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Abstract
Domain adaptation aims to minimize the mismatch between the source domain in which models are trained and the target
domain to which those models are applied. Most existing works focus on instance reweighting, feature representation, and
classifier learning independently, which are ineffective when the domain discrepancy is substantially large. In this study,
we propose a new unified hybrid approach that takes advantage of Lie group theory, weighted distribution alignment, and
manifold alignment, which are referred to as Lie Group Manifold Analysis (LGMA). LGMA mainly finds a one-parameter
sub-group decided by the Lie algebra elements of the intrinsic mean of all samples, and this one-parameter sub-group is
a geodesic on the original Lie group. Moreover, the Lie group samples are projected onto the geodesics to maximize the
separability of the projected samples for realizing discrimination in the nonlinear Lie group manifold space. As far as we
know, LGMA is the first attempt to perform Lie algebra transformation to project the original features in the Lie group space
onto Lie algebra manifold space for domain adaptation. Comprehensive experiments validate that our approach considerably
outperforms competitive methods on real-world datasets.

Keywords Domain adaptation · Transfer learning · Lie algebra transformation · Image classification

1 Introduction

The fields of machine learning [1] and pattern recognition
have been widely and successfully applied to many practical
applications, in which patterns can be extracted from
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training data to predict future results [2, 3]. Traditional
machine learning methodologies assume that the training
and test data come from the same domain, such that
the input feature space and data distribution are the
same. The performance of the predictive classifier can be
degraded when data distribution between the training and
the test data differs. In some scenarios, obtaining training
data that matches the feature space and predicted data
distribution of the test data can be exhausting and costly.
Therefore, adaptive classifiers need to be created for target
domains trained from related domains. This objective is the
motivation of transfer learning.

Transfer learning is used to solve the problem in one
domain (i.e., target domain) by using the information from
a related domain (i.e., source domain). Domain adapta-
tion is a subtopic of transfer learning, which constructs
knowledge transfer from the labeled source domain to the
unlabeled target domain by learning domain-invariant and
label-discriminative knowledge representations that mani-
fest similarities between domains under significant differ-
ences. To date, domain adaptation has been successfully
applied in various fields, such as text sentiment classifica-
tion [4, 5], image classification [6–8], human activity clas-
sification [9], and multi-language text classification [10].
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Domain divergence poses a major obstacle for adapting
predictive models across domains.

The main problem of domain adaptation is the reduction
of distribution divergence between domains. To this
end, existing approaches can be categorized into four
main groups [2, 3]: (a) instance-based adaptation, which
reweights samples in the source domain or in both
domains to reduce domain discrepancy [11, 12], (b)
feature representation-based adaptation, which learns
feature representations to minimize domain shift or
learning task error or both [13, 14], (c) classifier-based
adaptation, which aims to learn a new model that
minimizes the generalization error in the target domain via
training data from both domains [15, 16], and (d) hybrid
knowledge-based adaptation, which transfers more than
one kind of knowledge, such as joint instance and feature
representation-based adaptation [17–20], joint instance
and classifier-based adaptation [21, 22], or joint feature
representation and classifer-based adaptation [23–25].

Among the abovementioned classical approaches, the
hybrid methods perform better than the single methods
in reducing the cross-domain discrepancy. Most existing
hybrid methods follow a two-step procedure: first, either
instance reweighting or feature representation is performed
independently, finally, the cross-domain classifier is trained
separately, but these methods do not perform well in
practical applications, and many factors cannot to be
considered. For example, some methods are significantly
influenced by feature representations or irrelevant instances,
some ignore the importance of evaluating data distributions,
and some fail to exploit hidden knowledge structures in data
labels of the source and target domains. Therefore, a new
hybrid method for robust unsupervised domain adaptation
needs to be developed. Knowledge that can be successfully
transferred across domains should be (1) invariant to feature
representations and unbiased to irrelevant instances, (2)
quantitatively estimated in terms of the importance of
distributions, and (3) able to exploit the potential manifold
structural features behind the data.

As far as we know, no research has optimized all the
three challenges together in a unified learning machine
for unsupervised domain adaptation. In this paper, we
complete this challenge and propose a new Lie Group
Manifold Analysis (LGMA) method based on FLDA [26],
which learns a domain-invariant and label-discriminative
classifier in Lie algebra manifold space by extracting
invariant representations, estimating unbiased instance
weights, performing evaluated distribution alignment and
graph Laplacian regularization that jointly minimize the
cross-domain distribution discrepancy. To the best of our
knowledge, LGMA is the first attempt to minimize the
cross-domain discrepancy in Lie algebra manifold space
for domain adaptation. Extensive experiments on five

real-world benchmark datasets validate that LGMA can
outperform competitive state-of-the-art methods.

The rest of the paper is organized as follows. Section 2
introduces related works of domain adaptation. Section 3
presents the LGMA algorithm based on Lie algebra
transformation. Section 4 provides experiments to illustrate
the effectiveness and efficiency of the proposed method.
Section 5 draws the conclusions of this paper.

2 Related work

According to a recent survey [2], existing domain adapta-
tion problems can be roughly divided into four categories
according to research methods: instance, feature represen-
tation, classifier, and hybrid knowledge-based adaptations.

Instance-based adaptation methods aim to minimize the
cross-domain distribution discrepancy by reweighting the
source samples according to the related samples in the
target domain. Baktashmotlagh et al. [27] introduced a
sample selection method and a subspace-based method by
using the structure of Riemannian manifold to compare the
source and target distributions. Transfer component analysis
(TCA) [28] learns transfer components across domains in a
reproducing kernel Hilbert space (RKHS) using maximum
mean discrepancy (MMD) [29].

