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Abstract
The use of deep convolutional neural networks (CNNs) for image super-resolution (SR) from low-resolution (LR) input has
achieved remarkable reconstruction performance with the utilization of residual structures and visual attention mechanisms.
However, existing single image super-resolution (SISR) methods with deeper network architectures can encounter representa-
tional bottlenecks in CNN-based networks and neglect model efficiency in model statistical inference. To solve these issues, in
this paper, we design a channel hourglass residual structure (CHRS) and explore an efficient channel attention (ECA) mechanism
to extract more representative features and ease the computational burden. Specifically, our CHRS, consisting of several nested
residual modules, is developed to learn more discriminative representations with fewer model parameters, and the ECA is
presented to efficiently capture local cross-channel interaction by subtly applying 1D convolution. Finally, we propose an
efficient residual attention network (ERAN), which not only fully learns more representative features but also pays special
attention to network learning efficiency. Extensive experiments demonstrate that our ERAN achieves certain improvements in
model performance and implementation efficiency compared to other previous state-of-the-art methods.

Keywords Image super-resolution . Channel hourglass residual structure . Efficient channel attention mechanism . Efficient
residual attention network

1 Introduction

Because of the strong representation abilities of deep
convolutional neural networks (CNNs), deep CNN-based net-
works, including pioneering residual network [1], feature pyra-
mid network [2] and stacked hourglass network [3], have
achieved great progress in computer vision tasks such as object
classification [1, 4, 5], target detection [6–9] and many other
endeavors [3, 10–14]. In recent years, single image super-
resolution (SISR) [15], which aims to recover visual high-

resolution (HR) output from low-resolution (LR) input, has
drawn much attention from researchers. While there always
exists an ill-posed problem where the same LR image can be
downsampled from diverse HR images, many significant
CNN-based networks [17–23] have emerged in SISR for
modeling the nonlinear mapping function from an LR image
to HR more accurately. Dong et al. [16] first designed a three-
layer CNN named SRCNN to model the nonlinear mapping
function and obtained surprising performance. For further im-
provements of reconstruction, Kim et al. [17] designed a deeper
network whose depth reached 20 and achieved high effective-
ness. After the appearance of the pioneering residual network
[1], Lim et al. [18] modified the general residual module and
proposed a more complex network termed EDSR, which ob-
tained notable performance but encountered many model pa-
rameters. Then, the dense SR model RDN [19], which utilized
hierarchical features by dense connection, was presented, but its
performance was similar to EDSR. Later, more advanced net-
works were built, including RCAN [20] and SAN [21], which
both introduced an attention mechanism into SR models.
Although they obtained a significant learning capacity for a
CNN by stacking modified residual modules and introducing
the general channel attention (CA) mechanism to learn the in-
terdependencies among feature channels, they seldom focused
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on learning discriminative representations with a more efficient
residual module and rarely considered modeling channel-wise
interactions efficiently. Recently, Lan et al. [22] proposed a
network with a dual global pathway named ERN, the designed
local wider residual block in which the batch normalization
(BN) layers were removed expanded wider channels before
the activation layer; as a result, the expanded wider channels
increased the number of parameters. These deep networks can-
not learn discriminative features while maintaining fewer mod-
el parameters; that is, they are not efficient.

To address these limitations, we propose an efficient resid-
ual attention network (ERAN) to improve the model’s learn-
ing effectiveness and efficiency. We propose a channel hour-
glass residual structure (CHRS) to deepen the residual block
and generate a nested residual block for extracting discrimi-
native features efficiently. To the best of our knowledge, our
CHRS is the first to apply the hourglass structure among fea-
ture channels. Furthermore, we present an efficient channel
attention (ECA) mechanism to model the channel-wise inter-
dependencies of features. Then, we integrate this mechanism
into our CHRS and generate an efficient residual attention
block (ERAB). Finally, we use a Laplacian pyramid frame-
work similar to [23] to build our SR network.

In summary, there are three contributions offered in this
work:

& We propose an efficient residual attention network
(ERAN) to reconstruct high-performance HR image from
the corresponding LR. Our ERAN is much deeper than
most previous CNN-based networks and achieves better
SR performance while reducing model parameters to
some extent.

