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Abstract

Fine-grained image classification aims at classifying the image subclass under a certain category. It is a challenging task
due to the similar features, different gestures and background interference of the images. A key issue in fine-grained image
classification is to extract the discriminative regions of images accurately. This paper proposed a multilayer feature fusion
(MFF) network with parallel convolutional block (PCB) mechanism to solve this problem. We use the bilinear matrix product
to mix different layers’ feature matrixes and then add them to the fully connection layer and the softmax function. In addition,
the original convolutional blocks are replaced by the proposed PCB, which has more effective residual connection ability
in extracting the region of interest (ROI) and the parallel convolutions with different sizes of kernels. Experimental results
on three international available fine-grained datasets demonstrate the effectiveness of the proposed model. Quantitative and
visualized experimental results show that our model has higher classification precision compared with the state-of-the-arts
ones. Our classification accuracy reaches 87.1%, 91.4% and 93.4% on the dataset CUB-200-2011, FGVC Aircraft and

Stanford Cars, respectively.
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1 Introduction

Fine-grained image classification is to identify the subclass
of an image under a specific category. Although deep
neural networks (DNN) [1-6] perform well in general
image classification owning to their effective information
extraction ability, they always fail in fine-grained image
classification due to the light or shading in the images,
which largely raises the difficulty of discriminative feature
extraction. Furthermore, inter-class similarity and intra-
class difference among the fine-grained images also affect
the classification result greatly. So it is quite difficult to
realize the accurate fine-grained image classification only
by broadening or deepening CNN network. In this case,
extracting the accurate region of interest (ROI) has become
the key pointinfine-grained image classification. By now,
many methods were proposed to solve this challenging
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problem. In order to get the accurate location of ROI,
some scholars [7-10] applied expensive human annotations
to extract the salient parts of an image. However, using
manual information is unrealistic in practice. In this case,
more and more approaches [13, 16-18, 20] focused on
using the image itself and its corresponding labels to extract
discriminative informationin recent years.

In this paper, we improve the original convolutional
block with the proposed parallel convolutional block
(PCB) by extracting the salient features as the output
information. In this process, a PCB of different kernel sizes
is proposed to improve the residual connection and prevent
the feature information missing. Considering that higher
layers tend to extract more discriminative features and
lower layers have more global information, we proposed
a new model called multilayer feature fusion (MFF),
which uses the matrix multiplication on the last hierarchy
to combine the different layers in pairs. In this way,
our model can effectively improve the ability of inter-
layer information interaction. Multiple experiments were
conducted on the international datasets using the proposed
method.

The main contributions are summarized as follows:
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1. We propose a MFF network, which uses bilinear matrix
product to combine the features in multilayer for fine-
grained image classification. In this way, the global
information and the local feature can be adequately
considered as a whole.

2. We propose an improved convolutional blocks (PCB).
Compared with the original convolutional blocks (CB),
the proposed PCB is helpful to extract more salient
features due to using the parallel convolutions with
different sizes of kernels and their effective residual
connection.

3. We compare the proposed model with state-of-the-
art ones on three internationally available fine-grained
datasets. Visualized and quantitative experimental
results show the superiority of the proposed model.

The rest of this paper is organized as follows. Section 2
introduces the related works. Section 3 illustrates the
proposed model. Section 4 shows the experiment results on
three datasets and Section 5 concludes the whole paper.

2 Related work

This part introduces the previous works related to ours
from two viewpoints, including the fine-grained image
classification and the fine-grained feature extraction.

2.1 Fine-grained image classification

Fine-grained image classification, also known as subcat-
egory image classification, is a branch of general image
classification. The goal of fine-grained image classifica-
tion is to distinguish the subclass images from those in the
same basic class. Compared to the common image clas-
sification, fine-grained one is more difficult due to the
similar features, large intra class differences but small inter
class differences, as well as the interference from different
perspectives and backgrounds. In the original fine-grained
image classification researches, most common methods are
based on the strong supervised learning, which utilize the
provided border and label information to improve the clas-
sification accuracy. For example, Zhang et al. [7] utilized
the bounding box annotations to learn the geometric con-
straints between the whole object and part detectors. Berg
et al. [9] proposed a part-based one-to-one feature method
for fine-grained categorization. However, these methods are
always unrealistic due to the requirement of a large number
of human and material resources.

