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Abstract
Data mining is a widely used technology for various real-life applications of data analytics and is important to discover
valuable association rules in transaction databases. Interesting itemset mining plays an important role in many real-life
applications, such as market, e-commerce, finance, and medical treatment. To date, various data mining algorithms based on
frequent patterns have been widely studied, but there are a few algorithms that focus on mining infrequent or rare patterns.
In some cases, infrequent or rare itemsets and rare association rules also play an important role in real-life applications. In
this paper, we introduce a novel fuzzy-based rare itemset mining algorithm called FRI-Miner, which discovers valuable and
interesting fuzzy rare itemsets in a quantitative database by applying fuzzy theory with linguistic meaning. Additionally,
FRI-Miner utilizes the fuzzy-list structure to store important information and applies several pruning strategies to reduce the
search space. The experimental results show that the proposed FRI-Miner algorithm can discover fewer and more interesting
itemsets by considering the quantitative value in reality. Moreover, it significantly outperforms state-of-the-art algorithms in
terms of effectiveness (w.r.t. different types of derived patterns) and efficiency (w.r.t. running time and memory usage).

Keywords Quantitative data · Fuzzy-set theory · Rare pattern · Fuzzy data mining

1 Introduction

Association mining [1–3] of a transaction database is per-
formed to determine association rules between a set of item-
sets, for example, a set of events containing {diaper, beer}
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and {milk, bread}, which are often analyzed in market bas-
ket analysis. Several useful and interesting phenomena can
be explored based on the association rules. By discover-
ing the connection between items/objects, we can create a
suitable market plan, form a suitable marketing strategy [4–
6], and effectively apply the data to all types of analysis.
Different data-mining methods are used depending on the
requirements of various applications. The examples of such
methods include frequent pattern mining (FPM) [1, 3, 7],
utility-driven pattern mining [8–11], sequential pattern min-
ing [12–14], and rare pattern mining (RPM) [15–18]. FPM
is commonly adopted to extract association rules from a
transaction database. In general, association rules are cate-
gorized as “frequent” or “rare” according to the specified
minimum support threshold (minSup). “Frequent” refers to
common or anticipated phenomena, while “rare” represents
infrequent or previously unknown phenomena; thus, varied
information can be extracted from the database.

In real life, it is possible to buy multiple copies of the
same item in a transaction database, and mining association
rules from such a quantitative database is an important task.
The fuzzy set theory, which was first proposed by Zadeh in
1965 [19], is more suitable for dealing with quantitative val-
ues and expressing appropriate language values because it
can help people better understand knowledge. Each element
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in the fuzzy set can be assigned a membership degree to
indicate the degree to which it belongs, such as {A.low},
{B.mid}. Chan and Au [20] first proposed an Apriori-like
[1], namely F-APACS, to discover fuzzy association rules.
Kuok et al. [21] proposed a method for processing quantita-
tive data. Hong et al. [22] proposed an FDTA algorithm to
process a quantitative database. In contrast to these Apriori-
like algorithms, several fuzzy pattern mining algorithms
based on tree structures were proposed. Lin et al. [23]
proposed a fuzzy frequent pattern tree that can effectively
discover fuzzy frequent itemsets (FFIs). Lin et al. [24] pro-
posed a compressed FFP (CFFP)-tree algorithm. Although
this CFFP-tree-based algorithm can reduce the number of
tree nodes by using an additional array on each node, it is
requires computational expenses to save the array. In addi-
tion, if the transactions are large, the spatial complexity of
each node is high. Therefore, Lin et al. [25] proposed the
UBFFP-tree algorithm to solve the problem of CFFP-tree
overhead, which uses the same global sort strategy as in
CFFP-tree to construct trees. Each term in the transaction
is obfuscated by retaining only the language terms with the
largest cardinality later in the process. Subsequently, Lin
et al. [26] proposed the FFI-Miner algorithm to discover
a complete set of FFIs without generating candidates. By
adopting the fuzzy-list structure, the necessary information
is preserved in the mining process. They also proposed an
effective pruning strategy that can reduce the search space
and further accelerate the mining process. Some effective
algorithms for mining FFIs for association rules are still
being studied.

Fuzzy-based data mining is simple and similar to human
reasoning. According to the algorithms mentioned above, a
fuzzy theory has been extensively developed [19] for appli-
cation to FPM. However, the rare pattern mining (RPM)
remains to be explored further. FPM, which is relatively
mature, can find often-appearing or expected phenomena. In
contrast, RPM can usually discover unknown or unexpected
phenomena. Based on the existing algorithms, it is known
that RPM can discover phenomena that are important in real
life. For example, we assume that A and B represent two
symptoms, and C represents a disease. In general, symptom
A may lead to disease C. After rare pattern mining, we may
find that symptom B also leads to disease C, which will be
of great help to the medical industry. The performance of
students with poor scores can also be determined, and their
learning conditions can be adjusted accordingly. Apriori-
like algorithms were initially used to determine frequent
or rare association rules. If the minimum support (minSup)
threshold is set extremely small, explosive growth occurs.
However, if it is set extremely large, some useful associa-
tion rules may be ignored. Based on the above problems,
we attempt to use two thresholds, the minimum rare support
(minRSup) and the minimum frequent support (minFSup),

to achieve a better effect. As mentioned before, a quanti-
tative transaction database can be processed with linguistic
meaning using fuzzy theory. In the FFI-Miner algorithm
[26], which aims to mine FFIs, while fuzzy rare but quite
interesting itemsets are ignored.

To the best of our knowledge, RPM based on fuzzy the-
ory has not yet been studied. To this end, a novel algorithm
named FRI-Miner for mining fuzzy rare itemsets (FRIs)
from a quantitative transaction database is proposed in this
paper. The major contributions of this study are as follows.

