPA (m⊕)
and plausibility function (P l⊕) is obtained from (40)-(42).

After that, the newly proposed belief interval negation
method completes all operations. The mass in belief interval
negation iterations is shown as Fig. 2 and Table 1.

The new belief interval negation works for Bel entropy.
Bel (obtained from step 1) can be used to calculate belief
entropy.

The new belief interval negation is available for Pl
entropy. Pl (obtained from step 1) can be used to calculate
plausibility entropy.

The new belief interval negation works for Höhle
entropy. BPA (before negation process) and Bel (obtained
from step 1) can be used to calculate Höhle entropy as (29).

The new belief interval negation works for Yager entropy.
The orthogonal BPA (obtained after step 4) and P l⊕
(obtained after step 3) can be used to calculate Yager
entropy as (30). But it is worth noting that we need to
modify Yager entropy to make the belief interval negation
applicable to Yager entropy as follows

HY (m) =
∑

A⊆2Ω

m⊕(A) × log2(
1

P l⊕(A)
) (43)

The new belief interval negation applies to Nguyen
entropy. The orthogonal BPA (obtained after step 4) can be
used to calculate Nguyen entropy as (28), which could be
rewritten as

HN(m) =
∑

A⊆2Ω

m⊕(A) × log2(
1

m⊕(A)
) (44)
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Table 1 Belief interval negation data

