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Abstract
This paper intends to propose a multi-attribute group decision making (MAGDM) methodology based on MULTIMOORA
under IFS theory for application in the assessment of solid waste management techniques. The present work is divided into
three folds. The first fold is that some novel operational laws for intuitionistic fuzzy numbers are introduced and a series
of aggregation operators based on them are developed. The properties related to new operations are discussed in detail. The
second fold is that particle swarm optimization (PSO) algorithm is applied for attribute weight determination by formulating
a non-linear optimization model with the goal of maximizing the distance of each alternative from negative ideal solution and
minimizing the distance from positive ideal solution. Lastly, a MAGDM method based on MULTIMOORA is put forward
and is applied in ranking different solid waste management techniques by taking various social, economical, environmental
and technological factors into consideration. The reliability and effectiveness of the proposed methodology is explored by
comparing the obtained results with several existing studies. The sensitivity analysis is done by taking different parameter
values in order to show the stability of the proposed method.
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1 Introduction

The solid waste management (SWM) is need of the hour
because it is emerging as one of the major issues in
almost all countries and has become a crucial factor in
environment protection and natural resources conservation.
Effective SWM is a necessary step to be taken in this
growing world in order to prevent the earth’s ecosystem
from damaging and to preserve the health of living beings.
Keeping in view the growing need of SWM, nowadays a
wide variety of methods such as composting, recycling,
pyrolysis, landfills etc. are being used for the disposal of
solid waste. It has been analyzed that most often different
methods lead to conflicting objectives within the selected
attribute set. Therefore, the proper assessment of various
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SWM techniques is essential in order to choose the optimal
waste disposal methods. However, the process of ranking
different methods of SWM requires proper administration
as the various methods vary in cost, time, reliability,
technology and affect different range of population. Often
these parameters of SWM are uncertain in nature and the
ignorance of uncertainty in such parameters may lead us
to wrong selection of SWM technique. For instance, the
preference values given by decision makers while assessing
SWM techniques may be in approximate form. The exact
values may not be given and the values may lie within a
range. Also, the data may not be represented using precise
scientific terms but rather is given using linguistic terms
such as “high”, “medium” and “low”. Hence, the issue
of SWM is becoming more and more serious due to the
presence of uncertainty in almost all system variables. The
uncertainties have made it complex to figure out reasonable
improvement technique for SWM. This issue can be handled
by utilizing fuzzy set theory and its various extensions
[40, 46].

MAGDM is a tool in which more than one individuals
make a decision regarding the available alternatives
before them which are characterized by different attribute
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(criteria). The final decision made is then no longer
attributable to any single individual of the group as
all the members collectively contribute to the outcome.
Recently, many researchers applied multi-attribute decision
making (MADM) methods in the area of SWM. For
instance, [1] applied three MADM methods namely
TOPSIS (“Technique for order preference by similarity
to ideal solution”), PROMETHEE (“preference ranking
organization method for enrichment evaluations”) and fuzzy
TOPSIS in order to evaluate ten disposal alternatives which
are further assessed under eighteen criteria. Cheng et al.
[14] integrated MADM and inexact mixed integer linear
programming methods for optimal selection of landfill site
alternatives considered in the SWM problem. Mir et al [36]
applied TOPSIS in order to obtain the most optimal SWM
method by comparing and ranking the scenarios. Wang et al.
[46] developed MAGDM method in order to prioritize
municipal SWM techniques and also developed a technique
for determining criteria weights objectively. Generowicz
et al. [27] applied multi-criteria decision analysis in order
to develop a method which gives the planning procedure of
waste management system in European cities or regions. In
addition to these, many other researchers and scholars [15,
43, 52] applied MADM methods in SWM field.

In every real world system, due to undeniable presence
of uncertainty, the task of handling imprecise and imperfect
information is becoming more and more challenging. As
the complexities in the socio-economic environments are
increasing day by day therefore, dealing with uncertain
information has become a basic concern. In order to
incorporate uncertainty into system description efficiently,
numerous models [2, 53] have been designed and introduced
so far. For instance, in light of handling such complexities
and uncertainties, [53] put forward the theory of fuzzy
sets (FSs) in which a unique real number, belonging to
[0, 1], is assigned to each entity of the universal set and
this number is called as membership degree (MD). The FS
theory was put forward on the basis of the fundamental
assumption that if any element of the universal set is
assigned a MD, say z ∈ [0, 1] then, automatically the non-
membership degree (NMD) of that element is considered to
be 1 − z. However, [2] pointed out that due to the presence
of hesitation degree in human decisions and judgements,
sum of MDs and NMDs is not necessarily one always. In
light of this fact, [2] introduced an intuitionistic fuzzy set
(IFS) theory characterized by NMDs, MDs and hesitation
degrees and this theory proved quite successful in modeling
uncertain and vague information more efficiently and
effectively.

Nowadays, the fundamental aspect for all types of
knowledge based systems, from image processing to

decision-making (DM), from pattern recognition to machine
learning is aggregation and fusion of information. In most
of the practical MADM problems, it is often required
to accumulate some numerical values and this is when
aggregation operators (AOs) play a fundamental role. More
generally, it can be said that the process of aggregation
makes use of distinct information pieces to make it
possible to reach at some conclusion or decision. Various
scholars and researchers have presented their theories
and methodologies [8, 19, 28, 45, 60] for analyzing the
problems of DM and applied it to the various different
disciplines. From these works, it is evident that the
two major aspects of MADM process are: (i) how to
aggregate the information (ii) how to obtain the criteria
weights objectively. A great attention is paid towards
aggregating uncertain information using AOs. For instance,
[31] proposed intuitionistic fuzzy (IF) geometric interaction
averaging AOs and applied them in the MADM process.
Garg [22] proposed generalized interactive geometric
interaction operators using einstein operations under IFS
theory and further developed interactive AOs in [23].
Huang et al. [33] gave the hamachar operational laws
and averaging and ordered averaging operators based on
proposed operations. Garg [24] improved the existing
Einstein operations and developed new operators based
on improved operations. Ye [51] developed hybrid AOs
and gave a DM approach of mechanical design scheme.
Besides these, numerous authors and researchers [3, 21,
25, 30, 48, 49] presented their theories and methodologies
for analyzing the problems of DM. Towards the second
aspect of MADM process, [12] proposed a method for
determination of criteria weight based on PSO [34]
under interval-valued IFS environment, which was further
improved in [11]. Das and Guha [17] proposed criteria
weights determination technique based on multi-objective
optimization problem [18, 50], PSO and penalty function
[4] under IFS environment. Xu [47] proposed a method for
determining ordered weighted averaging operator weights
based on normal distribution.

Recently, a wide variety of new MADM methods have
been developed and applied in various DM problems
under different environments. For instance, [13] developed
MADM method based on TOPSIS and similarity measures
under IFS environment. Peng and Ma [37] put forward
a novel score function, a MADM method based on it
and combinative distance-based assessment (CODAS) using
pythagorean fuzzy sets and applied their proposed technique
for making decision regarding teaching evaluation system.
[44] proposed multi-attributive border approximation area
comparison (MABAC) based MAGDM method under q-
rung orthopair fuzzy environment and further applied it in
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choosing construction projects. Stanujkic and Karabasevic
[42] extended weighted aggregated sum product assessment
(WASPAS) technique for IF numbers and applied it in
a case of website evaluation. Further, [54] extended the
WASPAS approach under interval-valued IFS theory. Apart
from these MADM methods, [5] developed the multi-
objective optimization by ratio analysis (MOORA) and
further extended it to MOORA plus the full multiplicative
form (MULTIMOORA) [6]. MULTIMOORA is a technique
having characteristics of three MADM approaches which
include additive utility functions, multiplicative utility
functions and the reference point approach. Zhang et al.
[59] proposed MULTIMOORA approach for IF numbers
which facilitates the aggregation of different parts of
MULTIMOORA and further applied it for assessing energy
storage technologies. Zavadskas et al. [55] developed
MULTIMOORA approach for interval-valued IF numbers
and applied it in engineering problems. Dahooie et al
[16] enhanced the performance of MULTIMOORA by
giving correlation coefficient and standard deviation based
objective weight determination method. Hafezalkotob et al.
[29] utilized interval numbers based fuzzy logic concept
for developing new approach based on MULTIMOORA.
Stanujkic et al. [41] gave a new extension of the
MULTIMOORA approach under bipolar FS environment.
Zavadskas et al. [56] proposed novel DM method based
on MULTIMOORA for m-generalized q-neutrosophic
sets. Further, [57] applied MULTIMOORA approach and
interval valued neutrosophic sets to present a novel heuristic
evaluation methodology. Recently, many researchers and
scholars applied MULTIMOORA technique in various
environmental problems [26, 35, 38, 39].

From these works, it is noticed that MULTIMOORA
approach is an effective approach utilized for solving real
life environmental problems as this method combines the
features of three MADM methods. Also, it is analyzed
that in our everyday life, we experience various situations,
where we need a mathematical function having the ability
to reduce a set of numbers into a unique representative
one. Therefore, the study of AOs is a significant part of
MADM problems. Information aggregation has become
basic concern in MADM process. Recently, the issue of
how to aggregate information has gained much attention of
many authors due to their extensive uses in various fields for
example environmental issues, pattern recognition, image
processing and information retrieval. After reviewing the
existing AOs under IFS environment, it is noted that most
of the fusion processes are based on simple algebraic
operations. Therefore, the task of developing new AOs is
still a meaningful and challenging task. The development of
new operations may provide more choice to decision maker

during the process of aggregation in order to take a sound
decision. Motivated by these, the principle theoretical and
practical contributions of the presented work are:

1) Novel operational laws for IF numbers are proposed
and their properties are investigated in detail. Further,
based on these operations, novel IF weighted aver-
aging/geometric (IFWA/IFWG), IF ordered weighted
averaging/geometric (IFOWA/IFOWG) and IF hybrid
weighted averaging/ geometric (IFHWA/IFHWG)
operators are proposed. The proposed operators depend
on a parameter k which may assume any real value
greater than 1. The influence of the parameter k on the
decision results is discussed in detail.

2) A new method for determining attribute weights with
the goal of maximizing the distance of alternatives
from negative ideal and minimizing the distance
from positive ideal simultaneously is proposed. As
these targets lead to formulation of multi-objective
optimization problem (MOOP) therefore, these are
converted to single objective optimization problem
by constructing appropriate membership functions
corresponding to each fuzzy objective [9, 61]. The
proposed methodology for weight determination leads
to formulation of non-linear optimization problem
and is solved using PSO, which is one of the most
efficient and widely used evolutionary algorithm [20].
The PSO algorithm has a wide advantages over the
other algorithm such as Genetic algorithm (GA).
For instance, PSO algorithm helps in improving the
solution at every stage and its characteristic helps in
fast convergence towards the solutions whereas other
metaheuristic algorithm such as GA does not provide
such guidance mechanism. Also, in PSO, it does not
require any additional parameter to tune the algorithm
while the GA needs some parameters such as crossover,
mutation etc. Further, PSO utilizes memory for storing
the previous best solutions achieved by each candidate.
This feature stops the candidate from diverting in
unwanted direction as if some candidate starts moving
towards unwanted path and the solution quality starts
degrading then the solutions are directed to the previous
stage through the pbest component.

3) A MAGDM approach based on MULTIMOORA
and the proposed novel AOs is developed which
combines the features of three MADM techniques
namely additive utility functions (the ratio system
approach (RSA)), multiplicative utility functions (the
full multiplicative form (FMF)) and the reference point
method (RPM). The final ranking of the alternatives is
done by using dominance property [7].
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4) The proposed methodology is applied in assessing
various SWM techniques which are characterized by
economic, social, technological and environmental
criteria. The effectiveness of the presented approach
results is demonstrated by comparing them with several
most widely used MADM methods based on TOPSIS
[13], CODAS [37], MABAC [44] and WASPAS [42].
The detailed sensitivity analysis by taking different
parameter values k, utilized in the proposed AOs, is
done. The influence of the parameter k, on different
parts of MULTIMOORA and hence on final ranking of
alternatives is discussed.

The remaining work is categorized into seven main
sections. Section 2 recapitulates some brief ideas on IFS,
MOOP and PSO. In Section 3, novel operational laws
are proposed and their properties are discussed in detail.
Based on these novel operations, IFWA, IFWG, IFOWA,
IFOWG, IFHWA and IFHWG AOs are developed and their
properties are investigated in Section 4. Further, Section 5
represents a method for determination of attribute weights
objectively based on non-linear optimization problem and
PSO. Section 6 presents a MAGDM methodology based
on MULTIMOORA, novel AOs and PSO. The assessment
of SWM techniques is done using proposed MAGDM
approach in Section 7 and its results are compared with
existing studies for validating the presented approach.
Section 8 communicates the concluding comments.

2 Preliminaries

Some basic concepts related to IFS theory, MOOP and PSO
are reviewed in this Section. Throughout the section, U
represents the universal set.

2.1 Basic concepts

Definition 1 [2] An IFS, I on U , is given as I =
{(x, χ(x), ϕ(x)) | x ∈ U}, where χ, ϕ : U → [0, 1]
represent the membership and non-membership functions
respectively and satisfy the relation 0 ≤ χ(x) + ϕ(x) ≤ 1 ∀
x ∈ U and h(x) = 1−χ(x)−ϕ(x) represents the hesitation
degree of x in I. If U contains only one element, then,
for convenience, IFS I over U is written as (χ, ϕ) where
χ, ϕ ∈ [0, 1] and 0 ≤ χ + ϕ ≤ 1 and is called IF number
(IFN).

Definition 2 [2] For two IFSs I1 = {(x, χ1(x), ϕ1(x)) |
x ∈ U} and I2 = {(x, χ2(x), ϕ2(x)) | x ∈ U} defined on U ,
we have:

(i) I1 ⊆ I2 if χ1(x) ≤ χ2(x) , ϕ1(x) ≥ ϕ2(x) ∀ x ∈ U .
(ii) I1 = I2 ⇔ I1 ⊆ I2 and I2 ⊆ I1.

(iii) Ic
1 = {(x, ϕ1(x), χ1(x)) | x ∈ U}.

Definition 3 [2] For two IFSs I1 = {(x, χ1(x), ϕ1(x)) |
x ∈ U} and I2 = {(x, χ2(x), ϕ2(x)) | x ∈ U} defined on U ,
we have:

(i) I1 ∪ I2 = {(x, max (χ1(x), χ2(x)) , min (ϕ1(x), ϕ2(x))) | x ∈ U}
(ii) I1 ∩ I2 = {(x, min (χ1(x), χ2(x)) , max (ϕ1(x), ϕ2(x))) | x ∈ U}

(iii) I1 ⊕I2 = {(x, χ1(x) + χ2(x) − χ1(x)χ2(x), ϕ1(x)ϕ2(x)) | x ∈ U}
(iv) I1 ⊗ I2 = {(x, χ1(x)χ2(x), ϕ1(x) + ϕ2(x) − ϕ1(x)ϕ2(x)) | x ∈ U}

Definition 4 [49] The score S and an accuracy H functions
are given as

S(I1) = χ1 − ϕ1 (1)

and H(I1) = χ1 + ϕ1 (2)

for an IFN I1 = (χ1, ϕ1). Further, depending on S and
H functions, a comparison law between two IFNs I1 and
I2 is defined as, if S(I1) > S(I2) then, I1  I2 and
if S(I1) = S(I2) then, calculate H(I1) and H(I2). If
H(I1) > H(I2) then, I1  I2. Here, the symbol ‘’ stands
for ‘preferred to’.