Feature representation-based adaptation methods aim to
reduce distribution differences by learning a new feature
representation. Fernando et al. [30] proposed a subspace
alignment (SA) algorithm by learning a mapping function
that aligns the source subspace with the target one. Geodesic
flow kernel (GFK) [31] extends the concept of sampling
points in manifold [32], and a method for learning the GFK
between domains is proposed. Generalized unsupervised
manifold alignment (GUMA) [33] is proposed as a method
to build the connections between domains without any
known correspondences by using manifold alignment. Low-
rank transfer subspace learning (LTSL) [34] is proposed as a
novel framework to solve transfer learning problem through
subspace learning and low-rank representation constraints.
Zhai et al. [35] proposed a novel manifold alignment
method by learning the underlying common manifold with
supervision from the corresponding data pairs of different
observation sets.

Classifier-based adaptation methods aim to learn a new
domain-invariant classifier that minimizes the generaliza-
tion error in the target domain via training data from
both domains. The works of distribution matching machine
(DMM) [36] and adaptation regularization transfer learn-
ing (ARTL) [6] aim to learn a unified domain-invariant
classifier based on structural risk minimization (SRM) [37].

Hybrid knowledge-based adaptation methods aim to
learn domain-invariant knowledge by jointly utilizing
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multiple kinds of adaptations. Locality preserving joint
transfer (LPJT) [19], domain invariant and class discrim-
inative feature learning (DICD) [17], and transfer inde-
pendently together (TIT) [20] jointly leverage instance-
based and feature representation-based adaptations to learn
domain-invariant and label-discriminative vector represen-
tations. Qin et al. [21] proposed a novel generatively infer-
ential co-training (GICT) framework based on instance-
based and classifier-based adaptations. In [25], three unsu-
pervised transfer learning methods, i.e., discriminative sub-
space learning (DSL), joint geometrical and statistical dis-
tribution adaptation (GSDA), and joint subspace and dis-
tribution adaptation (DSL-GSDA) are proposed to transfer
the common domain-invariant knowledge from the source
domain to the target domain by jointly adapting feature
representation and classifier.

Formally, the single adaptation methods explore instance
reweighting, feature representation, or classifier learning
independently, which are ineffective when the domain
difference is substantially large. While hybrid knowledge-
based adaptation methods perform better than single
adaptation methods when the domain differences are large
or some outlier source instances are unrelated to the
target domain or the two conditions hold. Almost all
the existing adaptation methods on image classification
tasks proceed by linearizing the images, which makes an
implicit Euclidean space assumption [38, 39]. However,
when the domain divergence is extremely large, the
classification performance of the adaptation method based
on the assumption of Euclidean space will be degraded
significantly. In general, most of the transformations used in
image classification tasks have matrix Lie group structure.
Thus, we first devise a nonlinear transformation to project
samples in the original Lie group manifold space onto
a corresponding Lie algebra manifold space, where the
samples are more discriminative and can be classified
more easily. Finally, we perform hybrid knowledge-based
adaptation to further minimize the domain discrepancy
between domains for higher cross-domain classification
accuracy.

The most similar approaches to the proposed hybrid
method LGMA are scatter component analysis (SCA) [40]
and joint geometrical and statistical alignment (JGSA) [41].
However, LGMA differs significantly from SCA and
JGSA in two key aspects: (a) LGMA jointly learns
the invariant cross-domain classifier and transferable
knowledge (invariant to feature representations) in a
learning paradigm in a linear Lie algebra manifold space,
whereas SCA and JGSA learn the transferable knowledge
and transfer classifier in a nonlinear Lie group manifold
space (reproducing kernel Hilbert space). (b) LGMA learns
unbiased instance reweighting and unbiased to irrelevant
instances not only by using the domain scatters but also

by exploiting the weighted distribution alignment and the
graph Laplacian regularization, whereas SCA and JGSA
learn reweighting by scatters or unweighted distribution
alignment. In summary, the proposed LGMA approach can
jointly learn the cross-domain classifier and transferable
knowledge with statistical and geometrical guarantees.

3 LGMA

In this section, we provide the LGMA approach in detail.

3.1 Problem definition

We begin with the formalized definition of domain
adaptation [6, 42, 43]. For clarity, the frequently used
notations are summarized in Table 1.

Definition 1 (Domain adaptation). A labeled source
domain Ds = {xsi , ysi}ni=1 and an unlabeled target
domain Dt = {xtj}n+m

j=n+1, we assume the feature space
Xs = Xt and the label space Ys = Yt. However, the
marginal probability distribution Ps(xs) �= Pt(xt) with the
conditional probability distribution Qs(ys |xs) �= Qt(yt |xt).
The purpose of unsupervised domain adaptation is to learn
a classifier f : xt �→ yt, yt ∈ Yt to classify the samples for
the target domain Dt using the related label information in
the source domainDs. Data in the source and target domains
can be denoted as Xs ∈ R

D×n, Xt ∈ R
D×m, respectively.

Classical Fisher’s linear discriminant analysis (FLDA) [26]
can be represented as

argmax
v

J (v) = vTSbv

vTSwv
(1)

where Sb and Sw are the matrices of between-class
and within-class scatter, respectively. Maximizing FLDA
increases the separation of samples with respect to the class
cluster. However, the classification accuracy will be affected
due to the different distributions between Ds and Dt. Thus,

Table 1 Notations and corresponding descriptions used in this paper

Notations Descriptions

Ds,Dt source/target domain

Xs , Xt source/target samples

A, B source/target projection matrix

g, G Lie algeba/group space

n, m the number of samples in source/target domain

β, δ, μ regularization parameters

C the number of shared classes

k the number of subspaces
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Fig. 1 The main idea of LGMA. (a) Features in the Lie group man-
ifold space are mapped to Lie algebra manifold space (A projection
point is the intersection of the black bold curve and the geodesic etv).
Data with similar manifold properties are aggregated together after Lie
algebra transformation. (b) LGMA finds a paired transformation (one

for source domain, and another one for target domain) to obtain new
representations of respective domains. (c) Weighted distribution align-
ment and manifold alignment are performed in Lie algebra manifold
space to learn the cross-domain invariant classifier f

minimizing the domain distribution discrepancy is the only
way to improve classification performance when learning a
cross-domain classifier f .