& We propose a channel hourglass residual structure
(CHRS) to deepen the residual block and generate nested
residuals for accelerating information flow, bypassing
massive low-frequency information and learning discrim-
inative representation efficiently.

& We propose an efficient channel attention (ECA) mecha-
nism to drive the model to efficiently learn the channel-
wise interdependencies in the SISR network.

The remainder of this paper is organized as follows: the
next section presents an overview of the related work.
Section 3 describes the proposed model in detail. Section 4
shows the empirical research results. Section 5 presents the
conclusion.

2 Related work

In recent years, unprecedented progress has been made in
deep image super-resolution. The pioneering CNN-based SR
work proposed by Dong et al. [16] employed a three-layer

CNN to learn the mapping function from LR images to HR
images and was termed SRCNN. Benefiting from the predic-
tion performance of the CNN, its results showed great im-
provements when quantitatively and visually compared with
the early interpolation-based method [24]. To increase the
learning capacity of the network, Kim et al. [17] deepened
the depth of the network to 20 and obtained remarkable SR
performance. As skip connections were proposed in CNN
networks [1, 25], much deeper models rapidly emerged. Lim
et al. [18] designed a very wide and deep network named
EDSR by stacking many modified residual blocks. Their net-
work achieved significant improvements in performance and
demonstrated the significance of model depth in image SISR.
Other deep SR works, such as RDN [19] and SRDenseNet
[26], which were derived from the dense-connection network
[25], paid more attention to utilizing hierarchical features from
different convolution layers. Their operations, stemming from
densely concatenating features of different layers, increased
the reuse of features and enabled further feature fusion. To
achieve better visual SR performance, Ledig et al. [27] pro-
posed SRGAN, which was based on a generative adversarial
network (GAN) [28] and combined perceptual and adversarial
loss with l2 loss. Although the blurring and oversmoothing
artifacts were alleviated to a certain extent by applying
SRGAN, its reconstruction results may not have been faithful
because of the produced unpleasing artifacts. Then, Lan et al.
[21] expanded wider channels in general residual block re-
moved batch normalization (BN) layers and proposed one
deep network with a dual global pathway named ERN.

An attention mechanism can generally be regarded as allo-
cating available processing resources towards the most infor-
mative part of input. Massive works integrated with attention
mechanisms have been proposed for different tasks, including
image classification [29] and SISR [20, 21]. To resolve the
limitation of network depth and explore the general channel
attention (CA) mechanism in SISR, Zhang et al. [20] designed
a very deep RCAN network composed of many residual chan-
nel attention blocks (RCABs) and residual in residual (RIR)
structures. An RIR structure can drive the model to bypass
abundant low-frequency information and reconstruct more ac-
curate results. SAN [21] introduced a second-order channel-
wise attention module and a nonlocal attention mechanism
and combined them with an effective residual structure; even-
tually, the network successfully captured discriminative rep-
resentations and long-distance spatial contextual information.
Although both methods obtain notable improvements quanti-
tatively and visually when integrated with the general CA
mechanism, they are burdened with heavy computational
costs.

Recently, Wang et al. [30] proposed an efficient channel
attention (ECA) block in the classification task to efficiently
model channel-wise interdependencies across feature maps
and obtained accurate performance with fewer parameters.
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However, there are few proposed works that explore the im-
pact of ECA on SISR.

3 Our model

Tomake full use of the powerful representation of the residual
module and efficient channel-wise mechanism in the SISR
task, we design a deep advanced residual network integrated
with the ECA mechanism and name it an efficient residual
attention network (ERAN) (see Fig. 1).