1. This study is the first to formulate the problem of fuzzy
RPM with linguistic meaning. The proposed fuzzy-
list-based FRI-Miner algorithm addresses this problem
successfully. As a fuzzy-theoretic data-driven model, it
is explainable and similar to human reasoning that is
more useful for decision making.

2. Fuzzy rare itemsets in FRI-Miner are categorized into
three types: (1) containing only fuzzy rare items; (2)
containing any combination of fuzzy rare items and fuzzy
frequent items; and (3) containing only fuzzy frequent
items. The first type is easy to understand; in the third
type, fuzzy frequent itemsets that are themselves fre-
quent may actually be fuzzy rare itemsets.

3. Several pruning strategies that utilize the properties of
fuzziness, rare pattern, and fuzzy support are designed
to successfully reduce the search space of FRI-Miner.

4. Experiments on several benchmark databases are con-
ducted to show that the proposed FRI-Miner algorithm
has better effectiveness and mining efficiency com-
pared to those of existing methods.

The remainder of this paper is organized as follows: In
Section 2, we review previous related work in the field of
FPM and RPM. In Section 3, we present the definition and
basic concepts of rare itemsets and fuzzy theory and then
formulate the problem of FRI mining. The details of the
proposed FRI-Miner algorithm are presented in Section 4.
In addition, we use an example to illustrate the details
of FRI-Miner for ease of understanding. The experimental
evaluation is provided in detail in Section 5. Finally, the
conclusions and future work are presented in Section 6.

2 Literature review

In this section, we briefly discuss fuzzy pattern mining and
RPM. Then, we highlight the importance of fuzzy RPM and
further discuss several applications.

2.1 Fuzzy patternmining

According to the existing FPM algorithms, the data types
can be roughly categorized as Boolean, ordered, or quantitative
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[2, 3, 7]. Traditional FPM aims at processing data that
do not contain quantitative values, although quantitative
data are common in real life. To solve the processing
problem of a quantitative database, the quantitative value of
a project can be converted into a language term with a fuzzy
degree by using fuzzy set theory [19]. Meaningful fuzzy
association rules can be discovered in real life. The addition
of fuzzy concepts fuzzifies the quantitative values. This is
also convenient to better understand the true meaning of the
data and make the data simpler and easier to understand.
For example, if the database does not contain the quantity
value corresponding to each item, then the frequency of
the item is only related to the Boolean value. However, for
databases containing quantitative values, the frequency of
occurrence of each item is determined by the quantitative
values of the items.

Frequent itemset mining based on fuzzy theory was
further elaborated by the Apriori algorithm [1]. Fuzzy
association rules are induced by the hierarchical intelligent
mining of the FFI. First, according to the predefined
membership function, the quantization value of the item
is converted into a language term, which not only reflects
the occurrence frequency of the item in the database,
but also reflects the support of the itemset. Therefore,
several algorithms for mining fuzzy itemsets that meet the
minimum support threshold through deterministic factors
have been designed. The F-APACS algorithm for mining
fuzzy association rules was first proposed by Chan and Au
[20]. Kuok et al. [21] proposed an algorithm by processing
quantitative attributes to discover fuzzy association rules,
and Hong et al. [22, 27] proposed the FDTA algorithm
to process quantitative databases using fuzzy set theory.
Subsequently, a fuzzy frequent pattern tree [28] was
proposed. Several tree-based algorithms for mining FFIs
have been proposed [23, 25], which are based on the FP-
growth method [29] for mining frequent itemsets. These
algorithms first construct a tree structure of fuzzy frequent
items through the reserved frequent itemsets and then
further extract more fuzzy frequent patterns from the
constructed tree structure. However, the mining process
with a pattern-growth mechanism [29] is often complicated
and requires the storage of numerous tree nodes with
additional information. To summarize, all these fuzzy-
based FPM algorithms can only discover expected frequent
phenomena.

2.2 Rare patternmining

Based on the Apriori algorithm [1], many frequency-based
data mining algorithms have been extended, but the mining
results mostly correspond to common or expected phenom-
ena. To address this, another data mining framework, rare
pattern mining (RPM) [16, 30–32], has been introduced,

and many algorithms for RPM have been proposed in recent
years. In contrast to frequent and common patterns, dis-
covering rare patterns may be more useful in some cases
(e.g., itemsets and association rules), which are important
for real-life applications.

Most of static rare itemset mining algorithms can be
roughly divided into support threshold, no support thresh-
old, and constraints [16]. Because we use the support
threshold in this study, we provide a brief overview of RPM
with the support threshold. Because the support threshold
for rare itemsets is lower than that for frequent itemsets,
the generation of rare itemsets is better realized by setting
lower or distinct support thresholds. To address the “rare
item problem” in FPM, in 1999, Liu et al. [33] proposed
the MSApriori algorithm that adopted multiple minimum
supports (MMS) to successfully discover rare itemsets. In
contrast to this Apriori-like method, several set-enumeration
tree based methods were proposed for RPM, such as the
frequency-driven FP-ME algorithm [30] and the utility-
driven HUIM-MMU [34] and HIMU [35] algorithms. The
Apriori-reverse algorithm proposed by Koh and Rountree
[36] aims to discover rare rules with respect to completely
dispersed itemsets, which only contain items below the
maximum support threshold. Later, a rare itemset mining
algorithm (ARIMA) was proposed by Szathmary et al. [17].
Troiano et al. [37] introduced the rarity algorithm, which
is a top-down rare itemset mining algorithm. Up to now, a
number of RPM algorithms have been extensively proposed,
such as CFP-growth++ [15]. Among them, several studies
are designed to deal with dynamic data streams [38–40].
There are numerous candidates for most algorithms based
on Apriori mechanism. The RP-tree-based algorithm [18]
discovers rare patterns that meet the conditions between
minRSup and minFSup.

