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Abstract
Video synopsis is an effective technique for the efficient analysis of long videos in a short time. To generate a compact
video, multiple tracks of moving objects, which we call as tubes are displayed simultaneously by rearranging them along the
time axis. Contemporaneous video synopsis approaches focus on collision avoidance, or preservation of chronological order
among tubes. However, generation of an adaptive personalized user-oriented synopsis video congruent to users’ preferences
has yet not been thoroughly experimented. This paper propounds a framework for personalized visualization of synopsis
video, integrating pertinent object attributes such as color, type, size, speed, travel path and direction towards generation
of synopsis video for precise inference of user needs. The framework motivates users to interactively define queries for
creation of the targeted synopsis. User queries are classified into visual-queries, temporal-queries, spatial-queries, and spatio-
temporal queries concomitant with the visual and spatio-temporal attributes. Tubes relevant to a user-query are selected,
and grouped according to original behavioral interactions followed by their rearrangement, to generate synopsis video with
fewer false collisions. To evaluate the proffered technique, two evaluation metrics are proposed and extensive experiments
of publicly available surveillance videos are conducted. The experimental results demonstrate the propriety and usability of
the newer approach.

Keywords Visualization · Surveillance · User-interaction · Object attributes · Video synopsis

1 Introduction

With the unsatiated user interests in multimedia appli-
cations, deployment of surveillance cameras has become
commonplace around the globe. However, efficient brows-
ing and review of massive recorded video data for detection
and selection of events of interests, pose an exigent, tedious
task. Surveillance videos can be effectively used by reduc-
ing their duration significantly. Towards this end, several
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video shortening approaches like video abstraction [1], con-
densation [2], summarization [3, 4] and video synopsis
[5–7] have been proposed. In recent times video synopsis
has been a popular technique, which generates a compact
representation of a long surveillance video, by the simul-
taneous display of multiple events that may have occurred
at different times in the original video. Besides condensing
the video content, video synopsis serves as an index to the
original video, for detailed tracking and analysis of events,
in diverse surveillance applications. A sequence of spatio-
temporal positions of a moving object, termed as a tube, is
the fundamental unit in video synopsis methods. The terms
“objects” and “tubes” are used interchangeably throughout
this paper.

Video surveillance systems that utilize video synopsis,
support users with an expert system to analyze videos for
operational decision-making in various sectors of society
such as law enforcement, crime investigation, incident
analysis, critical infrastructure security, transportation,
health-care and education, property and retail security,
among others. In the past decade, researchers have proposed
numerous approaches for the generation of a synopsis video
[8] focusing either on reducing collisions among moving
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objects [9–12], optimal rearrangement of events [13–16],
or varying camera topology [17, 18]. Rav-Acha et al. [5]
proposed object-based video synopsis in 2006. Later, Pritch
et al. [6, 7] extended the method of [5] into a framework
in which the moving objects of a video are re-arranged,
along the temporal domain, achieving a high condensation
ratio. Following the classical framework in [7], Nie et al.
[19] proposed an optimization method that relocates objects
in both temporal and spatial domains, by expanding the
moving space of objects in a video. Shifting the tubes
temporally or spatially may ensue in their collisions with
each other in the synopsis video. Li et al. [9] proposed an
approach to reduce collision in synopsis video by scaling
down the size of colliding objects. Another method to
minimize collisions was proposed by Nie et al. [12] in
which the speed of objects are varied together with the size
reduction. However, an ideal synopsis video should be one
that is in tune with users’ preferences while pursuing a
tradeoff between commonly used standards [20, 23] such as
preserving as many events as possible, reducing collisions
and maintaining temporal order between moving objects.

Although video synopsis has emerged as a pioneering
technology in the field of video analysis, there are tricky
challenges like generating a synopsis video in align with
the preferences of users. Therefore, there is a need for
video synopsis approaches that rely on personalized and
customized tube abstraction methods.

During the review of a surveillance video, a viewer
perceives its contents with more meaningful visual and
motion cues, such as object color, type, size, speed, tracks,
and interactions. Hence, we need to consider these object
features, in order to infer the users’ needs, to facilitate
human perception, for the generation of user-specific
synopsis of a video. Toward this end, this paper proposes a
visualization framework for video synopsis, which enables
users to interactively select tubes of interest in a video,
group them based on behavioral interactions, and optimally
rearrange the tubes to generate customized video synopsis.

The proposed visualization framework enables users like
security personnel to review hours of surveillance videos
within minutes, inspecting objects of interest by their
attributes, and accelerating target-based filtering based on
various search combinations. The interactive user interface
of proposed framework assists end-users to analyze
videos for fast and operational decision-making in various
sectors of society like public and private surveillance,
law enforcement, transportation, retail stores and the like.
Some among the numerous applications of the proposed
framework are the following: supports investigation or
surveillance team to pinpoint objects by type, speed,
interaction, and more for tracking and inspecting suspects;
identifies activity hot-spots in a retail store, on the highway,
or in a parking area, quantifies the type of visitors or

vehicles, and discover their movement patterns using filter
by direction, regions of interest (ROI), traffic flow, and
object type. Moreover, the visualization framework enables
end-users of various public and private sectors to generate
custom synopsis videos of people, vehicles, or other objects
of interest by adjusting the tolerance levels to refine search.

The proffered framework supports users with a user-
friendly interface to interactively submit queries, making
use of visual and motion cues. For example, a user may
specify object attributes like color, size, or select a particular
region of interest in a video, to view events occurred there
[desired location], or to view objects that traversed through
a specified path of interest. Hence, we have categorized the
user-defined queries into visual-queries, temporal-queries
and spatial-queries, pertinent to the fixed visual object
attributes, spatial and temporal characteristics of the video.
Methods are presented hereunder to group the related
tubes for the preservation of behavioral relationships among
them, and determination of the optimal placements of the
tube groups in a synopsis video. Our contributions and
focus of this paper are in the modules of interactive tube-
selection, tube-grouping, and tube-group rearrangement.
Hence, for the pre-processing/post-processing steps of
synopsis generation like tracking and stitching of tubes, we
have employed state-of-the-art methods.

To summarize, the main contributions of this paper are as
follows:

– A visualization framework for the generation of
user-oriented video synopsis is proposed. Users are
afforded a user-friendly interface, to interactively select
customized combinations of analytic features for the
abstraction of tubes, thus, generating targeted synopses.

– Based on several attributes of an object such as size,
shape, path, color, behavioral interactions, and motion,
we propose four main classifications of user-defined
queries, namely, i) visual, ii) temporal, iii) spatial and
iv) spatio-temporal.

– A personalized tube-grouping procedure is presented
to discover the relationships among tubes by grouping
the interacting tubes that are relevant to a user’s query.
Further, the optimal positions for these tube groups in
synopsis video are determined by a space-time cube
representation-based method that aims to minimize
collisions between tubes.

– Two novel evaluation metrics: False Overlapping Area
(FOA), Non-Preserved Interactions (NPI) are proposed
and extensive experiments are conducted to validate
the effectiveness of the proposed approach using
surveillance videos.