Iteration Functions {A} {B} {C} {A, B} {A, C} {B, C} {A, B, C}

0 mass 0.2 0.1 0 0 0.3 0 0.4

Bel 0.2 0.1 0 0.3 0.5 0.1 1

Pl 0.9 0.5 0.7 1 0.9 0.8 1

Bel 0.1 0.5 0.3 0 0.1 0.2 0

P l 0.8 0.9 1 0.7 0.5 0.9 0

Bel →BPA 0.1 0.5 0.3 0 0.1 0.2 0

P l⊕ 0.166667 0.1875 0.208333 0.145833 0.104167 0.1875 0

Orthogonal BPA 0.083333 0.416667 0.25 0 0.083333 0.166667 0

1 mass 0.083333 0.416667 0.25 0 0.083333 0.166667 0

Bel 0.083333 0.416667 0.25 0.5 0.416667 0.833333 1

Pl 0.166667 0.583333 0.5 0.75 0.583333 0.916667 1

Bel 0.833333 0.416667 0.5 0.25 0.416667 0.083333 0

P l 0.916667 0.583333 0.75 0.5 0.583333 0.166667 0

Bel →BPA 0.833333 0.416667 0.5 0.25 0.416667 0.083333 0

P l⊕ 0.261905 0.166667 0.214286 0.142857 0.166667 0.047619 0

Orthogonal BPA 0.333333 0.166667 0.2 0.1 0.166667 0.033333 0

2 mass 0.333333 0.166667 0.2 0.1 0.166667 0.033333 0

Bel 0.333333 0.166667 0.2 0.6 0.7 0.4 1

Pl 0.6 0.3 0.4 0.8 0.833333 0.666667 1

Bel 0.4 0.7 0.6 0.2 0.166667 0.333333 0

P l 0.666667 0.833333 0.8 0.4 0.3 0.6 0

Bel →BPA 0.4 0.7 0.6 0.2 0.166667 0.333333 0

P l⊕ 0.185185 0.231481 0.222222 0.111111 0.083333 0.166667 0

Orthogonal BPA 0.166667 0.291667 0.25 0.083333 0.069444 0.138889 0

3 mass 0.166667 0.291667 0.25 0.083333 0.069444 0.138889 0

Bel 0.166667 0.291667 0.25 0.541667 0.486111 0.680556 1

Pl 0.319444 0.513889 0.458333 0.75 0.708333 0.833333 1

Bel 0.680556 0.486111 0.541667 0.25 0.291667 0.166667 0

P l 0.833333 0.708333 0.75 0.458333 0.513889 0.319444 0

Bel →BPA 0.680556 0.486111 0.541667 0.25 0.291667 0.166667 0

P l⊕ 0.232558 0.197674 0.209302 0.127907 0.143411 0.089147 0

Orthogonal BPA 0.281609 0.201149 0.224138 0.103448 0.12069 0.068966 0

4 mass 0.281609 0.201149 0.224138 0.103448 0.12069 0.068966 0

Bel 0.281609 0.201149 0.224138 0.586207 0.626437 0.494253 1

Pl 0.505747 0.373563 0.413793 0.775862 0.798851 0.718391 1

Bel 0.494253 0.626437 0.586207 0.224138 0.201149 0.281609 0

P l 0.718391 0.798851 0.775862 0.413793 0.373563 0.505747 0

Bel →BPA 0.494253 0.626437 0.586207 0.224138 0.201149 0.281609 0

P l⊕ 0.200321 0.222756 0.216346 0.115385 0.104167 0.141026 0

Orthogonal BPA 0.204762 0.259524 0.242857 0.092857 0.083333 0.116667 0

5 mass 0.204762 0.259524 0.242857 0.092857 0.083333 0.116667 0

Bel 0.204762 0.259524 0.242857 0.557143 0.530952 0.619048 1

Pl 0.380952 0.469048 0.442857 0.757143 0.740476 0.795238 1

Bel 0.619048 0.530952 0.557143 0.242857 0.259524 0.204762 0

P l 0.795238 0.740476 0.757143 0.442857 0.469048 0.380952 0

Bel →BPA 0.619048 0.530952 0.557143 0.242857 0.259524 0.204762 0

P l⊕ 0.22178 0.206507 0.211155 0.123506 0.13081 0.106242 0

Orthogonal BPA 0.25641 0.219921 0.230769 0.100592 0.107495 0.084813 0
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Table 1 (continued)

Iteration Functions {A} {B} {C} {A, B} {A, C} {B, C} {A, B, C}

6 mass 0.25641 0.219921 0.230769 0.100592 0.107495 0.084813 0

Bel 0.25641 0.219921 0.230769 0.576923 0.594675 0.535503 1

Pl 0.464497 0.405325 0.423077 0.769231 0.780079 0.74359 1

Bel 0.535503 0.594675 0.576923 0.230769 0.219921 0.25641 0

P l 0.74359 0.780079 0.769231 0.423077 0.405325 0.464497 0

Bel →BPA 0.535503 0.594675 0.576923 0.230769 0.219921 0.25641 0

P l⊕ 0.207371 0.217547 0.214521 0.117987 0.113036 0.129538 0

Orthogonal BPA 0.221814 0.246324 0.238971 0.095588 0.091095 0.106209 0

7 mass 0.221814 0.246324 0.238971 0.095588 0.091095 0.106209 0

Bel 0.221814 0.246324 0.238971 0.563725 0.551879 0.591503 1

Pl 0.408497 0.448121 0.436275 0.761029 0.753676 0.778186 1

Bel 0.591503 0.551879 0.563725 0.238971 0.246324 0.221814 0

P l 0.778186 0.753676 0.761029 0.436275 0.448121 0.408497 0

Bel →BPA 0.591503 0.551879 0.563725 0.238971 0.246324 0.221814 0

P l⊕ 0.21702 0.210185 0.212235 0.121668 0.124972 0.113921 0

Orthogonal BPA 0.245008 0.228596 0.233503 0.098985 0.10203 0.091878 0

8 mass 0.245008 0.228596 0.233503 0.098985 0.10203 0.091878 0

Bel 0.245008 0.228596 0.233503 0.572589 0.580541 0.553976 1

Pl 0.446024 0.419459 0.427411 0.766497 0.771404 0.754992 1

Bel 0.553976 0.580541 0.572589 0.233503 0.228596 0.245008 0

P l 0.754992 0.771404 0.766497 0.427411 0.419459 0.446024 0

Bel →BPA 0.553976 0.580541 0.572589 0.233503 0.228596 0.245008 0

P l⊕ 0.210551 0.215128 0.21376 0.119196 0.116978 0.124387 0

Orthogonal BPA 0.229465 0.240468 0.237174 0.09672 0.094687 0.101486 0

Uncertainty measures in belief interval negation itera-
tions are shown in Fig. 3 and Table 2. It exactly satisfies
entropy increment during the negation iterations.