3.2 Main idea

LGMA mainly includes three steps. First, LGMA performs
Lie algebra transformation to project features in Lie group
manifold space onto the corresponding Lie algebra manifold
space. Second, LGMA finds a paired transformation (i.e.,
A and B, A and B for source domain and target domain,
respectively) to obtain new representations of respective
domains. Third, LGMA performs weighted distribution
alignment and manifold alignment to learn a cross-domain
invariant classifier in the linear Lie algebra space. Figure 1
shows the main idea of the proposed LGMA method.

We first obtain the transformed features by means
of Lie algebra transformation. Then, on the basis of
FLDA and weighted distribution alignment and manifold
alignment [41], the domain-invariant classifier f can be
represented as

max
A,B

αSf (Dt ) + βSbf (Ds)

D̄f (Ds ,Dt )+δRf (Ds ,Dt )+λDf (SA, SB)+βSwf (Ds)

(2)

where the terms Sf (·), Sbf (·), D̄f (·, ·), Rf (·, ·), Df (·, ·),
and Swf (·) represent the domain variance, the between-class
variance, the weighted distribution alignment, the graph
Laplacian regularization, the subspace divergence, and the
within-class variance, respectively. α, β, δ, and λ are the
regularization parameters.

3.3 Lie algebra transformation

Lie algebra transformation serves as the preprocessing step
that aims to find a geodesic on the Lie group manifold and

project all features onto this geodesic and perform weighted
distribution and manifold alignment thereafter to maximize
the ratio of (2).

Before Lie algebra transformation is introduced, we first
elaborate the definition of Lie group and Lie algebra [44,
45].

Definition 2 (Lie group). A real Lie group [44] is a group
that is also a finite-dimentional real smooth manifold, in
which the group operations of multiplication and invertion
are smooth maps. Smoothness of the group multiplication
μ : G × G → G μ(x, y) = xy means that μ is a smooth
mapping of the product manifold G × G into G. These two
requirements can be combined to the single requirement that
the mapping (x, y) �→ x−1y be a smooth mapping of the
product manifold into G.

Definition 3 (Lie algebra). A Lie algebra [45] is a vector
space g over some field F togeter with a binary operation
[·, ·] : g × g → g called the Lie bracket that satisfies the
following axioms:

• Bilinearity: [ax + by, z] = a[x, z] + b[y, z], [z, ax +
by] = a[z, x] + b[z, y] for all scalars a, b in F and all
elements x, y, z in g.

• Alternativity: [x, x] = 0 for all x in g.
• The Jacobi identity: [x, [y, z]] + [z, [x, y]] +

[y, [z, x]] = 0 for all x, y, z in g.
• Anticommutativity: [x, y] = −[y, x] for all x, y in g.

Exponential and logarithmic transformations [45] are
important theories in Lie group, and exponential transfor-
mation can be defined as

exp : g → G, exp(x) =
∞∑

i=0

xi

i! (3)
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Elements in Lie algebra manifold space can be transformed
into Lie group manifold space through this transformation.
Similarly, logarithmic transformation can also be repre-
sented as

log : G → g, log(x) =
∞∑

i=0

(−1)i−1

i
(x − e)i (4)

Features in Lie group manifold space can be transformed
into Lie algebra manifold space through this transformation.

We denote g(·) as the Lie algebra transformation.
Thus, the feature in the Lie group manifold space can
be transformed into Lie algebra manifold space through
z = g(x).

3.4 Target domain variancemaximization

The variance of the target domain can be maximized in
the corresponding subspace to avoid projecting features
onto some irrelevant dimensions. Therefore, the variance
maximization term can be generalized as

max
B

Sf (Dt ) = max
B

tr(BTStB) (5)

where tr(·) denotes the trace of a matrix and

St = ZtHtZ
T
t (6)

is the scatter matrix of the target domain, Zt is the set of
projected target samples, Ht = It − 1

m
1t1Tt is the centering

matrix, and 1t ∈ R
m is the column vector with all elements

equal to 1.

3.5 Source domain discriminative feature
preservation

We use the rich label information in the source domain
to make the new representation of samples in the source
domain discriminative as follows:

max
A

Sbf (Ds) = max
A

tr
(
ATSbA

)
(7)

min
A

Swf (Ds) = min
A

tr
(
ATSwA

)
(8)

where Sb and Sw are the between-class and within-class
scatter matrices, respectively, and are defined as follows:

Sw =
C∑

c=1

Z(c)
s H(c)

s

(
Z(c)
s

)T
(9)

Sb =
C∑

c=1

n(c)
(
m(c)

s − m̄s

) (
m(c)

s − m̄s

)T
(10)

where Z(c)
s indicates the set of transformed source samples

that belong to class c, m
(c)
s = 1

n(c)

∑n(c)

i=1 z
(c)
si , m̄s =

1
n

∑n
i=1 zsi , and H(c)

s = I(c)s − 1
n(c) 1

(c)
s

(
1(c)
s

)T
is the

centering matrix of samples within class c, I(c)s ∈ R
n(c)×n(c)

is the identity matrix, 1s ∈ R
n(c)

is a column vector with all
ones, and n(c) is the number of source samples in class c.

