
https://doi.org/10.1007/s10489-021-02483-3

Multi-robot exploration in task allocation problem

Reza Javanmard Alitappeh1 · Kossar Jeddisaravi1

Accepted: 28 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Task allocation is an important problem in multi-robot system which can be defined with different setup for different
application, i.e. coverage, surveillance and mining mission in static or dynamic scenarios. Our focus in this paper is exploring
environment to accomplish tasks distributed over the environment by minimizing overall cost of the system. This problem is
defined as a NP-Hard problem, thus will be more challenging in larger environments containing many robots and tasks. To
solve multi-robot task allocation in very large environment we propose a new deployment-based framework. Our proposal
divided the problem into two sub-problems: region partitioning and routing problem. This decomposition eases considering
our problem specification in multi-robot system which are not easily considerable in other approaches, i.e distribution
of the tasks or robots’ initial position. Load balancing is done globally by deploying robots in a proper location of the
environment and assigning sub-regions among them. Sub-regions contains set of points, where the goal is visiting all the
points individually by one of the robots. On the other hand, after deploying the robots, routing techniques can be simply
applied to find shortest and safest paths for every robots. To search for solutions in this NP-hard problem, two methods are
built on a tailor-made multi-objective scheme of Genetic Algorithm (GA) with a different setup and search operators, and a
reinforcement learning approach. Simulation results testify the performance of our methods in comparison to existing ones.

Keywords Task allocation · Multi-robot exploration · Region partitioning · Multi-robot routing problem · Q-learning

1 Introduction

Multi Robot Systems (MRS) have recently received a great
deal of attention in exploration and coverage applications.
This is due to advantages of using MRS, so that a
group of robots can explore the environment faster with
more robustness and less redundancy in comparison to
single robot system in complex tasks. Moreover, in
a MRS, collaboration and coordination between robots
balances total load in the system. For instance, in
our everyday life delivery service multi vehicle (robots)
has become a new trend, where trucks dispatch from
warehouses and deliver goods to the markets for daily
needs. Similar to delivery, many industrial and service
applications such as environment monitoring [37], traffic
surveillance, crime monitoring, anti-terrorist mission [76],

� Reza Javanmard Alitappeh
Rezajavanmard64@gmail.com

1 Department of Electrical and Computer Egineering,
University of Science and Technology of Mazandaran,
P.O. Box 48518 - 78195, Behshahr, Iran

rescue in disaster mission [16, 28, 46, 68], inspection
[41], SCAT (simultaneously coverage and tracking) [29, 55]
involve task assignment, exploration, coverage and routing
[12, 31, 61, 75]. In most of them, as a basic requirement,
teams of robots explore the environment and execute tasks
in continuous or discrete ways. A solution is interested if
maximizes/minimizes objectives defined under the problem
specification, i.e. maximizing covering area and minimizes
energy consumption. In this regard, a fair distribution of the
tasks among robots yields a lower cost for exploring and
servicing tasks.

Among variations of the multi-robot exploration appli-
cation, this paper presents a solution for Multi-Robot Task
Allocation (MRTA) problem, where robots must visit dis-
tributed tasks over an environment [5, 11, 24, 25, 67].
However, for simplification we assumed tasks are set of
points in the environment that must be visited by robots.
Although what exactly the tasks are and how they will be
done are not in the scope of this paper, but these points, for
example, could be places to search for an object by spend-
ing a fixed time and energy on every point. Accordingly by
distributing robots over the environment, each of them will
explore and service set of tasks close to its location.

/ Published online: 5 June 2021

Applied Intelligence (2022) 52:2189–2211

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02483-3&domain=pdf
http://orcid.org/0000-0002-7250-4879
mailto: Rezajavanmard64@gmail.com

Many researchers in this area have been trying to find
a global solution for variations of task allocation problem,
although it is classified as an NP-hard problem. In this
paper, task allocation problem is approached by considering
many particularities (features) of multi-robot system e.g.
robots’ location, tasks distribution, shortness and safety
of the paths to visit every task point, and so on. To do
so, we decompose the entire problem into sub-problems:
region partitioning and routing. Later a tailor-made meta-
heuristic (GA) and a Q-learning approach are applied
to find a near optimum solution. We also assumed that
the environment has a finite size like an university, a
governmental department, or a city, and suitable for a
centralized system, where infrastructure i.e. communication
network is available for all the robots.

An example is shown in Fig. 1, where task points
are distributed in the environment. They are assigned to
the closer robots, where each robot has its own tasks to
visit inside its dedicated region. Thus, the total distance
between task points and robots is minimized. Given the
above example, to visit every point robots need to move
and explore the map. Therefore, first we need to find a
suitable robots deployment for starting exploration, which
also needs to take map partitioning into account given
robots’ position. Later, robots traverse routes (preferably the
shortest one) for visiting points in their region.

For partitioning, by using Generalized Voronoi Diagram
(GVD) we represent the map in form of a graph, which
yields a safe route for each robot as well. To deal with
collision in robots’ motion potential field is applied. All
these techniques are jointed in our proposed framework
which is called multi-robot exploration for task allocation.