3.1 Network architecture

As shown in Fig. 1, our ERAN is mainly made up of four
parts: shallow feature extraction, efficient residual blocks
(ERABs) for deep feature extraction, upscale modules of SR
levels and corresponding reconstruction blocks. Let us sup-
pose that ILR and ISR represent the input and output of our
network, respectively. Similar to [18, 20, 27], given ILR as
the input, we extract its shallow feature maps F0 using only
one convolutional layer (Conv)

F0 ¼ H f ILRð Þ ; ð1Þ

where Hf (∙) is the convolution operation.
Similar to [23], our model consists of B = log2(S) recon-

struction levels, where S denotes the scale factor, i.e., the ×2
network has 1 level, and the ×4 network has 2 levels and so
on. There areM ERABs at each level in our network. The first
ERAB at level b extracts features from its input, and the ex-
tracted features act as the input of the next ERAB at the same
level. The output of the last ERAB at level b denotes acquired
abstract features at the current level, so we altogether have B
groups of abstract features from corresponding B levels

FDF−b ¼ HERAB−M HERAB− M−1ð Þ ⋯HERAB−1 Fup− b−1ð Þ
� �� �� �

; ð2Þ

where FDF − b, HERB −M and Fup − (b − 1) represent the acquired
abstract features at level b, theM-th ERAB operation at level b
and the upsampled feature maps at level b − 1, respectively.
Then, the deep abstract features FDF − b are upscaled by the
upscale module at the b level

Fup−b ¼ Hup−b↑ FDF−bð Þ ; ð3Þ

whereHup − b↑ and Fup − b are the upscale module and upscaled
feature maps at level b, respectively. There are several choices
for upscaling models, such as transposed convolution [31] and
ESPCN [32], in which good trade-offs between computation
and performance are obtained by applying these post-
upscaling strategies. Following [20, 21], we adopt sub-pixel
convolution [32] in our upscale model. Next, we use one
convolution layer at each level to reconstruct the result at the
current level.

There are some available choices for the loss function to
optimize the SR model, such as L1 [18, 20–22], L2 [16, 17],
perceptual and adversarial losses [27]. For fair comparisons
with advanced methods [20–22], we also choose the L1 loss
function for model optimization. Hence, the objective func-
tion of ERAN is defined as:

L Θð Þ ¼ ∑B
b¼1

1

N
∑N

i¼1 HERAN−b I iLR−b
� �

−I iHR−b
�� ��

1
; ð4Þ

whereΘ is the parameter set of our model. For fast and effective
convergence in the training process, the Adam optimization al-
gorithm [33] is adopted to optimize the complex network.

3.2 Channel hourglass residual structure (CHRS)

The hourglass network [3] is a novel design with the ability to
capture diverse feature maps and fuse them together. It can
generate pixel-wise predictions, which coincide with the goal

Fig. 1 Network architecture of our ERAN for 4× SR.
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of the SISR task. Motivated by the theory [1, 3, 17, 19] that a
deeper network can obtain a more abstract expression and a
residual in residual (RIR) structure can accelerate information
flow and bypass abundant low-frequency information in the
LR inputs, we subtly design a deeper channel hourglass resid-
ual structure, i.e., the CHRS (see Fig. 2), which consists of P
nested residuals for image SR.

We now show more details about our CHRS. Suppose Finput
denotes input feature maps withC channels andH ×W size. The
channels of the later layer in CHRS are halved to C/2 while
keeping the H ×W size unchanged at all times. After intermedi-
ate feature maps reach the fewest channels, i.e., C

2P
, the CHRS

starts twofold increasing convolution kernels to double the chan-
nels and combines corresponding cross-scale feature maps by P
element-wise additions. These RIR operations can make the
CHRS bypass abundant low-frequency information and capture
powerfully expressive information. Table 1 clearly shows the
difference in efficiency between the general residual module
[1] removed BN layers and our CHRS. Our CHRS has fewer
parameters but a larger module depth and more residual connec-
tions under the same input size and output size. Note that the
feature resolutions of different layers in our CHRS are all the
same, which makes the CHRS be easily extended to other state-
of-the-art SR networks. These dense residual connections across
different layers accelerate the information flow and make the
CHRS focus on high-frequency information during model train-
ing. Different from the usage of ReLU in [20], in our CHRS, all
convolution layers except the last are followed by the
LeakyReLU activation function.

3.3 Efficient Channel attention (ECA) module

In this section, we revisit the general channel attention (CA)
mechanism and clarify more details about the ECA module
(see Fig. 3).