The remainder of this paper is organized as follows.
Section 2 presents selected related works on video synopsis
and visualization systems. Section 3 describes the proposed
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approach in detail. In Section 4, the proposed evaluation
metrics are described. Experimental results are presented in
Section 5. We conclude the paper in Section 6.

2 Related work

This section reviews the related work of video synopsis,
notably user-oriented synopsis video generations.

2.1 Object-based video synopsis

In contrast to the aforementioned visualization systems,
video synopsis approaches are object-based that benefit
from shifting moving objects along the temporal axis. Rav-
Acha et al. [5] and Pritch et al. [6, 7] introduced object-
based synopsis methods, which focus on the rearrangement
of objects in the time domain. They termed the sequence
of occurrences of the same object, across multiple video
frames, as a tube. These tubes are then shifted along the
time axis, which effectively reduce spatial and temporal
redundancies. To avert the collisions that may occur due
to the rearrangement of tubes, Nie et al. [19] presented
a method to shift objects, spatially and temporally by
expanding the moving space of objects in the video.
Zhu et al. [21] augmented and accelerated the pioneering
work in [7] by formulating the tube rearrangement as
a step-wise optimization problem, and implementing it
using Graphic Processing Unit (GPU). To reduce collisions
between objects, Li et al. [9] proposed an optimization
method that scales down the size of colliding objects. He
et al. [10] reformulated tube rearrangement for online video
synopsis using a potential collision graph that computes
collision relationship between tubes in advance. To reduce
the collision artifacts in offline video synopsis, He et al.
[11] determines the potential collisions that may happen in
the synopsis video by formulating it as a graph coloring
problem. An approach for generating synopsis videos by
grouping tracklets of moving objects, utilizing their spatio-
temporal relations is presented in [22]. Li et al. [23]
proposed a framework that discovers the relationships
between moving objects and can be applied to generate
synopsis for scenes with crowdedness.

Recently, Ra et al. [13] proposed an algorithm to
accelerate the tube rearrangement optimization by making
use of fast Fourier transform and parallel processing. To
reduce the optimization time during tube rearrangement
in video synopsis, Ghatak et al. [15] presented a hybrid
energy minimization scheme using Simulated Annealing
and Teaching Learning-based optimization methods. Ruan
et al. [14] proposed a dynamic graph coloring problem
for the tube rearrangement in online video synopsis,
where the tube relationships are modeled using a dynamic

graph. A framework to reduce collisions between objects
by changing the speed, scaling the size and shifting of
objects, together with a Metropolis sampling algorithm
is presented in [12]. Moussa et al. [16] proposed a
particle swarm optimization-based approach for solving
energy minimization in video synopsis to minimize
collisions between tubes and maintain their temporal order.
Furthermore, some video synopsis approaches focus on
multi-camera topology, activity clustering, and target-based
that integrate user-inputs.

2.1.1 User-oriented video synopsis methods

Unlike numerous studies investigating the generation of
synopsis videos, only a few have dealt with the facility to
incorporate user-preferences, though they limit to specific
types of user queries. Pritch et al. [6] proposed a two-phase
method to generate synopsis of videos from webcam or
surveillance cameras. Display of objects of interest in the
synopsis were selected from the user specified time period.
However, user-query defines only the desired temporal
interval, while simultaneous display of multiple random
activities during that period may create a confusing synopsis
video. Subsequently, similar activities are clustered using
appearance features and motion features in a synopsis
method proposed by Pritch et al. [20]. Thus, the users are
enabled to view synopsis of preferred object types using
appearance-based clusters and objects with similar motion
path using motion-based clusters. Nevertheless, objects with
similar trajectories but varying speed may be assigned to
different clusters.

To overcome the aforementioned problem in [20], a syn-
opsis approach was proposed by Chou et al. [24] that used
longest common subsequence algorithm to group trajectories
with similar motion and dissimilar speed/length in the same
cluster. In thismethod, the starting and ending locations of all
trajectories are grouped to obtain the number of coherent-
events. Furthermore, users are enabled to specify the number
of event groups, and view synopsis of multiple events with
similar trajectories. To generate a synopsis of abnormal
objects in a video, Lin et al. [25] presented an abnormality
detection approach that utilizes a patch-based method and
blob optimization process. In [26], an event-based video
synopsis method was proposed that generates synopses of
similar kinematic events by clustering trajectories. Another
clustering-based video synopsis method was proposed by
Ahmed et al. [27] in which synopsis videos are generated
based on a few user-queries. Their method adapts users’
synopsis preferences, based on three object classes, similar
trajectories, objects with similar starting or ending locations
and combinations of these interests. All the aforementioned
user-oriented approaches generate targeted synopsis videos
limited to specific applications such as a synopsis of events
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within a temporal period of interest, synopsis based on three
object types (i.e. car, bike, pedestrian), a few trajectory-
based synopses including similar activities or kinematic
events, abnormal objects, coherent events and movements
between key-regions.

In contrast to the above mentioned approaches, the
method proposed in this paper focuses on user-oriented
synopsis generation, by utilizing most of the visual,
temporal and spatial attributes of an object, to define a
user-query. The proposed visualization framework employs
an interface to interactively define queries by selecting
arbitrary combinations of different object attributes such
as size, type, color, travel path, and direction along with
ROI, traffic flow and interacting objects in a video.
Furthermore, we use a recursive personalized grouping
method to preserve interactions by identifying and grouping
the related tubes that are relevant to a query. The optimal
temporal locations for these tube groups are then determined
by a space-time cube representation-based approach.

3 Proposedmethodology

This section explains the proposed framework of person-
alized user-oriented video synopsis generation. Initially,
an input video is preprocessed by detection and track-
ing multiple moving objects to generate tubes. Then, the
extracted tubes are classified using deep learning methods.
When a user submits a query via graphical user inter-
face (GUI), the subset of tubes relevant to the user queries
are selectively retrieved from the whole set of extracted
tubes. To preserve the behavioral interactions among those
selected tubes, the query-relevant tubes are grouped, uti-
lizing their spatio-temporal proximity. In the end, the tube
groups are stitched to the generated background based on
the temporal locations determined by a cube representation-
based tube group rearrangement approach. Figure 1 presents
the proposed framework. For reference, Table 1 sum-
marizes the definitions of key notations used in this
paper.

Fig. 1 The framework of the proposed user-oriented video synopsis approach
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Table 1 Notation definitions

Notation Definition

T a tube

ξ trajectory information of a tube

ϕ set of visual attributes of a tube

N number of tubes in the input video

� whole set of N tubes

Q number of tubes relevant to a user-query

� abstracted set of Q tubes

G a tube group

M number of tube groups

F total number of frames in a synopsis video

V spatio-temporal volume representation of synopsis video

Pi the ith temporal location of synopsis video

3.1 Background estimation and tube extraction

The primary steps in the preprocessing of video are
estimation of video background, followed by extraction of
tubes. Surveillance videos usually have static backgrounds.
In this work, a temporal median is applied over the
neighboring frames of each video frame to estimate
the background. Considering slight variations in the
illumination, background is computed for a duration of
every 60 seconds of the video.