Fig. 3 Entropy in belief interval negation iterations

3.4 View from belief interval negation

The belief interval negation method is unreasonable in step
4. To be continued of Example 4, as for the plausibility
function (Pl), the subset A2 = {A} is a singleton with only
one element. The subset A5 = {A, B} has two elements.
Therefore, P l(A5) ≥ P l(A2). However, after belief interval
negation, Bel(A5) ≤ Bel(A2). This is counter-intuitive,
because

Bel(A2) = m(Ā)

Bel(A5) = m(Ā) + m(B̄) + m(Ā, B̄)

Because the belief function represents that the mass of
trust assigned to a proposition, which is completely correct.
To solve the counter-intuitive case where |A5|>|A2|, we
directly regard Bel(A) (∀A ⊆ 2Ω ) obtained after the
negation as a new BPA. Finally, the obtained BPA is
orthogonalized. The whole process of the belief interval
negation completely finishes.
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Table 2 Uncertainty measures in belief interval negation iterations

Iterations HB HP HN HO HY

0 2.149861 1.391349 2.054585 1.096578 2.461864

1 2.570471 2.264384 2.350116 1.474103 2.377574

2 2.754685 2.358753 2.410820 1.627057 2.435831

3 2.812135 2.418235 2.436661 1.672386 2.454368

4 2.840699 2.440530 2.448163 1.695087 2.464499

5 2.852822 2.450819 2.453238 1.704603 2.468663

6 2.858383 2.455470 2.455533 1.709003 2.470618

7 2.860848 2.457516 2.456556 1.710941 2.471473

8 2.861962 2.458451 2.457017 1.711820 2.471863

Fig. 4 Mass in belief interval negation iterations

Fig. 5 Entropy in belief interval negation iterations

Fig. 6 Mass in belief interval negation iterations

Fig. 7 Entropy in belief interval negation iterations
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Fig. 8 Mass in belief interval negation iterations

4 Numerical examples and discussion

4.1 Numerical example 1

To be continued of Example 4, there is an exhaustive FOD,
and BPA is given.

In this section, we compare three previous BPA negation
methods and prove the effectiveness of the newly proposed
belief interval negation method. We try to prove through
such a simple case that neither Yin’s [43] nor Gao’s [14]
method is suitable for the mentioned above five uncertain
measure methods. Because negation iterations based on
Yin’s negation method in Figs. 4 and 5 or Gao’s negation
method in Figs. 6 and 7 cause the uncertainty measure
values to oscillate. The negation method proposed by Luo

Fig. 9 Entropy in belief interval negation iterations

Fig. 10 Mass in belief interval negation iterations

[16] doesn’t apply to the above five uncertainty measures,
since the entropy decreases sharply in the iterative process
in Figs. 8 and 9. A negation matrix method proposed by
Xie [44] may be applicable to Shannon, Höhle and Belief
entropy, whereas it isn’t applicable to plausibility and Yager
entropy in Figs. 10 and 11.

The new belief interval negation method is exactly
applicable to the above five uncertain measures. Because the
newly proposed belief interval negation method manifests
an entropy increment during the negation iterations.

4.2 Numerical example 2

There is an exhaustive FOD (Ω = {A, B, C}) similar to
example 4, but BPAs are unknown. There are 10 hypotheses
below in the Table 3.

Fig. 11 Entropy in belief interval negation iterations
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Table 3 BPAs of 10 different hypotheses when cardinality N=3

Proposition Prop.1 Prop.2 Prop.3 Prop.4 Prop.5 Prop.6 Prop.7 Prop.8 Prop.9 Prop.10

m(A) 0.6000 0.0000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000

m(B) 0.0000 0.0000 0.3000 0.3000 0.0000 0.2000 0.2500 0.2500 0.0000 0.2500

m(C) 0.0000 0.0000 0.2000 0.0000 0.0000 0.1500 0.2000 0.0000 0.0000 0.2000

m(A,B) 0.3000 0.6000 0.0000 0.2000 0.3000 0.1000 0.1000 0.2000 0.2500 0.1000

m(B,C) 0.0000 0.3000 0.0000 0.0000 0.2000 0.0500 0.0000 0.1000 0.2000 0.0500

m(A,C) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1000 0.0000

m(A,B,C) 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.0500 0.0500 0.0500 0.0000

Fig. 12 Mass of Hypo.1

Fig. 13 Entropy of Hypo.1

Fig. 14 Mass of Hypo.2

Fig. 15 Entropy of Hypo.2
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Fig. 16 Mass of Hypo.3

Experiments have shown that the newly proposed belief
interval negation method is widely applicable to various
hypotheses. It is suitable to all the 5 uncertain measure
methods mentioned above. During the negation iterations, it
satisfies the entropy increment in Figs. 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 and 31.
These examples prove that belief interval negation method
is an important tool for uncertainty measures.