2.3 Applications of fuzzy rare patternmining

For some real applications, unusual rare patterns are more
important and useful than frequent ones. In some applica-
tion domains, RPM is more suitable for intelligent systems.
The result of network intrusion can be obtained by detect-
ing whether the network is abnormal. In medicine, sudden
changes are diagnosed by finding data that are different
from those corresponding to normal health. In an insurance
company, by finding rare people who need high-risk claims,
making reasonable marketing strategies, and so on. In recent
years, the field of RPM [16] has been further developed. The
emergence of the RPM has also made a significant contri-
bution to the research community. However, these previous
RPM algorithms rarely involve fuzzy theory. In contrast,
many FPM algorithms based on fuzzy theory have been
widely used in the mining of quantitative data, while RPM
dealing with quantitative data is extremely rare. To the best
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of our knowledge, RPM dealing with Boolean or quantita-
tive data based on fuzzy theory has not yet been studied.
To this end, we propose an effective algorithm that uses
fuzzy theory to discover the interesting rare patterns from a
quantitative transaction database.

3 Preliminaries and problem formulation

In this section, we introduce some basic concepts, principles
of fuzzy-driven pattern mining and RPM. Some definitions
in previous research are adopted here to present common
concepts clearly. Further details regarding the background
of the fuzzy FPM can be found in Ref. [23, 26].

3.1 Preliminaries

I = {i1, i2, . . . , im} represents a finite set I composed of m

different items.D = {t1, t2, . . . , tn} represents a transactional
database D (1 ≤ q ≤ n) composed of n different items, in
which each transaction tq is a subset of I. Each transaction
contains a unique identifier tid, and each item lists the
number of quantities as viq . If an itemset consists of k
different items, we call it k-itemset, and if each item in
the k-itemsets is included in the transaction tq , we call the
itemset a subset of the transaction tq . The minimum support
is defined as minRSup, and the maximum support is defined
as minFSup. The specified member function is set to μ,
which can be adjusted according to the user’s needs. In this
study, all items in our database are represented using a single
fuzzy membership function, as shown in Fig. 1. We set three
language terms in the adopted membership functions: low,
middle, and high. The quantitative value of each item is
obscured by the samemember function as the corresponding
language term.

In this paper, we present a running example using a
quantitative transactional database, as shown in Table 1.
There are six items, (A), (B), (C), (D), (E), (F), and eight
transactions {t1, t2, . . . , t8}. We set the minimum support
threshold to minRSup (= 25%) and the maximum support
threshold tominFSup (= 50%). The idea is to filter out items
that seem insensible and similar to noise; thus, this can help
to reduce unnecessary search space.

Definition 1 (The attributes of a quantitative database)
They are represented by the language variable Ri , and
the fuzzy language terms are represented by the natural
language as (Ri1, Ri2, . . . , Ril). Ri can be defined by the
membership function μ.

For example, in this study, the membership function μ

applied in the running example is shown in Fig. 1. There
are five items in Table 1: (A), (B), (C), (D), (E), and

(F). The three language terms are expressed as Low(L),
Middle(M), and High(H). In transaction t1, item B is
denoted by (B.L), (B.M), and (B.H), as shown in Fig. 1.
The other items in these transactions are calculated similarly
to those of item B.

Definition 2 (The quantitative value of an item) In the
quantitative database, the value of an item is expressed as
viq , which represents the number of this item i in transac-
tion tq .

For example, in transaction t2, the quantitative values
of the items as (B) and (D) are vB2 (= 8) and vD2 (= 3),
respectively. Here, we can clearly see what it means.

Definition 3 (Fuzzy set) In the fuzzy stage, a fuzzy set
refers to the set of fuzzy language terms with a membership
degree (fuzzy value) converted from the quantitative value
viq of the item i in the transaction database tq by the
membership function μ. Its specific expression is as
follows:

fiq = μi(viq) =
(

f viq1

Ri1
+ f viq2

Ri2
+ · · · + f viqh

Ril

)
, (1)

where l refers to the number of fuzzy language terms
in which the membership function μ converts to I, Ril

represents the l-th fuzzy language term of item i, and f viql

represents the membership of item i in the quantitative value
viq (fuzzy value) of the l-th fuzzy language term Ril’s,
where f viql ⊆ [0, 1].

For example, in transaction t2, we convert the quantitative
value of the items in Table 1 to the membership degree
using the membership function. Here, we provide a detailed
description of the quantitative value of (B) in Fig. 1 as(

0.6
B.L + 0.4

B.M

)
. The transformation of all other transactions

is similar to the transformation of item (B) in transaction t2.
The specific results are listed in Table 2.

Definition 4 (Membership degree) The support after the
membership function is converted to membership degree
and expressed as sup(Ril). The sum of the scalar cardinality
of the fuzzy value of Ril is expressed as:

sup(Ril) =
∑

Ril⊆tq∧tq∈Q′
f v, (2)

where database Q′ is the database transformed by the
membership function μ, which is the same as the original
database D.

For example, the support of the fuzzy terms (B.M)
appears in transactions t1, t2, t3, t4, t5, t6, t7, and t8, as shown
in Table 2. Thus, its support in the running database can be
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Fig. 1 The used linear
membership functions of
linguistic 3-terms

1

Membership
value

1 6 11 Amount

MiddleLow High

calculated as sup(B.M) = 0.8 + 0.6 + 0.6 + 0.8 + 0.8 + 0.8
+ 0.6 + 0.8 = 5.8.

Definition 5 (The minimum fuzzy value of an k-itemset)
An itemset X is composed of k-items (k ≥ 1), and its support
degree is expressed as sup(X), which represents the sum of
the minimum fuzzy values of k-items contained in X. The
definition is as follows:

sup(X) = {X ∈ Ril |
∑

X⊆tq∧tq∈Q′
min(f vij ql, f vimql),

ij , im ∈ X, ij /∈ im}, (3)

where the items in X do not intersect each other.