3.6Weighted distribution alignment

Weighted distribution alignment is devised to minimize
the distribution divergence between the source and target
domains by quantitatively assessing the importance of
the marginal distribution (i.e., P ) and the conditional
distribution (i.e., Q). Formally, the weighted distribution
alignment D̄f (Ds ,Dt ) can be defined as follows:

D̄f (Ds ,Dt ) = (1 − μ)D(Ps ,Pt ) + μD(Qs ,Qt ) (11)

with μ ∈ [0, 1] as the adaptive parameter. The projected
MMD [6, 46, 47] methods can be adopted to compute the
marginal and conditional distributions, which compare the
different distributions on the basis of distance between the
sample means of the two domains in the low-dimensional
smooth manifold. The marginal distribution divergence
D(Ps ,Pt ) can be detailed as

‖ 1

n

∑

zsi∈Zs
ATzsi −

1

m

∑

ztj∈Zt
BTztj ‖2F (12)

Correspondingly, the conditional distribution divergence
D(Qs ,Qt ) can be expressed as

C∑

c=1

‖ 1

n(c)

∑

zsi∈Z(c)
s

ATzsi −
1

m(c)

∑

ztj∈Z(c)
t

BTztj ‖2F (13)

where Z(c)
s = {

zsi : zsi ∈ Zs ∧ y(zsi) = c
}
is the projected

source samples that belong to class c and y(zsi) is the true
label of zsi . Z

(c)
t = {

ztj : ztj ∈ Zt ∧ ŷ(ztj) = c
}
is the set

of projected target samples that belong to class c, ŷ(ztj) is

the true label of ztj , and n(c) = |Z(c)
s |, m(c) = |Z(c)

t | are
the number of samples in class c in respective projected
manifold spaces of the source and target domains. The
evaluation of conditional distribution divergence D(Qs ,Qt )

is relative difficult because there is no labeled data are
in the target domain. Long et al. [6] proposed to utilize
the pseudo labels of the target domain which predicted
by some supervised approaches (e.g., KNN) trained on
the data in the source domain. The pseudo labels can be
refined iteratively to minimize the difference in conditional
distributions between the source and target domains. Thus,
we follow this idea to further reduce the conditional MMD
between domains.
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Thus, combining the marginal and conditional MMDs
together, the final weighted distribution alignment optimiza-
tion can be stated in the following matrix form

min
A,B

D̄f (Ds ,Dt ) = min
A,B

tr

([
AT BT

] [
Mss Mst

Mts Mtt

] [
A
B

])

(14)

where

Mss = Zs

(
(1 − μ)Nss + μ

∑C
c=1 N

(c)
ss

)
ZT
s , Nss = 1

n2
1n1Tn ,

(
N(c)
ss

)

ij
=

{
1

(n(c))2
, zi, zj ∈ Z(c)

s

0, otherwise

(15)

Mtt = Zt((1 − μ)Ntt + μ
∑C

c=1 N
(c)
tt )ZT

t , Ntt = 1
m2 1m1

T
m,

(
N(c)
tt

)

ij
=

{
1

(m(c))2
, zi, zj ∈ Z(c)

t

0, otherwise

(16)

Mst = Zs((1 − μ)Nst + μ
∑C

c=1 N
(c)
st )ZT

t , Nst =− 1
nm

1n1Tm,

(N(c)
st )ij =

{
− 1

n(c)m(c) , zi ∈ Z(c)
s , zj ∈ Z(c)

t

0, otherwise

(17)

Mts=Zt((1 − μ)Nts + μ
∑C

c=1 N
(c)
ts )ZT

s , Nts = − 1
nm

1m1Tn ,

(N(c)
ts )ij =

{
− 1

n(c)m(c) , zj ∈ Z(c)
s , zi ∈ Z(c)

t

0, otherwise

(18)

3.7 Graph Laplacian regularization

In this section, we use graph Laplacian regularization to
guarantee the unbiased problem of irrelevant instances.

In domain adaptation, labeled and unlabeled data are
used. It is expected that knowledge of marginal distributions
(i.e., Ps and Pt ) can be further exploited to improve
the performance of function learning. Thus, the unlabeled
samples may often reveal the underlying facts of the
target domain, such as sample variances. The idea of
manifold assumption [48] can be expressed as follows.
If two points, namely, zi, zj ∈ g are close in the
geometry of marginal distributions Ps(zs) and Pt(zt), then
the conditional distributions Qs(ys |zs) and Qt(yt |zt) are
similar. Under the hypothesis of the smooth properties of
geodesics, Laplacian regularization can be used for further
exploiting the similar geometrical properties of nearest

points in Lie algebra manifold space g. Thus, the final
optimization of graph Laplacian regularization Rf (Ds ,Dt )

can be computed as

min
A,B

Rf (Ds ,Dt )=min
A,B

tr

([
AT 0
0 BT

] [
ZsLssZT

s ZsLstZT
t

ZtLtsZT
s ZtLttZT

t

] [
A 0
0 B

])
(19)

where L = I − D−1/2WD−1/2 is the graph Laplacian
matrix and D is a diagonal matrix with its ith diagonal
element calculated as the sum of ith row of W, i.e.,
Dii = ∑n

j=1 Wij . W is defined by

Wij =
{
cos(zi, zj), zi ∈ Np(zj) ∨ zj ∈ Np(zi)

0, otherwise,
(20)

whereNp(zi) is zi’s p nearest neighbors which are from the
same class with zi .