Compared with the strong supervised learning algo-
rithms, the weak supervised learning ones [11-15] usu-
ally have good feature expression ability. These algo-
rithms have been widely used recently due to only

using the images themselves and their corresponding tags.
For example, Zhang et al. [12] picked the deep fil-
ter responses after computing the response of each can-
didate patch. Besides, Xiao et al. [11] applied a two
level attention model, which contained an object level fil-
ter net and a part level attention for fine-grained image
classification.

2.2 Fine-grained feature extraction

In order to improve the robustness of fine-grained image
classification, most researches tend to enhance the intercon-
nection between the neural networks in different layers by
changing the network structure. For example, Bilinear Con-
volutional Neural Network (BCNN) [13] combined CNNA
and CNNB with matrix outer product and used average
pool to obtain bilinear feature representation. In this way,
the two networks can cooperate with each other to con-
duct the class detection and target feature removal, and
then better complete fine-grained image recognition. Con-
sidering the huge amount of parameters and computation
of BCNN [13], the methods in [16, 17, 20] further reduced
the computational complexity while keeping the accuracy.
Hierarchical bilinear pool (HBP) [18] improved the fea-
ture representation of network structure by enhancing the
interaction between different layers. In addition, boost CNN
[19] improved the usability by only using the category
tags to achieve fine-grained image classification. HIHCA
[22] improved the classification accuracy by fusing high-
order multi-level convolution features. Discriminative Filter
Learning (DFL) [30] proved that the feature learning can
be enhanced in CNN network structure, and designed a
new asymmetric multi-stream structure based on hierarchi-
cal information and global appearance. Navigator-Teacher-
Scrutinizer (NTS) [31] network, which is composed of
navigator, teacher and scrutinizer agents, can be regarded
as a kind of multi-agent cooperation. In which different
agents benefit from each other to provide more accurate
fine-grained classification in the reasoning process. Besides,
MOMN [35] proposed a multi-objective matrix normaliza-
tion method, which uses three methods to normalize the
bilinear representation.

In recent years, more and more scholars used atten-
tion model [21, 24, 25, 27] to extract ROIL. For example,
RA-CNN [24] proposed a new cyclic attention convo-
lutional neural network, which optimized the intra scale
classification and the inter scale ranking loss to learn
more accurate regional attention and fine-grained represen-
tation. MA-CNN [25] used a multiple attention convolu-
tional neural network for detection by learning the location
and fine-grained features simultaneously. OPAM [26] used
object part two-level attention model to promote multi-
view and multi-scale feature learning, and achieved good
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performance. HBPASK [29] proposed a new hierarchical
bilinear pool framework with mask mechanism inspired
by SCDA [41], to capture the cross-layer interactions of
local characteristics. Bilinear attention network (BAN) [34]
supervised the learning process of attention map by propos-
ing attention center loss and attention dropout. In addition,
Zheng et al. [36] proposed a three line attention mechanism
to locate the details, and extract and optimize them as the
classification basis.

In addition, some other scholars improved the classifi-
cation accuracy by accurately locating the salient regions
of images [28, 33, 40]. For example, Chen et al. [32] used
the “broken reconstruction” learning method to solve the
problem of fine-grained image recognition. In which, the
image was decomposed into several local blocks and was
randomly scrambled, and then the original and the recon-
structed images were distinguished using anti loss. Zheng
et al. [40] proposed a progressive attention network to locate
the discriminating part on multiple scales. Besides, [33]
used the random local model to locate ROI.

3 Proposed approach

This paper proposes novel network architecture to extract
more discriminative features of fine-grained images.
Inspired by the previous works [13, 18], we attempt to
realize the interaction of different layers with the same
dimensions. We adopt ResNet34 as the basic model and
extract the feature maps in the middle layers. Besides,
we replace the original blocks in the deep layer network
with the proposed PCB, which is a two stream parallel
structure with an effective residual connection to prevent
the information missing and to mine ROI. In addition,
we propose a multilayer feature fusion (MFF) network to
enhance the information interaction ability between dif-
ferent network layers as well as the the feature descrip-
tion ability of model structure. Different from HBP [18],
which uses multiplication by elements in the last layer,
our proposed MFF uses bilinear matrix for the output of
different series parallel convolution blocks. The bilinear
operators in different layers are beneficial to strengthen
the feature expression ability of the proposed network
structure.

Compared with the existing feature fusion algorithms,
ours is multi-layer feature fusion with parallel convolution
blocks. We also propose an improved parallel convolution
block for high-level feature extraction and use the proposed
MFF to fuse the high-level feature matrix with the
same dimension information obtained from the parallel
convolution block. Thus, a new and complete classification
model is established to realize the fine-grained image
classification.