3.3.1 Revisiting Channel attention (CA) mechanism

Suppose that given feature maps X = [x1, x2,⋯, xc] with C
channels and H ×W size, global average pooling is used to
learn the channel-wise global statistic information z. Then, we
can obtain the c-th value of z by

zc xcð Þ ¼ 1

H �W
∑H

i¼1∑
W
j¼1xc i; jð Þ ; ð5Þ

where xc(i, j) denotes the pixel value of the c-th feature map xc
at spatial position (i, j). Then, a sigmoid gating mechanism is
adopted in [20, 21] to capture the channel-wise weights

bz ¼ σ WUδ WDzð Þð Þ ; ð6Þ
where σ(∙) and δ(∙) denote the sigmoid gating function and
ReLU function, respectively, and WU and WD are the weight
settings of the channel-upscaling layer and the channel-
downscaling layer, respectively. To avoid high computing
complexity, WD are often set to C � C

r

� �
, and WU are set to

C
r

� �� C. Although convolution operations that change the
numbers of convolution kernels limit model complexity in
the CA module, the channel information and its weight are
not directly corresponding.

3.3.2 Efficient channel attention (ECA) mechanism

The ECA mechanism (see Fig. 3) is motivated by the general
channel attention (CA) mechanism used in the RCAN; it
models interdependencies among feature channels adaptively
and efficiently by considering local cross-channel interaction.
The ECA module investigates one 1D convolution layer with
an adaptive kernel size to replace the two 2D convolution
layers in the general CAmodule and makes the network focus
on capturing powerful feature maps efficiently.

Fig. 2 The architecture of our
channel hourglass residual
structure (CHRS), consisting of
P=3 nested residuals, makes the
depth of CHRS reach 6
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Given the feature maps z ∈ RCwithout reducing the dimen-
sion, channel-wise weights can be obtained by

α ¼ σ W � zð Þ ; ð7Þ
where W and σ(∙) are parameter matrices with the dimension
of C ×C and a sigmoid gating function, respectively. To cap-
ture the discriminative representation among feature channels
efficiently, the key step is how to model the local cross-
channel interaction. Considering zi and its k neighbors, the
weight of zi can be calculated by

αi ¼ σ ∑k
j¼1w

jz ji
� �

; z ji∈Ω
k
i ; ð8Þ

where Ωk
i is the group of k adjacent channels of zi. In brief,

such local aggregation can be exactly implemented by 1D
convolution with a kernel size of k

α ¼ σ conv1D zð Þð Þ ; ð9Þ

where conv1D(∙) is a 1D convolution layer and its kernel size
equals k.

Hence, the remaining key issue is how to set the value of k.
Considering the similar philosophy, feature maps with differ-
ent channel dimension C should reasonably have different

statistical values of k; therefore, a mapping function ϕ(∙)
may be available from k to C

C ¼ ϕ kð Þ ; ð10Þ

Generally, a linear function, i.e., ϕ(k) = γ ∗ k − q, is usually
adopted to model the simplest corresponding mapping.
However, the simple linear function limits the expression of
complicated relations between k and C. To better describe the
complex quantitative relations, we introduce a nonlinear func-
tion, i.e.,

C ¼ ϕ kð Þ ¼ 2 γ*k−qð Þ ; ð11Þ
to replace the linear one. The reason why an exponential func-
tion is used is that the channel dimension C of feature maps is
usually set to a power of 2. Then, given a channel dimension
value of C, the kernel size k can be calculated adaptively by

k ¼ φ Cð Þ ¼ log2 Cð Þ
γ

þ q
γ

���� ����
odd

; ð12Þ

where |t|odd is the odd number nearest to t. Following [30], in
our experiments, γ and q are always set to 2 and 1, respective-
ly. Clearly, using nonlinear mapping φ(∙) gives feature maps
with different channel numbers different range interactions

Table 1 Efficiency comparison
between general residual module
removed BN layers and our
CHRS

Module Kernel size Input size Output size #.Param depth

general res. [1] k=3 C×H×W C×H×W 2*k*k*C*C=A 2

CHRS(P=2) C×H×W C×H×W 5/4*k*k*C*C=0.625A 4

CHRS(P=3) C×H×W C×H×W 21/16*k*k*C*C=0.656A 6

Fig. 3 Efficient channel attention (ECA) module used in our ERAN
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and drives the model to adaptively learn the interdependencies
among feature channels.