3.8 Subspace divergenceminimization

In this section, we further mitigate the domain divergence
by moving the source and target subspaces closer together,
which is similar to the aforementioned methods, such as
transfer component analysis (TCA) [28] or joint distribution
alignment (JDA) [42]. The differences in the two domains
will be reduced but cannot be completely removed through
this transformation. By contrast, we obtain the idea
from [30] to minimize A and B simultaneously. In this way,
the statistical and geometrical features can be preserved.
Formally, we use the following minimization form of
Frobenius-norm to move the two subspaces closer.

min
A,B

Df (SA, SB) = min
A,B

‖A − B‖2F (21)

3.9 Optimization

To control the scale of solution B, we follow [40, 41] to
impose a constraint that tr(BTB) is sufficiently small. We
formulate the LGMA method by incorporating (5), (7),
(8), (14), (19), and (21). Then, our objective function (2),
therefore, can be formulated as follows:

argmax
A,B

tr

([
AT BT

] [
βSb 0
0 αSt

] [
A
B

])

tr

([
AT BT

] [
Mss + δLss + λI + βSw Mst + δLst − λI

Mts + δLts − λI Mtt + δLtt + (λ + α)I

] [
A
B

])

(22)

where α, β, δ, and λ are penalty parameters, and I ∈ R
d×d

is the identity matrix.
LGMA aims to find a paired transformation A and B by

solving the generalized eigendecomposition problem in the
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projected Lie algebra manifold space. To optimize (22), we
define [AT BT] to be equal to UT. Thus, we get

argmax
U

tr

(
UT

[
βSb 0
0 αSt

]
U

)

s.t. tr

(
UT

[
Mss+δLss+λI+βSw Mst + δLst − λI
Mts + δLts − λI Mtt + δLtt + (λ + α)I

]
U

)
=1

(23)

Equivalently, the constraint optimization of (23) can be
written in the form of Lagrangian. Thus, we have

L(U) = tr

(
UT

[
βSb 0
0 αSt

]
U

)

+tr

((
UT

[
Mss + δLss + λI + βSw Mst + δLst − λI

Mts + δLts − λI Mtt + δLtt + (λ + α)I

]
U − I

)
Λ

)

(24)

To solve (24), we set the first derivative ∂L(U)
∂U = 0. Then,

we obtain generalized eigendecomposition

[
βSb 0
0 αSt

]
U=

[
Mss+δLss+λI+βSw Mst+δLst − λI
Mts + δLts − λI Mtt + δLtt + (λ + α)I

]
UΛ

(25)

where Λ = diag(λ1, ..., λk) is the k leading eigenvalue and
U = [

U1, ...,Uk

]
contains the corresponding eigenvectors.

Finding the optimal adaptation matrix U is decreased to
solving (25) for k eigenvectors. Algorithm 1 provides a
complete summary of LGMA.

3.10 Computational complexity

The computational complexity of Algorithm 1 consists of
four parts as follows.

(1) The computation of St, Sb, and Sw in step 2.
(2) The construction of Mss, Mtt, Mst, and Mts in step 2.
(3) The optimization of eigendecomposition problem in

step 4.
(4) The computation for all other processes.

Generally, in terms of the big O notation. The
computation of St, Sb, and Sw cost O(m2), O(n2),
and O(n2). The construction of Mss, Mtt, Mst, and Mts

cost O(T Cn2), O(T Cm2), O(T Cnm), and O(T Cmn).
The optimization of eigendecomposition problem costs
O(T km2). The computation for all other processes cost
O(T mn). Denote T and k as the number of iterations
and the subspace bases. The overall computational costs of
Algorithm 1 would be O(T (k + C)m2 + T Cn2 + T Cmn).

4 Experiments

In this section, we perform extensive experiments on real-
world image recognition datasets to evaluate the proposed
LGMA approach against the state-of-the-art methods. The
experiments are divided into three parts. Section 4.1 visua-
lizes performance on image classification tasks. Section 4.2
evaluates the performance on a range of cross-domain image
classification tasks with a standard and realistic hyper-
parameter tuning. Section 4.3 reports the results with a tuning
protocol established in the literature for completeness.

4.1 Feature visualization

Figure 2a, b, e, f, c, d, g and h show the visualization
of transfer tasks V→ I and A→W after performing
SCA, JGSA, and LGMA algorithms, respectively. Some
interesting conclusions can be drawn. (a) SCA can not
learn the invariant cross-domain features well because the
differences between the source domain and target domain
are still large. (b) JGSA does not learn the weighted
distribution alignment because the distribution of the source
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Fig. 2 Feature visualization of source and target domain data. (a) and
(b) indicate the visualization of the source domain V and the target
domain I after performing SCA, respectively. (c) and (d) indicate the
visualization of the source domain V and the target domain I after per-
forming LGMA, respectively. (e) and (f) indicate the visualization of

the source domain A and the target domain W after performing JGSA,
respectively. (g) and (h) indicate the visualization of the source domain
A and the target domain W after performing LGMA, respectively.
Color makers denote different classes

domain are dissimilar to the target domain, thereby leading
to large domain bias. The abovementioned conclusions
show the inferior performance of SCA and JGSA and
validate the superiority of LGMA.

4.2 Real world object recognition

4.2.1 Experimental setup

Five public large-scale image datasets are used, as shown in
Table 2.

The public large-scale image recognition datasets in
our experiments include Office+Caltech10, Office-31, and
ImageNet+VOC2007, which are popular image classifica-
tion datasets that are widely used for evaluating machine
learning and data mining models, such as [6, 31, 41].

Office+Caltech10 [49] contains 2,533 images from 10
different subcategories. The dataset includes 4 image

Table 2 Five benchmark datasets used in this paper

Datasets names Data Features Classes Domain(s)

Office-10 1,410 800 (4,096) 10 A, W, D

Caltech-10 1,123 800 (4,096) 10 C

Office-31 4,652 4,096 31 A, W, D

ImageNet 7,341 4,096 5 ImageNet(I)

VOC2007 3,376 4,096 5 VOC(V)

domains, i.e., Amazon (A), DSLR (D), Webcam (W),
and Caltech (C). Figure 3 depicts the sample images from
the object monitor category in the four domains, namely,
Caltech, Amazon, DSLR, and Webcam [31]. Features in
Office and Caltech follow different distributions, domain
adaptation can help the performance of cross-domain
image classification. Formally, 10 classes are used in each
dataset. Thus, 12 tasks are constructed, namely, A→C,
A→D, A→W,..., D→W. In this study, A→B represents
the transfer task from the source domain A to the target
domain B.