Given a video, extraction of the tubes is performed by
detection and tracking [28] of objects in motion. Many
classical algorithms like Gaussian Mixture Model (GMM),
and Aggregated Channel Features (ACF) can be used
for detection and extraction of foreground. State-of-the-art
object detectors focus mainly on detecting small objects
[29], detecting vehicles in traffic systems [30], sequential
image processing-based [31], fusion-based [32], localizing
moving regions [33] along with others. In recent years, deep
learning methods [34] have been outperforming classical
techniques. In the work propounded in this paper, a recent
and popular deep learning-based detector YOLOv3 (You
Look Only Once v3) [35], applied for detection of objects.
Making detections of objects at 3 different scales, the
upgraded version of YOLO [36] called YOLOv3, detects
even small objects with a speed of 30 frames per second
along with high detection accuracy. Taking a video frame as
an input, YOLOv3 outputs bounding boxes, object class and
detection confidence for each object detected in the frame.
For example, each detection is associated with:

d = [co, bx, by, bw, bh, pc] (1)

where (bx, by) represents the center of bounding box, bw

and bh denotes its width and height, respectively. co denotes
the class of detected object and pc represents the confidence
in percentage with which the detection is performed. These

detection results are used as input for further tracking of
multiple objects in video.

The next step of tube extraction is object tracking, which
associates the detections corresponding to an object in
one frame to the same object across other video frames.
This paper adopted a simple online and real-time tracking
(SORT) algorithm, integrated with a deep association
metric (Deep-SORT) [37] for tracking multiple objects.
Incorporation of appearance information in the tracking
methods of SORT, Deep-SORT, track objects even in the
presence of prolonged occlusions.

Detection results from YOLOv3 are conveyed to
the Deep-SORT algorithm as input. Then, a Hungarian
algorithm is used for associating the object detections to
existing tracks. To accomplish that, each object is defined
with a state vector as

[bx, by, br , bh, b̂x, b̂y, b̂r , b̂h] (2)

where (bx, by) are the center coordinates of bounding
box, br and bh are the aspect ratio and height of the
bounding box, respectively. b̂x, b̂y, b̂r , b̂h represent the
respective velocities. A Kalman filter is used on every
bounding box to predict the aforementioned state of
an object. Deep-SORT introduced an appearance feature,
which is extracted for each detected bounding box using
a pretrained convolutional neural network (CNN). Object
tracking generates 2-D trajectories of objects which can be
integrated with object attributes for further visualization and
query processing.

3.2 Tube abstraction for content analysis

Tube abstraction is a critical process given the vast
amount of tubes generated for each video. Since prior
knowledge of user’s query is unavailable, tube extraction
step produces tubes for each moving object in a video,
and not all tubes are necessarily associated with interesting
events. Therefore, we take the analytic attributes of an
object, such as color, type, size, speed, motion, and
interaction into consideration while selecting the tubes
relevant to a user’s query, termed as tube abstraction. To
exploit the visual and motion characteristics of video, we
classify user queries into visual-queries, temporal-queries,
spatial-queries and, spatio-temporal queries. The proposed
framework facilitates a compact and query-driven interface
(see Fig. 2) that displays original video and object attributes
to design a query. This gives the user the ability to
choose attributes by themselves, or in conjunction with
other attributes based on the context and requirements for
interactively generating synopsis video. A few examples
of such queries can be “red vehicles”, “big white vehicles
moving at high speed”, “pedestrians with blue colored dress
moving towards the right part of the video”. Figure 3
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Fig. 2 User interface for the proposed interactive visualization and
query creation by utilizing visual and motion attributes displayed
on the screen. The user can select the required video and temporal
period to shorten the video. A Here, the users are supported to select
attributes of interest like object’s type, size, speed, color, and direction

of travel to define a query. B The user can draw ROI (to be included
or excluded) and travel path on the video frame, click on interacting
objects to filter objects accordingly. Object trajectory or area of activ-
ity can be selected to view the traffic flow in the video. C Execute
user-defined query and generate synopsis video

illustrates an example of querying and customized synopsis
generation for each of the four query types, using different
attributes of an object. Consequently, we define each
extracted tube as a set

T = {ξ, ϕ} (3)

where ξ is the trajectory information and ϕ is the visual
attribute set of tube.

ξ = (x1, y1, w1, h1), ..., (xn, yn, wn, hn) (4)

where (x, y) represents object location in each frame with
(w, h) as width and height of the object respectively.

ϕ = ϕ1, ϕ2, ..., ϕi (5)

where ϕi (1 ≤ i ≤ n) represents an attribute such as object
color, size etc. The set of all N extracted tubes in a video
can be represented as

� = {T1, T2, ...TN } (6)

Further, � is abstracted to create its subset of relevant tubes
�, in response to a user-defined query:

� = {T1, T2, ...TQ}, Q ≤ N (7)

where Q is the number of tubes relevant to a user-query.

3.3 Visual-queries

These are user-defined queries created by utilizing the
fixed visual attributes of a tube like color, type and size.
For example, “pedestrians that traveled through the white
pathway of the given video scene”. In this work, we
propose the following strategies for extracting various visual
attributes.

3.3.1 Object color

Color of an object is one among the primary cues that draws
human attention in a video as presented in [38–40] like a
feature for content retrieval. In this work, we extract five
dominant colors for representing each tube. The first step of
feature extraction separates each input video frame into Red
(R), Green (G) and Blue (B) component images. We define
a standard Red Green Blue (RGB) color palette S = si ,
1 ≤ i ≤ 255, where si represents the RGB value of three
channels color. Then, we compute the similarity between
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Fig. 3 Work-flow of interactive query creation and the corresponding
personalized synopsis video generation. The user utilizes combina-
tions of a visual, b temporal, c spatial, and d spatio-temporal attributes
of an object to define a query. One representative frame from each
synopsis result corresponding to four classes of illustrated queries
are displayed in the figure. e Sample synopsis frame in response
to (a) for medium-sized and off-white colored cars and pickups.

f Sample synopsis frame in response to (b) for objects occurring in
video between 00:00:10 and 00:30:00 time, moving in the North direc-
tion at an average speed. g Sample synopsis frame in response to (c)
for objects traveling through the user-sketched path and ROI. h Sam-
ple synopsis frame in response to (d) for all interacting objects in the
input video

pixels in each detected bounding box in a frame and S. The
Euclidean distance similarity measure between the RGB
value of each non-background pixel and each of the RGB
color si ∈ S is calculated. Each pixel of an object votes for
its most representative color in S that has minimum distance

with it. Next, a histogram of votes on the palette colors is
created over the frame occurrences belonging to a single
tube. Finally, we extract the first five colors as the dominant
colors corresponding to the bins which receives the majority
of votes.
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3.3.2 Object size

Object size is often useful to differentiate large-sized vehi-
cles such as trucks, buses from average (cars, SUVs) and
small-sized vehicles (bike), and pedestrians from vehicle
[39, 41]. Most traditional surveillance systems fail to utilize
size of an object as a visual cue for producing user-defined
video summaries, since multiple small adjacent objects are
merged during motion segmentation and considered as a
single object. In this work, the deep learning-based object
detection and tracking method provides a precise bounding
box (BB) for each moving object in a frame. Consequently,
we get dimensions of the bounding box in pixels, with
Area(BB) yielding the approximate size. We extract three
aggregate size measures for each tube: min(Area(BB)),
max(Area(BB)) and mean(Area(BB)) over the entire
track of an object. Taking all occurrences of an object across
its appearing frames into account, alleviates the scaling
issue.