4.3 Application inmedical pattern recognition

Supposed that there are 3 medical patterns, the diagnosis
result of a patient might be: Malaria, Typhoid, Enteritis,
respectively marked as the three elements of hypothesis
Ω = {A, B, C}. According to different expert experience

Fig. 17 Entropy of Hypo.3

Fig. 18 Mass of Hypo.4

and evidence, the medical patterns of 3 experts are given as
follows:

m1(A) = 0.4,m1(B) = 0.3,m1(A, C) = 0.1,m1(A,B, C) = 0.2

m2(A) = 0.1,m2(B) = 0.4,m2(A, C) = 0.2,m2(A,B, C) = 0.3

m3(A) = 0.2,m3(C) = 0.1,m3(A, B) = 0.3,m3(A,B, C) = 0.4

Before and after a belief interval negation, results of
belief mass are displayed in Table 4 and five uncertain
measure approaches are compared in Table 5. These 4
uncertainty measures (HB , HP , HO , HY ) point to the 3rd

expert (m3) with the lowest uncertainty, which indicates the
largest reliability. In addition, Nguyen entropy (HN ) lost
its role in this uncertainty measure. After a belief interval

Fig. 19 Entropy of Hypo.4
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Fig. 20 Mass of Hypo.5

negation, the ambiguity of medical patterns given by the
experts based on these 5 uncertainty measures has been
increasing. Although HP and HY pointed out that expert 1
(m̄1) was more reliable, HB, HN , and HO still pointed out
that expert 3 (m̄3) was more reliable. This application proves
the consistency of the two newly proposed uncertainty
measures and belief interval negation methods with Nguyen,
Höhle, and Yager entropy.

4.4 View from convergent mass

In this section we will discuss the convergence of mass.
After multiple belief interval negation iterations, the subsets
with the same cardinality converge to the same mass.
We assume that all the singletons are labeled with ec

1.

Fig. 21 Entropy of Hypo.5

Fig. 22 Mass of Hypo.6

The subscript 1 indicates the cardinality N = 1, and
the superscript c indicates the convergence. Similarly, we
assume that all subsets of cardinality N = 2 are labeled
with ec

2, whose subscript 2 represents the cardinality N =
2, and the superscript c represents the convergence. The
support set Θ disappears during the negation iterations, so
m(ec

3) = m(Θ) = 0. After multiple negation iterations, the
mass converges. Therefore, before or after the belief interval
negation, BPA is related to the cardinality of the subsets.
Taking N = 3 as an example, we can obtain

m(ec
1)

m(ec
2)

= 1 − m(ec
1) − 2 × m(ec

2)

1 − 2 × m(ec
1) − 3 × m(ec

2)
(45)

3 × m(ec
1) + 3 × m(ec

2) = 1 (46)

Fig. 23 Entropy of Hypo.6
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Fig. 24 Mass of Hypo.7

Thus,

m(ec
1) =

√
2

6

m(ec
2) = 1

3
−

√
2

6

We generalize the calculation method of the convergence
mass to cardinality N = n, then we can obtain

n × m(ec
1) + n × m(ec

2) + · · · + n × m(ec
n) = 1 (47)

Fig. 25 Entropy of Hypo.7

Fig. 26 Mass of Hypo.8

Then repeat the above method to obtain the convergent
mass as

m(ec
1) : m(ec

2) : · · · : m(ec
j ) : · · · (48)

= (1 − m(ec
1) −

n−1∑

i=2

Ci−1
n−1 × m(ec

i ))

: (1 − 2 × m(ec
1) −

n−1∑

i=2

(Ci
n − Ci

n−i ) × m(ec
i ))

: (· · · )

: (1 − j × m(ec
1) −

n−1∑

i=2

(Ci
n − Ci

n−i ) × m(ec
i ))

: (· · · )

Fig. 27 Entropy of Hypo.8
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Fig. 28 Mass of Hypo.9

When i ≤ n−i is valid, that meansCi
n−i ≥ 1.When i<n−i,

then we consider Ci
n−i = 0.