For example, the fuzzy 2-itemset (A.L, D.H) appears in
transactions t1, t3, t6, and t7, as shown in Table 2. Thus,
the support of (A.L, D.H) can be calculated as sup(A.L,

D.H) = {min(0.6, 0.8) + min(0.6, 0.6) + min(0.8, 0.2) +
min(0.8, 0.6)} = {0.6 + 0.6 + 0.2 + 0.6} = 2.0. Note that
here the fuzzy-based support is different from the support
concept of FPM, and the later equals to the number of
transactions contains X.

In a transaction database, the mining of some common
itemsets aims at discovering frequent itemsets. In previous

Table 1 A quantitative database

tid Transaction

t1 A:3, B:5, D:10, E:9

t2 B:8, D:3

t3 A:3, B:8, D:9, F :5

t4 B:5, C:4, D:11, E:2

t5 B:7, C:3, D:5, F :3

t6 A:2, B:5, C:3, D:7

t7 A:2, B:4, D:9, F :2

t8 B:5, C:2, D:10, E:3

methods, a minimum frequent supportminFSup is generally
set, and itemsets that meet the minFSup specified by the
user are preserved. Thus, more frequent itemsets that meet
these criteria are discovered. For RPM, we set the minimum
rare support minRSup. RPM discovers itemsets that meet
the criteria of minRSup. However, the support of these
rare itemsets cannot be greater than that of minFSup. For
example, we assume that sup(A) = 1.0, and sup(B) = 2.5. If
we set the minRSup to 2.0, and the minFSup to 3.0, then, we
find that item A does not meet the minRSup. The support
of item B is greater than that of minRSup and less than
minFSup. Thus, item B is a rare pattern that we intend to
discover.

Definition 6 (Fuzzy rare itemset) Considering quantita-
tive data, the user specifies the specific minimum rare
support threshold and minimum frequent support threshold,
which are minRSup and minFSup, respectively. Only the
itemsets that satisfy two conditions can be considered as
fuzzy rare itemsets (FRIs), as follows:

FRIs ← {X| minRSup × |D| ≤ sup(X)

≤ minFSup × |D|}. (4)

Table 2 Transformed results from Table 1

tid Fuzzy transaction

t1
0.6
A.L + 0.4

A.M , 0.2
B.L + 0.8

B.M , 0.2
D.M + 0.8

D.H , 0.4
E.M + 0.6

E.H

t2
0.6

B.M + 0.4
B.H , 0.6

D.L + 0.4
D.M

t3
0.6
A.L + 0.4

A.M , 0.6
B.M + 0.4

B.H , 0.4
D.M + 0.6

D.H , 0.2
F .L + 0.8

F .M

t4
0.2
B.L + 0.8

B.M , 0.4
C.L + 0.6

C.M , 0
D.M + 1

D.H , 0.8
E.L + 0.2

E.M

t5
0.8

B.M + 0.2
B.H , 0.6

C.L + 0.4
C.M , 0.2

D.L + 0.8
D.M , 0.6

F .L + 0.4
F .M

t6
0.8
A.L + 0.2

A.M , 0.2
B.L + 0.8

B.M , 0.6
C.L + 0.4

C.M , 0.8
D.M + 0.2

D.H

t7
0.8
A.L + 0.2

A.M , 0.4
B.L + 0.6

B.M , 0.4
D.M + 0.6

D.H , 0.8
F .L + 0.2

F .M

t8
0.2
B.L + 0.8

B.M , 0.8
C.L + 0.2

C.M , 0.2
D.M + 0.8

D.H , 0.6
E.L + 0.4

E.M
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We take an example of 1-itemset. Through the calculation
of the fuzzy values, we find that sup(A.L) = 2.8, sup(B.M)

= 5.8, sup(C.L) = 2.4, and sup(D.H) = 4.0. According to
the definition of FRIs, we find that (A.L) and (C.L) are rare
itemsets, whereas (B.M) and (D.H) are frequent itemsets.

3.2 Problem statement

To date, many algorithms have been developed for mining
frequent patterns in quantitative databases. Corresponding
with the emergence of quantitative values, fuzzy theory
has also merged. Therefore, a mining algorithm for fuzzy
frequent patterns is proposed accordingly. However, there
are many interesting but rare patterns that are ignored,
mostly because of setting a low support.

In this study, the problem of fuzzy rare pattern mining
(fuzzy RPM for short) is formulated as follows. Given
a quantitative database, the specific minimum support
threshold and maximum support threshold, which are
minRSup and minFSup, respectively. The goal of fuzzy
RPM is to discover the complete set of FRIs that satisfies
two conditions.

4 Proposed fuzzymining algorithm:
FRI-miner

For the mining of quantitative databases, previous studies
have shown that fuzzy theory can play an important role.
Through many previous statements, we find that it has been
relatively mature in the mining of frequent itemsets, while
RPM based on fuzzy theory has not yet been studied. In
this study, we apply fuzzy theory to process the quantitative
database, obtain the candidates, and finally discover FRIs by
using the fuzzy-list structure [26]. In summary, the specific
steps of the FRI-Miner algorithm include: 1) fuzzification
phase, 2) construction of fuzzy-list, and 3) recursively
mining FRIs, which are presented as follows.

4.1 Fuzzification phase

FRI-Miner first fuzzes the quantitative database and con-
verts viq in quantitative data into the membership degree
of the corresponding fuzzy terms through a membership
function. Next, it forms a new fuzzy database by using the
maximum scalar cardinality and support-ascending order.

Definition 7 (Maximum scalar cardinality) For an item
i, it uses the corresponding fuzzy term Ril to denote its
corresponding quantitative value viq . In the expressed fuzzy
terms, we find the fuzzy terms that should be reserved
according to the maximum scalar cardinality. This can
represent the corresponding language variables as item i.