Definition 5 [49] For ‘n’ IFNs Iv = (χv, ϕv) (v =
1, 2, . . . , n), the IF weighted averaging (IFWA) and IF
weighted geometric (IFWG) operators are defined as:

IFWA (I1,I2, . . . ,In) =
(

1 −
n∏

v=1

(1 − χv)
ψv ,

n∏
v=1

(ϕv)
ψv

)

IFWG (I1,I2, . . . ,In) =
(

n∏
v=1

(χv)
ψv , 1 −

n∏
v=1

(1 − ϕv)
ψv

)

where ψ = (ψ1, ψ2, . . . , ψn)
T is the weight vector

associated with ‘n’ IFNs Iv such that ψv > 0 and
n∑

v=1
ψv = 1.

Definition 6 [21] For IFNs Iv = (χv, ϕv) (v = 1, 2), the
following operational laws are defined:

(i) I1 ⊕ I2 =
(

χ1+χ2−2χ1χ2
1−χ1χ2

,
ϕ1ϕ2

ϕ1+ϕ2−ϕ1ϕ2

)
(ii) I1 ⊗ I2 =

(
χ1χ2

χ1+χ2−χ1χ2
,

ϕ1+ϕ2−2ϕ1ϕ2
1−ϕ1ϕ2

)

Definition 7 [48] For two IFSs I1 = {(x, χ1(x), ϕ1(x)) |
x ∈ U} and I2 = {(x, χ2(x), ϕ2(x)) | x ∈ U} defined
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on U = {x1, x2, . . . , xn}, the weighted euclidean distance
among them is defined as:

d (I1, I2) =
√√√√1

2

n∑
v=1

{
ψv

[
(χ1(xv) − χ2(xv))

2 + (ϕ1(xv) − ϕ2(xv))
2 + (h1(xv) − h2(xv))

2]} (3)

where ψv is the weight of the elements xv ∈ U such that

ψv > 0 and
n∑

v=1
ψv = 1.

2.2 Multi-objective optimization problem

A MOOP is concerned with mathematical optimization
problem which involve more than one objective function
to be optimized. Generally, MOOP can be formulated as
follows:

max / min f = (
f1(x), f2(x), . . . , fQ(x)

)
subject to Ap(x) ≤ 0 p = 1, 2, . . . , P ;

Bk(x) = 0 k = 1, 2, . . . , K;
x(l)
r ≤ xr ≤ x(u)

r r = 1, 2, . . . , n.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Here f1(x), f2(x), . . . , fQ(x) are individual objective
functions and x = (x1, x2, . . . , xn) ∈ R

n is a vector
of decision variables. The MOOP is designed to find a
feasible x ∈ R

n which gives optimal value of objective
function f = (

f1(x), f2(x), . . . , fQ(x)
)
. In MOOP, no

single feasible solution exists which optimizes all objective
functions simultaneously. Therefore, it leads us to find the
best compromise solution, also known as pareto optimal
solution [18] and is defined as follows:

Definition 8 [18] A feasible solution x∗ ∈ R
n is said to be

pareto optimal, if it satisfies the following conditions.

(i) There does not exist any x ∈ R
n satisfying fq(x) ≥

fq(x∗)
(
fq(x) ≤ fq(x∗)

) ∀ q = 1, 2, . . . , Q in case
of maximization (minimization) problem.

(ii) There exists at least one objective function fq

satisfying fq(x∗) > fq(x)
(
fq(x∗) < fq(x)

)
in case

of maximization (minimization) problem for q ∈
{1, 2, . . . ,Q}.

Further, for solving a constrained optimization problem,
penalty functions are used. Penalty function replaces a
constrained optimization problem to an unconstrained
optimization problem whose solution ideally converge
to the solution of the original constrained problem. In

order to formulate penalty function, consider the following
optimization problem:

max / min F(x)

subject to Ap(x) ≤ 0 p = 1, 2, . . . , P

}
(4)

If there are equality constraints in the optimization problem
such as Bk(x) = 0, then, these can be converted to
inequality constraints as Bk(x) ≤ 0 and −Bk(x) ≤ 0.

Yang et al. [50] defined the penalty function as

F(x) = F(x) + y(t)H(x) (5)

Here F(x) is the original objective function, y(t) is penalty
value which is dynamically modified, t is the current
iteration number of the algorithm and H(x) is penalty factor
given as:

H(x) =
P∑

p=1

Ω
(
Zp(x)

) × (
Zp(x)

)γ (Zp(x)) (6)

where Zp(x) = max
{
0,Ap(x)

} ∀ p = 1, 2, . . . , P ; Ap(x)

are the constraints defined in optimization problem (4). The
functions y, Ω and γ depend on the optimization problem
and can be chosen accordingly.

2.3 Particle swarm optimization

PSO is one of the most successful and widely used
algorithms utilized in solving non linear optimization
problems. The concept of PSO was introduced by [34]
and it was inspired by the flocking and schooling patterns
of birds and fish. PSO is based on the communication
and interaction i.e., members (particles) of the population
(swarm) exchange information among them. It is a method
that optimizes the problem by iteratively trying to improve
a solution with respect to given measure of quality. During
movement, each particle modifies its best position (local
best) in accordance with its own previous best position and
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the best position of its neighbor particles (global best). PSO
begins with a swarm of particles whose positions are initial
solutions and velocities are arbitrarily given in the search
space. In view of the local best and the global best data, the
particles keeps on updating their velocities and positions.

Each particle updates its position and velocity, in each
iteration, using the following equation:

vel(t+1)
v = ω(t)vel(t)v + c1r

(t)
v1

(
P (t)

v − x(t)
v

)
+c2r

(t)
v2

(
P (t)

g − x(t)
v

)
(7)

x(t+1)
v = x(t)

v + vel(t+1)
v (8)

In the above Eq. (7), v = 1, 2, . . . , N , where N is
the size of population, vel(t+1)

v is the velocity of the vth
particle in (t + 1)th iteration, ω(t) is the inertia weight,
c1 and c2 are positive constants known as cognitive and
social parameters respectively, r

(t)
v1 and r

(t)
v2 are random

parameters belonging to [0, 1] used during iteration number
t. Also, P

(t)
v represents the best position of the particle

achieved so far and P
(t)
g represents the particle having

smallest/largest fitness value (objective function value), in
accordance with min / max problem, acquired till iteration
t . A brief description of a pseudo code of PSO for

maximizing a function f is given in Algorithm 1 that
can be divided into two main phases: (i) Initialization of
particles, velocity and global best positions (ii) Updation
of particle position, particle velocity, personal best and
global best. At initialization phase, the initial positions and
velocities for each particle are initialized. If there are M

number of variables (unknowns) to be optimized then, the
time complexity for this phase is O(MN). In the second
phase, the position and velocity of each particle is updated
and fitness value is computed for each iteration t . Let the
maximum number of iterations be denoted by Z. Hence, the
time complexity for this phase is O(MNZ).

3 New operational laws of IFNs

In this section, with the goal of enriching the base of IF
operations, we propose new operations of IFNs based on
logarithmic and exponential functions and investigate their
properties in detail.

Definition 9 For IFNs Iv = (χv, ϕv), (v = 1, 2), we define
their operations as follows:

(i) I1 ⊕ I2 =

⎛
⎜⎜⎝1− 1

1+logk

(
k

χ1
1−χ1 +k

χ2
1−χ2 −1

) , 1

1+logk

(
k

1−ϕ1
ϕ1 +k

1−ϕ2
ϕ2 −1

)
⎞
⎟⎟⎠;

(ii) I1 ⊗ I2 =

⎛
⎜⎜⎝ 1

1+logk

(
k

1−χ1
χ1 +k

1−χ2
χ2 −1

) , 1 − 1

1+logk

(
k

ϕ1
1−ϕ1 +k

ϕ2
1−ϕ2 −1

)
⎞
⎟⎟⎠

where k > 1 is a real number.

Remark 1 Consider the two functions a(x, y) = 1 −
1

1+logk

(
k

x
1−x +k

y
1−y −1

) and b(x, y) = 1

1+logk

(
k

1−x
x +k

1−y
y −1

)
where 0 ≤ x, y ≤ 1. Then, it is analyzed that
b(x, y) = 1 − a(1 − x, 1 − y). Therefore, the
operations defined in Definition 9 can be re-written as
I1 ⊕ I2 = (a (χ1, χ2) , b (ϕ1, ϕ2)) and I1 ⊗ I2 =
(b (χ1, χ2) , a (ϕ1, ϕ2)) and hence, these operations satisfy
the rule of constructing AOs given in [3].

Further, by taking k = 2, the values of the functions
a(x, y) and b(x, y) are described in Fig. 1a and b
respectively. These figures depict that the functions a(x, y)

and b(x, y) are commutative, monotonically increasing
with respect to x and y and are bounded as well. Also,
these functions are defined for extreme values of x and
y as depicted in the figures whereas the addition and
multiplication operations defined in Definition 6 become
undefined for extreme degrees of membership and non-
membership.
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Fig. 1 Values of functions a(x, y) and b(x, y) for different values of x and y

Theorem 1 For IFNs I1 and I2, I1 ⊕ I2 and I1 ⊗ I2 are
also IFNs.

Proof Let Iv = (χv, ϕv), (v = 1, 2) be two
IFNs. Then, by definition of IFNs, we have
0 ≤ χv, ϕv, χv + ϕv ≤ 1 for each v = 1, 2. Further,
assume that I3 = I1 ⊕ I2 = (χ3, ϕ3). By using Defi-
nition 9, we have χ3 = 1 − 1

1+logk

(
k

χ1
1−χ1 +k

χ2
1−χ2 −1

) and

ϕ3 = 1

1+logk

(
k

1−ϕ1
ϕ1 +k

1−ϕ2
ϕ2 −1

) . Now, in order to prove that

I3 is IFN, it is sufficient to show that 0 ≤ χ3, ϕ3 ≤ 1
such that 0 ≤ χ3 + ϕ3 ≤ 1. Since, k > 1 and

0 ≤ χ1, χ2 ≤ 1. Therefore, logk

(
k

χ1
1−χ1 + k

χ2
1−χ2 − 1

)
≥ 0

⇒ 1 + logk

(
k

χ1
1−χ1 + k

χ2
1−χ2 − 1

)
≥ 1 ⇒

0 ≤ 1

1+logk

(
k

χ1
1−χ1 +k

χ2
1−χ2 −1

) ≤ 1 ⇒ 0 ≤

1 − 1

1+logk

(
k

χ1
1−χ1 +k

χ2
1−χ2 −1

) ≤ 1. Also, as 0 ≤

ϕ1, ϕ2 ≤ 1 therefore, logk

(
k

1−ϕ1
ϕ1 + k

1−ϕ2
ϕ2 − 1

)
≥ 0

⇒ 1 + logk

(
k

1−ϕ1
ϕ1 + k

1−ϕ2
ϕ2 − 1

)
≥ 1 ⇒ 0 ≤

1

1+logk

(
k

1−ϕ1
ϕ1 +k

1−ϕ2
ϕ2 −1

) ≤ 1. Hence, 0 ≤ χ3, ϕ3 ≤ 1. Fur-

ther, since 0 ≤ χv + ϕv ≤ 1 for each v = 1, 2. Therefore,

χv

1−χv
≤ 1−ϕv

ϕv
⇒ 1 + logk

(
k

χ1
1−χ1 + k

χ2
1−χ2 − 1

)
≤ 1 +

logk

(
k

1−ϕ1
ϕ1 + k

1−ϕ2
ϕ2 − 1

)
⇒ 1

1+logk

(
k

1−ϕ1
ϕ1 +k

1−ϕ2
ϕ2 −1

) ≤

1

1+logk

(
k

χ1
1−χ1 +k

χ2
1−χ2 −1

) . Hence,

χ3 + ϕ3 = 1 − 1

1 + logk

(
k

χ1
1−χ1 + k

χ2
1−χ2 − 1

)

+ 1

1 + logk

(
k

1−ϕ1
ϕ1 + k

1−ϕ2
ϕ2 − 1

)

≤ 1 − 1

1 + logk

(
k

χ1
1−χ1 + k

χ2
1−χ2 − 1

)

+ 1

1 + logk

(
k

χ1
1−χ1 + k

χ2
1−χ2 − 1

) = 1

Also, χ3, ϕ3 ≥ 0 implies that χ3 + ϕ3 ≥ 0. Thus, 0 ≤
χ3 + ϕ3 ≤ 1. Hence, I3 = I1 ⊕ I2 is an IFN. Proceeding
in the similar manner, we can prove that I1 ⊗ I2 is also an
IFN.

Theorem 2 For two IFNs I1 and I2, we have

(i) (I1 ⊕ I2)
c = Ic

1 ⊗ Ic
2 ;

(ii) (I1 ⊗ I2)
c = Ic

1 ⊕ Ic
2 .
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Proof Here we prove the part (i) only, while part (ii) can be
obtained in the similar manner. Using Definitions 2 and 9,
we have

(I1 ⊕ I2)
c =

⎛
⎜⎜⎝1 − 1

1 + logk

(
k

χ1
1−χ1 + k

χ2
1−χ2 − 1

) ,
1

1 + logk

(
k

1−ϕ1
ϕ1 + k

1−ϕ2
ϕ2 − 1

)
⎞
⎟⎟⎠

c

=

⎛
⎜⎜⎝ 1

1 + logk

(
k

1−ϕ1
ϕ1 + k

1−ϕ2
ϕ2 − 1

) , 1 − 1

1 + logk

(
k

χ1
1−χ1 + k

χ2
1−χ2 − 1

)
⎞
⎟⎟⎠

= (ϕ1, χ1) ⊗ (ϕ2, χ2)

= Ic
1 ⊗ Ic

2

Theorem 3 For IFNs I1, I2 and I3, we have

(i) I1 ⊕ I2 = I2 ⊕ I1;
(ii) I1 ⊗ I2 = I2 ⊗ I1;

(iii) I1 ⊕ (I2 ⊕ I3) = (I1 ⊕ I2) ⊕ I3;
(iv) I1 ⊗ (I2 ⊗ I3) = (I1 ⊗ I2) ⊗ I3.

Proof It is trial.

Theorem 4 Let 1 = (1, 0) and 0 = (0, 1). Then, for any
IFN I = (χ, ϕ), we have

(i) I ⊕ 1 = 1;
(ii) I ⊗ 0 = 0;

(iii) I ⊕ 0 = I;
(iv) I ⊗ 1 = I.

Proof Follow from the Definition 9.