3.4 Efficient residual attention block (ERAB)

To take advantage of the feature maps with channel-wise
weights effectively, we incorporate the ECA mechanism into
our CHRS and generate an efficient residual attention block
(ERAB) (see Fig. 4) to learn discriminative representation.

Inspired by the effectiveness of residual blocks and residual
in residual (RIR) structure in [20], long skip connections are
added into our model to enhance information flow in the net-
work. For the m-th ERAB at the b-th level, we have

Fb;m ¼ Fb;m−1 þ Rb;m X b;m
� �

Rb;m X b;m
� � ¼ σb;m convb;m1D GAPb;m X b;m

� �� �� �
⋅X b;m

;

(
ð13Þ

where Rb, m(∙) indicates the function of efficient channel atten-
tion (ECA), and its componentsGAPb, m(∙), convb;m1D ∙ð Þ and σb,
m(∙) are the global average pooling function, 1D convolution
layer and corresponding sigmoid gating function, respective-
ly. Fb, m − 1 and Fb, m denote the input and output of the m-th
ERAB in which the residual Xb, m is learned after the input
feature maps Fb, m − 1 are dealt with by P − 1 residual subunits.
Considering the trade-off between the performance of our
ERAB and module computation, in our experiments, P is
always set to 3.

3.5 Joint optimization with added losses

Our network architecture with multiple SR levels is similar to
the Laplacian pyramid framework [23], but we use our

ERABs to extract deep features. In addition, we only obtain
the SR result from the last level, i.e., the results of internal
levels are only used to supervise and optimize the result at the
last level. Theoretically the same LR image can be
downsampled from infinite HR images, and there are many
possible functions to choose in mapping function space. To
alleviate the learning diversity for the deep model, we adopt a
network architecture similar to the Laplacian pyramid frame-
work so that internal levels can help the model learn the map-
ping function from LR to HR image more accurately.

At each SR level of our model, there areM ERABs and one
sub-pixel convolution layer. Each sub-pixel convolution layer
is connected to a corresponding convolution layer to recover
the HR image at the current level. For ×4 and ×8 SR models,
M is always set to 30.

4 Experimental results

In this section, we first clarify our experimental settings in
detail, including datasets, evaluation metrics, optimizer and
related equipment. Then, we verify the contribution of each
component and the impact from different combinations of
components in the proposed ERAN. We show the results
quantitatively and visually compared with other advanced
methods. Finally, we present a model complexity analysis,
including the parameters of different models.

4.1 Settings

Following [34], we train our networks on DIV2K [35] and
Flickr2K [18] datasets. After training, we test our models on

Fig. 4 The architecture of the proposed efficient residual block (ERAB)

Table 2 Effects of CHRS and
ECA; the best PSNR (dB) values
on Set5 (4×) are observed in 1 ×
104 iterations

Channel attention (CA) × √
×

×

32.62

×

√
×

32.63

×

×

√
32.60

√
×

√
32.64

×

√
√
32.66

Efficient Channel Attention (ECA) ×

Channel hourglass residual structure (CHRS) ×

PSNR on Set5 (4×) 32.59
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five benchmark datasets, including SET5 [36], SET14 [37],
BSDS100 [38], URBAN100 [39] and MANGA109 [40], and
adopt the peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) [41] on the Y channel as evaluation
metrics after transforming the SR results to YCbCr space. We
carry out extensive experiments with a bicubic (BI) degrada-
tion model and use scaling factors ×4 and ×8 for training and
testing.

During training, the ADAM [33] optimizer with β1 = 0.9,
β2 = 0.99, and ε = 10−8 is practically adopted to optimize our
model. We conduct all experiments using Pytorch [42] on a
computer equipped with one GTX 1080Ti GPU, one Intel i7-
8700k CPU and 24 GB system memory. The learning rate is
initially set to 10−4 and decays with a cosine annealing
strategy.