Office-31 [49] is also a widely used dataset for transfer
learning tasks in image recognition and multimedia
analysis. It includes 4,652 images and 31 categories from
three domains:Amazon (A),Webcam (W), andDSLR (D).
Each of these two domains can construct a transfer learning
task, thereby leading to 6 tasks: A→D, A→W ,..., and
W→D, respectively.

ImageNet+VOC2007 (I, V) are another widely used image
datasets. Because images from the same classes of both
domains follow different distributions, each dataset can be
considered one domain. In this paper, we use the datasets
in [50] to perform transfer learning tasks. Both of the two
datasets have five classes, namely, bird, cat, chair, dog,
and person, respectively. Thus, another two transfer learning
tasks, i.e., I→V and V→I, are constructed.
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Fig. 3 Sample images from object monitor category in the four domains Caltech, Amazon, DSLR, and Webcam [31]

For all the baseline approaches, we use the optimal
parameters reported in the original papers. As for LGMA,
we set λ = 1 and α = 1, such that the inner
subspace bias and the target variance are treated as equally
important. The subspace dimension k = 30 in the tasks of
Office+Caltech10 datasets with DeCaf6 features and the
tasks of ImageNet+VOC2007 datasets, and the subspace
dimension k = 100 in the tasks of Office-31 datasets with
DeCaf7 features. We empirically validate that the fixed
parameters can obtain promising performance on different
types of tasks. Therefore, the weighted coefficient μ, the
regularization parameter β, the number of iteration T, the
number of nearest neighbors p, and the coefficient of the
graph Laplacian regularization term δ are free parameters.

We also exploit classification Accuracy on test data
as the evaluation metric, which is widely used in many
studies [28, 31, 47]:

Accuracy = |x : x ∈ Dt ∧ ŷ(x) = y(x)|
|x : x ∈ Dt | , (26)

where y(x) and ŷ(x) indicate the truth and predicted labels
in the target domain, respectively.

4.2.2 Baselines

To evaluate the robustness of the proposed LGMA
approach to different configurations of datasets, we conduct
comprehensive evaluation on image recognition datasets
and compare LGMA with competitive state-of-the-art
domain adaptation methods as follows:

– 1-Nearest neighbor (1NN) classifier;
– Support vector machine (SVM) [51];
– Transfer component analysis (TCA) [28], which adapts

marginal distribution;
– Transfer joint matching (TJM) [52], which performs

marginal distribution with the sample selection of the
source domain;

– Distribution matching machine (DMM) [36], which
aims to learn an SVM classifier to adapt distributions
alignment based on SRM;

– Scatter component analysis (SCA) [40], which leans a
classifier through scatter component analysis;

– Joint geometrical and statistical alignment
(JGSA) [41], which performs geometrical and
statistical alignment with label propagation.

Table 3 Recognition accuracy(%) against other baseline methods on Office+Caltech10 (DeCaf6) datasets, the best results and the best baseline
results are shown in boldface and italic, respectively

Tasks SVM TCA TJM SCA JGSA DMM DICD TIT LPJT LGMA

C→ A 91.6 89.8 88.8 89.5 91.4 92.4 91.0 90.9 92.7 93.2

C→W 80.7 78.3 81.4 85.4 86.8 87.5 92.2 89.3 87.8 89.2

C→ D 86.0 85.4 84.7 87.9 93.6 90.4 93.6 87.5 89.8 91.1

A→C 82.2 82.6 84.3 78.8 84.9 84.8 86.0 86.7 86.6 88.9

A→W 71.9 74.2 71.9 75.9 81.0 84.7 81.4 84.2 87.5 88.8

A→D 80.9 81.5 76.4 85.4 88.5 92.4 83.4 84.9 88.5 91.7

W→C 67.9 80.4 83.0 74.9 85.0 81.7 84.0 83.4 82.6 87.1

W→A 73.4 84.1 87.6 85.0 90.7 86.5 89.7 88.7 90.7 92.6

W→D 100 100 100 100 100 98.7 100 99.0 99.4 97.5

D→C 72.8 71.4 83.8 78.1 86.2 83.3 86.1 84.3 80.0 88.1

D→A 78.7 76.3 90.3 90.0 92.0 90.7 92.2 90.7 90.9 92.9

D→W 98.3 99.3 99.3 98.6 99.7 99.3 99.0 99.5 100 94.2

Average 82.0 85.6 86.0 85.9 90.0 89.4 89.9 89.1 89.7 91.3
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Table 4 Recognition accuracy(%) against other baseline methods on Office-31 (DeCaf7) datasets, the best results and the best baseline results are
shown in boldface and italic, respectively

Tasks SVM 1NN TCA TJM SCA JGSA DICD TIT LPJT LGMA

A→ D 55.7 59.2 45.4 55.6 60.2 67.1 65.8 67.3 66.9 68.5

A→W 50.6 55.6 40.5 51.2 55.7 63.1 64.6 65.9 65.1 65.7

D→W 93.1 93.1 78.2 88.9 95.0 95.9 92.5 95.3 95.8 91.8

D→A 46.5 44.9 36.5 42.7 48.6 52.6 50.4 51.1 53.5 54.1

W→D 97.4 98.2 84.0 95.6 99.0 99.0 98.3 94.4 99.0 97.4

W→A 43.0 41.7 34.1 43.2 46.6 51.5 52.9 50.2 52.3 57.6

Average 64.4 65.5 53.1 62.9 67.5 71.5 70.8 70.7 72.1 72.5

– Unsupervised transfer metric learning (UTML) [18],
which decreases intra-class distance and increases inter-
class distance;

– Locality preserving joint transfer (LPJT) [19], which
jointly exploits feature adaptation with distribution
matching and sample adaptation with landmark selec-
tion;

– Domain invariant and class discriminative feature
learning (DICD) [17], which matches the marginal and
conditional distributions, and maximizes the inter-class
dispersion and minimizes the intra-class scatter;

– Transfer independently together (TIT) [20], which
learns multiple transformations for each domain to map
data onto a shared latent space where the domains are
well aligned.