Theorem 5 For IFNs Iv = (
χIv

, ϕIv

)
and Jv =(

χJv
, ϕJv

)
(v = 1, 2) satisfying χIv

≤ χJv
and ϕIv

≥ ϕJv

for each v, we have

(i) I1 ⊕ I2 ⊆ J1 ⊕ J2;
(ii) I1 ⊗ I2 ⊆ J1 ⊗ J2.

Proof Here we prove the part (i) only, while part (ii) can
be obtained similarly. Let I1 ⊕ I2 = (χI , ϕI); J1 ⊕ J2 =(
χJ , ϕJ

)
; A = k

χI1
1−χI1 + k

χI2
1−χI2 − 1 ; B = k

χJ1
1−χJ1 +

k

χJ2
1−χJ2 − 1 ; C = k

1−ϕI1
ϕI1 + k

1−ϕI2
ϕI2 − 1 and D = k

1−ϕJ1
ϕJ1 +

k

1−ϕJ2
ϕJ2 − 1. Since, χIv

≤ χJv
⇒ 1 − χIv

≥ 1 − χJv
⇒

1
1−χIv

≤ 1
1−χJv

⇒ χIv

1−χIv
≤ χJv

1−χJv
⇒ k

χIv
1−χIv ≤ k

χJv
1−χJv

⇒ A ≤ B ⇒ logk (A) ≤ logk (B) ⇒ 1 + logk (A) ≤
1 + logk (B) ⇒ 1

1+logk(A)
≥ 1

1+logk(B)
⇒ 1 − 1

1+logk(A)
≤

1 − 1
1+logk(B)

⇒ χI ≤ χJ . Also, ϕIv
≥ ϕJv

⇒ 1 − ϕIv
≤

1 − ϕJv
⇒ 1−ϕIv

ϕIv
≤ 1−ϕJv

ϕJv
⇒ k

1−ϕIv
ϕIv ≤ k

1−ϕJv
ϕJv ⇒ C ≤ D

⇒ logk (C) ≤ logk (D) ⇒ 1 + logk (C) ≤ 1 + logk (D)

⇒ 1
1+logk(C)

≥ 1
1+logk(D)

⇒ ϕI ≥ ϕJ . Hence, by using
Definition 2, we have I1 ⊕ I2 ⊆ J1 ⊕ J2.

Remark 2 The operations defined in Definition 9 are
monotonically increasing as depicted by Theorem 5.
Therefore, for IFNs 1 = (1, 0), 0 = (0, 1), I1 and I2,
we have 0 = 0 ⊕ 0 ⊆ I1 ⊕ I2 ⊆ 1 ⊕ 1 = 1 and
0 = I1 ⊗ 0 ⊆ I1 ⊗ I2 ⊆ 1 ⊗ 1 = 1. It implies that, the
proposed operations I1 ⊕ I2 and I1 ⊗ I2 are bounded as
well.

Theorem 6 Based on the addition operation defined in
Definition 9, for any natural number ρ, we have

ρI1 =

⎛
⎜⎜⎝1 − 1

1 + logk

(
ρ

(
k

χ1
1−χ1 − 1

)
+ 1

) ,
1

1 + logk

(
ρ

(
k

1−ϕ1
ϕ1 − 1

)
+ 1

)
⎞
⎟⎟⎠
(9)

Proof We will prove the Eq. (9) by applying principle of
mathematical induction on ρ.
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Step 1: For ρ = 2, using the addition operation defined in
Definition 9, we have

I1 ⊕ I1 = (χ1, ϕ1) ⊕ (χ1, ϕ1)

=

⎛
⎜⎜⎝1 − 1

1 + logk

(
k

χ1
1−χ1 + k

χ1
1−χ1 − 1

) ,
1

1 + logk

(
k

1−ϕ1
ϕ1 + k

1−ϕ1
ϕ1 − 1

)
⎞
⎟⎟⎠

=

⎛
⎜⎜⎝1 − 1

1 + logk

(
2k

χ1
1−χ1 − 1

) ,
1

1 + logk

(
2k

1−ϕ1
ϕ1 − 1

)
⎞
⎟⎟⎠

=

⎛
⎜⎜⎝1 − 1

1 + logk

(
2

(
k

χ1
1−χ1 − 1

)
+ 1

) ,
1

1 + logk

(
2

(
k

1−ϕ1
ϕ1 − 1

)
+ 1

)
⎞
⎟⎟⎠

Hence, the Eq. (9) is true for ρ = 2.
Step 2: Consider that the Eq. (9) holds for any natural

number ρ = ρ0. Then, for ρ = ρ0 + 1, we have

(ρ0 + 1)I1 = I1 ⊕ I1 ⊕ . . . ⊕ I1︸ ︷︷ ︸
(ρ0+1) times

=
⎛
⎜⎝I1 ⊕ I1 ⊕ . . . ⊕ I1︸ ︷︷ ︸

(ρ0) times

⎞
⎟⎠ ⊕ I1

=

⎛
⎜⎜⎝1 − 1

1 + logk

(
ρ0

(
k

χ1
1−χ1 − 1

)
+ 1

) ,
1

1 + logk

(
ρ0

(
k

1−ϕ1
ϕ1 − 1

)
+ 1

)
⎞
⎟⎟⎠ ⊕ (χ1, ϕ1)

=
(

1 − 1

1 + A ,
1

1 + B

)
⊕ (

χI1 , ϕI1

)
where A = logk

(
ρ0

(
k

χ1
1−χ1 − 1

)
+ 1

)
and B = logk

(
ρ0

(
k

1−ϕ1
ϕ1 − 1

)
+ 1

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 1

1 + logk

⎛
⎜⎝k

(
1− 1

1+A
1

1+A

)
+ k

χ1
1−χ1 − 1

⎞
⎟⎠

,
1

1 + logk

⎛
⎜⎝k

(
1− 1

1+B
1

1+B

)
+ k

1−ϕ1
ϕ1 − 1

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝1 − 1

1 + logk

(
kA + k

χ1
1−χ1 − 1

) ,
1

1 + logk

(
kB + k

1−ϕ1
ϕ1 − 1

)
⎞
⎟⎟⎠

=

⎛
⎜⎜⎝1 − 1

1 + logk

(
ρ0

(
k

χ1
1−χ1 − 1

)
+ k

χ1
1−χ1

) ,
1

1 + logk

(
ρ0

(
k

1−ϕ1
ϕ1 − 1

)
+ k

1−ϕ1
ϕ1

)
⎞
⎟⎟⎠

=

⎛
⎜⎜⎝1 − 1

1 + logk

(
(ρ0 + 1)

(
k

χ1
1−χ1 − 1

)
+ 1

) ,
1

1 + logk

(
(ρ0 + 1)

(
k

1−ϕ1
ϕ1 − 1

)
+ 1

)
⎞
⎟⎟⎠
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Thus, the Eq. (9) is true for ρ = ρ0 + 1. Hence,
by principle of mathematical induction, the Eq. (9)
holds for all natural numbers ρ.

Theorem 7 Based on the multiplication operation defined
in Definition 9, for any natural number ρ, we have

Iρ
1 = I1 ⊗ I1 ⊗ . . . ⊗ I1︸ ︷︷ ︸

ρ times

=

⎛
⎜⎜⎝ 1

1 + logk

(
ρ

(
k

1−χ1
χ1 − 1

)
+ 1

) , 1 − 1

1 + logk

(
ρ

(
k

ϕ1
1−ϕ1 − 1

)
+ 1

)
⎞
⎟⎟⎠

(10)

Proof It can be obtained similarly as Theorem 6.

The results of the Theorems 6 and 7 can be generalized
to any positive real number as stated in the following
Definition 10.

Definition 10 For IFN I1 and positive real number ρ, we
have

(i) ρI1 =

⎛
⎜⎜⎝1 − 1

1+logk

(
ρ

(
k

χ1
1−χ1 −1

)
+1

) , 1

1+logk

(
ρ

(
k

1−ϕ1
ϕ1 −1

)
+1

)
⎞
⎟⎟⎠;

(ii) Iρ
1 =

⎛
⎜⎜⎝ 1

1+logk

(
ρ

(
k

1−χ1
χ1 −1

)
+1

) , 1 − 1

1+logk

(
ρ

(
k

ϕ1
1−ϕ1 −1

)
+1

)
⎞
⎟⎟⎠

Theorem 8 For IFN I1 and positive real number ρ, ρI1

and Iρ
1 are also IFNs.

Proof It can be obtained similarly as the proof of the
Theorem 1.

Theorem 9 For two IFNs I1 and I2 and positive real
number ρ, we have

(i)
(
Ic

1

)ρ = (ρI1)
c.

(ii) ρ
(
Ic

1

) = (
Iρ

1

)c
.

Proof Here we prove the part (i) only, while part (ii) can be
obtained in the similar manner. Using Definitions 2 and 10,
we have

(
Ic

1

)ρ = (ϕ1, χ1)
ρ

=

⎛
⎜⎜⎝ 1

1 + logk

(
ρ

(
k

1−ϕ1
ϕ1 − 1

)
+ 1

) , 1 − 1

1 + logk

(
ρ

(
k

χ1
1−χ1 − 1

)
+ 1

)
⎞
⎟⎟⎠

=

⎛
⎜⎜⎝1 − 1

1 + logk

(
ρ

(
k

χ1
1−χ1 − 1

)
+ 1

) ,
1

1 + logk

(
ρ

(
k

1−ϕ1
ϕ1 − 1

)
+ 1

)
⎞
⎟⎟⎠

c

= (ρI1)
c

Theorem 10 For two IFNs I1 and I2 and positive real
numbers ρ, ρ1, ρ2, we have

(i) ρ (I1 ⊕ I2) = ρI1 ⊕ ρI2 ;

(ii) (I1 ⊗ I2)
ρ = Iρ

1 ⊗ Iρ
2 ;

(iii) (ρ1 + ρ2) I1 = ρ1I1 ⊕ ρ2I1 ;
(iv) Iρ1+ρ2

1 = Iρ1
1 ⊗ Iρ2

1 .
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Proof Here we prove the part (i) only, while others can be
obtained in the similar manner. Using the operations defined
in Definitions 9 and 10, we obtain that

ρ (I1 ⊕ I2) = ρ

⎛
⎜⎜⎝1 − 1

1 + logk

(
k

χ1
1−χ1 + k

χ2
1−χ2 − 1

) ,
1

1 + logk

(
k

1−ϕ1
ϕ1 + k

1−ϕ2
ϕ2 − 1

)
⎞
⎟⎟⎠

= ρ

(
1 − 1

1 + A ,
1

1 + B

)
where A = logk

(
k

χ1
1−χ1 + k

χ2
1−χ2 − 1

)
and B = logk

(
k

1−ϕ1
ϕ1 + k

1−ϕ2
ϕ2 − 1

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 1

1 + logk

⎛
⎜⎝ρ

⎛
⎜⎝k

(
1− 1

1+A
1

1+A

)
− 1

⎞
⎟⎠ + 1

⎞
⎟⎠

,
1

1 + logk

⎛
⎜⎝ρ

⎛
⎜⎝k

(
1− 1

1+B
1

1+B

)
− 1

⎞
⎟⎠ + 1

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

1 − 1

1 + logk

(
ρ
(
kA − 1

) + 1
) ,

1

1 + logk

(
ρ
(
kB − 1

) + 1
)
)

=

⎛
⎜⎜⎝1 − 1

1 + logk

(
ρ

(
k

χ1
1−χ1 + k

χ2
1−χ2 − 2

)
+ 1

) ,
1

1 + logk

(
ρ

(
k

1−ϕ1
ϕ1 + k

1−ϕ2
ϕ2 − 2

)
+ 1

)
⎞
⎟⎟⎠

=

⎛
⎜⎜⎝1 − 1

1 + logk

(
ρ

(
k

χ1
1−χ1 − 1

)
+ ρ

(
k

χ2
1−χ2 − 1

)
+ 1

) ,
1

1 + logk

(
ρ

(
k

1−ϕ1
ϕ1 − 1

)
+ ρ

(
k

1−ϕ2
ϕ2 − 1

)
+ 1

)
⎞
⎟⎟⎠

=

⎛
⎜⎜⎝1 − 1

1 + logk

(
ρ

(
k

χ1
1−χ1 − 1

)
+ 1

) ,
1

1 + logk

(
ρ

(
k

1−ϕ1
ϕ1 − 1

)
+ 1

)
⎞
⎟⎟⎠

⊕

⎛
⎜⎜⎝1 − 1

1 + logk

(
ρ

(
k

χ2
1−χ2 − 1

)
+ 1

) ,
1

1 + logk

(
ρ

(
k

1−ϕ2
ϕ2 − 1

)
+ 1

)
⎞
⎟⎟⎠

= ρI1 ⊕ ρI2

Theorem 11 For IFN I1 and real number ρ > 0, the
operation ρI1 is monotonically increasing with respect to
(w.r.t) I1 and ρ and the operation Iρ

1 is monotonically
increasing w.r.t I1 and is decreasing w.r.t ρ

Proof Consider the two functions

c(x, y) = 1 − 1

1 + logk

(
x
(
k

y
1−y − 1

)
+ 1

) and s(x, y) = 1

1 + logk

(
x

(
k

1−y
y − 1

)
+ 1

)

H. Garg and D. Rani4340



where x > 0 and 0 ≤ y ≤ 1. Now, differentiating the
functions “c” and “s” partially w.r.t x and y, we get

∂c

∂x
=

(
k

y
1−y − 1

)
logk(e)(

1 + logk

(
x
(
k

y
1−y − 1

)
+ 1

))2 (
x
(
k

y
1−y − 1

)
+ 1

) ≥ 0 ; ∂c

∂y
=

x
(
k

y
1−y

)
(

1 + logk

(
x
(
k

y
1−y − 1

)
+ 1

))2 (
x
(
k

y
1−y − 1

)
+ 1

)
(1 − y)2

≥ 0 ;

∂s

∂x
=

−
(

k
1−y
y − 1

)
logk(e)(

1 + logk

(
x

(
k

1−y
y − 1

)
+ 1

))2 (
x

(
k

1−y
y − 1

)
+ 1

) ≤ 0 ; ∂s

∂y
=

x

(
k

1−y
y

)

y2

(
1 + logk

(
x

(
k

1−y
y − 1

)
+ 1

))2 (
x

(
k

1−y
y − 1

)
+ 1

) ≥ 0.