4.2 Ablation investigation

We analyze the effects of the channel hourglass residual struc-
ture (CHRS) and efficient channel attention (ECA) mecha-
nism compared with the channel attention (CA) mechanism
and conduct a series of experiments to demonstrate the effec-
tiveness of our network.

First, we train our model without the CHRS, ECA and CA
on the DIV2K and Flickr2K datasets, and we obtain a basic
performance value of 32.59 dB PNSR with general residual
modules removed BN layers. Next, we carry out verification
experiments with the CA, ECA or CHRS to analyze the ef-
fects and obtain corresponding results of 32.62 dB PNSR,
32.63 dB PNSR, and 32.60 dB PNSR, respectively. These
clear results demonstrate the ability of each block to improve
the model reconstruction performance. Then, we implement
different experiments with different combinations of CA,
ECA and CHRS. We observe that the model with the CA
and CHRS achieves a 32.64 dB PSNR, which is better than
the 32.62 dB PSNR of the module with CA only. The model
with ECA and CHRS achieves a 32.66 dB PSNR, which is the
best of these results. These findings show a powerful repre-
sentation of our ERAB and the notable performance of our
ERAN. All results are shown in Table 2.

4.3 Comparisons with advanced methods

To further verify the effectiveness of our ERAN, we conduct a
large number of experiments and compare our results quanti-
tatively and visually with other state-of-the-art methods, such
as SRCNN [16], VDSR [17], LapSRN [23], EDSR [18], RDN

Table 3 Quantitative results with
BI degradation model. The best
and second-best results are
highlighted and underlined,
respectively

Algorithms Scale Set5 Set14 BSD100 Urban100 Manga109
PNSR/SSIM PNSR/SSIM PNSR/SSIM PNSR/SSIM PNSR/SSIM

Bicubic

SRCNN [16]

VDSR [17]

LapSRN [23]

SRDenseNet [26]

EDSR [18]

ERN [22]

RDN [19]

RCAN [20]

SAN [21]

ERAN (ours)

ERAN+ (ours)

×4 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866

30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555

31.35/0.8830 28.02/0.7680 27.29/0.0726 25.18/0.7540 28.83/0.8870

31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900

32.02/0.8941 28.50/0.7783 27.54/0.7332 26.05/0.7813 29.50/0.8992

32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148

32.39/0.8975 28.75/0.7853 27.70/0.7398 26.43/0.7966 −/−
32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 31.00/0.9151

32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087 31.22/0.9173

32.64/0.9003

32.66/0.8999

32.71/0.9008

28.92/0.7888

28.92/0.7891

28.95/0.7897

27.78/0.7436

27.79/0.7429

27.83/0.7443

26.79/0.8068

26.86/0.8073

27.05/0.8124

31.18/0.9169

31.39/0.9172

31.62/0.9199

Bicubic ×8 24.40/0.6580 23.10/0.5660 23.67/0.5480 20.74/0.5160 21.47/0.6500

SRCNN [16] 25.33/0.6900 23.76/0.5910 24.13/0.5660 21.29/0.5440 22.46/0.6950

VDSR [17] 25.93/0.7240 24.26/0.6140 24.49/0.5830 21.70/0.5710 23.16/0.7250

LapSRN [23] 26.15/0.7380 24.35/0.6200 24.54/0.5860 21.81/0.5810 23.39/0.7350

SRDenseNet [26] 25.99/0.7041 24.23/0.5810 24.46/0.5302 21.67/0.5619 23.10/0.7121

EDSR [18]

RDN [19]

26.96/0.7762

27.23/0.7854

24.91/0.6420

25.25/0.6505

24.81/0.5985

24.91/0.6032

22.51/0.6221

22.83/0.6374

24.69/0.7481

25.14/0.7994

RCAN [20] 27.31/0.7878 25.23/0.6511 24.98/0.6058 23.00/0.6452 25.24/0.8029

SAN [21] 27.22/0.7829 25.14/0.6476 24.88/0.6011 22.70/0.6312 24.85/0.7910

ERAN (ours) 27.32/0.7885 25.24/0.6497 24.96/0.6033 22.95/0.6391 25.24/0.8013

ERAN+ (ours) 27.35/0.7896 25.27/0.6513 25.00/0.6045 23.11/0.6452 25.42/0.8049
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[19], SRDenseNet [26], RCAN [20], SAN [21], and ERN
[22]. Similar to [20, 21], the self-ensemble strategy is adopted
to further improve our ERAN, denoted as ERAN+.