@ Springer

3.1 Parallel Convolutional Block (PCB)

The original and the improved convolution blocks are shown
in Fig. 1, where Fig. 1a represents the original convolution
block CB, and Fig. 1b is our proposed parallel convolution
block (PCB). As shown in Fig. la, the layer 4 module in
the ResNet34 network (CB) is composed of three 3 x 3
convolution layers. It is used to reduce the size of feature
map and expand the number of channels. However, due to
only using the output of the last layer in high-level feature
extractor and sending it to the full connection layer as
the classification basis, CB tends to ignore the key feature
information in the shallow layer network, thus the final
classification effect will be reduced.

The deep structure in the last layer network usually has
strong discriminative feature extraction ability, while the
shallow structure has effective global feature information.
Both of them are conducive to locate the whole target.
Therefore we proposed the PCB, as shown in Fig. 1b,
to make full use of the relevant characteristics of the
three convolution layers in the original layer4 module.
Our proposed PCB uses a two stream structure with
different convolutional kernels to extract abundant features.
In addition, the proposed PCB is helpful to prevent
information losing in the residual connection by changing
the convolution with a larger one and setting stride to
2 for down-sampling. The parallel convolution operators
with different kernel sizes are essential for extracting ROL.
So this paper uses different convolutions to obtain two
representative feature maps, as shown in layer4.1 in Fig. 1b.
In which, we use concat operation to splice the different
feature representation matrixes and expand the channel
dimension, thus the diversity of features are increased.

We use the convolution kernels with the size of 1 X
3 and 3 x 1 for further feature extraction. Considering
that Convix tends to loss some feature information, we
replace it with Conv3 3 as the residual connection to match
dimension information. Besides, we replace Convzx3 with
Conv;x3 and Convsy to further reduce the computational
complexity.

It is well known that pooling layer can reduce the output
eigenvector of convolution layer. However, the feature
information dimensions of the deep and shallow structures
in layer 4 must be consistent. So we change the concat
operation to direct addition, and remove the activation
function and the pooling layer in the middle of layer 4.2.
In addition, in order to match the number of channels
and reduce the complexity of computation, we cancel
the convolution layer in residual connection of layer 4.2.
Similarly, the structure of layer 4.3 is consistent with that of
layer 4.2.

In addition, in order to prevent the gradient disappearing
problem, we replace the ReLU activation function, defined
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Layer4. 1

Fig. 1 Parallel convolutional blocks (PCB): a the original convolu-
tion block CB b the proposed PCB blocks. Where Pink, yellow, green
and purple blocks represent the convolution, batchnorm, leakyRelu,
and maxpool, respectively. Concat represents splicing on the chan-
nel dimension and + means direct addition. In layer4.1, the channel

as formula (1) in CB, with the Leaky ReLU, defined as
formula (2). Where a represents the gradient of negative
interval. After multiple attempts, we take the parameter a as
0.2 to achieve the best fitting effect of nonlinear function.

f(x) = max(0, x) ey

f(x) =max(ax,x)(0 <a < 1) 2)
3.2 Multilayers Feature Fusion (MFF)

To extract more discriminative features, we replace the
original CB with the proposed PCB as the feature extractor
in high layer. In addition, to strengthen the inter-layer
information interaction and enhance the feature expression
ability of network structure, we fuse the deep-layer feature
output with the shallow-layer feature matrix through the
matrix outer product and normalization operation. In this
way, the discriminative regions can be accurately obtained,
and then the feature expression ability is improved. Suppose
X e thxwxxcx’ Y € Rhyxwyxcy and Z € haxwzxc)(z
represent the multi-layer feature matrix extracted from the

Layer4. 2
(b) PCB

Layer4. 3

dimension is extended using concat operation. In the jump connection,
the feature extraction filter with large receptive field is used to sam-
ple the feature map. In layer 4.2 and 4.3, the direct addition is used as
dimension processing to maintain the dimension information obtained
from layer 4.1

serial parallel convolution block. Our model is defined as
follows:

Opp =0 (N(B(X,Y)) + N(B(X, 2)) + N(B(Y, 2))) (3)

where o is the softmax function, N is the normalization

operation, and § is the bilinear operator in each feature

matrix.