3.3.3 Object type

In several surveillance applications, determining the type
of object is critical [38]. Object-category based queries
supports a user to view only those objects in any desired
classes such as ‘pedestrians’, ‘cars’ in a synopsis. We
have used YOLOv3 framework for detection and labeling
of moving objects. YOLO divides each video frame into
several n × n grids on which classification and localization
are applied. Each grid predicts bounding boxes and class
conditional probabilities that represents the likeness of
detected object to belong to a particular class. YOLOv3
uses a much deeper classification network Darknet-53 with
53 convolutional layers for feature extraction, compared
to the previous versions. Avoiding the softmax function
used in YOLO, YOLOv3 uses logistic classifiers for multi-
label classification, which has reduced the computation
complexity. Softmax function assumes classes to be
mutually exclusive, where one object cannot belong to
multiple classes. However, this assumption may not work
with classes like ‘Pedestrian’ and ‘Woman’ in a dataset.
With logistic regression, YOLOv3 assigns classes with
scores greater than a threshold to the object inside bounding
box.

3.4 Temporal-queries

A temporal query utilizes the motion attributes of objects
such as direction of travel, speed, and temporal ROI in
a video. For example, “synopsis of past two hours of
surveillance”, “cars moving in the east-west direction”,
“high speed vehicles”.

3.4.1 Activity speed

An object moving with high speed or low speed in a video
captures human attention. Hence, users may prefer to view
synopsis displaying objects with varying speeds such as fast,
slow or average speed. To determine speed attribute, we use
the statistics of detected bounding boxes in each video frame
using method similar to [41]. A bounding box from YOLO
detector is represented as

BB = {bx, by, bw, bh} (8)

where (bx, by) represents the center of bounding box, bw

and bh denotes its width and height, respectively. Once
we have the location of an object at each frame, it is
straightforward to calculate its speed. We measure the speed
of an object using the change in its displacement with
respect to each frame. The displacement is computed as
the difference between centroids of the bounding boxes of
an object in consecutive frames. Thus, three main speed
variations, namely fast, mean and slow speed are extracted
across bounding boxes of each tube.

3.4.2 Activity direction

The information about direction of motion [40] is implicitly
present in the object trajectories ξ , obtained from tracker.
We compute motion direction for each tube utilizing the
centroid coordinates b(x,y), of the bounding boxes through
its frames of occurrences. The direction of object can be
obtained by calculating the difference between centroids
of consecutive frames. However, the difference will be
negligible unless the object is traveling at high speed. To
empathize on larger object movements, we compute the
centroid difference as

�x = bi
x − bk

x (9)

�y = bi
y − bk

y (10)

if|�x | > 0, direction = ‘East’; else, direction = ‘West’ (11)

if|�y | > 0, direction = ‘South’; else, direction = ‘North’ (12)

where bi is the centroid of a tube T in ith frame and
bk is centroid of T at k frames behind ith frame. �x

and �y are changes in the centroid locations along x and
y axes, respectively. For a pixel-distance threshold p, if
abs(�) > p, then we define the motion direction. If
sign(�x) is positive, then the object direction is towards
‘East (Right)’. The object will be moving towards ‘West
(Left)’, when sign(�x) is negative (see (10)). Similarly, the
direction of motion is considered towards ‘South (Down)’,
when sign(�y) is positive and towards ‘North (Up)’ if
negative (see Eq. (11)). However, if there is a significant
difference in both x and y axes, then we define it as
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object movement in directions such as ‘South-East’ (SE) or
‘North-West’ (NW).

3.4.3 Occurrence-time of events

Each tube extracted in the preprocessing phase is associated
with a start-time t s and end-time te, as given in (13). These
time stamps are utilized when a user prefer to view synopsis
of events occurred within the temporal ROI specified by
them.

T = (ts, te) (13)

In this work, we pay attention to time-sensitive nature of
events - generate synopsis with events occurred i) before a
user specified time, ii) after a user specified time, iii) during
a user-defined time period.

3.5 Spatial-queries

For a given video, spatial queries specify a spatial ROI
utilizing the location coordinates of tubes. The user
interface in the proposed framework enables users to select
the spatial region in a scene by drawing on a frame with
a mouse. For example, “cars that travel through the given
spatial region of the road”, where the ROI is specified in
spatial coordinates.

3.5.1 Activity path

Tube trajectories extracted by object tracker are charac-
terized by a sequence spatial location with source and
destination points represented as

ξ = {(xs, ys), ..., (xd, yd)} (14)

The proposed visualization framework enables users to
select an activity path in the video either by interactively
sketching the motion path as shown in Fig. 4a and b, or by
specifying the source and destination spatial coordinates of
the path. The motion path specifies a spatial ROI, thereby
enabling objects moving in that path alone to be displayed
in the synopsis video. However, retrieving trajectories that
exactly match the user-defined motion path may not always
be feasible. Therefore, instead of a single trajectory, we
retrieve trajectories of all objects moving within a distance
threshold ε from the sketched activity path.

3.5.2 Activity region of interest (ROI)

With this attribute, the proposed framework generates video
synopsis either by including or excluding tubes that are
active within the regions of interest. In this work, the users
are allowed to interactively select a spatial ROI within a
video frame. Any polygonal shape such as a rectangle,
square, or circle can be used to represent a ROI. The

Fig. 4 Sample spatial query a
Activity path of interest (shown
in red color) drawn on a video
frame by a user. b Sample frame
from the corresponding synopsis
video. c ROI (see the rectangle)
marked to include tubes in the
synopsis video. d Sample frame
from the corresponding result
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proposed framework employs a rectangular shape to define
a ROI. Only those tubes whose trajectories intersect with the
ROI are filtered to generate synopsis video. In an ‘inclusive’
mode, only the objects movements within the ROI are taken
into account. An ‘exclusive’ mode selects all trajectories
other than those within the ROI for synopsis generation.
Figure 4c and d illustrates an example of including ROI in
the synopsis result.

3.6 Spatio-temporal queries

These are the user queries that utilizes both spatial and
temporal characteristics of a video. An example is when a
user prefers to view synopsis of highly active areas such as
“most selling products in a supermarket” or synopsis of “all
interacting tubes” in spatio-temporal domains.

3.6.1 Behavioral interaction

Conventional video synopsis methods tend to minimize
tube collisions or preserve the temporal order among tubes.
Spatial collision between tubes is a kind of interaction
between them [42]. Spatial tube-collisions that are present
in the input video are true collisions. Collisions which does
not exist in the original video, but exist in the synopsis video
are false collisions. Preservation of tube-interactions in a
synopsis video is also an important aspect to be reckoned
with, which is unaccounted for in the extant synopsis
approaches. In a video sequence, an interaction may
represent a conversation between people, accidents, fights,
theft or personal attack. Hence, the proffered framework
enables users to create a query for the exclusive display of
interacting objects, in the synopsis.