It gives that the function “c” is increasing w.r.t both x and y

and the function “s” is increasing w.r.t y and is decreasing
w.r.t x. Now, consider the two IFNs Iv = (χ1, ϕ1) (v =

1, 2) such that I1 ⊆ I2. Then, by using Definition 2, we
have χ1 ≤ χ2 and ϕ1 ≥ ϕ2. Further, using the monotone
properties of functions “c” and “s”, we obtain that

c (ρ, χ1) = 1 − 1

1 + logk

(
ρ

(
k

χ1
1−χ1 − 1

)
+ 1

) ≤ 1 − 1

1 + logk

(
ρ

(
k

χ2
1−χ2 − 1

)
+ 1

) = c (ρ, χ2)

s (ρ, ϕ1) = 1

1 + logk

(
ρ

(
k

1−ϕ1
ϕ1 − 1

)
+ 1

) ≥ 1

1 + logk

(
ρ

(
k

1−ϕ2
ϕ2 − 1

)
+ 1

) = s (ρ, ϕ2)

It implies that ρI1 ⊆ ρI2. Similarly, it can be obtained
that Iρ

1 ⊆ Iρ
2 when I1 ⊆ I2. Hence, the operations ρI1

and Iρ
1 are increasing w.r.t I1. Further, consider two real

numbers ρ1 and ρ2 such that 0 < ρ1 ≤ ρ2. Again, using
the monotone properties of functions “c” and “s”, we obtain
that

c (ρ1, χ1) = 1 − 1

1 + logk

(
ρ1

(
k

χ1
1−χ1 − 1

)
+ 1

) ≤ 1 − 1

1 + logk

(
ρ2

(
k

χ1
1−χ1 − 1

)
+ 1

) = c (ρ2, χ1)

s (ρ1, ϕ1) = 1

1 + logk

(
ρ1

(
k

1−ϕ1
ϕ1 − 1

)
+ 1

) ≥ 1

1 + logk

(
ρ2

(
k

1−ϕ1
ϕ1 − 1

)
+ 1

) = s (ρ2, ϕ1)

It gives that ρ1I1 ⊆ ρ2I1. In the similar manner, it can be
proved that Iρ2

1 ⊆ Iρ1
1 when ρ1 ≤ ρ2. Hence, the operations

ρI1 and Iρ
1 are increasing and decreasing respectively w.r.t

ρ.

Moreover, by taking k = 2, the values of the
function c(x, y) and s(x, y) are described in Fig. 2a and b
respectively. In the figures, we have taken 0 < x ≤ 10 and
0 ≤ y ≤ 1. The monotonic behavior of the functions c(x, y)

and s(x, y) is also depicted in the figures, which validates
the Theorem 11.

Remark 3 Using the Theorem 11, for IFNs 1 = (1, 0),
0 = (0, 1), I1 and real number ρ > 0, we have 0 = ρ0 ⊆
ρI1 ⊆ ρ1 = 1 and 0 = 0ρ ⊆ Iρ

1 ⊆ 1ρ = 1. It implies that,
the proposed operations ρI1 and Iρ

1 are bounded also.

4 Aggregation operators of IFNs based
on new operations

In this section, we develop averaging and geometric AOs,
based on new introduced operations, under IFS theory for
a collection of IFNs, denoted by Θ . Consider a collection
of “n” IFNs Iv = (χv, ϕv), (v = 1, 2, . . . , n) and the
associated weight vector ψ = (ψ1, ψ2, . . . , ψn)

T , such that

ψv > 0 and
n∑

v=1
ψv = 1.

Definition 11 A map IFWA : Θn → Θ , defined as

IFWA(I1, I2, . . . , In) = ψ1I1 ⊕ ψ2I2 ⊕ . . . ⊕ ψnIn (11)

is called as IF weighted averaging (IFWA) operator.
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Fig. 2 Values of functions c(x, y) and s(x, y) for different values of x and y

Theorem 12 The aggregated value acquired after applying
IFWA operator on IFNs Iv (v = 1, 2, . . . , n), is still IFN
and is given as

IFWA(I1,I2, . . . ,In)=

⎛
⎜⎜⎜⎝1− 1

1+logk

(
n∑

v=1
ψvk

χv
1−χv

) ,
1

1+logk

(
n∑

v=1
ψvk

1−ϕv
ϕv

)
⎞
⎟⎟⎟⎠

(12)

Proof It can be obtained using Eq. (11) and the operations
defined in Definitions 9 and 10.

Definition 12 An IFWG operator is a map IFWG : Θn →
Θ , given as

IFWG(I1, I2, . . . , In) = Iψ1
1 ⊗ Iψ2

2 ⊗ . . . ⊗ Iψn
n (13)

Theorem 13 The unique value obtained on using IFWG
operator on IFNs Iv (v = 1, 2, . . . , n), is still an IFN and
is given as

IFWG(I1,I2, . . . ,In)=

⎛
⎜⎜⎜⎝ 1

1+logk

(
n∑

v=1
ψvk

1−χv
χv

) , 1− 1

1+logk

(
n∑

v=1
ψvk

ϕv
1−ϕv

)
⎞
⎟⎟⎟⎠

(14)

In order to illustrate the working of the proposed IFWA
and IFWG operator, we give an example as follows:

Example 1 Consider the four IFNs I1 = (0.2, 0.3), I2 =
(0.7, 0.2), I3 = (0.5, 0.1) and I4 = (0.3, 0.2) and let ψ =
(0.25, 0.30, 0.15, 0.30)T be the weight vector associated

with these IFNs. Without loss of generality, we choose k =
2. Based on these values, we have

4∑
v=1

ψvk
χv

1−χv = ψ1k

(
χ1

1−χ1

)
+ ψ2k

(
χ2

1−χ2

)
+ ψ3k

(
χ3

1−χ3

)

+ψ4k

(
χ4

1−χ4

)

= 0.25 × 2

(
0.2

1−0.2

)
+ 0.30 × 2

(
0.7

1−0.7

)

+0.15 × 2

(
0.5

1−0.5

)
+ 0.30 × 2

(
0.3

1−0.3

)

= 0.25×20.2500+0.30 × 22.3333 + 0.15

×21.0000 + 0.30 × 20.2860

= 0.25 × 1.1892 + 0.30×5.0397+0.15

×2.0000 + 0.30 × 1.3459

= 2.5130

and
4∑

v=1

ψvk
1−ϕv
ϕv = ψ1k

(
1−ϕ1
ϕ1

)
+ ψ2k

(
1−ϕ2
ϕ2

)
+ ψ3k

(
1−ϕ3
ϕ3

)

+ψ4k

(
1−ϕ4
ϕ4

)

= 0.25 × 2

(
1−0.3

0.3

)
+ 0.30 × 2

(
1−0.2

0.2

)

+0.15 × 2

(
1−0.1

0.1

)
+ 0.30 × 2

(
1−0.2

0.2

)

= 0.25 × 22.3333+0.30 × 24.0000 + 0.15

×29.0000 + 0.30 × 24.0000

= 0.25 × 5.0397 + 0.30 × 16.0000

+0.15 × 512.0000 + 0.30 × 16.0000

= 87.6599
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Further, using the Eq. (12), we have

IFWA (I1, I2, I3, I4) =
(

1− 1

1+log2 (2.5130)
,

1

1+log2 (87.6599)

)
= (0.5707, 0.1342)

Proceeding in the similar manner, on utilizing Eq. (14), we
obtain that IFWG (I1, I2, I3, I4) = (0.2750, 0.2172).

Further, it is noticed that the proposed IFWA and IFWG
operators satisfy certain properties which are elaborated for
IFWA operator as follows:

Property 1 (Idempotency) Let I0 be an IFN such that Iv =
I0 ∀ v. Then,

IFWA(I1, I2 . . . In) = I0

Proof Let I0 = (χ0, ϕ0). Since, Iv = I0 ∀ v. It implies
that χv = χ0 and ϕv = ϕ0 ∀ v. Further, using the fact that
n∑

v=1
ψv = 1 and Eq. (12), we have

IFWA(I1,I2, . . . ,In) =

⎛
⎜⎜⎜⎝1− 1

1+logk

(
n∑

v=1
ψvk

χ0
1−χ0

) ,
1

1 + logk

(
n∑

v=1
ψvk

1−ϕ0
ϕ0

)
⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎝1 − 1

1 + logk

(
k

χ0
1−χ0

) ,
1

1 + logk

(
k

1−ϕ0
ϕ0

)
⎞
⎟⎟⎠

=
(

1 − 1

1 + χ0
1−χ0

,
1

1 + 1−ϕ0
ϕ0

)
= (χ0, ϕ0)

Hence, IFWA(I1, I2, . . . , In) = I0.

Property 2 (Monotonicity) Let Iv and Jv be two collections
of IFNs satisfying Iv ⊆ Jv for each v. Then, we have

IFWA(I1, I2, . . . , In) ⊆ IFWA(J1,J2, . . . ,Jn).

Proof Since, Iv ⊆ Jv for each v. Then, by utilizing
Theorem 5, we obtain that ψ1I1 ⊕ ψ2I2 ⊕ . . . ⊕ ψnIn ⊆
ψ1J1⊕ψ2J2⊕. . .⊕ψnJn. Hence, IFWA(I1, I2, . . . , In) ⊆
IFWA(J1,J2, . . . ,Jn).

Property 3 (Boundedness) Let I− and and I+ be lower and
upper bounds of a collection of “n” IFNs Iv . Then,

I− ⊆ IFWA(I1, I2 . . . In) ⊆ I+

Proof Since, I− ⊆ Iv ⊆ I+ ∀ v. Therefore, on utilizing
Property 2, we have IFWA(I−, I−, . . . , I−) ⊆ IFWA(I1,

I2, . . . , In) ⊆ IFWA(I+, I+, . . . , I+). Further, by using
Property 1, we obtain that I− ⊆ IFWA(I1, I2 . . . In) ⊆
I+, which completes the proof.

Further, we define ordered weighted averaging and
geometric operators for aggregating IFNs. These operators
have an associated weight vector and assign weights to the
ordered positions of IFNs whereas in IFWA and IFWG
operators weightage is given to IFNs itself.

Definition 13 A map IFOWA : Θn → Θ , having
associated weight vector φ = (φ1, φ2, . . . , φn)

T satisfying

φv > 0 ;
n∑

v=1
φv = 1 and defined as

IFOWA(I1, I2, . . . , In) = φ1Iτ(1)⊕φ2Iτ(2)⊕. . .⊕φnIτ(n)

(15)

is called as IF ordered weighted averaging (IFOWA)
operator. Here (τ (1), τ (2), . . . , τ (n)) is an arrangement of
(1, 2, . . . , n) such that S

(
Iτ(v−1)

) ≥ S
(
Iτ(v)

)
for each

v = 2, 3, . . . , n.

Theorem 14 The aggregated value acquired after applying
IFOWA operator on IFNs Iv (v = 1, 2, . . . , n), is still an
IFN and is given as

IFOWA(I1, I2, . . . , In) =

⎛
⎜⎜⎜⎜⎝1 − 1

1 + logk

(
n∑

v=1
φvk

χτ(v)
1−χτ(v)

) ,
1

1 + logk

(
n∑

v=1
φvk

1−ϕτ(v)
ϕτ(v)

)
⎞
⎟⎟⎟⎟⎠ (16)

Proof It can be obtained by implementing the Eq. (15) and
the operations given in Definitions 9 and 10.

Definition 14 An IFOWG operator is a map IFOWG :
Θn → Θ , having associated weight vector φ =

(φ1, φ2, . . . , φn)
T satisfying φv > 0 ;

n∑
v=1

φv = 1 and is

defined as

IFOWG(I1, I2, . . . , In) = Iφ1
τ(1) ⊗ Iφ2

τ(2) ⊗ . . . ⊗ Iφn

τ(n) (17)
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Theorem 15 On applying IFOWG operator on IFNs Iv

(v = 1, 2, . . . , n), the acquired value remains an IFN and
is given as

IFOWG(I1, I2, . . . , In) =

⎛
⎜⎜⎜⎜⎝

1

1 + logk

(
n∑

v=1
φvk

1−χτ(v)
χτ(v)

) , 1 − 1

1 + logk

(
n∑

v=1
φvk

ϕτ(v)
1−ϕτ(v)

)
⎞
⎟⎟⎟⎟⎠ (18)

The working of the presented IFOWA and IFOWG
operator is demonstrated through an example given as
follows:

Example 2 Consider the four IFNs I1 = (0.2, 0.3), I2 =
(0.7, 0.2), I3 = (0.5, 0.1) and I4 = (0.3, 0.2) and let φ =
(0.19, 0.28, 0.31, 0.22)T be the weight vector associated
with IFOWA operator. Further assume that k = 2. In order
to aggregate IFNS Iv (v = 1, 2, 3, 4), we need to permute
these IF numbers. For this, firstly we calculate their score
values using (1) and these are obtained as S(I1) = −0.1,
S(I2) = 0.5, S(I3) = 0.4 and S(I4) = 0.1. Thus, S(I2) >

S(I3) > S(I4) > S(I1) which implies that Iτ(1) =
(0.7, 0.2) ; Iτ(2) = (0.5, 0.1) ; Iτ(3) = (0.3, 0.2) and
Iτ(4) = (0.2, 0.3). Now, proceeding as in Example 1, we

obtain that
4∑

v=1
φvk

χτ(v)
1−χτ(v) = 2.1964 and

4∑
v=1

φvk

1−ϕτ(v)
ϕτ(v) =

152.4687. Hence, using the Eq. (16), we have

IFOWA (I1,I2,I3,I4) =
(

1 − 1

1 + log2 (2.1964)
,

1

1 + log2 (152.4687)

)
= (0.5316, 0.1212)

Similarly, on utilizing Eq. (18), we obtain that IFOWG(I1,

I2, I3, I4) = (0.2809, 0.2030).

Remark 4 The Properties 1, 2 and 3 are also satisfied by the
proposed IFOWA and IFOWG operators.

Since, in IFWA/IFWG operator weightage is assigned
to IFNs itself whereas IFOWA/IFOWG operator has
an associated weight vector which weights the ordered
positions of IFNs and not the IFNs itself. Thus, in the AOs
IFWA/IFWG and IFOWA/IFOWG, weight vector represent
different aspects. In order to combine the characteristics
of both IFWA/IFWG and IFOWA/IFOWG operators, in the
next, we define IF hybrid weighted averaging and geometric
operators.

Definition 15 A map IFHWA : Θn → Θ , having
associated weight vector φ = (φ1, φ2, . . . , φn)

T satisfying

φv > 0 ;
n∑

v=1
φv = 1 and defined as

IFHWA(I1, I2, . . . , In) = φ1İτ(1)⊕φ2İτ(2)⊕. . .⊕φnİτ(n)

(19)

is called as IF hybrid weighted averaging (IFHWA)
operator. Here (τ (1), τ (2), . . . , τ (n)) is an arrangement of
(1, 2, . . . , n) such that S

(
İτ(v−1)

) ≥ S
(
İτ(v)

)
for each

v = 2, 3, . . . , n. Also, İv = nψvIv and ψv is the weightage
corresponding to IFNs Iv for each v ∈ {1, 2, . . . , n}.

Theorem 16 The aggregated value acquired after applying
IFHWA operator on IFNs Iv (v = 1, 2, . . . , n), is still an
IFN and is given as

IFHWA(I1, I2, . . . , In) =

⎛
⎜⎜⎜⎜⎝1 − 1

1 + logk

(
n∑

v=1
φvk

χ̇τ(v)
1−χ̇τ (v)

) ,
1

1 + logk

(
n∑

v=1
φvk

1−ϕ̇τ (v)
ϕ̇τ (v)

)
⎞
⎟⎟⎟⎟⎠ (20)

Proof By implementing the Eq. (19) and the operations defined
in Definitions 9 and 10, it can be obtained easily.