X = M(Convix1(Convixs(concat(Convix(F), Convix3(F)))))
+Convix3(F) 4)

Y = Convix1(Convix3(Convix1(X)+Convix3(X)))+X
)]

Z = Convzx1(Convix3(Convix(Y)+Convix3(Y)))+Y
(6)

where Conv includes convolution, batch normalization and
activation layers. F represents the feature maps in the
former layer. Convsx3, Convix) , Convix3 , Convix
represents the convolutional kernel with the size of 3 x 3,
1 x3,3x 1,1 x 1, respectively. In order to reduce the size
of feature maps, max pooling is used for down-sampling
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and preserving the regions with the largest response value.
To extract the specific features, different convolutional
blocks do not share parameters. The output feature matrix is
defined as

o=X"ev+x"0z+Y"®2 @)

where ® represents the bilinear operator between the
different layers in a mutual way. The proposed MFF
network structure is shown in Fig. 2.

Inspired by HBP [18], which considers the interaction
of different layers in the same hierarchy by projecting the
feature maps to higher dimension and combining them
with the hadamard product on each channel, we use the
matrix outer product and the normalization to improve
the interaction of feature maps in different layers, and
project the feature information from low dimension to high
dimension. The last three layers’ outputs are fused using
matrix product and added to the fully connection layer and
softmax function.

As shown in Fig. 2, we obtain the feature matrixes
X, Y, Z using the layer 4.1, 4.2 and 4.3, respectively.
The dimensions of all feature matrixes are (B, C, H, W),
where B is the batch size, C is the number of channels
or feature maps, and H x W is the size of each feature
map. For the features’ interaction, we resize the feature
matrix X, Y into (B,C,H x W) and (B,H x W,(C),
respectively. The essence of multi-layer feature fusion is
matrix product. After normalization, the dimension of X '
Y is resized from (B, C, C) to (B, C x C). Performing the
above operations each other for X, Y, Z, we can obtain the
input of fully connection layer by adding the three results

together. In this way, the features of different layers can be
effectively fused. Since the interactions of different layers
are beneficial for extracting discriminative features, bilinear
matrix product is initially applied into different layers to
enhance the features expression in this paper.

Compared with other feature fusion methods, like HBP
[18], our MFF doesn’t need other convolution layer
parameters to project the feature map to higher feature
dimension. Besides, our method considers different layers
interaction in a each other way rather than only uses two
layers feature information, like BCNN [13].

4 Experiments

In this section, we conduct the experiments on three
standard international fine-grained datasets to demonstrate
the effectiveness and the accuracy of the proposed model.
Moreover, quantitative and visualized experiments were
conducted to evaluate our results against several state-of-
the-arts ones.

4.1 Datasets

Experiments were conducted on three internationally used
datasets, i.e., CUB-200-2011 [37], FGVC [38] and Stanford
Cars [39]. To ensure the practicality of the algorithm, only
the images and their corresponding labels were used while
any bounding box or part annotations were discarded.

CUB-200-2011 [37] Published by California institute of
technology, including over 10,000 images of birds in 200
categories. Among them, 5,994 were used for training and
5,794 were used for testing.

Batch of

conv7x7

5 layerl layer2 layer3

images
maxpool
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Fig.2 Proposed multilayer feature fusion (MFF) model. Among them, layer 1, layer 2 and layer 3 are the first three layers in the basic ResNet34
model. There are three 3 x 3 convolution layers in layer 1, four 3 x 3 convolution layers in layer 2 and six 3 x 3 convolution layers in layer 3
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FGVC Aircraft [38] Contains 100 aircraft types and
a total of 10,000 images. Among them, the training and
testing set were divided by a ratio of 2:1.

Stanford Cars [39] Published by Stanford University,
including 196 categories and a total of 16,185 images of
cars. Among them, 8144 images were used for training and
8041 were used for testing. Each category was classified
according to the year, manufacturer, or model.

Some sample images in CUB-200-2011 dataset are
shown in Fig. 3, where the images in the same row belong
to the same category. The images from top to bottom are
California Gull, Glaucous winged Gull and Herring Gull,
respectively. We can see that the difference between each
category is quite small while the difference within the same
category is relatively large due to the influence of light or
posture.

4.2 Implemention details

Our experiments use pytorch to implement algorithms. Due
to the limited number of fine-grained image samples in each
category, performing training directly tends to produce over-
fitting. To solve this problem, the weight transfer learning
was adopted and the training dataset was enhanced using
the methods of randomly cropping and flipping horizontally.
Moreover, the weighted parameters trained on the ImageNet
dataset were used as the initialization values to achieve the
rapid convergence.