We have proposed a method to discover the interacting
tubes in a video, utilizing their spatio-temporal proximity
and group them together to preserve the interactions. A
recursive grouping approach determines the related tubes
for each tube Ti . Any two tubes Ti and Tj are assigned to
the same group, if they are temporally and spatially closer
to each other. The spatio-temporal proximity is computed as

DST =⎧
⎨

⎩

exp(
−minf ∈Ti∩Tj

{dstf (Ti, Tj )}
avg(ωTi

, ωTj
)

), if Ti ∩ Tj �= 	

∞, otherwise

(15)

where dstf (Ti, Tj ) represents the Euclidean distance
between the centroid coordinates of tubes Ti and Tj at every
commonly shared frame f . ωTi

and ωTj
are the areas of

tubes Ti and Tj , respectively. The interacting tube groups
can be determined using Algorithm 1. Let Gi is a group

and tube Ti ∈ Gi . Tj will be assigned to the same group
of Ti , when min(dstf (Ti, Tj )) ≤ Dt and Ti ∩ Tj �= 	,
where Dt is a maximum spatial distance for interaction
grouping, determined empirically in our experiments. Ti ∩
Tj represents the temporal intersection between Ti and
Tj . Further, the above procedure is recursively performed
to determine the associated tubes of Tj . If a tube Tk

is not interacting with any other tubes, then, a new
group is created and Tk is added to this new group. The
aforementioned recursive tube-grouping method is repeated
for each extracted tube until all the tubes are assigned with
a group label. Thus, the set of relevant tubes � can be
represented in terms of interaction groups as

� = {G1, G2...GM}, M ≤ Q (16)

where M is the number of tube groups relevant to a user-
query.

Advantages Figure 5 depicts the advantages of the pro-
posed tube-grouping approach. Figure 5 exhibits the preser-
vation of interactions between tubes by the proposed
approach, regardless of their temporal order in comparison
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Fig. 5 The first column shows
representative scenarios with
tube interactions. The second,
third and fourth columns
illustrate grouping of tubes by
[22, 23] and proposed
tube-grouping approach,
respectively

with the tube aggregation methods of [22] and [23]. Figure 5
represents different scenarios that have tubes with strong
spatio-temporal relationships. Ahmed et al. [22] and Li et al.
[23] have proposed methods that process each tube sequen-
tially and bind the associated tubes together. In Fig. 5a, four
tubes with same start-times and high spatial proximities are
depicted. The grouping methods in [22, 23] as well as our
proposed grouping method associates the related tubes 1 to
4 into an undivided group as presented in Fig. 5b, c, and d,
respectively. Another scenario shown in Fig. 5e illustrates
the similar appearing times of tubes 1,2,3, and 4 in a dif-
ferent sequence. The group-partition algorithm in [23] is
unidirectional based on the sequential order of tube appear-
ances. Accordingly, as shown in Fig. 5f, algorithm in [23]
aggregates tubes 1, 3 into one group, and tubes 2, 4 into
another group. However, both the grouping method in [22]
and proposed recursive grouping method binds all interact-
ing tubes (1 to 4) into a single group as presented in Fig. 5g
and h, respectively. Figure 5i represents another tube inter-
action scenario. In view of the fact that the spatial distance
between tubes 1 and 3 are high, the group-partition algo-
rithm in [23] partitions the interacting set of tubes 1 to 4 into
a group of 1 and 2, and another group of 3 and 4 as shown
in Fig. 5j. Considering that both the temporal as well as the
spatial distance between tubes 1 and 3, and tubes 1 and 4 are
high, the grouping method in [22] splits the interacting tube
group of 1 to 4 into groups of 1 and 2, and 3 and 4 as shown

in Fig. 5k. However, the recursive approach of the pro-
posed grouping method preserves the mutual interactions by
aggregating tubes 1,2,3 and 4 into a single tube-group as
shown in Fig. 5l.

3.6.2 Traffic flow

In surveillance videos that have highly redundant infor-
mation, highlighting the scenes with greatest activity is
particularly relevant. For example, the video monitoring
person-in-charge at a retail shop may prefer to watch the
product sections where most people visit, whereas a library-
in-charge monitor may like to know which books have
more check-outs (readers). In this work, we support users
to quickly visualize the traffic observed for a specified time
period by the generation of a heat map.

3.6.3 Composite attributes

To generate queries like “show large vehicles that traveled
from east to west at a high speed” or “show white cars
moved through an user-defined ROI at a specified time”,
the users may have to select multiple attributes mentioned
in the above sections. The proposed framework enables
users to combine two or more attributes into a single
query for the display of objects of interest, in the synopsis
video.
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3.7 Video synopsis generation

Upon creation and execution of user-defined queries, the
relevant tubes (�) are filtered from the whole set (�). To
identify and preserve the true tube interactions in �, if
any, we apply the aforementioned recursive tube-grouping
method to create tube groups. Next, we have to find optimal
positions for these groups in the synopsis such that the false
collisions among tube groups are minimized.

3.7.1 Tube group arrangement

We have proposed a space-time cube representation-based
tube group placement method to optimally arrange groups,
� ⊆ � in the synopsis. A set of tube groups relevant to a
query:

� = {G1, G2...GM} (17)

In this placement method, we consider a video as space-
time volume V (x, y, f ), created using 3D cubes. (x, y)

represents the spatial coordinates of a pixel at frame f ,
where x = 1, .., W ; y = 1, ..H ; f = 1, .., F . (W, H)

represents the frame size and F denotes the total frames
initialized for synopsis video. When a tube group is
positioned at a temporal location in V , it may extend
across several cubes spatially. There is a set of allowable
temporal locations for each tube group. Positioning of a
group elsewhere may exceed the synopsis length. Therefore,
our objective is to determine an optimal start-time for each
Gi ∈ � so that several tubes passing through the same
cube in V at the same time is minimized. To record the
tube groups and corresponding start-time labels with which
a cube gets covered, we initialize each cube using a (tube
group Gi , position Pi) pair matrix of size M × F .

The placement method is comprised of two stages: cube
coverage and voting. During stage I, we discover the cubes
that are covered by the placement of each group at each of its
possible locations. The matrix cell (Gi , Pi) of a cube Ck is
set as ‘1’, when positioning of Gi at start location Pi covers
Ck given that Gi is not allocated with any start-time label.
In the next stage, each cube Ck in V votes to (Gi , Pi) pairs
if Gi can cover Ck when positioned at Pi . Ck distributes
votes equally among all such covering pairs. Similarly, each
(Gi , Pi) may receive votes from multiple cubes which gets
covered by this pair.

During stage II, cubes that have already been covered
due to the final placement of some groups still participate
in further voting by inducing a penalty vote. Penalty voting
reduces false collisions by minimizing the sharing of same
cube by multiple (Gi , Pi) pairs. Finally, the (Gi , Pi) pair
that receives maximum vote is selected for the placement
in synopsis since such a solution ensures minimal sharing
of space-time cubes. To maintain interactions between tubes

that are identified by tube-grouping method, the relative
time interval between start-times of tubes in a group is
preserved, while positioning the group as a whole in the
synopsis. The voting stage is repeated until all tubes groups
are allocated with a start-time label. The detailed process is
described in Algorithm 2.