For example, in Table 2, the transformed fuzzy terms
with their summed fuzzy values of the linguistic variable (A)
are (A.L: 2.8, A.M: 1.2, A.H: 0). Thus, the fuzzy term (A.L)
is used to represent the linguistic variable of (A), which can
be used for the later mining process of FRIs.

Based on the reserved Ril of the maximum scalar car-
dinality, the fuzzy quantitative database was modified to
form a new fuzzy-based database. The revised database
from Table 2 is presented in Table 3. Fuzzy items reserved
by each transaction tq are then sorted into ordered fuzzy
items according to the support-ascending order. Note that
the items retained here meet the minimum level of support.
In addition to rare items, these items also have frequent
items. The cross combination between them produces a new
itemset that meets the two conditions.

Definition 8 (The support-ascending order) In the fuzzy
transaction database, fuzzy items that satisfy the fuzzy value
condition are retained according to the maximum scalar
cardinality in the transaction tq . Based on the fuzzy values
of the reserved fuzzy items, they are sorted according to
the support-ascending order to prepare for the subsequent
computation.

For example, we can obtain the result through the trans-
formed fuzzy database, based on the maximum scalar
cardinality and the support-ascending order.

4.2 Fuzzy-list construction phase

In FRI-Miner, first, viq in a quantitative database is con-
verted into a membership degree corresponding to the cor-
responding fuzzy terms through the membership function.
Then, we form a novel fuzzy database and then construct
the corresponding fuzzy-list structure [26]. We keep the
fuzzy terms in L1, which uses three fields that make up the
fuzzy-list: the transaction identifier (tid), the internal fuzzy
value (if ), and the remaining fuzzy value (rf ). We briefly
introduce these details.

Table 3 A revised database

tid Fuzzy transaction

t1
0.6
A.L ,

0.8
D.H , 0.8

B.M

t2
0.6

B.M

t3
0.6
A.L ,

0.6
D.H , 0.6

B.M

t4
0.4
C.L ,

1.0
D.H , 0.8

B.M

t5
0.6
C.L ,

0.8
B.M

t6
0.6
C.L ,

0.8
A.L ,

0.2
D.H , 0.8

B.M

t7
0.8
A.L ,

0.6
D.H , 0.6

B.M

t8
0.8
C.L ,

0.8
D.H , 0.8

B.M
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Definition 9 (Transaction identifier) It represents a fuzzy
term Ril in transaction tq , which is a subset of the
corresponding transaction in tq is denoted as Ril ⊆ tq . Here,
we use the corresponding (tid) to represent the presence in
that transaction.

According to the initial construction of the fuzzy-list, as
shown earlier in L1, the support ascending order is used
to obtain (C.L < A.L < D.H < B.M) in Fig. 2. For
example, in Table 3 and Fig. 2, the fuzzy item (B.M) exists
in t1, t2, t3, t4, t5, t6, t7, and t8.

Definition 10 (Internal fuzzy value) The fuzzy value (if )

of the fuzzy term Ril in the transaction tq is denoted as
if (Ril, tq).

For example, in Table 3, the internal fuzzy values of
(B.M) in t1 and t2 are if (B.M, t1) = 0.8, and if (B.M, t2)

= 0.6, respectively.

Definition 11 (The resting fuzzy value [26]) In the
fuzzy-list, the resting fuzzy value of Ril is expressed as
rf (Ril, tq). It represents the maximum fuzzy value obtained
by performing a union operation. In other words, the upper
bound value of all fuzzy terms Ril in tq , as shown in Fig. 2.
It is defined as:

rf (Ril, tq) = max{if (z, tq)|z ∈ (tq/Ril)}. (5)

According to Table 3, formed by the support-ascending
order, the rf (C.L, t4) is calculated as max{0.8, 1.0} = 1.0,
and rf (C.L, t5) is calculated as max{0.8} = 0.8, the rf (C.L,
t6) is counted as max{0.8, 0.2, 0.8} = 0.8, and the rf (C.L,
t8) is max{0.8, 0.8} = 0.8. Details of the fuzzy-list structure
can be referred to Ref. [26].

In Fig. 2, we can observe that the element (4, 0.4, 1.0)
in the constructed fuzzy-list structure of (C.L) indicates
(tid, if, rf ), 4 represents the transaction t4, 0.4 represents

the internal fuzzy value is 0.8, and 1.0 represents the resting
fuzzy value after (C.L) is 1.0. The other information for the
fuzzy item is similarly represented.

The fuzzy-list of the 1-itemset performs the intersection
operation to form a new fuzzy-list structure of k-itemsets
(k ≥ 2). In the recombination process, the ones with the
same t id are combined. Except for the item that needs to
be calculated, the internal fuzzy value of the transaction
corresponding to all eligible fuzzy k-items (k ≥ 2) takes the
minimum value of the merged item as the remaining fuzzy
value. In Fig. 3, the combined results of fuzzy 2-itemsets are
shown as (C.L, A.L), (C.L, D.H), (C.L, B.M), and so on.

According to the similar fuzzy-list in Fig. 2, we obtain
the corresponding values of the three columns, and the
corresponding support can be obtained according to the
values of the second and third columns. They are defined as
follows:

Definition 12 In the fuzzy-list, we can calculate the sum
of the inner fuzzy values of an itemset Ril in a quantitative
database, and it is denoted as SUM(Ril .if ) [26] and is
defined as follows:

SUM(Ril .if ) =
∑

Ril⊆tq∧tq∈Q′
if (Ril, tq). (6)

For example, in Fig. 2, the sum of the internal fuzzy values
of (C.L) in D is calculated as (0.4 + 0.6 + 0.6 + 0.8) = 2.4.