5 Conclusion

This paper proposes a belief interval negation method,
which converts BPA to belief interval negation. After the
belief interval negation step is completed, it is converted
back to BPA and applied to various entropies. In particular,
after the process of belief interval negation, the believe
function is directly regarded as the BPA of the subset.
Many previous BPA negation methods are not applicable

Fig. 29 Entropy of Hypo.9

Fig. 30 Mass of Hypo.10

to Höhle entropy and Yager entropy. The newly proposed
negation method solves this problem. Besides, this paper
also proposes two new uncertainty measure methods.
In addition, this paper verifies that the newly proposed
negation method is applicable to the above five uncertain
measure methods, and they satisfy the property of entropy
increment during negation iterations. Moreover, the newly
proposed uncertainty measures and belief interval negation
approaches are applied to medical pattern recognition.
The experimental results prove that the novel approaches
are reasonable and consistent with the previous method.
Furthermore, the important contribution of this paper is that
the newly proposed belief interval negation method, as an

Fig. 31 Entropy of Hypo.10
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Table 4 Belief interval negation data from 3 medical patterns in belief interval negation

Belief mass {A} {B} {C} {A, B} {A, C} {B, C} {A, B, C}

m1 0.4 0.3 0 0 0.1 0 0.2

Bel(m1) 0.4 0.3 0 0.7 0.5 0.3 1

P l(m1) 0.7 0.5 0.3 1 0.6 0.6 1

P l⊕(m1) 0.148936 0.106383 0.06383 0.212766 0.12766 0.12766 0.212766

Bel(m1) 0.3 0.5 0.7 0 0.4 0.4 0

P l(m1) 0.6 0.7 1 0.3 0.5 0.7 0

Orthogonal BPA (m̄1) 0.130435 0.217391 0.304348 0 0.173913 0.173913 0

m̄1 0.130435 0.217391 0.304348 0 0.173913 0.173913 0

Bel(m̄1) 0.130435 0.217391 0.304348 0.347826 0.608696 0.695652 1

P l(m̄1) 0.304348 0.391304 0.652174 0.695652 0.782609 0.869565 1

P l⊕(m̄1) 0.064815 0.083333 0.138889 0.148148 0.166667 0.185185 0.212963

Bel(m̄1) 0.695652 0.608696 0.347826 0.304348 0.217391 0.130435 0

P l(m̄1) 0.869565 0.782609 0.695652 0.652174 0.391304 0.304348 0

Orthogonal BPA ( ¯̄m1) 0.301887 0.264151 0.150943 0.132075 0.09434 0.056604 0

m2 0.1 0.4 0 0 0.2 0 0.3

Bel(m2) 0.1 0.4 0 0.5 0.3 0.4 1

P l(m2) 0.6 0.7 0.5 1 0.6 0.9 1

P l⊕(m2) 0.113208 0.132075 0.09434 0.188679 0.113208 0.169811 0.188679

Bel(m2) 0.4 0.3 0.5 0 0.4 0.1 0

P l(m2) 0.9 0.6 1 0.5 0.7 0.6 0

Orthogonal BPA (m̄2) 0.235294 0.176471 0.294118 0 0.235294 0.058824 0

m̄2 0.235294 0.176471 0.294118 0 0.235294 0.058824 0

Bel(m̄2) 0.235294 0.176471 0.294118 0.411765 0.764706 0.529412 1

P l(m̄2) 0.470588 0.235294 0.588235 0.705882 0.823529 0.764706 1

P l⊕(m̄2) 0.102564 0.051282 0.128205 0.153846 0.179487 0.166667 0.217949

Bel(m̄2) 0.529412 0.764706 0.411765 0.294118 0.176471 0.235294 0

P l(m̄2) 0.764706 0.823529 0.705882 0.588235 0.235294 0.470588 0

Orthogonal BPA ( ¯̄m2) 0.219512 0.317073 0.170732 0.121951 0.073171 0.097561 0

m3 0.2 0 0.1 0.3 0 0 0.4

Bel(m3) 0.2 0 0.1 0.5 0.3 0.1 1

P l(m3) 0.9 0.7 0.5 0.9 1 0.8 1

P l⊕(m3) 0.155172 0.12069 0.086207 0.155172 0.172414 0.137931 0.172414

Bel(m3) 0.1 0.3 0.5 0.1 0 0.2 0

P l(m3) 0.8 1 0.9 0.5 0.7 0.9 0

Orthogonal BPA (m̄3) 0.083333 0.25 0.416667 0.083333 0 0.166667 0

m̄3 0.083333 0.25 0.416667 0.083333 0 0.166667 0

Bel(m̄3) 0.083333 0.25 0.416667 0.416667 0.5 0.833333 1

P l(m̄3) 0.166667 0.333333 0.583333 0.416667 0.583333 0.916667 1

P l⊕(m̄3) 0.041667 0.083333 0.145833 0.104167 0.145833 0.229167 0.25

Bel(m̄3) 0.833333 0.666667 0.416667 0.583333 0.416667 0.083333 0

P l(m̄3) 0.916667 0.75 0.583333 0.583333 0.5 0.166667 0

Orthogonal BPA ( ¯̄m3) 0.277778 0.222222 0.138889 0.194444 0.138889 0.027778 0
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Table 5 Uncertainty measures from 3 medical patterns in belief interval negation