Advantages In earlier methods of video synopsis [7, 9, 12,
15, 19, 21], the tube rearrangement is formulated as an
energy minimization problem [43, 44] and solved by mini-
mizing energy functions. Minimization of energy functions
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require iterative computation of pairwise tube activity, colli-
sion and temporal costs. In addition to redundant costs com-
putation, the aforementioned optimization processes does
not guarantee to preserve tube interactions. However, the
proposed cube representation-based placement method aims
to preserve the relative tube interactions by maintaining the
true collisions and minimizing false tube collisions.

3.7.2 Tube group stitching

In this final step, the synopsis video is generated by
stitching the tube groups onto the estimated background.
A background video of synopsis video length is created
for stitching the objects. As mentioned in Section 3.1, a
background frame is created for each video frame using a
temporal median over its neighboring frames. To generate a
background video, a uniform temporal sampling is applied
to these background images. Then, each tube group is
stitched to the background video at optimal locations to
generate synopsis video. Poisson image editing [45] is
employed to stitch the tube groups into the background
video, which is widely used in many video synopsis
methods [6, 7, 9, 19].

4 Proposed evaluationmetrics

Though there are no unified standards to measure the
quality of synopsis videos, most of the state-of-the-art
methods refer to three main standards: incorporate all
activities, reduce the collision among objects, and maintain
the temporal order of objects as far as possible. On the basis
of these standards, video synopsis methods are generally
evaluated using the following metrics [46]: frame compact
ratio (CR), frame condensation ratio (FR), overlap ratio
(OR), temporal disorder ratio (TD), time consumption, and
visual quality. CR measures the degree of object density in
each frame. Higher the CR, more compact is the synopsis
video. FR measures the ratio of the number of frames
in synopsis to the input video. A higher condensation of
video is indicated by a smaller FR. OR computes the
collision degree of tubes, it should be a smaller value.
TD measures the number of tubes that are temporally
disordered. A greater violation of temporal order results
in a higher TD. Time consumption measures the execution
time taken by a method to generate a synopsis video,
evaluated mostly in seconds. Apart from the aforementioned
quantitative performance metrics, visual quality is a
qualitative metric to measure the visual pleasantness of
synopsis results. Subjective feedbacks from users are
employed by some synopsis methods [19] to compare the
results.

As presented in [14], two main factors should be con-
sidered during the generation of synopsis videos: reducing
collisions, and preserving interactions between tubes when
rearranging them. To preserve strong spatio-temporal inter-
actions, true collisions also have to be maintained as such in
the synopsis video. In addition, false tube collisions need to
be reduced in the synopsis, concerning the first key factor.
However, none of the aforementioned conventional met-
rics consider false collisions or original interactions that are
not preserved in synopsis, during the evaluation of video
synopsis methods.

Therefore, we propose two metrics to measure false tube
collisions and tube interactions of original video that are not
preserved in the synopsis: False Overlapping Area (FOA)
and Non-Preserved Interactions (NPI).

1) False Overlapping Area (FOA): The existing metrics
such as OR and collisions (C) [9], which are used to measure
overlapping of objects consider the total collisions between
tubes that incorporate both true and false collisions in the
synopsis video. Whereas the proposed FOA metric takes
only false collisions into account since original collisions
in the synopsis need not be considered as newly generated
during tube rearrangement. The original definition of OR
from [11] is given as

OR = 1
w.h.Ts

Ts∑

t=1

w∑

x=1

h∑

y=1

1

{if p(x, y, t) ∈ the collision foreground}
(18)

where the collision foreground represents the overlapping
area of tubes in the synopsis video, Ts is the synopsis length,
p(x, y, t) denotes a pixel at t th frame of synopsis, w and h

are the width and height of frame, respectively. The collision
(C) metric in [9] is defined as the sum of all overlapping
areas in the synopsis video. The proposed metric FOA
indicates the false collision degree of tubes in the synopsis
video. FOA between tubes a and b is computed as:

FOA(a, b) ={
OAs(a, b) − OAo(a, b), if t sa − t sb = t ŝa − t ŝb
OAs(a, b), otherwise

(19)

where OAo(a, b) denotes the sum of overlapping areas
between a and b tubes in the original video and OAs(a, b)

denotes the sum of overlapping areas in the synopsis. t s

and t ŝ denote the starting times of tubes in the original and
synopsis video, respectively. Smaller the FOA, fewer the
synopsis false collisions.

2) Non-Preserved Interactions (NPI): NPI measures the
degree to which the original interactions between tubes is
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destroyed or not preserved in the synopsis video. NPI is
defined as follows:

NPI = NIV

NIO

(20)

where NIV is the number of tube pairs where interaction
is violated in synopsis video and NIO is the total number
of interacting tube pairs in the original video. The count of
original tube interactions are determined using the recursive
grouping algorithm. The number of original interactions
preserved in synopsis are computed by comparing the
relative intervals between start-times of related tubes in
original and synopsis video. A smaller NPI indicates lesser
degree of modified true tube interactions in synopsis. A
synopsis video with every true interactions maintained as
such in the original video will lead to a NPI score of 0.

5 Experiments and results

We have conducted several experiments to evaluate the
performance of the proposed approach. All experiments
were conducted in MATLAB R2019a on an Intel Core i7-
7560U CPU running at 3.80 GHz processor with 32 GB
memory.

5.1 Dataset

To carry out the experiments, we have used 8 pub-
licly available surveillance videos with diverse scenes and
object-interactions. The experimental videos were carefully
selected that depict diverse, real-world surveillance scenar-
ios, such as busy intersection road-traffic, subway station,
crossroads, urban traffic with vehicles and pedestrians,
atrium with moving people and streets with multi-person
interactions. The characteristics of these videos are summa-
rized in Table 2.

5.2 Evaluationmetrics

The response accuracy on user’s query is evaluated with
respect to three quantitative metrics: Precision, Recall
and F-score. In addition to the proposed metrics: false
overlapping area (FOA), and non-preserved interactions
(NPI), the performance evaluation of the proposed approach
in comparison to the state-of-the-art-methods is carried
out based on six conventional metrics [46] such as frame
compact ratio (CR), overlap ratio (OR), temporal disorder
(TD), running time (RT), visual quality, and subjective
evaluation. The proposed metrics and first four conventional
metrics are employed for quantitative evaluations, whereas
the visual quality and subjective feedbacks are used for
qualitative evaluation. The frame condensation ratio (FR)
was not compared as same length was set for all methods,
in order to make a fair comparison.

5.3 Parameter Analysis

To effectively determine the value of parameter Dt in the
recursive grouping method, experiments are conducted on 8
test videos. Dt is the upper bound of distance between two
tubes within which an interaction is defined. Figure 6 shows
the performance curve of NPI metric versus the change of
Dt . It can be seen from Fig. 6 that the NPI score gradually
increases beyond a certain value of Dt , indicating a higher
number of non-preserved interactions in the synopsis video.
Similarly, a lower value of Dt will cause the grouping of
interacting tubes into different groups. Therefore we set Dt

to 50 in the later experiments.