Definition 13 In the fuzzy-list, we calculate the sum of the
resting fuzzy values of Ril in the quantitative database D is
defined as SUM(Ril .rf) [26]. Here, the rf value is calculated
from the third column as follows:

SUM(Ril .rf ) =
∑

Ril⊆tq∧tq∈Q′
rf (Ril, tq). (7)

For example, in Fig. 2, the sum of the resting fuzzy values
for (C.L) in D is calculated as (1.0 + 0.8 + 0.8 + 0.8) = 3.4.

Fig. 2 The constructed
fuzzy-list structures
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Fig. 3 The fuzzy-lists of fuzzy 2-itemsets

The fuzzy value in the fuzzy-list was used to obtain the
total support. Here, we use the support-ascending order to
construct a set of fuzzy-lists. According to the measurement
of the support of the corresponding item, we obtain the rare
itemsets between the support tends to the minimum and
the maximum specified support threshold, and the fuzzy
itemsets with the support above the maximum support. We
also obtain a set of items that we can intersect further in
Fig. 3. Then, it sorts the results according to the support-
ascending order and adopts the pruning strategies to prune
the search space with respect to an enumerated tree [41].
Then, the 1-itemset is gradually expanded to 2-itemsets, 3-
itemsets, and other combinations, which are shown in Fig. 4.
Finally, a set of rare itemsets that satisfy support can be
obtained.

In Fig. 4, we narrow the search space by pruning to
remove items below the minimum threshold. The remaining
items are combined to form a new k-itemset. The structure
of the fuzzy-list of the k-itemset is similar to that of the
1-itemset. The specific description is as follows:

Theorem 1 According to the concept of FRIs, for an itemset
X in the fuzzy-list structure, if its SUM(X.if) is no less
than the minimum fuzzy rare support and no more than
the maximum fuzzy frequent support, it is seen as a FRI.
If min(SUM(X.if), SUM(X.rf)) of X is no less than the
minimum fuzzy rare support, new itemsets are required to
be generated. If the sum of the resting fuzzy values of Ril is
no less than the minimum fuzzy rare support (minRSup ×
|Q′|), extensions of Ril may be a FRI. If the summation of
the resting fuzzy values of Ril is smaller than the minimum
fuzzy rare support, any extensions of Ril will neither be a
FRI nor a FFI. Thus, there is no need to construct a new
fuzzy-list structure for its extension.

Proof For ∀tq ⊇ X′, suppose fuzzy term Ril is denoted
as X, and X’ is the extension of X (X ⊂ X′ ⊆ tq ⇒
X′.t ids ⊆ X.t ids), thus (X′ − X) = (X′/X) and (X′/X)

⊆ (tq/X). Since if (X′, tq) = min{if (X, tq), rf (Ril , tq)},
it holds if (X′) = SUM(X.rf) [26]. Thus, with the definition
of a FRI, both minRSup and minFSup are able to determine

Fig. 4 An enumeration tree of
the used example

1-level 

C.L < A.L < D.H < B.M

……

…… 2- level 

……

root

C.L          A.L        D.H        B.M

(C.L, A.L)    (C.L, D.H)    (C.L, B.M) (A.L, D.H)    (A.L, B.M)

(C.L, A.L, D.H)    (C.L, D.H, B.M) 3- level 

4- level (C.L, A.L, D.H, B.M)
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the promising candidates for FRIs by quickly pruning the
search space.

For example, we can consider the 3-itemsets (A.L, D.H,
B.M), which is an extension of 2-itemsets (A.L, D.H).
Because the sum of the resting fuzzy values of (A.L, D.H)

is calculated as (0.8 + 0 + 0.8 + 0.4) = 2.0. The extension
(A.L, D.H , B.M) in the search space of FRI-Miner with
respect to an enumeration tree [41] must be generated. For
the 3-itemsets (C.L, A.L, D.H), which is the extension of
2-itemsets (C.L, A.L), the sum of the resting fuzzy values
of (C.L,A.L) is calculated as 0.8< 2.0. Thus, the extension
of (C.L, A.L, D.H) is unnecessary because the fuzzy value
of the 3-itemsets is lower than the specified minimum fuzzy
value. A detailed description of the FRI-Miner algorithm is
presented in the following section. The pseudocode for the
construction of the fuzzy-list here is similar to that of the
frequency-based FFI-Miner algorithm [26].

4.3 Fuzzy rare itemset mining phase

Note that we have learned about both rare and frequent
itemsets from the previous sections. In this section, we go
into more details about the mining processes of FRIs. In
general, there are three types of rare itemsets, as follows:

1. The itemsets with only fuzzy rare items: all items in an
itemset are rare, and the itemset may be rare.

2. The itemsets with fuzzy rare and fuzzy frequent items:
an itemset that contains rare and frequent items internally
may be a rare itemset. For example, we can calculate the
sum of the inner fuzzy values of itemset (A.L) is calcu-
lated as (= 2.8 > 2.0), and the sum of the inner fuzzy
values of the itemset (D.H) is calculated as (= 4.0≥ 4.0),
but we can calculate the sum of the inner fuzzy values of
the itemset (A.L, D.H) is calculated as (= 2.0 ≥ 2.0).

3. The itemsets with only fuzzy frequent items: an itemset
in which all items are frequent may be rare. For
example, we can calculate the sum of the inner fuzzy
values of the itemset (D.H) as 4.0. The sum of the inner
fuzzy values of the itemset (B.M) is calculated as (=
5.8 > 4.0), but the value of the itemset (D.H, B.M) is
calculated as (4.0 > 3.8 > 2.0).

In the above discussion, we have carried out detailed
concepts, data structure, theorem, and strategies of the
proposed FRI-Miner algorithm. Algorithm 1 describes the
complete details of FRI-Miner for discovering FRIs. Notice
that the itemset that satisfies SUM(X.if) ≥ minRSup ×
|D| will be rare or frequent (lines 2-3), and it is used to
generate the new itemsets (extensions of X, lines 11-12).
This guarantees the correctness and completeness of the
final discovered results of FRI-Miner.