Definition 16 An IFHWG operator is a map IFHWG :
Θn → Θ , having associated weight vector φ =
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(φ1, φ2, . . . , φn)
T satisfying φv > 0 ;

n∑
v=1

φv = 1 and is

defined as

IFHWG(I1,I2, . . . ,In) = (
İτ(1)

)φ1 ⊗ (
İτ(2)

)φ2 ⊗ . . .⊗ (
İτ(n)

)φn

(21)

Here (τ (1), τ (2), . . . , τ (n)) is a permutation of
(1, 2, . . . , n) such that S

(
İτ(v−1)

) ≥ S
(
İτ(v)

)
for

each v = 2, 3, . . . , n. Also, İv = (Iv)
nψv and ψv

is the weightage corresponding to IFNs Iv for each
v ∈ {1, 2, . . . , n}.

Theorem 17 The value obtained after applying IFHWG
operator on IFNs Iv (v = 1, 2, . . . , n), is still an IFN and
is given as

IFHWG(I1, I2, . . . , In) =

⎛
⎜⎜⎜⎜⎝

1

1 + logk

(
n∑

v=1
φvk

1−χ̇τ (v)
χ̇τ (v)

) , 1 − 1

1 + logk

(
n∑

v=1
φvk

ϕ̇τ(v)
1−ϕ̇τ (v)

)
⎞
⎟⎟⎟⎟⎠ (22)

In order to demonstrate the working of the proposed
IFHWA and IFHWG operators, we illustrate an example as
follows:

Example 3 Consider the four IFNs I1 = (0.2, 0.3),
I2 = (0.7, 0.2), I3 = (0.5, 0.1) and I4 = (0.3, 0.2).
Let φ = (0.19, 0.28, 0.31, 0.22)T be the weight vector

associated with IFHWA operator and the vector ψ =
(0.25, 0.30, 0.15, 0.30)T represents weightage correspond-
ing to IFNs Iv (v = 1, 2, 3, 4). Further, assume that k = 2.
Now, using the Definition 15, we have İv = nψvIv . It gives
that İ1 = (4 × 0.25)I1 = 1 (0.2, 0.3) = (0.2, 0.3). Further,
İ2 = (4 × 0.30)I2 = 1.2 (0.7, 0.2). Now, on utilizing the
operation, defined in Definition 10, we obtain that

İ2 =

⎛
⎜⎜⎝1 − 1

1 + log2

(
1 + 1.2

(
2

(
0.7

1−0.7

)
− 1

)) ,
1

1 + log2

(
1 + 1.2

(
2

(
1−0.2

0.2

)
− 1

))
⎞
⎟⎟⎠

=
(

1 − 1

1 + log2 (5.8476)
,

1

1 + log2 (19.0000)

)
= (0.7181, 0.1906)

Similarly, we obtain that İ3 = (0.4041, 0.1079) and İ4 =
(0.3337, 0.1906). Now, using Eq. (1), it can be easily
computed that S

(
İ1

) = −0.1000, S
(
İ2

) = 0.5276,
S
(
İ3

) = 0.2961 and S
(
İ4

) = 0.1432. Thus, S
(
İ2

)
>

S
(
İ3

)
> S

(
İ4

)
> S

(
İ1

)
which implies that İτ(1) =

(0.7181, 0.1906), İτ(2) = (0.4041, 0.1079), İτ(3) =
(0.3337, 0.1906) and İτ(4) = (0.2000, 0.3000). Further, on
utilizing Eq. (20), we obtain that IFHWA(I1, I2, I3, I4) =
(0.5705, 0.1305). Proceeding in the similar manner, using
Eq. (22), we may acquire that IFHWG(I1, I2, I3, I4) =
(0.2702, 0.2215).

Remark 5 The proposed IFHWA and IFHWG operators
also satisfy the properties of idempotency, monotonicity and
boundedness.

5Weight determination by PSO technique

In order to determine the attribute weights objectively, we
consider a DM problem comprising of “m” alternatives
Tu (u = 1, 2, . . . , m) which are characterized by “n”
criteria Cv (v = 1, 2, . . . , n) such that each alternative is
assessed in terms of IFNs Iuv = (χuv, ϕuv). Let ψ =
(ψ1, ψ2, . . . , ψn)

T be the weight vector associated with

“n” attributes such that ψv > 0 and
n∑

v=1
ψv = 1. If the

weight vector ψ is partially known or completely unknown
then, in order to determine attribute weights, we propose
a method based on the target of minimizing the distance
of each alternative from positive ideal T + and maximizing
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the distance of each alternative from negative ideal T −
simultaneously.

For this, firstly we calculate the positive ideal alternative
(PIA) T + = (

C+
v

)
1×n

and the negative ideal alterna-

tive (NIA) T − = (
C−

v

)
1×n

where C+
v = (

χ+
v , ϕ+

v

) =

(
max

u
{χuv} , min

u
{ϕuv}

)
and C−

v = (
χ−

v , ϕ−
v

) =(
min

u
{χuv} , max

u
{ϕuv}

)
. Then, by utilizing Eq. (3), we cal-

culate the distance of each alternative Tu from PIA T + and
NIA T − as given below:

d+
u = d

(
Tu, T +) =

√√√√1

2

n∑
v=1

{
ψv

[(
χuv − χ+

v

)2 + (
ϕuv − ϕ+

v

)2 + (
huv − h+

v

)2
]}

(23)

d−
u = d

(
Tu, T −) =

√√√√1

2

n∑
v=1

{
ψv

[(
χuv − χ−

v

)2 + (
ϕuv − ϕ−

v

)2 + (
huv − h−

v

)2
]}

(24)

where h+
v = 1 − χ+

v − ϕ+
v and h−

v = 1 − χ−
v −

ϕ−
v are hesitation degrees of C+

v and C−
v respectively. For

determining the weights objectively, we minimize d+
u and

maximize d−
u corresponding to each alternative Tu. In

order to do so, we formulate the following multi-objective
optimization model, corresponding to each alternative,
given as:

(Model-1 :)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

au = min
ψ

d+
u =

√
1
2

n∑
v=1

{
ψv

[(
χuv − χ+

v

)2 + (
ϕuv − ϕ+

v

)2 + (
huv − h+

v

)2
]}

bu = max
ψ

d−
u =

√
1
2

n∑
v=1

{
ψv

[(
χuv − χ−

v

)2 + (
ϕuv − ϕ−

v

)2 + (
huv − h−

v

)2
]}

subject to ψv ∈ � ,
n∑

v=1
ψv = 1 , ψv ≥ 0

(25)

Here � is the set of partial information about the weight
vector. However, if there is no partial information available
about the criteria weight then, � becomes empty set.
Since, the problem given in is (25) is MOOP, so it cannot
have optimal solution for all the objectives simultaneously.
Therefore, we need to find such a solution which satisfies all
the objectives to some extent and such a solution is known
as pareto optimal solution [18] or best compromise solution.
In this perspective, because of the fuzziness present in the
human judgements, it is normal to expect that the decision-

maker may have fuzzy objective for each objective function.
[9] and [17] optimized such fuzzy objectives, corresponding
to each objective function, by constructing membership
functions.

Now, in order to construct membership functions,
we solve two single objective optimization problems
corresponding to each objective function d+

u and d−
u (u =

1, 2, . . . , m). For instance, for objective function d+
u , we

solve the following two optimization problems, given in
Eqs. (26) and (27), separately.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
ψ

d+
u =

√
1
2

n∑
v=1

{
ψv

[(
χuv − χ+

v

)2 + (
ϕuv − ϕ+

v

)2 + (
huv − h+

v

)2
]}

subject to ψv ∈ � ,
n∑

v=1
ψv = 1 , ψv ≥ 0

(26)
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and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
ψ

d+
u =

√
1
2

n∑
v=1

{
ψv

[(
χuv − χ+

v

)2 + (
ϕuv − ϕ+

v

)2 + (
huv − h+

v

)2
]}

subject to ψv ∈ � ,
n∑

v=1
ψv = 1 , ψv ≥ 0

(27)

On solving the problems given in the above Eqs. (26) and
(27), we get two values aL

u and aU
u , minimum and maximum

values respectively of the objective function d+
u . Similarly,

by solving minimization and maximization problems for the objec-
tive function d−

u , stated in Eqs. (28) and (29), we obtain bL
u

and bU
u as minimum and maximum values respectively.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
ψ

d−
u =

√
1
2

n∑
v=1

{
ψv

[(
χuv − χ−

v

)2 + (
ϕuv − ϕ−

v

)2 + (
huv − h−

v

)2
]}

subject to ψv ∈ � ,
n∑

v=1
ψv = 1 , ψv ≥ 0

(28)

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
ψ

d−
u =

√
1
2

n∑
v=1

{
ψv

[(
χuv − χ−

v

)2 + (
ϕuv − ϕ−

v

)2 + (
huv − h−

v

)2
]}

subject to ψv ∈ � ,
n∑

v=1
ψv = 1 , ψv ≥ 0

(29)

Further, we introduce membership functions μ
(
d+
u

)
and

μ
(
d−
u

)
corresponding to each objective function d+

u and d−
u

respectively as follows:

μ
(
d+
u

) =

⎧⎪⎪⎨
⎪⎪⎩

1, if d+
u ≤ aL

u

1 − d+
u −aL

u

aU
u −aL

u
, if aL

u < d+
u ≤ aU

u

0, otherwise

(30)

and

μ
(
d−
u

) =

⎧⎪⎪⎨
⎪⎪⎩

1, if d−
u ≥ bU

u

1 − bU
u −d−

u

bU
u −bL

u
, if bL

u ≤ d−
u < bU

u

0, otherwise

(31)

Now, using these characteristic functions, we transform
the MOOP, given in Eq. (25), to the following optimization
problem.

⎧⎨
⎩

max
(
μ
(
d+

1

)
, μ

(
d+

2

)
, . . . , μ

(
d+
m

)
, μ

(
d−

1

)
, μ

(
d−

2

)
, . . . , μ

(
d−
m

))
subject to ψv ∈ � ,

n∑
v=1

ψv = 1 , ψv ≥ 0

(32)

Further, in order to transform the above multi-objective
model, given in Eq. (32), to single objective optimization
problem, we aggregate the membership values of the
objective function. In other words, the objective function
of the above optimization problem can be transformed
to g

(
max

(
μ
(
d+

1

)
, μ

(
d+

2

)
, . . . , μ

(
d+
m

)
, μ

(
d−

1

)
, μ

(
d−

2

)
,

. . . , μ
(
d−
m

)))
where g indicates an aggregation function.

There are several choices to aggregate objective function
such as max operator, min operator, arithmetic mean and
geometric mean. Out of these choices, available for function
g, we utilize min operator, motivated by the work [61].
Hence, multi-objective optimization problem, stated in Eq.
(32), is transformed into the following single objective
non-linear optimization model:

(Model-2 :)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max λ

subject to λ ≤ μ
(
d+
u

)
, λ ≤ μ

(
d−
u

)
,

ψv ∈ � ,
n∑

v=1
ψv = 1 , ψv ≥ 0

(33)

Since, the terms d+
u , d−

u used in Eq. (33) are non-linear
therefore, the nature of the Model 2 becomes non-linear
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too and some effective algorithms are required to find the
global solution of such optimization problems. There are
many methods available in the literature so far in order
to find the global solution of such problems. Out of these
techniques, one of the most efficient process is evolutionary
algorithm (EA) approach [20]. The main benefit of utilizing
EA technique is that any sort of pre-assumptions such as
continuity and differentiability of the objective function are
not required in it.

In this manuscript, we employ EA technique, namely
PSO [34], in order to find the solution of Model 2. Since, the
problem presented in Model 2 is constrained optimization
problem therefore, firstly convert it to unconstrained
optimization problem using penalty function as given in
Eq. (5). Then, utilize PSO technique for solving this
unconstrained non-linear optimization problem by using
Algorithm 1 in MATLAB and obtain the optimal weight
vector ψ = (ψ1, ψ2, . . . , ψn)

T .

6Multiattribute group decision-making
approach based onMULTIMOORA

This section presents an MAGDM approach in order to
evaluate the available alternatives characterized by different
criteria under IFS environment.

Consider a set {T1, T2, . . . , Tm} of ‘m’ alternatives
characterized by another collection {C1, C2, . . . , Cn} of ‘n’
criteria is to be evaluated with the corresponding criteria
weight vector ψ = (ψ1, ψ2, . . . , ψn)

T such that ψv > 0

and
n∑

v=1
ψv = 1. The given alternatives Tu are evaluated

by ‘l’ different experts
{
E (1), E (2), . . . , E (l)

}
who give their

rating values in terms of IFNs I(z)
uv =

(
χ

(z)
uv , ϕ

(z)
uv

)
where

0 ≤ χ
(z)
uv , ϕ

(z)
uv , χ

(z)
uv + ϕ

(z)
uv ≤ 1 for each z = 1, 2, . . . , l;

u = 1, 2, . . . , m and v = 1, 2, . . . n. The main objective
of the problem is to order the alternatives from the most
favorable to the least favorable ones. For this, we develop a
MAGDM method, which involves the following steps:

Step 1: (Construction of IF decision matrices:) Construct

the IF decision matrices M(z) =
(
I(z)

uv

)
m×n

representing information related to all alternatives
for the different criteria, given by ‘l’ experts, as:

(34)

Step 2: (Normalization:) Normalize the data by Eq. (35)

I(z)
uv =

⎧⎨
⎩
(
χ

(z)
uv , ϕ

(z)
uv

)
; if Cv is of benefit type(

ϕ
(z)
uv , χ

(z)
uv

)
; if Cv is of cost type

(35)

Step 3: (Aggregation of individual decision matrices into
collective one:) Aggregate the individual IF

decision matrices M(z) =
(
I(z)

uv

)
m×n

, (z =
1, 2, . . . , l) into collective one M = (Iuv)m×n by
utilizing either proposed IFOWA operator i.e.,

Iuv = IFOWA
(
I(1)

uv ,I(2)
uv , . . . ,I(l)

uv

)
= (χuv, ϕuv)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1− 1

1+logk

⎛
⎝ l∑

z=1
φzk

χ
τ(z)
uv

1−χ
τ(z)
uv

⎞
⎠

,
1

1+logk

⎛
⎝ l∑

z=1
φzk

1−ϕ
τ(z)
uv

ϕ
τ(z)
uv

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

(36)

or proposed IFOWG operator i.e.,

Iuv = IFOWG
(
I(1)

uv ,I(2)
uv , . . . ,I(l)

uv

)
= (χuv, ϕuv)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1

1+logk

⎛
⎝ l∑

z=1
φzk

1−χ
τ(z)
uv

χ
τ(z)
uv

⎞
⎠

, 1− 1

1+logk

⎛
⎝ l∑

z=1
φzk

ϕ
τ(z)
uv

1−ϕ
τ(z)
uv

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

(37)

Here the weight vector φ = (φ1, φ2, . . . , φl)
T

associated with IFOWA/IFOWG operator can be
obtained using normal distribution method [47]
given as:

φz =
exp

[
−

(
z− l+1

2

)2

2σ 2
l

]

l∑
z′=1

exp

[
−

(
z′− l+1

2

)2

2σ 2
l

] where σl =
√√√√1

l

l∑
z=1

(
z − l + 1

2

)2

(38)

Step 4: (Computation of criteria weight vector:) Com-
pute PIA, NIA, d+

u and d−
u for each u. Solve

the optimization problems, corresponding to each
alternative, given in Eqs. (26)–(29). Based on the
solutions of these problems, develop the mem-
bership functions as described in Eqs. (30) and
(31). Further, solve the non-linear optimization
problem given in Eq. (33) by applying PSO Algo-
rithm 1 and obtain the criteria weight vector ψ =
(ψ1, ψ2, . . . , ψn)

T .
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Step 5: (The RSA:) It is based on the additive utility
function. It involves the following two steps:

Step 5a: Aggregate the IF values Iuv into collective
one Iu by utilizing proposed IFWA operator
i.e.,

Iu = IFWA (Iu1, Iu2, . . . , Iun)

= (χu, ϕu)

=

⎛
⎜⎜⎜⎝1 − 1

1 + logk

(
n∑

v=1
ψvk

χuv
1−χuv

) ,
1

1 + logk

(
n∑

v=1
ψvk

1−ϕuv
ϕuv

)
⎞
⎟⎟⎟⎠ (39)

Step 5b: Obtain the score values of accumulated IFNs
Iu using the Eq. (1). However if any two of the
score values are equal then, calculate accuracy
values using the Eq. (2). Further, rank the
alternatives Tu using the Definition 4.