5.4 Quantitative results

5.4.1 Evaluation of tube abstraction

We evaluate the efficacy of different query classes with
varied user-defined object attributes in terms of quantitative
evaluation metrics like Precision, Recall and F-score. The

Table 2 Characteristics of test videos: resolution, total number of frames, frames per second (fps), total number of tubes

Video ID Video title Resolution Number of frames fps Number of tubes

V1 M-30 [47] 800 × 480 7520 25 253

V2 Urban1 [47] 600 × 360 23435 25 226

V3 Town-Centre [28] 1920 × 1080 7500 25 231

V4 Sherbrooke [48] 800 × 600 1001 7 20

V5 i-Lids [49] 480 × 360 4470 30 120

V6 Car-Traffic [19] 610 × 480 4710 30 15

V7 ThreePastShop [50] 384 × 288 1650 25 9

V8 Atrium [48] 800 × 600 4540 7 52
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Fig. 6 Performance of NPI influenced by parameter Dt on 8 different
videos

filtered subset of tubes, �, in response to various visual,
temporal and spatial queries, were compared against the
annotated ground truths. We computed the Precision, Recall
and F-scores for 10 queries each under different query
classes on test videos. The average of these performance
measures is presented in Table 3. Since F-score provides a
balance between Precision and Recall, it is usually used as
the main criterion for accuracy evaluation. From the results
in Table 3, we can see that the responses generated by the
proposed approach are satisfactory with a highest F-score as
0.97 and lowest as 0.75. In the view of Precision and Recall,
the proposed method achieves a high to low score in the
range of 1 to 0.77 and 1 to 0.60, respectively.

As mentioned in Section 2.1.1, a few synopsis methods
[20, 24–27] generate targeted synopsis, albeit they address
only one or two kinds of queries. The query types proposed
in [24, 26] and [27] are compared against our proposed
query classes in terms of response accuracy on user’s
queries, as depicted in Table 4. The results are average
accuracy on 8 test videos. The query classes in the proposed
approach exhibits higher average accuracy values compared
to its corresponding similar query types in [24, 26]
and [27].

Table 4 Comparison of response accuracy on different user-defined
queries

Query class Attribute Method Average accuracy

Visual Type [27] 0.89

Our 0.92

Spatial Path [24] 0.81

[27] 0.83

Our 0.88

Temporal Direction [26] 0.85

Our 0.89

Temporal Speed [26] 0.93

Our 0.96

Figure 7 presents the response of proposed approach for
user’s query, “traffic flow in video V8”. Figure 7a, b, and
c illustrates sample video frames from the time period of
interest (00:02:20 (hh:mm:ss) to 00:04:40 (hh:mm:ss)) of
video. The corresponding motion trajectories are displayed
in Fig. 7d. Figure 7e presents the heat map showing highly
active and inactive regions for the entire duration of video.

5.4.2 Comparison with the State-of-the-art methods

To evaluate the performance of proposed query-based video
synopsis generation approach, we compare synopsis videos
generated using the proposed method and those using
four state-of-the-art methods in video synopsis. We mainly
compare with a classical approach proposed in [7], a
method of scaling down the size of colliding objects to
minimize collisions [9], a query-based method for traffic
monitoring [27], and an object-based approach for reducing
collisions [16]. To provide a fair comparison between these
disparate query-based and non-query-based methods, we
generate synopsis videos by the proposed method and
aforementioned approaches [7, 9, 16, 27] using the relevant
subset of tubes (�) abstracted according to a given user-
defined query.

Table 5 presents the quantitative evaluation results of
the CR, OR, FOA, NPI and TD metrics on 8 test videos.
The results are average performance on 8 videos, assessed

Table 3 Quantitative analysis
of different query classes and
tube attributes

Query Class Attribute Precision Recall F-score

Visual Color 0.77 1.0 0.85

Visual Size 0.91 0.77 0.83

Visual Type 1.0 0.93 0.97

Temporal Speed 1.0 0.60 0.75

Temporal Direction 0.82 0.93 0.88

Spatial Path 0.90 0.75 0.82

Spatial ROI 0.94 0.97 0.96
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Fig. 7 Traffic flow of video V8.
a-c Representative frames from
the temporal period (2:20, 4:40).
d Trajectories of activities
during the temporal period
(2:20, 4:40). e Heat map of
activities for the whole video

across different query classes. The comparison results show
that the approach, put forth in this study, achieves best
performance in terms of CR, OR, FOA and NPI among the
five methods. The proposed approach obtained remarkably
less FOA than the state-of-the-art methods [7, 9, 16, 27],
even for those that do not show significant differences in
the OR scores. From this, it is evident that the proposed
approach generates only a few new collisions in the synopsis
video, which are not there in the input video. Thus, false
collisions contribute very less towards the total collisions
(OR) in synopsis generated by our approach, while OR
obtained by the other methods is mainly due to false
collisions rather than original collisions that are maintained
in the synopsis.

Similarly, the proposed approach preserved all original
spatio-temporal interactions among tubes in the synopsis,
achieving NPI scores of 0, for every test video. We can
also see that the method noted in [9] obtained an NPI
score of 1 for all videos. This is due to the fact that
the approach in [9] scales down the sizes of colliding
objects in the synopsis video and relocates them to optimal
temporal locations, which may alter their spatio-temporal
relationships. The methods proposed in [16, 27] and [7]
preserve tube relationships with NPI values in the range of
0 - 0.44, 0 - 0.58 and 0 - 0.71, respectively.

Additionally, the results of comparison show that the
method of [9] obtains the lowest TD values, versus
the approach-under-study achieved the second-lowest TD,
overall. This is because the proposed method focus on
preserving the relative temporal order of tubes within each

group, and reducing the false collisions. Meanwhile, the
optimal temporal locations determined for the placement
of interacting groups may alter the chronological order
among tube groups. However, the main objective of video
synopsis is to determine optimal tube rearrangement for
generating a condense video with or without destroying the
chronological sequence.

The comparison of average runtime (in seconds) for the
test videos are depicted in Fig. 8. It can be seen from
Fig. 8 that the proposed approach takes less running time
than that of [7, 9, 27] and [16]. From Table 5, it is evident
that the proposed approach creates less false collisions,
and preserves original spatio-temporal tube interactions
noticeably better than the other four methods, with lower
TD and larger CR values, even for varying number of tubes
in the original video.