4.2.3 Experimental results and analysis

The classification performance of all comparison models
on the 12 transfer tasks of Office+Caltech10 datasets
with DeCaf6 features, the 6 transfer tasks of Office-31
datasets with DeCaf7 features, and the 2 transfer tasks of
ImageNet+VOC2007 datasets are shown in Tables 3, 4,
and 5, respectively. LGMA considerably outperforms the
competitive baseline methods on most of the transfer tasks.
Specifically, LGMA achieves the following performance
gains compared with the best baselines: (1) 1.3% on
the 12 transfer tasks of Office+Caltech10 datasets with
DeCaf6 features, (2) 0.4% on the 6 transfer tasks of
Office-31 datasets with DeCaf7 features, and (3) 6.1%
on the 2 transfer tasks of ImageNet+VOC2007 datasets.

Although LGMA cannot perform the best on all tasks,
if LGMA performs the best, then it usually performs
considerably better than the best baseline approach;
otherwise, it performs only slightly worse than the
optimal baseline. This finding demonstrates that LGMA
is robust to feature shift and instance bias for domain
adaptation.

We can make more observations. (1) Domain adap-
tation methods (i.e., instance-based adaptation, feature
representation-based adaptation, classifier-based adapta-
tion, and hybrid knowledge-based adaptation methods) are
generally superior to SVM and 1NN, which indicates that
minimizing the distribution differences is the key to domain
adaptation. (2) Classifier-based adaptation DMM method
outperforms TCA, thereby showing the effectiveness of
minimizing the distribution differences based on SRM in the
infinite dimension reproducing kernel Hilbert space (DMM)
rather than in the dimension reduced kernel PCA space
(TCA). (3) Hybrid knowledge-based adaptation methods
(i.e., SCA, JGSA, TIT, LPJT, UTML, DICD and LGMA)
further outperform TCA and other single methods, whereas
LGMA performs the best in most transfer tasks. Only sin-
gle knowledge-based adaptation methods are insufficiently
good for domain adaptation when the domain discrepancy
is substantially large. The reason is that some source sam-
ples which are irrelevant to the target samples are not
helpful for learning a unified classifier even when using
the cross-domain invariant features or the high dimensional
nonlinear features or both. LGMA addresses this limita-
tion by reweighting the source instances according to their
relevance to the target instances and performing weighted

Table 5 Recognition accuracy(%) against other baseline methods on ImageNet+VOC2007 datasets, the best results and the best baseline results
are shown in boldface and italic, respectively

Tasks SVM TCA TJM SCA JGSA DICD TIT LPJT UTML LGMA

I→ V 59.2 63.7 63.7 60.1 52.3 55.9 62.8 63.5 60.4 65.1

V→ I 65.5 64.9 73.0 66.7 70.6 69.3 76.3 74.2 71.0 86.2

Average 64.4 64.3 68.4 63.4 61.5 62.6 69.6 68.9 65.7 75.7
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Table 6 Recognition accuracy(%) against other baseline methods on Office+Caltech10 (SURF) datasets, the best results and the best baseline
results are shown in boldface and italic, respectively

Tasks SVM 1NN TJM SCA JGSA UTML DICD LPJT LGMA

C→ A 53.1 23.7 46.8 45.6 51.5 51.7 47.3 60.8 58.3

C→W 41.7 25.8 39.0 40.0 45.4 51.2 46.4 55.9 52.7

C→ D 47.8 25.5 44.6 47.1 45.9 54.8 49.7 46.5 48.2

A→C 41.7 26.0 39.5 39.7 41.5 44.4 42.4 44.5 43.7

A→W 31.9 29.8 42.0 34.9 45.8 47.8 45.1 44.4 48.5

A→D 44.6 25.5 45.2 39.5 47.1 42.0 38.9 51.6 47.7

W→C 28.8 19.9 30.2 31.1 33.2 37.0 33.6 34.2 34.8

W→A 27.6 23.0 30.0 30.0 39.9 41.0 34.1 40.4 41.1

W→D 78.3 59.2 89.2 87.3 90.5 91.1 89.8 88.5 90.6

D→C 26.4 26.3 31.4 30.7 29.9 36.3 34.6 34.3 35.2

D→A 26.2 28.5 32.8 31.6 38.0 36.7 34.5 42.6 41.5

D→W 52.5 63.4 85.4 84.4 91.9 90.5 91.2 86.8 91

Average 41.1 31.4 46.3 45.2 50.0 52.0 49.0 52.5 52.8

distribution alignment in the linear Lie algebra manifold
space.

Although SCA, JGSA, LPJT, and DICD perform
distribution matching by using hybrid knowledge based
adaptation, the advantages of LGMA over these four
methods are threefold. (1) LGMA corrects the domain
mismatch by quantitatively evaluating the importance
of the marginal and conditional distributions in the
generalized FLDA framework. LGMA further performs
feature matching to guarantee a large number of effective
source instances for classifying the related target domain. In
SCA, JGSA, LPJT, and DICD, the evaluation of distribution
importance is ignored. (2) LGMA jointly learns the domain-
invariant and label-discriminative transfer classifier and the
transferable knowledge (invariant to feature representations
and unbiased to irrelevant instances) in a learning paradigm
in the nonlinear Lie group manifold space, whereas SCA,
JGSA, LPJT, and DICD learn the transferable knowledge
and cross-domain classifier in a linear manifold space. (3)
LGMA aims to find a geodesic on the original Lie group
and projects all the samples onto a Lie algebra manifold
space along the geodesic direction, while ensuring the
discrimination of the projected samples in a linear Lie

algebra manifold space. However, the other four methods
(i.e., SCA, JGSA, LPJT, and DICD) cannot guarantee
that the transformed samples are linear separable in the
RKHS.