According to the above pseudo-code, it can be known
that the quantitative database as follows shown in Table 1 is
converted to a fuzzy database as follows shown in Table 2
at the beginning of the algorithm, and the membership
functionμ is used to blur the quantitative value at this phase.
The fuzzy items in the fuzzy database obtained in the first
phase are clearly planned in the fuzzy-list structure, and
the fuzzy value that meets the user-specified threshold is
selected by the maximum scalar cardinality and support-
ascending order strategy. It keeps the rare and frequent items
that meet the conditions and outputs rare items. It combines
the remaining fuzzy items in a tree structure and deletes
the itemsets that do not meet the conditions through the
pruning strategy. Finally, it outputs complete FRIs that meet
the conditions.

5 Experimental evaluation

In this study, we address the problem of mining FRIs
in a quantitative database. To the best of our knowledge,
FRI-Miner is the first fuzzy-based algorithm for mining
rare itemsets with linguistic meanings. It can discover rare
itemsets that satisfy the two conditions of fuzzy values.
The RP-Growth algorithm [18], which aims to mine rare
itemsets, was selected as the baseline to evaluate the validity
and performance of the proposed FRI-Miner algorithm.
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Fig. 5 Runtime vs. minSup/maxSup

A total of six benchmark datasets were used in this exper-
iment: retail, accidents, foodmart, chess, mushroom, and
kosarak. Real-life datasets are available in a public reposi-
tory.1 Their characteristics and descriptions can be found in
previous studies [7, 42]. All algorithms were implemented
using Java language and executed on an Intel Core 6 Duo 3.00
GHz machine with 8 GB of RAM running Windows 10.

We transform the quantitative datasets according to
a predefined membership function. For the foodmart
dataset, we used a different membership function, which
is [100, 600, 1100]. The reason is to ensure that the data
in the dataset are evenly distributed in the set membership
function, so that the final result obtained is more accurate.
The other datasets were distributed between the specified
[1, 21, 31]. According to the previous algorithm, to evaluate
the performance of the compared algorithms, we analyzed
them from three aspects: running time, memory usage, and
the number of generated patterns. For example, the changes
in runtime can reflect whether the designed data mining
algorithm is acceptable within a reasonable execution time.
The results obtained with the compared algorithms are
shown in Figs. 5, 7, Table 4, and Fig. 8, respectively. The
detailed results are as follows.

5.1 Effectiveness

As mentioned before, FPM and RPM are two different
mining tasks. Moreover, the fuzzy-theoretic-based RPM

1http://www.philippe-fournier-viger.com/spmf/

is also different from the traditional RPM. In the mining
rare itemsets, two thresholds minRSup and minFSup are
set in FRI-Miner. As shown in Table 4 and Fig. 5, the
constraints of the two thresholds further enable the FRI-
Miner algorithm to run efficiently, shorten the running time,
and identify meaningful rare itemsets. First, FRI-Miner uses
minRSup to remove itemsets that are lower than minRSup;
that is, these itemsets without practical significance. Then,
fuzzy-based rare itemsets are discovered from the potential
candidates. In the experiments, minRSup and minFSup are
expressed as minSup and maxSup, respectively, as shown
in Table 4. Note that the number of #FRIs is derived
by FRI-Miner, and the number of #RIs is derived by the
RP-Growth.

In general, in the experimental process, the running time
reflects the execution efficiency of the algorithm. According
to the experimental results, we find that the running time of
the FRI-Miner algorithm is relatively constantly shortened,
and the number of discovered patterns also increases. This
RP-tree-based RP-Growth algorithm is also a prominent
algorithm in mining rare itemsets, and FRI-Miner is also
based on its efficient performance.

It can be observed that the setting of two thresholds also
affects the mining time of the itemset. In addition, normal
behavior/patterns often appear in the form of infrequent
itemsets, but fewer rare behaviors/patterns can be found
with FRI-Miner using fuzzy theory. For example, consider
the retail dataset, when setting parameters as minSup from
95 to 100, and maxSup from 200 to 500, the number of FRIs
is changed from 1,261 to 1,593, while the number of RIs can
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Table 4 Number of patterns (candidates and final results) under various parameter settings

# of patterns under various parameter settings

test1 test2 test3 test4 test5 test6 test7

(a) accidents minSup 100 100 100 100 200 200 200

maxSup 250 300 350 400 250 300 350

#FRIs 6,638 10,791 17,966 29,032 837 1,516 2,293

#RIs 387,624 539,064 2,924,992 3,697,552 500 1,656 28,868

(b) foodmart minSup 5 5 5 10 10 10 10

maxSup 13 15 17 13 15 17 20

#FRIs 4,514 7,905 9,525 4,263 7,654 9,274 10,031

#RIs 930 1,223 1,402 554 847 1,026 1,145

(c) chess minSup 100 100 100 150 150 150 150

maxSup 200 300 400 200 300 400 500

#FRIs 1,448 18,780 99,014 187 2,013 12,886 59,374

#RIs 16,414,992 50,739,408 675,273,704 122,040 1,309,176 64,897,692 237,222,940

(d) kosarak minSup 1000 1000 1000 1500 1500 1500 1500

maxSup 3000 3500 4000 3000 3500 4000 4500

#FRIs 2,242 2,395 2,546 801 882 977 1,052

#RIs 642,536 654,922 661,168 195,507 198,575 201,007 202,013

(e) mushroom minSup 100 100 100 150 150 150 150

maxSup 200 300 400 200 300 400 500

#FRIs 1,344 5,862 15,405 243 1,185 3,062 5,185

#RIs 364,992 1,269,244 1,915,464 360,512 475,200 882,000 2,383,752

(f) retail minSup 95 95 95 95 100 100 100

maxSup 200 300 400 500 200 300 400

#FRIs 1,261 1,581 1,734 1,795 1,128 1,441 1,593

#RIs 1,740 3,244 3,887 4,378 1,493 2,929 3,552

reach 1,740 to 3,552. It is clear that the two types of patterns,
FRIs and RIs, are different, and the fuzzy-based patterns
have more useful meaning. Thus, the concept of FRI has
excellent fuzzy modeling capabilities and has a linguistic
meaning.