PSNR/SSIM results Quantitative evaluation results of ×4 and
×8 SR are shown in Table 3. For ×4 SR, our ERAN+ provides
the best quantitative performance, with the highest PNSR and
SSIM values on all datasets compared with previous advanced
networks. Even without the self-ensemble strategy, our
ERAN can yield comparable or superior results on five test
datasets. In terms of a larger scaling factor (e.g., 8), our
ERAN+ still achieves the best value of evaluation metrics,

surpassing the outputs of the recent advanced CNN-based
method SAN. All experimental records show that our model
yields better performance than most state-of-the-art methods.

Visual results Figure 5 presents visual comparisons of SR
scale ×4 on the datasets of Urban100 and Manga109. For
image “img_016” and image “MiraiSan”, the early bicubic
method yields widespread blurring and even loses the main
outlines. Other recent methods (e.g., EDSR, RCAN and SAN)
can recover the main structure but have difficulty
reconstructing clearer details and present some blurring arti-
facts or distorted edges. For our ERAN, it can be observed that

HR              Bicubic            EDSR [18] 

PSNR/SSIM       16.341/0.375         20.772/0.712 

Urban100 (4×):                RCAN [20]          SAN [21]             ERAN 

img_016 21.859/0.765        21.814/0.762       22.29/0.786

HR Bicubic  EDSR [18] 

PSNR/SSIM        19.537/0.411        23.445/0.757

Manga109 (4×):  RCAN [20]         SAN [21]             ERAN 

MiraiSan                23.276/0.753         23.479/0.754    23.810/0.783 
Fig. 5 Visual comparisons for 4× SR with the BI model on the Urban100 and Manga109 datasets. The best results are highlighted

Table 4 Computation and
parameter comparison (4× Set5) Metric LapSRN EDSR RDN RCAN ERN SAN RCAN+ERAB ERAN (ours)

Paras (M) 0.813 43.1 22.3 15.6 9.53 15.9 13.31 8.02

PSNR(dB) 31.54 32.48 32.47 32.63 32.39 32.64 32.65 32.66
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our model can recover more details, especially yield sharper
edges, and more natural performance benefited from the better
captured high-frequency information.

4.4 Model complexity analysis

Our goal is to obtain good performance with fewer parame-
ters. The details of different advanced methods are shown in
Table 4, and a corresponding visual illustration is presented in
Fig. 6. We replace the residual channel attention block
(RCAB) in RCANwith our ERAB, and the new RCANmod-
el is denoted as RCAN+ERAB. RCAN+ERAB can obtain
better performance with fewer parameters than RCAN for
4× SR on the Set5 dataset. In addition, our ERAN, with the
fewest parameters, performs better than other state-of-the-art
methods. This demonstrates the good trade-off of our ERAN
between superior performance and model complexity.

5 Conclusions

We propose a very deep efficient residual attention network
(ERAN) for accurate and efficient image SR. Specifically, the
channel hourglass residual structure (CHRS) allows the
ERAN to deepen the network by applying several nested re-
sidual modules, accelerate information flow and bypass mas-
sive low-frequency information from LR images by residual
in residual (RIR) structure. In addition to designing the CHRS
to learn discriminative representation with fewer model pa-
rameters, we propose an efficient channel attention (ECA)

mechanism to efficiently learn channel-wise interdepen-
dencies by applying 1D convolution, and integrate this mech-
anism into the CHRS to generate an efficient residual attention
block (ERAB). Extensive experiments on SISR with BI
models demonstrate the effectiveness, efficiency of our
ERAN and the generalization ability of our ERAB.
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