In all experiments, we resize the images to the single
standard 448 x 448 and train the model in two stages. The

first stage is to fine-tune the fully-connection layer and
the additional parameters that do not belong to ResNet34,
while the second stage is to train all the parameters in
the network. We set momentum to 0.9, weight decay to
le-5, and use the stochastic gradient descent method as
the network optimizer. Our model is saved as the .pth file
and tested on the corresponding dataset to obtain the final
results. The batch size is set to 8 for the dataset CUB-
200-2011 Birds and 16 for the dataset FGVC Aircraft and
Stanford Cars.

4.3 Quantitative evaluation results

To demonstrate the effectiveness of the proposed MFF and
PCB, we perform the relative comparison experiments with
the original network structures. The quantitative results
are shown in Table 1. where CB represents the original
convolution block and PCB represents our proposed parallel
convolution block.

Since most previous works [13, 18] were completed on
VGG [2] network structure while ours was performed on
ResNet34, this paper conducted BCNN-RNet classification
test on relative datasets and adopted the results of HBP-
RNet in [29] for comparison. From Table 1, we can see
that after replacing the original BCNN and HBP with our
proposed MFF, the results are obviously improved on all
datasets. This means that our proposed MFF is superior
to the original BCNN and HBP. The results demonstrate
that it is helpful to improve the feature expression ability
using the matrix outer product to enhance the interaction

Fig.3 Examples of CUB-200-2011 Dataset
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Table 1 Classification accuracy (%) comparison of different models on three fine-grained datasets

Dataset CUB-200-2011 FGVC-Aircraft Stanford-Cars
BCNN+CB 84.2 89.6 91.5
HBP+CB 85.8 90.2 92.2
MFF+CB 854 90.6 92.4
MFF+PCB(ours) 87.1 91.4 93.4

among different layers. Similarly, after further replacing the
original CB with the proposed PCB, our network structure
MFF+PCB achieves the highest accuracy on all datasets,
meaning that the PCB with parallel structure and effective
shortcut is able to extract more salient features. The results
demonstrate the effectiveness of the proposed network. The
visualization results are shown in the visualization results of
Section 4.3.

To further demonstrate the accuracy of the proposed
algorithm quantitatively, we compare our algorithm to
several state-of-the-art ones, which are divided into three
parts for more clear comparison. The approaches in the
first part were performed by adjusting network structure
or using pooling, including LRBP [17], CBP [16], Boost-
CNN [19], Improved B-CNN [20], HIHCA [22] and KP
[23]. The approaches in the second part were performed by
adding attention mechanism and mask, including RA-CNN
[24], MA-CNN [25], DT-RAM [21], OPAM [26], A3M
[27], WARN [42], HBPASK [29], SCAB [43] and Chen

[44]. While the approaches in the third part aims at locating
discriminative parts, including WSDL [28], RP-CNN [33]
and CNL [45].

The comparison results are shown in Table 2. Among
them, the results of [29] were performed using the codes or
pre-trained models provided by their authors, while other
results came from the relative references. The “-” in Table 2
represents that the relative method has not been performed
on the relative dataset. We can see in the first part of Table 2
that our algorithm is superior to all the bilinear pooling-
based ones without any additional annotations. It shows that
our method has better feature expression power than others.
The methods in the second part of Table 2 are based on
attention and mask network to extract salient information.
We can see that our algorithm outperforms most methods on
three fine-grained datasets. It illustrates that our algorithm
can better concentrate on the salient parts and ignores the
unrelated parts. Although the methods in the last part of
Table 2 can locate discriminative regions accurately, our

Table 2 Classification accuracy (%) comparison of different approaches on three fine-grained datasets. Bold represents the best results, and