5.2 Efficiency w.r.t. runtime

Runtime vs. support The effects of the minSup and maxSup
thresholds were evaluated first. For each dataset, we
uniquely specified the corresponding thresholds. When the
minimum support threshold we choose continues to increase
and the maximum support threshold remains unchanged,
we find that the running time of FRI-Miner will continue
to decrease. The results of the detailed experiments are
shown in Fig. 7a–f. Similarly, when the minimum support
threshold is unchanged and the maximum support threshold
continuously increases, the running time continuously
increases as the mining range increases. These results are
shown in Fig. 6a–f. For RP-Growth previously studied, it
is a mining rare itemsets algorithm based on the RP-tree
structure. This is especially true when minSup is set to be

very small, and the runtime increases sharply. For example,
in Figs. 6 and 7, the running time of the two compared
algorithms always increases with an increase in maxSup,
and the running time of the two compared algorithms always
increases with a decrease inminSup. This result corresponds
to the following experiments.

Runtime vs. size/density of dataset After the runtime
analysis on the benchmark datasets, we found that the size
of the tested dataset also had a significant impact on the
running time of the experiments. For a larger dataset, we
need to spend more time on the mining process. In addition,
we found that, for a dense dataset, although the dataset is
not large, it takes a longer time in the mining process.

Discussion Based on the results of the datasets in the experi-
mental run, we found that the running time of the FRI-Miner
algorithm was longer than that of the RP-Growth algorithm.
The reason is that in the process of mining rare itemsets,
we need to fuzzify the quantitative values; thus, the running
time is relatively longer. Another reason for the longer run-
ning time is that FRI-Miner considers that the combination
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Fig. 6 Runtime vs. maxSup

of frequent itemsets may also be rare itemsets when min-
ing rare itemsets. In other words, the branches of frequent
itemsets are not removed in the pruning stage, which makes
we find more rare itemsets that are ignored. Owing to the
existence of pruning strategies, FRI-Miner not only reduces
the search space, but also improves the efficiency of the
mining task.

5.3 Efficiency w.r.t. pattern

Pattern In this subsection, we compare the number of pat-
terns discovered by the algorithms. Our intuition suggests
that in the FRI-Miner algorithm, the number of patterns
mined is greater than that of the RP-Growth algorithm. This
has also been confirmed in some datasets in the experiment,
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Fig. 8 Pattern vs. maxSup

such as dataset accidents and BMS, which well reflect this
phenomenon. The results of the experiment may be unclear
or conflicting. The reason for this experimental phenomenon
is that we use quantitative values and thus use fuzzification
and pruning strategies to prune many inconsistent itemsets

in the mining process. This pruning strategy ensures that
the number of itemsets we finally discover is relatively
small, but the practicability of the itemsets that we discover
is higher. In the experiments, we found that most datasets
reflect this phenomenon, including retail, chess, mushroom,
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Fig. 10 Memory vs. minSup/maxSup

and kosarak. The specific experimental results are listed in
Table 4.

Pattern vs. support For each dataset, we choose a threshold
that meets their own thresholds; when the minimum sup-
port threshold selected continues to increase and the max-
imum support threshold remains unchanged, we find that
the number of itemsets extracted will continue to decrease.
Figure 9 shows the experimental results. Similarly, when the
minimum threshold remains unchanged and the maximum
threshold value continuously increases, we find that the num-
ber of itemsets mined continuously increases. The exper-
imental results are presented in Fig. 8. This is especially
true when minSup is set to be very small, and the runtime
increases sharply. The effects of the minSup and maxSup
thresholds were evaluated first. For example, in Figs. 8
and 9, the number of patterns of the two compared algo-
rithms always increases with an increase in maxSup, and the
number of patterns of the two compared algorithms always
increases with a decrease in minSup.

5.4 Efficiency w.r.t. memory

In this subsection, we further analyze the maximum mem-
ory occupied during the mining processes of the algorithms.
According to the experimental results of six datasets, we
found that in sparse datasets (e.g., retail, kosarak), the FRI-
Miner algorithm can extract meaningful rare itemsets, that
is, ignore most of the itemsets that do not meet the actual sit-
uation, but also the memory usage is lower than that of RP

growth. However, for relatively dense datasets, a relatively
large memory space is required during the mining process.
In the dataset BMS, FRI-Miner shows good performance,
not only mining more eligible itemsets but also taking up
relatively less memory space. The experimental results of
these datasets are shown in Fig. 10a–f.

6 Conclusion and future work

In this paper, we propose a novel fuzzy-theoretic-based
algorithm for mining FRIs determined by fuzzy set theory
and pattern mining. The purpose of this effective mining
algorithm is to find meaningful rare itemsets that meet
the minimum thresholds. In contrast to existing algorithms,
an effective FRI-Miner algorithm is proposed based on
a fuzzy list structure. The algorithm requires specifying
two minimum support thresholds; it utilizes several pruning
strategies to prune unqualified itemsets and discovers the
complete set of rare itemsets containing rare and frequent
items. The experimental analysis shows that this algorithm
performs well and has an improved overall mining quality
compared to that of the existing algorithm.

There are still some limitations in our research, such
as the membership function and the specified minimum
thresholds, which are defined in advance. If the threshold
is specified to be extremely small, many candidate itemsets
are generated, which occupy a large storage space. If it
is specified as extremely high, some meaningful itemsets
are ignored, which results in poor mining quality. It is
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hoped that there will be a more convenient algorithm in
the future, which can automatically detect the most suitable
threshold value and the setting of the membership function
to effectively discover rare patterns.
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