We further verify the performance of LGMA on another
Office+Caltech10 datasets using SURF features, and the
performance results are reported in Table 6. It is worth
noting that LGMA outperforms other baselines range from
traditional machine learning methods (i.e., 1NN and SVM)
to state-of-the-art transfer learning models (i.e., TJM, SCA,
JGSA, UTML, TIT, DICD, and LPJT), which demonstrates
that LGMA is significantly superior to other baselines in
minimizing the cross-domain discrepancy.

We also evaluate the importance of the Lie algebra
transformation, the graph Laplacian regularization term
(including the parameters p and δ), and the weighted
distribution alignment factor μ, where we stand out from
the baseline methods. We randomly select several tasks and
show the results in Figs. 4, 5, and 6. In Fig. 4, the dotted
lines represent the baseline method, the solid lines represent
the proposed LGMA method. We can make additional
observations. (1) The Lie algebra transformation (L), the
graph Laplacian regularization (GLR), and the weighted

2 4 8 16 32 64
P

70

80

90

100

A
cc

ur
ac

y 
(%

)

C  A A  W W  C

0 0.2 0.4 0.6 0.8 1
70

80

90

100

A
cc

ur
ac

y 
(%

)

C  A A  W W  C

0 0.1 0.2 0.3 0.4 0.5
70

80

90

100

A
cc

ur
ac

y 
(%

)

C  A A  W W  C

1 2 3 4 5 6 7 8 9 10
T

70

80

90

100

A
cc

ur
ac

y 
(%

)

C  A A  W W  C

Fig. 4 The parameter sensitivity and convergence analysis of the proposed LGMA approach
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Fig. 5 The recognition accuracy of methods F, FL, FLW, FLWG, and LGMA

distribution alignment (WDA) are highly important in
dealing with the domain adaptation problems (Figs. 5
and 6). (2) Compared with other methods (FLDA, FLDA
with Lie algebra transfermation (FL), FLDA with Lie
algebra transfermation andWeighted distribution alignment
(FLW), FLDA with Lie algebra transfermation, Weighted
distribution alignment, and Graph Laplacian regularization
(FLWG)), the performance of LGMA method is better,
which validates the effectiveness of the proposed method.
(3) LGMA can reach a steady performance in approximately
T � 10 iterations (Fig. 4d and Fig. 5). (4) LGMA can reach
a high performance using the wide range of parameters
(Fig. 4a, b, and c).

The reasons for these results are presented as follows.
First is that the instances in Lie group manifold space are
projected onto the linear Lie algebra manifold space by
Lie algebra transformation to realize the data discrimination
in the nonlinear Lie group manifold space. Second is
that the graph Laplacian regularization can further exploit
the similar geometrical properties of the nearest points
in domain adaptation. The third is that the weighted
distribution alignment factor μ ∈ {0, 0.01, ..., 0.99, 1} can
evaluate the importance of the marginal and conditional
distributions. We do not perform experiments on the
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Fig. 6 Evaluate the impotance of Lie algebra transformation (L),
weighted distribution alignment (W), and graph Laplacian regulariza-
tion (G)

DeCaf7 features of Office-31 datasets because the results
are satisfactory.

4.3 Results with parameter tuning on target domain

In this section, we analyze the parameter fluctuations of
LGMA on different types of datasets to validate that a wide
range of parameter values can be selected for improved
performance.

We find the sensitivity of the number of the nearest
neighbors p by experimenting with a large range of p ∈
{2, 4, 8, ..., 64} on randomly selected tasks. From Fig. 4a
and the experimental results, we can conclude that LGMA
is robust in terms of p = 32. μ is a weight factor with the
value range μ ∈ {0, 0.01, ..., 0.99, 1}, and we can choose
the value of μ from the analysis of Fig. 4c.

LGMA uses a wide range of values for regularization
parameters β, δ, and some other necessary parameters k,
T. We follow the same setup of [41] that β ∈ [2−15, 2−1]
and k ∈ [20, 180]. In this study, we set the number of
iterations T = 10 (Fig. 4d). δ (Fig. 4b) is a factor with δ ∈
{0, 0.01, ..., 0.99, 1}. We observe that LGMA can achieve
robust performance for a wide range of parameter values.

In the experiment on Office+Caltech10 datasets using
DeCaf6 features, we set the free parameters β = 0.08,
δ = 0.18, and μ = 0.81. In the experiment on Office-31
datasets using DeCaf7 features, we set the free parameters
β = 0.1, δ = 0.46, and μ = 0.74. In the experiment on
ImageNet+VOC2007 datasets, we set the free parameters
β = 0.1, δ = 0.11, and μ = 0.81.

5 Conclusions

In this paper, we proposed a new Lie group manifold
analysis (LGMA) method for unsupervised domain adap-
tation. LGMA performs transformation using variances
between subsets of data to suppress insignificant differ-
ences (within labels and between domains) and to amplify
useful differences (between labels and overall variability)
in a linear Lie algebra manifold space. In the meanwhile,
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LGMA learns a invariant cross-domain classifier by extract-
ing domain-invariant feature representations, evaluating the
importance of distributions (marginal and conditional dis-
tributions), exploiting the similar geometrical properties
of the nearest points, and estimating irrelevant instance
weights that jointly reduce the cross-domain distribution
difference. Extensive experiments on several cross-domain
image datasets validate that LGMA considerably outper-
forms state-of-the-art domain adaptation methods.

In general, the problem of dataset bias in domain
adaptation is far from being solved. The actual performance
of existing approaches (� 90% accuracy) is only achieved
in several cross-domain tasks, even using advanced feature
extraction methods, such as DeCaf6 and DeCaf7 features.
Using raw features is clearly not satisfactory. Therefore,
it is critical to develop more robust algorithms that can
significantly reduce data bias in all cases.
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