underline represents the second best results

Methods Year CUB-200-2011 Stanford-Cars FGVC-Aircraft
LRBP [17] 2017 84.2 90.9 87.3
CBP [16] 2016 84.0 - -
Boost-CNN [19] 2016 85.6 92.1 88.5
Improved B-CNN [20] 2017 85.8 92.0 88.5
HIHCA [22] 2017 85.3 91.7 88.3
KP [23] 2017 86.2 92.4 86.9
RA-CNN [24] 2017 85.3 92.5 88.2
MA-CNN [25] 2017 86.5 92.8 89.9
DT-RAM [21] 2017 86.0 93.1 -
OPAM [26] 2018 85.8 92.2 -
A3M [27] 2018 86.2 - -
WARN [42] 2020 85.6 90.0 -
HBPASK [29] 2019 86.8 93.8 91.3
SCAB [43] 2019 84.7 91.7 88.3
Chen [44] 2020 85.1 - 84.2
WSDL [28] 2019 85.7 92.3 -
RP-CNN [33] 2019 84.5 93.0 89.9
CNL [45] 2020 86.7 93.1 -
Ours - 87.1 93.4 91.4
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method surpasses all of them on three datasets. Compared
with the latest method [45], our method also surpasses 0.4%
and 0.3% on the datasets CUB-200-2011 and Stanford-Cars,
respectively. Besides that, our algorithm exceeds 2.4%,
1.7%, 3.1% on CUB-200-2011, Stanford-Cars and FGVC-
Aircraft, respectively, against SCAB [43]. On the whole,
our method outperforms most state-of-the-art ones on three
fine-grained datasets. It illustrates that our model has better
feature representation ability than others.

4.4 Visualization results

As illustrated in Section 3.1, our convolution block tends
to have better performance in extracting discriminative
regions. This performance is further demonstrated in Fig. 4
using the hot images obtained by different convolution
blocks on different fine-grained datasets. where Fig. 4a,
b, and c represents the results on CUB-200-2011 Bird,
FGVC Aircraft, and Stanford Cars dataset, respectively.
The images on the top row show the results of CB, while
those on the bottom row are obtained by the proposed
PCB. From left to right are the original image and the hot

original

channel-19

(©)

images on different channels, respectively. From Fig. 4, we
can see that the information extracted by CB convolution
block usually contains background and other interference
information. However, the information extracted by our
proposed PCB convolution block mainly focused on the
discriminative features of the image, which have strong
expression ability and are crucial to solve the problem of
small inter differences in fine-grained image classification.

The visual results of confusion matrix on Stanford Cars
are shown in Fig. 5, and the images from left to right
correspond to the training and testing confusion matrixes,
respectively.

Some misclassified examples are shown in Fig. 6. where
Fig. 6a and b represents the results on the dataset CUB-200-
2011 and FGVC Aircraft, respectively. The sub-image on
the left is the test image with corresponding true label, while
the sub-images on the right are the samples of its wrongly
predicted labels. From Fig. 6, we can see that the test images
are quite similar with the wrongly predicted ones which are
difficult to be distinguished even for human beings.

It is essential to extract salient features accurately
in fine-grained image classification. Figure 7a-d are the

channel-3 channel-128

(b)

channel-20

Fig.4 Hot images on different channels using different convolution blocks. (a)-(c) represent the sample images in different datasets. From top to
bottom are the results of standard CB and the proposed PCB. From left to right are the original images and the hot images on different channels
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Fig.5 Confusion matrixes on Car Confusion Matrix Car Confusion Matrix

1.0 1.0
dataset “Stanford Cars”. The
images from left to right are the
training and testing confusion 08 0.8
matrixes, respectively
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Fig.6 Some misclassified examples on different datasets. The left sub-image is the test image with its corresponding true label, while the right
sub-images are the samples with its wrongly predicted samples

() (d

Fig.7 Comparison of salient features images using CB and PCB. (a)-(d) represent the sample images in different datasets. From left to right are
the original images, and the hot images on a certain channel using CB and PCB for salient feature extraction
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salient features extraction results of different datasets. The
leftmost column is the original image, and the last two
columns are the hot map obtained by CB and PCB on
same channel. From Fig. 7 we can see that compared to
the CB, our PCB module extracts features mostly in the
significant regions of image, while ignores the background
information. Therefore, the improved convolution block
PCB is more accurate in extracting salient image feature,
which is helpful to improve the accuracy of fine-grained
image classification.

5 Conclusions

In this paper, we propose a multilayer feature fusion
with parallel convolutional block approach for fine-grained
image classification. A PCB mechanism is proposed to
extract the discriminative features with two different
convolutional kernel sizes in a two stream way. Besides,
the proposed MFF uses bilinear matrix multiplication to
enhance their interaction ability. In the training process,
the two-step training method is utilized to obtain better
weight parameters. Experimental results demonstrate that
our method can achieve the accuracy of 87.1%, 91.4%
and 93.4% on the dataset CUB-200-2011, FGVC-Aircraft
and Stanford-Cars, respectively. Qualitative and quantitative
experimental results show that our method has higher
precision against the state-of-the-arts ones.

In the future, we attempt to use weakly supervised
methods to localize salient regions, like [32, 33, 40],
or utilize the attention network, like [24, 25], to extract
discriminative information.
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