Step 6: (The RPM:) It includes the following steps:

Step 6a: Identify the reference point i.e., PIA T + =(
C+

v

)
1×n

where C+
v = (

χ+
v , ϕ+

v

) = (max
u{χuv} , min

u
{ϕuv}).

Step 6b: Calculate the distance of accumulated value
Iuv , corresponding to every alternative Tu,
from PIA T + by using the Eq. (40) given as:

d
(
Tu, T +) =

√√√√1

2

n∑
v=1

{
ψv

[(
χuv − χ+

v

)2 + (
ϕuv − ϕ+

v

)2 + (
huv − h+

v

)2
]}

(40)

Step 6c: Rank the alternatives in accordance with the
increasing values of d

(
Tu, T +)

.

Step 7: (The FMF:) It is based on multiplicative utility
function and consists of the following steps:

Step 7a: By utilizing proposed IFWG operator, accu-
mulate the IF values Iuv into collective one Iu

i.e.,

Iu = IFWG (Iu1, Iu2, . . . , Iun)

= (χu, ϕu)

=

⎛
⎜⎜⎜⎝ 1

1 + logk

(
n∑

v=1
ψvk

1−χuv
χuv

) , 1 − 1

1 + logk

(
n∑

v=1
ψvk

ϕuv
1−ϕuv

)
⎞
⎟⎟⎟⎠ (41)

Step 7b: Calculate the score values of accumulated
IFNs Iu using the Eq. (1). However if any
two of the score values are equal then,
obtain the accuracy values using the Eq. (2).
Furthermore, obtain the ranking order of the
alternatives Tu using the Definition 4.

Step 8: (The final ranking:) Based on the ranking order
of alternatives, obtained in Steps 5b, 6c and 7b,

obtain the final ranking order of alternatives by
applying dominance theory [7].

7 Ranking solid waste management
techniques using proposed approach

In this section, we apply the proposed MAGDM approach
based on MULTIMOORA in order to rank various
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techniques of SWM. Also, we compare the results of the
proposed method with some of the prevailing IFS studies in
order to show the validity and superiority of the proposed
work.

7.1 Description and solution of the problem

With the growing human population, urbanization has
increased rapidly [32, 58] and the production of solid waste
has increased immensely. Therefore, nowadays the SWM
has become a major concern in the urban areas particulary
in the developing countries [38]. SWM is defined as the
discipline associated with control of generation, storage,
collection, transport or transfer, processing and disposal
of solid waste materials in a way that best addresses the
range of public health, conservation, economic, aesthetic,
engineering, and other environmental considerations. One
of the major environmental problems that developing
nations are confronting nowadays is poor management and
disposal of solid waste [10, 40]. It has been a significant
environmental issue since the industrial revolution. The
recognized techniques (labeled as alternatives), which are
used for SWM, are described as follows:

T1 Composting: This technique is a biological process in
which micro-organisms, specifically fungi and bacte-
ria, convert degradable organic waste into substances
like humus. It gives formation a soil like product
which is high in carbon and nitrogen. Good quality
and environmental friendly manure is produced from
the compost which is an excellent medium for growing
plants and can be utilized for agricultural purposes as
well.

T2 Pyrolysis: In this method, solid wastes are chemically
decomposed by heat without the presence of oxygen.
It usually occurs under pressure and at temperatures
of up to 430 degrees Celsius. The solid wastes are
changed into gasses, solid residue of carbon, ash and
small quantities of liquid.

T3 Incineration: This method involves the burning of
solid wastes at high temperatures until the wastes are
turned into ashes. Incinerators are made in such a way
that they do not give off extreme amounts of heat when
burning solid wastes.

T4 Recovery and Recycling: This technique is the way
toward taking valuable however discarded things for
the next use. Plastic bags, tins, glass and containers are
often recycled automatically since, in many situations,
they are likely to be scarce commodities.

T5 Sanitary Landfill: In this technique, garbage is
basically spread out in thin layers, compressed and

covered with soil or plastic foam. If landfills are
managed efficiently, it is an ensured sanitary waste
disposal method.

Suppose that we are interested in ranking the above
mentioned techniques Tu (u = 1, 2, . . . , 5) of SWM. The
goal is to order these techniques Tu in descending order
from the most important to least important. It is evident
that in the process of techniques assessment, a number
of quantitative and qualitative factors play a significant
role. Therefore, we have considered four dimensions
(Economy, Environmental, Technology and Society) and
seven criteria Cv (v = 1, 2, . . . , 7) which influence the
techniques Tu, in the ranking process. The hierarchical
structure of the considered criteria is described in the
Fig. 3.

We consult with four experts E (z), (z = 1, 2, 3, 4) who
assess the SWM techniques Tu under criteria Cv and give
their rating values in terms of IFNs.

The main procedure steps in order to rank the techniques
Tu, using proposed MAGDM method based on MULTI-
MOORA, described in the above section, are summarized
as follows:

Step 1: The rating values of each technique, given by four
experts, are tabulated in Table 1. As the rating
value of T1 under factor C1, given by E (1), is
(0.1, 0.8) which means that the membership term
reveals that the expert E (1) is 10 percent satisfied
with the cost of technique T1 and 80 percent is not
satisfied. In the similar manner, the rest of the data
can be interpreted.

Step 2: As the criteria C1 − C4 and C7 are of cost type.
Therefore, we convert them to benefit type using
Eq. (35). The obtained normalized data values are
tabulated in Table 2.

Step 3: Using Eq. (38), the weight vector, corresponding
to ordered weighted averaging/geometric oper-
ator is obtained as φ = (0.1550, 0.3450,

0.3450, 0.1550)T . Further, without loss of gener-
ality (WLOG), by using Eq. (36) with k = 2, the
rating values I(z)

uv , (z = 1, 2, 3, 4) given by four
experts are aggregated into collective one Iuv . The
acquired values corresponding to each technique
Tu (u = 1, 2, 3) are depicted in Table 3.

Step 4: Consider that, the partial information about the
weight vector ψ , associated with criteria Cv , is
given as: � = {0.10 ≤ ψ1 ≤ 0.40, 0.05 ≤
ψ2 ≤ 0.45, 0.10 ≤ ψ3 ≤ 0.35, 0.15 ≤
ψ4 ≤ 0.50, 0.05 ≤ ψ5 ≤ 0.35, 0.10 ≤
ψ6 ≤ 0.40, 0.15 ≤ ψ7 ≤ 0.35}. In order to
determine the criteria weights firstly, PIA and NIA

H. Garg and D. Rani4350



Fig. 3 The hierarchical structure of the criteria Cv

Table 1 Preferences given by experts E (1), E (2), E (3) and E (4)

Expert Alternatives C1 C2 C3 C4 C5 C6 C7

E (1) T1 (0.1, 0.8) (0.1, 0.7) (0.2, 0.5) (0.3, 0.5) (0.6, 0.1) (0.7, 0.3) (0.2, 0.8)

T2 (0.2, 0.7) (0.4, 0.5) (0.1, 0.6) (0.1, 0.8) (0.6, 0.3) (0.6, 0.2) (0.3, 0.7)

T3 (0.4, 0.5) (0.2, 0.6) (0.2, 0.8) (0.1, 0.9) (0.8, 0.1) (0.6, 0.2) (0.1, 0.8)

T4 (0.1, 0.8) (0.2, 0.5) (0.2, 0.7) (0.2, 0.8) (0.5, 0.3) (0.6, 0.1) (0.1, 0.7)

T5 (0.1, 0.9) (0.2, 0.4) (0.4, 0.6) (0.1, 0.9) (0.5, 0.3) (0.7, 0.1) (0.1, 0.8)

E (2) T1 (0.1, 0.8) (0.4, 0.5) (0.2, 0.8) (0.2, 0.6) (0.5, 0.3) (0.9, 0.1) (0.1, 0.5)

T2 (0.3, 0.5) (0.1, 0.9) (0.1, 0.6) (0.3, 0.6) (0.6, 0.2) (0.8, 0.1) (0.1, 0.9)

T3 (0.4, 0.5) (0.1, 0.8) (0.2, 0.6) (0.1, 0.9) (0.8, 0.1) (0.7, 0.2) (0.3, 0.5)

T4 (0.1, 0.6) (0.3, 0.7) (0.2, 0.6) (0.2, 0.7) (0.5, 0.4) (0.9, 0.1) (0.1, 0.5)

T5 (0.1, 0.5) (0.2, 0.6) (0.3, 0.6) (0.4, 0.5) (0.4, 0.3) (0.8, 0.1) (0.4, 0.4)

E (3) T1 (0.1, 0.8) (0.1, 0.9) (0.2, 0.8) (0.2, 0.8) (0.5, 0.2) (0.7, 0.1) (0.1, 0.9)

T2 (0.3, 0.5) (0.3, 0.6) (0.1, 0.9) (0.1, 0.9) (0.7, 0.1) (0.6, 0.2) (0.2, 0.8)

T3 (0.3, 0.4) (0.3, 0.5) (0.2, 0.5) (0.1, 0.7) (0.6, 0.4) (0.5, 0.3) (0.2, 0.6)

T4 (0.3, 0.7) (0.3, 0.4) (0.2, 0.6) (0.3, 0.6) (0.7, 0.2) (0.6, 0.2) (0.1, 0.8)

T5 (0.2, 0.8) (0.4, 0.5) (0.1, 0.7) (0.4, 0.5) (0.8, 0.1) (0.5, 0.4) (0.3, 0.5)

E (4) T1 (0.4, 0.5) (0.1, 0.8) (0.1, 0.8) (0.3, 0.5) (0.8, 0.1) (0.7, 0.1) (0.1, 0.9)

T2 (0.1, 0.8) (0.2, 0.5) (0.1, 0.7) (0.2, 0.6) (0.6, 0.2) (0.6, 0.2) (0.1, 0.8)

T3 (0.3, 0.7) (0.3, 0.6) (0.2, 0.5) (0.2, 0.7) (0.5, 0.4) (0.6, 0.3) (0.2, 0.5)

T4 (0.1, 0.6) (0.2, 0.6) (0.3, 0.4) (0.1, 0.8) (0.4, 0.3) (0.5, 0.4) (0.1, 0.6)

T5 (0.3, 0.5) (0.2, 0.7) (0.2, 0.6) (0.1, 0.9) (0.5, 0.3) (0.6, 0.3) (0.2, 0.7)
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Table 2 Normalized data values

Expert Alternatives C1 C2 C3 C4 C5 C6 C7

E (1) T1 (0.8, 0.1) (0.7, 0.1) (0.5, 0.2) (0.5, 0.3) (0.6, 0.1) (0.7, 0.3) (0.8, 0.2)

T2 (0.7, 0.2) (0.5, 0.4) (0.6, 0.1) (0.8, 0.1) (0.6, 0.3) (0.6, 0.2) (0.7, 0.3)

T3 (0.5, 0.4) (0.6, 0.2) (0.8, 0.2) (0.9, 0.1) (0.8, 0.1) (0.6, 0.2) (0.8, 0.1)

T4 (0.8, 0.1) (0.5, 0.2) (0.7, 0.2) (0.8, 0.2) (0.5, 0.3) (0.6, 0.1) (0.7, 0.1)

T5 (0.9, 0.1) (0.4, 0.2) (0.6, 0.4) (0.9, 0.1) (0.5, 0.3) (0.7, 0.1) (0.8, 0.1)

E (2) T1 (0.8, 0.1) (0.5, 0.4) (0.8, 0.2) (0.6, 0.2) (0.5, 0.3) (0.9, 0.1) (0.5, 0.1)

T2 (0.5, 0.3) (0.9, 0.1) (0.6, 0.1) (0.6, 0.3) (0.6, 0.2) (0.8, 0.1) (0.9, 0.1)

T3 (0.5, 0.4) (0.8, 0.1) (0.6, 0.2) (0.9, 0.1) (0.8, 0.1) (0.7, 0.2) (0.5, 0.3)

T4 (0.6, 0.1) (0.7, 0.3) (0.6, 0.2) (0.7, 0.2) (0.5, 0.4) (0.9, 0.1) (0.5, 0.1)

T5 (0.5, 0.1) (0.6, 0.2) (0.6, 0.3) (0.5, 0.4) (0.4, 0.3) (0.8, 0.1) (0.4, 0.4)

E (3) T1 (0.8, 0.1) (0.9, 0.1) (0.8, 0.2) (0.8, 0.2) (0.5, 0.2) (0.7, 0.1) (0.9, 0.1)

T2 (0.5, 0.3) (0.6, 0.3) (0.9, 0.1) (0.9, 0.1) (0.7, 0.1) (0.6, 0.2) (0.8, 0.2)

T3 (0.4, 0.3) (0.5, 0.3) (0.5, 0.2) (0.7, 0.1) (0.6, 0.4) (0.5, 0.3) (0.6, 0.2)

T4 (0.7, 0.3) (0.4, 0.3) (0.6, 0.2) (0.6, 0.3) (0.7, 0.2) (0.6, 0.2) (0.8, 0.1)

T5 (0.8, 0.2) (0.5, 0.4) (0.7, 0.1) (0.5, 0.4) (0.8, 0.1) (0.5, 0.4) (0.5, 0.3)

E (4) T1 (0.5, 0.4) (0.8, 0.1) (0.8, 0.1) (0.5, 0.3) (0.8, 0.1) (0.7, 0.1) (0.9, 0.1)

T2 (0.8, 0.1) (0.5, 0.2) (0.7, 0.1) (0.6, 0.2) (0.6, 0.2) (0.6, 0.2) (0.8, 0.1)

T3 (0.7, 0.3) (0.6, 0.3) (0.5, 0.2) (0.7, 0.2) (0.5, 0.4) (0.6, 0.3) (0.5, 0.2)