5.5 Qualitative results

5.5.1 Visual comparison

We further present sample results for visual comparison
in Figs. 9 and 10. False collisions and unlikeable visual
effects in the synopsis are represented using red ellipses.
Interactions in the original video that are maintained in
the synopsis video are highlighted with green ellipses.
Blue ellipses represent the original interactions that are
modified during synopsis generation. More than one
observations corresponding to same object, which are
displayed simultaneously in the synopsis are denoted by
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Table 5 Quantitative comparisons between previous methods [7, 9, 16, 27] and proposed approach across different queries

Query Class Attribute Method CR OR FOA NPI TD

Visual Color [7] 0.0893 0.171 3.09 × 106 0.67 1.562

[9] 0.0902 0.146 5.94 × 106 1.0 0.189

[27] 0.0897 0.157 3.63 × 106 0.31 1.491

[16] 0.0882 0.189 4.12 × 106 0.54 1.422

Our 0.0934 0.125 2.67 × 106 0.0 1.131

Visual Size [7] 0.0471 0.262 7.18 × 105 0.56 3.141

[9] 0.0508 0.115 6.76 × 105 1.0 1.782

[27] 0.0488 0.183 5.21 × 105 0.35 2.623

[16] 0.0492 0.205 6.63 × 105 0.28 2.916

Our 0.0514 0.086 3.24 × 105 0.0 2.152

Visual Type [7] 0.0272 0.163 3.67 × 105 0.45 2.785

[9] 0.3016 0.137 5.88 × 105 1.0 0.831

[27] 0.0298 0.153 3.06 × 105 0.32 2.053

[16] 0.0262 0.198 2.63 × 105 0.39 2.601

Our 0.0321 0.131 2.12 × 105 0.0 1.937

Temporal Speed [7] 0.0353 0.223 6.25 × 105 0.28 1.732

[9] 0.0433 0.125 4.92 × 105 1.0 0.566

[27] 0.0372 0.146 4.84 × 105 0.24 1.467

[16] 0.0399 0.179 5.23 × 105 0.31 1.582

Our 0.0417 0.104 3.58 × 105 0.0 1.381

Temporal Direction [7] 0.0511 0.311 6.88 × 106 0.58 2.571

[9] 0.0519 0.236 7.71 × 106 1.0 1.353

[27] 0.0474 0.322 6.25 × 106 0.44 2.604

[16] 0.0509 0.318 6.29 × 106 0.46 2.456

Our 0.0543 0.217 5.96 × 106 0.0 2.322

Spatial Path [7] 0.1012 0.178 4.05 × 106 0.71 1.899

[9] 0.1223 0.131 3.26 × 106 1.0 1.052

[27] 0.1201 0.164 3.83 × 106 0.21 1.731

[16] 0.1181 0.171 4.03 × 106 0.35 1.752

Our 0.1263 0.129 2.31 × 106 0.0 1.193

Spatial ROI [7] 0.0236 0.183 2.62 × 106 0.45 7.534

[9] 0.0301 0.118 3.58 × 106 1.0 2.929

[27] 0.0284 0.161 3.02 × 106 0.40 7.402

[16] 0.0252 0.127 2.05 × 106 0.56 6.561

Our 0.0299 0.093 1.95 × 106 0.0 6.732

Spatio-Temporal Interaction [7] 0.1192 0.133 4.21 × 106 0.67 2.756

[9] 0.1635 0.095 4.92 × 106 1.0 0.634

[27] 0.1083 0.106 2.56 × 105 0.31 2.055

[16] 0.1201 0.119 4.52 × 106 0.58 2.510

Our 0.1721 0.069 1.24 × 105 0.0 1.541

The results are average performance on 8 test videos

yellow ellipses. The false positives in synopsis results are
represented using green rectangles.

The results in last row of Fig. 9 and last column of
Fig. 10, demonstrate the effectiveness of the proposed
approach that generates synopsis with almost no unpleasant

visual effects and false collisions. Compared to the video
synopsis methods in [7, 9, 27], and [16], our proposed
framework preserves the spatial and temporal interactions
among related tubes by maintaining their relative temporal
order in synopsis video.
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Fig. 8 Comparison of running times (in seconds) between state-of-the-
art video synopsis methods [7, 9, 16, 27] and proposed approach on 8
test videos

5.5.2 Subjective evaluation

For an additional evaluation of the usability and effective-
ness of the proffered approach, a subjective user study was

conducted among 20 participants, aged from 25 to 45 years.
They were asked to watch the original videos first, and then,
the corresponding synopsis videos. The participants were
requested to provide their ratings on four criteria, specified
in Table 6. For the first three questions, the participants were
asked to rate on a scale of 1 (worst) to 5 (best). In ques-
tion four, the participants were asked to provide a score of 1
for any one of the most satisfied synopsis video and a score
of 0, if not satisfied with any synopsis videos. The average
results of subjective feedback and related statistics of over-
all synopsis are illustrated in Fig. 11. We can see that the
proposed approach performed better in assuring a pleasant,
interaction-persevered synopsis video.

5.6 Complexity analysis

The computational complexity of proposed visualization
framework mainly depends on Algorithm 1 and Algorithm
2. The time complexity of the recursive grouping method
(Algorithm 1) in the proposed work is O(N2F), where
N and F denote the number of tubes and frames in the

Fig. 9 Visual comparison of
synopsis results. From top to
bottom: 1st, 2nd, 3rd, 4th and
5th rows corresponds to sample
frames from results using [7, 9,
16, 27], and proposed approach,
respectively. From left to right:
1st, 2nd and 3rd columns
corresponds to results of video
V1 in response to a visual query
for “large vehicles”, video V4 in
response to a visual query for
“cars and pedestrians”, and
video V7 in response to a spatio-
temporal query for “interacting
groups”, respectively
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Fig. 10 Visual comparison of synopsis results in response to spatial
queries. Top row: results of interested path of travel drawn on video
V5 in 1st column. Bottom row: results of ROI marked on video V1

in 1st column. From left to right: 2nd, 3rd, 4th, 5th, and 6th columns
corresponds to sample frames from results using [7, 9, 16, 27], and
proposed approach, respectively

Table 6 Subjective evaluation
questionnaire No. Question

1 Do you think the synopsis is “pleasant” to view?

2 Is this synopsis “compact” enough?

3 Do you think this synopsis “preserves original behavioral interactions” between tubes?

4 Which synopsis do you consider as “overall satisfied”?

Fig. 11 a Average scores of subjective feedbacks for questions 1 to 3. b User preferences for overall satisfied synopsis
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input video, respectively. The time complexity of proposed
the tube group rearrangement method (Algorithm 2) is
O(MPC), where M denotes the number of tube groups,
P denotes the feasible temporal positions of tube groups,
and C represents the number of cubes in space-time
synopsis volume. The time complexity of the proposed
framework mainly depends on the number of tubes,
relationships between tubes and synopsis length. Whereas
the computational time of the off-line synopsis methods in
[7] and [9] with complexities O(T N) and O(T N + XN),
respectively, will grow exponentially with an increase in the
number of tubes, where T is the feasible temporal positions
of tubes and X represents the search space of reduction
coefficients. The proposed work computes the relationships
between tubes in each tube group only once, while the
methods in [7] and [9] compute the energy between tubes in
each iteration of the optimization process. Hence, the total
time complexity of the proposed work is lesser that of the
time complexity reported in [7] and [9].

6 Conclusion

In this paper, we presented an interactive visualization
framework to generate user-oriented synopsis of surveil-
lance videos. Using arbitrary combinations of visual, spatial
and temporal attributes of tubes, users are allowed to cre-
ate queries with the support of a user-friendly GUI. Tubes
relevant to user’s query are selected, and related tubes are
grouped together, to preserve original interactions. False
tube collisions are minimized by the optimal rearrange-
ment of tube groups. The experimental results demonstrate
the usability and effectiveness of our proposed approach in
generating targeted synopsis videos.
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