Medical patterns HB HP HN HO HY

m1 2.431152 2.265650 1.846439 1.149861 2.812187
m2 2.410825 1.881363 1.846439 1.208357 2.832911
m3 2.149861 1.391349 1.846439 1.096578 2.712054
m̄1 2.714339 2.270495 2.261996 1.599848 3033699
m̄2 2.760878 2.334572 2.183667 1.597097 3.136020
m̄3 2.570471 2.507691 2.054585 1.474103 3.061832

important tool for uncertainty measure, build the relationship
among the belief interval (belief function and plausibility
function), BPA, and the uncertainty measure. It will play an
essential role in describing system ambiguity in the future.
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59. Höhle U (1982) Entropy with respect to plausibility measures.
Proceedings of the 12th IEEE Symposium on Multiple-Valued
Logic, pp 167–169

60. Yager RR (1983) Entropy and specificity in a mathematical theory
of evidence. Int J Gen Syst 9(4):249–260

61. Pan L, Deng Y (2020) Probability transform based on the
ordered weighted averaging and entropy difference. Int J Comput
Commun Control 15(4):3743

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Yong Deng received the Ph.D.
degree in Precise Instrumenta-
tion from Shanghai Jiao Tong
University, Shanghai, China,
in 2003. From 2005 to 2011,
he was an Associate Professor
in the Department of Instru-
ment Science and Technology,
Shanghai Jiao Tong University.
From 2010, he was a Professor
in the School of Computer and
Information Science, South-
west University, Chongqing,
China. From 2012, he was a
Visiting Professor in Vander-
bilt University, Nashville, TN,

USA. From 2016, he was also a Professor in School of Electronic
and Information Engineering, Xi an Jiaotong University, Xian, China.
From 2017, he is the full professor of Institute of Fundamental and
Frontier Science, University of Electronic Science and Technology of
China, Chengdu, China. He is the JSPS Invitational Fellow in Japan
Advanced Institute of Science and Technology, Ishikawa, Japan. Pro-
fessor Deng has published more than 100 papers in referred journals.
His research interests include uncertainty, evidence theory, and com-
plex system modelling. He presents generalized evidence theory, D
numbers, Deng entropy and information volume of mass function. He
served as the PC member of many conferences such as International
Conference on Belief Functions. He served as many editorial board
members such as editorial board member of Entropy, Applied Intelli-
gence, Plos One, Defence Science Journal, guest editor of IEEE trans.
on fuzzy systems, International Journal of Approximate Reasoning,
Sustainability, Mathematical Problems in Engineering,WORKA Jour-
nal of Prevention, Assessment & Rehabilitation, Journal of Systems
Science and Systems Engineering, associate editor f Journal of Orga-
nizational and End User Computing. He served as a reviewer for more
than 40 SCI-indexed journals. Professor Deng has received numerous
honors and awards, including the Elsevier Highly Cited Scientist in
China in 2014-2021.

Negation of BPA: a belief interval approach and its application in medical... 4243

https://doi.org/10.1016/j.asoc.2019.105703

	Negation of BPA: a belief interval approach and its application in medical...
	Abstract
	Introduction
	Preliminaries
	Dempster Shafer theory
	Negation of probability distribution
	Negation of basic probability assignment method
	Uncertainty measure methods

	New belief interval negation of BPA
	Newly proposed uncertainty measure approaches under D-S structure
	Definition of belief interval negation
	Calculation and properties of Belief interval negation
	Step 1: belief interval establishment
	Step 2: belief interval negation
	Step 3: transformation from belief interval negation to BPA
	Step 4: BPA orthogonalization

	View from belief interval negation

	Numerical examples and discussion
	Numerical example 1
	Numerical example 2
	Application in medical pattern recognition
	View from convergent mass

	Conclusion
	References