T4 (0.6, 0.1) (0.6, 0.2) (0.4, 0.3) (0.8, 0.1) (0.4, 0.3) (0.5, 0.4) (0.6, 0.1)

T5 (0.5, 0.3) (0.7, 0.2) (0.6, 0.2) (0.9, 0.1) (0.5, 0.3) (0.6, 0.3) (0.7, 0.2)

are formulated from the accumulated data values
tabulated in Table 3 and are given as:

C1 C2 C3 C4 C5 C6 C7

T + (0.8653, 0.1025) (0.8656, 0.1025) (0.8643, 0.1000) (0.8891, 0.1024) (0.7628, 0.1107) (0.8646, 0.1025) (0.8893, 0.1000)

T − (0.5495, 0.3360) (0.5810, 0.2148) (0.6116, 0.2067) (0.6831, 0.2275) (0.5495, 0.2719) (0.6162, 0.2275) (0.6831, 0.1343)

Table 3 Aggregated values of experts obtained by using IFOWA operator

C1 C2 C3 C4 C5 C6 C7

T1 (0.7912, 0.1025) (0.8656, 0.1025) (0.7912, 0.1327) (0.6831, 0.2275) (0.6831, 0.1107) (0.8646, 0.1025) (0.8893, 0.1062)

T2 (0.7045, 0.1342) (0.8639, 0.1343) (0.8643, 0.1000) (0.8654, 0.1107) (0.6248, 0.1331) (0.6955, 0.1327) (0.8669, 0.1107)

T3 (0.5495, 0.3360) (0.6919, 0.1342) (0.6831, 0.2000) (0.8891, 0.1024) (0.7628, 0.1110) (0.6162, 0.2275) (0.6831, 0.1331)

T4 (0.7043, 0.1025) (0.5883, 0.2148) (0.6116, 0.2067) (0.7700, 0.1331) (0.5495, 0.2719) (0.8640, 0.1107) (0.7710, 0.1000)

T5 (0.8653, 0.1107) (0.5810, 0.2082) (0.6248, 0.1343) (0.8890, 0.1110) (0.6708, 0.1354) (0.7110, 0.1110) (0.7029, 0.1343)
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Further, using Eqs. (23) and (24), we have

d+
1 =

√
1

2
{0.0110ψ1 + 0.0000ψ2 + 0.0080ψ3 + 0.0646ψ4 + 0.0127ψ5 + 0.0000ψ6 + 0.0001ψ7}

d+
2 =

√
1

2
{0.0435ψ1 + 0.0019ψ2 + 0.0000ψ3 + 0.0009ψ4 + 0.0329ψ5 + 0.0488ψ6 + 0.0008ψ7}

d+
3 =

√
1

2
{0.1611ψ1 + 0.0514ψ2 + 0.0494ψ3 + 0.0000ψ4 + 0.0000ψ5 + 0.0926ψ6 + 0.0735ψ7}

d+
4 =

√
1

2
{0.0518ψ1 + 0.1167ψ2 + 0.0965ψ3 + 0.0229ψ4 + 0.0742ψ5 + 0.0001ψ6 + 0.0635ψ7}

d+
5 =

√
1

2
{0.0001ψ1 + 0.1242ψ2 + 0.1006ψ3 + 0.0001ψ4 + 0.0136ψ5 + 0.0447ψ6 + 0.0590ψ7}

d−
1 =

√
1

2
{0.1131ψ1 + 0.1233ψ2 + 0.0489ψ3 + 0.0000ψ4 + 0.0446ψ5 + 0.0926ψ6 + 0.0750ψ7}

d−
2 =

√
1

2
{0.0669ψ1 + 0.1275ψ2 + 0.0965ψ3 + 0.0512ψ4 + 0.0290ψ5 + 0.0155ψ6 + 0.0599ψ7}

d−
3 =

√
1

2
{0.0000ψ1 + 0.0197ψ2 + 0.0094ψ3 + 0.0646ψ4 + 0.0741ψ5 + 0.0000ψ6 + 0.0000ψ7}

d−
4 =

√
1

2
{0.0847ψ1 + 0.0001ψ2 + 0.0000ψ3 + 0.0165ψ4 + 0.0000ψ5 + 0.0922ψ6 + 0.0020ψ7}

d−
5 =

√
1

2
{0.1587ψ1 + 0.0001ψ2 + 0.0089ψ3 + 0.0639ψ4 + 0.0336ψ5 + 0.0231ψ6 + 0.0008ψ7}

Now, based on (25), Model 1 is formulated as:

au = min
ψ

d+
u ; bu = max

ψ
d−
u ∀ u = 1, 2, . . . , 5

subject to 0.10 ≤ ψ1 ≤ 0.40, 0.05 ≤ ψ2 ≤ 0.45, 0.10 ≤ ψ3 ≤ 0.35,

0.15 ≤ ψ4 ≤ 0.50, 0.05 ≤ ψ5 ≤ 0.35, 0.10 ≤ ψ6 ≤ 0.40,

0.15 ≤ ψ7 ≤ 0.35,

7∑
v=1

ψv = 1, ψv ≥ 0 ∀ v = 1, 2, . . . , 7 (42)

As the problem formulated using Model 1, in Eq. (42),
is MOOP with 10 objective functions (2 objectives
corresponding to each alternative). Now, in order to
obtain maximum and minimum value corresponding to

each objective function, we solve 20 single objective
optimization problems, which are formulated on the basis
of Eqs. (26)-(29). The results acquired, obtained on solving
these problems using PSO Algorithm 1, are summarized as
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Optimization Objective functions

d+
1 d+

2 d+
3 d+

4 d+
5 d−

1 d−
2 d−

3 d−
4 d−

5

Maximization 0.1239 0.1137 0.2147 0.1833 0.1693 0.1988 0.2008 0.1370 0.1551 0.1976

Minimization 0.0782 0.0761 0.1482 0.1367 0.1231 0.1560 0.1533 0.0875 0.1012 0.1260

While obtaining the solutions, parameters in Algorithm
1 are set as N = 25, c1 = 2.05, c2 = 2.10. The inertia
weight ω(t), during each iteration t , is calculated using the
following Eq. (43).

ω(t) = ωmax − t

maximum no. of iterations
(ωmax − ωmin)

(43)

The maximum no. of iterations were set equal to 40;
ωmax = 0.9; ωmin = 0.3 and 50 runs were performed for
each problem. The penalty function parameters Ω and γ ,
as given in Eq. (6), were taken same as in [50] and the
function y, used in Eq. (5), is set as y(t) = √

t . Further, in
order to describe the fuzziness included in each objective,
the membership functions are formulated using Eqs. (30)
and (31) as given below:

μ
(
d+

1

) =

⎧⎪⎨
⎪⎩

1, if d+
1 ≤ 0.0782

1 − d+
1 −0.0782

0.1239−0.0782 , if 0.0782 < d+
1 ≤ 0.1239

0, otherwise

; μ
(
d+

2

) =

⎧⎪⎨
⎪⎩

1, if d+
2 ≤ 0.0761

1 − d+
2 −0.0761

0.1137−0.0761 , if 0.0761 < d+
2 ≤ 0.1137

0, otherwise

(44)

μ
(
d+

3

) =

⎧⎪⎨
⎪⎩

1, if d+
3 ≤ 0.1482

1 − d+
3 −0.1482

0.2147−0.1482 , if 0.1482 < d+
3 ≤ 0.2147

0, otherwise

; μ
(
d+

4

) =

⎧⎪⎨
⎪⎩

1, if d+
4 ≤ 0.1367

1 − d+
4 −0.1367

0.1833−0.1367 , if 0.1367 < d+
4 ≤ 0.1833

0, otherwise

(45)

μ
(
d+

5

) =

⎧⎪⎨
⎪⎩

1, if d+
5 ≤ 0.1231

1 − d+
5 −0.1231

0.1693−0.1231 , if 0.1231 < d+
5 ≤ 0.1693

0, otherwise

; μ
(
d−

1

) =

⎧⎪⎨
⎪⎩

1, if d−
1 ≥ 0.1988

1 − 0.1988−d−
1

0.1988−0.1560 , if 0.1560 ≤ d−
1 < 0.1988

0, otherwise

(46)

μ
(
d−

2

) =

⎧⎪⎨
⎪⎩

1, if d−
2 ≥ 0.2008

1 − 0.2008−d−
2

0.2008−0.1533 , if 0.1533 ≤ d−
2 < 0.2008

0, otherwise

; μ
(
d−

3

) =

⎧⎪⎨
⎪⎩

1, if d−
3 ≥ 0.1370

1 − 0.1370−d−
3

0.1370−0.0875 , if 0.0875 ≤ d−
3 < 0.1370

0, otherwise

(47)

μ
(
d−

4

) =

⎧⎪⎨
⎪⎩

1, if d−
4 ≥ 0.1551

1 − 0.1551−d−
4

0.1551−0.1012 , if 0.1012 ≤ d−
4 < 0.1551

0, otherwise

; μ
(
d−

5

) =

⎧⎪⎨
⎪⎩

1, if d−
5 ≥ 0.1976

1 − 0.1976−d−
5

0.1976−0.1260 , if 0.1260 ≤ d−
5 < 0.1976

0, otherwise

(48)

Now, by utilizing Eqs. (44)-(48) and Model 2 as given
in Eq. (33), the single objective optimization problem is
formulated as:

max λ

subject to

0.0457λ − 0.1239 +
√

1

2
{0.0110ψ1 + 0.0000ψ2 + 0.0080ψ3 + 0.0646ψ4 + 0.0127ψ5 + 0.0000ψ6 + 0.0001ψ7} ≤ 0

0.0376λ − 0.1137 +
√

1

2
{0.0435ψ1 + 0.0019ψ2 + 0.0000ψ3 + 0.0009ψ4 + 0.0329ψ5 + 0.0488ψ6 + 0.0008ψ7} ≤ 0

0.0665λ − 0.2147 +
√

1

2
{0.1611ψ1 + 0.0514ψ2 + 0.0494ψ3 + 0.0000ψ4 + 0.0000ψ5 + 0.0926ψ6 + 0.0735ψ7} ≤ 0

0.0466λ − 0.1833 +
√

1

2
{0.0518ψ1 + 0.1167ψ2 + 0.0965ψ3 + 0.0229ψ4 + 0.0742ψ5 + 0.0001ψ6 + 0.0635ψ7} ≤ 0
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0.0462λ − 0.1693 +
√

1

2
{0.0001ψ1 + 0.1242ψ2 + 0.1006ψ3 + 0.0001ψ4 + 0.0136ψ5 + 0.0447ψ6 + 0.0590ψ7} ≤ 0

0.0428λ + 0.1560 −
√

1

2
{0.1131ψ1 + 0.1233ψ2 + 0.0489ψ3 + 0.0000ψ4 + 0.0446ψ5 + 0.0926ψ6 + 0.0750ψ7} ≤ 0

0.0475λ + 0.1533 −
√

1

2
{0.0669ψ1 + 0.1275ψ2 + 0.0965ψ3 + 0.0512ψ4 + 0.0290ψ5 + 0.0155ψ6 + 0.0599ψ7} ≤ 0

0.0495λ + 0.0875 −
√

1

2
{0.0000ψ1 + 0.0197ψ2 + 0.0094ψ3 + 0.0646ψ4 + 0.0741ψ5 + 0.0000ψ6 + 0.0000ψ7} ≤ 0

0.0539λ + 0.1012 −
√

1

2
{0.0847ψ1 + 0.0001ψ2 + 0.0000ψ3 + 0.0165ψ4 + 0.0000ψ5 + 0.0922ψ6 + 0.0020ψ7} ≤ 0

0.0716λ + 0.1260 −
√

1

2
{0.1587ψ1 + 0.0001ψ2 + 0.0089ψ3 + 0.0639ψ4 + 0.0336ψ5 + 0.0231ψ6 + 0.0008ψ7} ≤ 0

0.10 ≤ ψ1 ≤ 0.40, 0.05 ≤ ψ2 ≤ 0.45, 0.10 ≤ ψ3 ≤ 0.35,

0.15 ≤ ψ4 ≤ 0.50, 0.05 ≤ ψ5 ≤ 0.35, 0.10 ≤ ψ6 ≤ 0.40,

0.15 ≤ ψ7 ≤ 0.35,

7∑
v=1

ψv = 1, ψv ≥ 0 ∀ v = 1, 2, . . . , 7

0 ≤ λ ≤ 1 (49)

Solving the above non-linear optimization problem by
PSO, we obtain that ψ=(0.2700,0.0500, 0.1860, 0.1500,
0.0940, 0.1000, 0.1500)T .

Step 5: (The RSA:)

Step 5a: Using Eq. (39), by taking k = 2, the aggre-
gated values Iu are obtained as: I1 =
(0.8549, 0.1098), I2 = (0.8483, 0.1139),
I3 = (0.8438, 0.1280), I4 =
(0.7864, 0.1125) and I5 = (0.8572, 0.1186).

Step 5b: The score values, corresponding to the accu-
mulated values acquired in Step 5a, are
obtained as: S (I1) = 0.7451, S (I2) =
0.7344, S (I3) = 0.7159, S (I4) = 0.6739
and S (I5) = 0.7387. Further, using the Def-
inition 4, the ranking order of techniques Tu,
corresponding to the RSA, becomes: T1 
T5  T2  T3  T4.

Step 6: (The RPM:)

Step 6a: The reference IFN T + is obtained as

C+
1 C+

2 C+
3 C+

4 C+
5 C+

6 C+
7

T + (0.8653, 0.1025) (0.8656, 0.1025) (0.8643, 0.1000) (0.8891, 0.1024) (0.7628, 0.1107) (0.8646, 0.1025) (0.8893, 0.1000)

Step 6b: By using the Eq. (40), the distance of
accumulated values Iuv , corresponding to
every alternative Tu, from PIA T + is obtained
as: d

(
T1, T +) = 0.0876, d

(
T2, T +) =

0.1002, d
(
T3, T +) = 0.1943, d

(
T4, T +) =

0.1699 and d
(
T5, T +) = 0.1407.

Step 6c: Hence, the ranking order of the techniques
Tu, corresponding to the RPM, is obtained as:
T1  T2  T5  T4  T3.

Step 7: (The FMF:)

Step 7a: Using Eq. (41), for k = 2, the accumu-
lated values Iu are obtained as: I1 =
(0.7809, 0.1316), I2 = (0.7658, 0.1209),
I3 = (0.6543, 0.2191), I4 =
(0.6770, 0.1546) and I5 = (0.7287, 0.1268).

Step 7b: Using the Eq. (1), the score values of
aggregated values Iu, acquired in Step 7a,
are obtained as: S (I1) = 0.6493, S (I2) =
0.6449, S (I3) = 0.4352, S (I4) = 0.5224
and S (I5) = 0.6019. Hence, by using
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the Definition 4, the ordering position of
techniques Tu, corresponding to the FMF, is
obtained as: T1  T2  T5  T4  T3.

Step 8: Finally, by applying the dominance theory [7] on
the ordering positions acquired in Steps 5b, 6c and
7b, the final ranking order of SWM techniques is
obtained as: T1  T2  T5  T4  T3.

7.2 Comparison with existing TOPSIS, CODAS,
MABAC andWASPASmethods

In order to validate the reliability and effectiveness of the
proposed MAGDM approach we compare it with several
existing DM techniques [13, 37, 42, 44]. We apply IF
TOPSIS method [13], pythagorean fuzzy CODAS method
[37], q-rung orthopair fuzzy MABAC method [44] and IF
extended WASPAS method [42] on the problem, described
in the Section 7.1 and compare the obtained outcomes
with the proposed approach results. The results obtained
on employing the prevailing DM techniques [13, 37, 42,
44] and the proposed MAGDM method are tabulated in the
Table 4.

The results presented in the Table 4 depict that the most
favorable and the least favorable SWM technique obtained
on applying the existing methods [13, 37, 42, 44] is identical
with the proposed one. Furthermore, the computational
differences among the prevailing methods [13, 37, 42, 44]
and the proposed approach are highlighted as follows:

1) Although, the ordering position of all the techniques Tu

obtained on applying [13]’s method based on TOPSIS
is identical with the proposed approach results but there
are computational differences among the proposed
method and IF TOPSIS method [13]. Chen et al. [13]’s
ranking method is based on the distances of alternatives
from PIA and NIA. It prefers those alternatives which

have minimum distance from PIA and maximum
distance from NIA. On the other hand, in the the
proposed method the ranking of the alternatives is
obtained by considering the score values obtained using
averaging operator, the geometric operator and the
distance of the alternatives from PIA simultaneously.

2) [37]’s approach based on CODAS gives identical
outcomes for the ordering position of techniques T1,
T4, T3 and states the technique T5 to be more superior
than T2 whereas in accordance with the proposed
MAGDM method based on MULTIMOORA T2 is
superior than T5. The reason behind this change may
be that in the pythagorean fuzzy CODAS method [37],
the hamming and euclidean distances of score values
of each alternative under every criteria are evaluated
from the negative ideal score values and then, these
distances are aggregated. Whereas, in the proposed
MAGDM method the rating values corresponding to
each alternative under every criteria are accumulated
firstly using averaging and geometric AOs in the RSA
and FMF respectively. Afterwards, the alternatives are
ranked in accordance with decreasing order of score
values. In the RPM of the proposed approach, the
weighted Euclidean distance of each alternative is
calculated from PIA and then, the alternatives are
ranked on the basis of the increasing order of these
distance values. The final ranking is done by applying
the dominance property on the ranking orders obtained
using the RSM, the RPM and the FMF.

3) The ordering position of the techniques T1, T2 and
T3 obtained using [44]’s method based on MABAC
and [42]’s method based on WASPAS is identical with
the proposed approach results whereas the ranking
order of T4 and T5 differs. The q-rung orthopair
MABAC [44] approach is based on the principle of
calculating the distance of each criteria from the border

Table 4 Comparative studies results

Comparison with The overall values corresponding to Ranking

T1 T2 T3 T4 T5

[13]’s method based on TOPSIS 0.5283 0.5272 0.4735 0.4901 0.5156 T1  T2  T5  T4  T3

[37]’s method based on CODAS 0.5225 0.3933 –0.3509 0.0087 0.3957 T1  T5  T2  T4  T3

[44]’s method based on MABAC (for q = 1) 0.2277 0.1482 –0.1359 0.0216 –0.1087 T1  T2  T4  T5  T3

[42]’s method based on WASPAS 0.2035 0.2271 0.2992 0.2603 0.2748 T1  T2  T4  T5  T3

The proposed method results

The RSA 0.7451 0.7344 0.7159 0.6739 0.7387 T1  T5  T2  T3  T4

The RPA 0.0876 0.1002 0.1943 0.1699 0.1407 T1  T2  T5  T4  T3

The FMF 0.6493 0.6449 0.4352 0.5224 0.6019 T1  T2  T5  T4  T3

The final results of the proposed method – T1  T2  T5  T4  T3

H. Garg and D. Rani4356



approximation area. Further, the alternatives are placed
in the border, upper and lower approximation areas and
are ranked accordingly. The IF WASPAS [42] method
is combination of weighted sum and weighted product
decision making approaches. On the other hand, the
proposed method is based on MULTIMOORA which
is combination of the RSM, the RPM and the FMF
and gives final results by considering three assessment
indices simultaneously.

Also, in order to have a more straightforward compari-
son, the correlation coefficients among the ranking orders
obtained by applying the proposed method and existing IF
TOPSIS method [13], pythagorean fuzzy CODAS method
[37], q-rung orthopair fuzzy MABAC method [44], IF
extended WASPAS method [42] are computed using spear-
man’s rank correlation coefficient formula and the acquired
results are tabulated in Table 5.

From the values tabulated in Table 5, it is analyzed
that the correlation among the ranking order of the
proposed method and the existing methods [13, 37, 42,
44] is significantly high. Also, there is much significant
correlation among the prevailing approaches [13, 37, 42,
44] themselves. Besides these, it has been analyzed that the
proposed approach determines the weights corresponding
to criteria objectively. Moreover, in our presented MAGDM
method, the criteria weights are determined by keeping in
view the ultimate goal of maximizing the distance of each
alternative from NIA and minimizing the distance of each
alternative from PIA simultaneously. Since the attribute
weights play an important role in DM process therefore,
the method of determining and choosing weights affects
the ranking results directly. The random choice of criteria
weights may lead us to wrong decision results. In the DM
methods proposed in [13, 37, 42, 44] weights are chosen
subjectively. Therefore, our presented approach is more
reliable as compared to the approaches of [13, 37, 42, 44]. In
addition to these, MAGDM approaches proposed in [42, 44]
and the presented method can handle group DM problems.
Moreover, by taking l = 1, our developed approach can
handle single decision-maker problems as well. Therefore,

the presented MAGDM method is more generalized as it can
handle both single and group DM problems.

7.3 Sensitivity Analysis

In this section, we perform a sensitivity analysis in order
to depict the influence of the parameter k, used in the
proposed AOs, on the different parts of proposed MAGDM
approach based on MULTIMOORA. We take five different
values of k i.e., k = 2, 4, 6, 8, 10 in the proposed AOs
and discuss the impact of these values on the ranking
order of alternatives obtained via three different parts of
MULTIMOORA namely the RSA, the RPA and the FMF.
The results obtained by taking different values of k are
depicted in Fig. 4.

The Fig. 4 represent the utility values corresponding to
each alternative Tu for three different parts of MULTI-
MOORA. These values are obtained by fixing the weight
vector ψ=(0.2700, 0.0500, 0.1860, 0.1500, 0.0940, 0.1000,
0.1500)T . These figures depict that with the change in the
parameter k the utility values associated with every alter-
native, for each of the three parts of MULTIMOORA, vary
greatly. The utility values corresponding to each alternative
with respect to the RSA and the FMF increase with the rise
in the parameter k while decreases by RPA. Besides this,
the influence of the parameter k on utility values obtained
using the RSA and the FMF is more as comparison to the
RPA. This is due to the fact that in the RPA, the parame-
ter k plays role in aggregating different decision matrices
M(z) into single one M i.e., in Step 3 only of the proposed
MAGDM approach whereas in RSA the parameter k influ-
ences Steps 3 and 5. Also, in the FMF, the parameter k plays
its part in two Steps 3 and 7. In addition to these, it is ana-
lyzed that as the value of the parameter k rises the changes
in the utility values with respect to different parts of MUL-
TIMOORA becomes small. Furthermore, the impact of the
parameter k on the ranking order of the alternatives obtained
using the RSA, the RPA and the FMF and hence on the final
ordering position is depicted in the Table 6.

The values tabulated in the Table 6 depict that the ranking
order of alternatives with respect to three different parts of

Table 5 Correlation coefficients among the ranking orders obtained using different methods

The proposed IF TOPSIS Pythagorean fuzzy q-rung orthopair fuzzy IF extended

method method [13] CODAS method [37] MABAC method [44] WASPAS method [42]

The proposed method 1.0 1.0 0.9 0.9 0.9

IF TOPSIS method [13] 1.0 1.0 0.9 0.9 0.9

Pythagorean fuzzy CODAS method [37] 0.9 0.9 1.0 0.7 0.7

q-rung orthopair fuzzy MABAC method [44] 0.9 0.9 0.7 1.0 1.0

IF extended WASPAS method [42] 0.9 0.9 0.7 1.0 1.0
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(a)

(b)

(c)

Fig. 4 The utility values corresponding to different parts of MULTIMOORA in the proposed AOs
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(d)

(e)

Fig. 4 (continued)

MULTIMOORA changes with the change in the value of
the parameter k but the final ranking order of alternatives
remains same. Also, if someone wants to utilize very few
operators to model large number of situations, then the AOs
have to be adaptable to the specific context. The proposed

AOs and method have the characteristics of adaptability
due to the parameter present in it. Existing min/max and
averaging operators can not be used in such situations. The
choice of the parameter k in the proposed AOs depends
upon the preferences of the experts and the nature of the
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Table 6 Impact of k on the ranking order of the alternatives

Value of k Alternatives The RSA The RPA The FMF
Final Ranking

The utility values Ranking The utility values Ranking The utility values Ranking

2 T1 0.7451 1 0.0876 1 0.6493 1 1

T2 0.7344 3 0.1002 2 0.6449 2 2

T3 0.7159 4 0.1943 5 0.4352 5 5

T4 0.6739 5 0.1699 4 0.5224 4 4

T5 0.7387 2 0.1407 3 0.6019 3 3

4 T1 0.7751 1 0.0824 1 0.6742 2 1

T2 0.7714 3 0.0961 2 0.6760 1 2

T3 0.7641 4 0.1824 5 0.4621 5 5

T4 0.7511 5 0.1637 4 0.5451 4 4

T5 0.7729 2 0.1409 3 0.6291 3 3

6 T1 0.7814 1 0.0806 1 0.6811 2 1

T2 0.7787 3 0.0920 2 0.6839 1 2

T3 0.7734 4 0.1752 5 0.4724 5 5

T4 0.7651 5 0.1579 4 0.5543 4 4

T5 0.7797 2 0.1383 3 0.6357 3 3

8 T1 0.7843 1 0.0799 1 0.6842 2 1

T2 0.7820 3 0.0896 2 0.6875 1 2

T3 0.7775 4 0.1708 5 0.4779 5 5

T4 0.7710 5 0.1542 4 0.5595 4 4

T5 0.7828 2 0.1364 3 0.6386 3 3

10 T1 0.7860 1 0.0795 1 0.6859 2 1

T2 0.7839 3 0.0880 2 0.6894 1 2

T3 0.7799 4 0.1677 5 0.4814 5 5

T4 0.7743 5 0.1516 4 0.5628 4 4

T5 0.7846 2 0.1350 3 0.6403 3 3

MAGDM problem. This influence of the parameter k on
the utility values of different parts of MULTIMOORA
makes the proposed MAGDM method more flexible as the
expert(s) can choose the parameter in accordance with their
preferences and practical situations.

7.4 Discussion

This paper aspires to present a MAGDM method based on
MULTIMOORA and novel AOs under IFS environment.
The proposed AOs are based on the parameter k and the
presence of this parameter makes the proposed aggrega-
tion operations flexible and adaptable. Large number of
situations can be modeled using the developed AOs by tak-
ing different values of parameter k. The efficiency of the
proposed approach is demonstrated by applying it in an
emerging issue i.e., assessment of SWM techniques. It has
been done by capturing the uncertainty in the judgements

using IF data values. Five techniques represented by Tu

(u = 1, 2, . . . , 5) are taken and are assessed on the basis of
economical, environmental, technological and social factors
which are further sub-divided into seven criteria. The appli-
cation of the proposed approach gives the ranking order of
SWM techniques as T1  T2  T5  T4  T3. The results
of the presented work are further compared with exist-
ing IF TOPSIS method [13], pythagorean fuzzy CODAS
method [37], q-rung orthopair fuzzy MABAC method [44]
and IF extended WASPAS method [42] in Section 7.2. The
comparison analysis highlights the superiorities and vari-
ous computational differences among the proposed work
and the existing approaches [13, 37, 42, 44]. The proposed
approach combines the features of three MADM techniques
namely additive utility functions (RSA), multiplicative util-
ity functions (FMF) and the reference point method (RPM)
and therefore, it is more effective and reliable. Further, the
effect of the parameter k on the proposed approach results
is deeply discussed in Section 7.3.
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8 Conclusion

Implementation of effective and proper SWM techniques
is urgent necessity in order to control different types
of pollution, to stop the spread of various infectious
diseases, to conserve environmental resources and to recycle
hazardous wastes. This has led various researchers and
scholars to work in the direction of SWM. The presence of
uncertainty in almost each real world system has compelled
researchers to address the issue of SWM using fuzzy set
theory and its extensions. In this work, we have proposed
MAGDM method based on MULTIMOORA and new AOs
in which criteria weights are determined objectively and
have given its application for the assessment of SWM
techniques by capturing the uncertainty using IF data values.
On applying the proposed methodology, the ranking order
of SWM techniques Tu is obtained as: T1  T2  T5 
T4  T3. These results are obtained by considering three
assessment indices simultaneously and therefore are more
reliable.

The main contribution of the proposed work is outlined
as follows:

1. New operational laws are proposed in this study and
their properties are discussed in detail. Based on these
operations, novel operators IFWA, IFOWA, IFHA,
IFWG, IFOWG and IFHG are developed. The proposed
AOs are based on a parameter k which may assume
any real value greater than 1. It is proved that the
proposed AOs satisfy the properties of idempotency,
monotonicity and boundedness which are helpful in
fusing multiple IF information.

2. A novel non-linear optimization model is established
in order to determine attribute weights. This model is
established with the main objective of maximizing the
distance of each alternative from NIA and minimizing
the distance from PIA simultaneously. The results of
the proposed weight generation method are computed
by employing one of the most effective evolutionary
algorithms i.e., PSO scheme.

3. A MAGDM method based on MULTIMOORA, the
proposed AOs and PSO is put forward. Unlike other
MADM/MAGDM approaches, MULTIMOORA is not
based on single assessment index. It combines the
features of three MADM techniques namely the RSA,
the RPA and the FMF. Therefore, the proposed
DM method is more effective as this approach
gives results by considering three assessment indices
simultaneously.

4. The assessment of various SWM techniques is done
by applying the proposed methodology. The various
social, environmental, economical and technological
factors are considered during the assessment process.

The results of the proposed method are compared
with several existing approaches which reveal the
effectiveness of the presented work. Furthermore,
sensitivity analysis by taking different parameter values
is done. The influence of the parameter values on the
ordering position of alternatives obtained via different
parts of MULTIMOORA and hence on the final ranking
order is discussed.

In the future, we will utilize the proposed AOs and
MAGDM approach in order to solve other environmental
issues such as greenhouse gas emissions, health-care SWM
and green supplier selection. We will integrate the proposed
MAGDM method with one of the other MADM techniques
such as WASPAS, CODAS, TOPSIS and MABAC. Also, we
have established the AOs in the present study in order to fuse
independent arguments and therefore, in the future work we
will try to develop operations for aggregating dependent IF
numbers.
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