The main contributions of this work are divided in
several folds. Although deployment or graph partitioning,
task allocation and routing problems are well-known in the

Fig. 1 An example of task allocation with four robots and their
dedicated region. Each robot is responsible to the tasks (points) inside
its regions

literature and are tackled individually beforehand, in this
work we propose an end-to-end multi-objective framework
solving all of them at once. Moreover, as a solution for
a realistic combinatorial problem, it considers problem’
specifications which may not be found in the literature of
aforementioned problems. In other words, our framework
considers parameters of the input problem, i.e. dynamic of
tasks distribution, robots’ initial position, shortness of the
path etc. Thus, robots will be deployed given the distribution
of the tasks, so that they will have a balanced tasks in
their region. Moreover, our task allocation framework is
built upon a modified GA to search the problem space in
a precise manner. In large problems which are the cases
in today’s big data space, our solution will be comparable
with deterministic approaches which struggling to solve
NP-Hard problems. This is achieved by our proposal for
modeling the entire problem into two sub-problems and
solve each separately. As another contribution, we also
proposed a Q-learning algorithm designed on the problem
specification, to learn finding the solution during searching
phase using award mechanism. Finally, we simulate the
proposed method in some real scenarios and compare with
similar methods, which testify the performance of the
proposed method in different experiments conditions.

The paper is organized as follows. Since the proposed
framework includes different concepts, in Section 2 a review
of the literature in multi-robot deployment, exploration,
task allocation and routing problem are explained, at the
end exploration using Q-learning is reviewed. In Section 3,
we defined the problem formulation. Section 4 is about
the proposed methodology, containing objective functions,
representation of the problem and proposed algorithms.
Finally, in Section 5, simulation results and comparison
to other methods show the performance of the proposed
framework.

2 Related work

In this paper, we addressed a problem that involves several
well-known subjects of classical problems in graph theory
and robotics. Thus, we consider three lines of related work:
task allocation, exploration and deployment, and routing
problem. However, there are some papers for multi-robot
task assignment which we first take a look to them.

2.1 Multi-robot task allocation (MRTA)

In general, multi-robot task allocation (MRTA) is how to
allocate subtask to each robot, therefore in our problem task
points (as subtasks) must be distributed among robots, and
each of which will be serviced by a single robot with equal
time needed, in which the entire load would be balanced.

2190 R. J. Alitappeh and K. Jeddisaravi

Since it is an NP-hard problem, solving problems
with large search space makes challenges for determin-
istic approaches. To deal with that, usually researchers
decompose the problem into subproblems, or apply a meta-
heuristic technique.

In [24], authors proposed a multi-robot cooperation
approach using genetic algorithm to allocate task among
robots in a robotcup rescue simulation environment with
known robots and tasks. Given their simulation, they claim
that the approach has less computation, better real-time and
stronger ability to seek for the optimal result. In contrast
to our approach, author did not consider distribution of the
tasks and also not using a deployment scheme to initial
the robots in a proper location, which will make tasks
be done faster. In a similar application in [63] a disaster
rescue scenario task allocation is done using two multi-
objective coalition formation. Although they deal with
several challenges i.e. temporal constraint, heterogeneity of
robots, dynamic environment etc, they did not consider time
and energy consumption for the path that robots must move
on them.

Multi-robot task allocation with focus on manufacturing
purpose is considered in [52]. Authors developed a path
finding technique based on Traveling Salesman Problem
(TSP) solution merged by Dijkstra algorithm for calculat-
ing bids. They consider cost and time in order to inte-
grate path planning into a robot’s bids for tasks. In [59]
a concentration for multi-humanoid robots in task alloca-
tion problem is addressed. They considered four objectives,
namely energy consumption, total tasks’ accomplishment
time, robot’s idle time and fairness. Thus, after partition-
ing the environment, they applied NSGA III to assign
task between humanoid robots given the objectives they
defined.

Authors in [2] customized multi-objective optimization
model for product task allocation. In [41], authors
combined memetic and genetic algorithm for multi-robot
task allocation problem where for completing a given task
2 robots are needed to work cooperatively. Researchers
in [69] worked on hybrid Multi Objective GA (HMOGA)
to minimize a multi-objective problem in assembly line
resource assignment and balancing. Two objectives were
defined; cycle time and the cost per time unit of a line for a
fixed number of stations. With similar purpose but in cloud
manufacturing environment, [40] provided a new hybrid
GA method to solve the optimal allocation of computing
resources problems. This problem can be seen from job shop
scheduling problem as well, where a set of jobs have to be
transported between machines by several transport robots
[48]. Author applied hybrid meta heuristic approach for job
shop and robot routing problem. In which, Neighborhood-
based Genetic Algorithm (NGA) for a global exploration
and tabu search for a precise search. In this problem

time for job assignment and completion are the main
concern.

In contrast to cited literature, our approach is applicable
not only on isolated environment i.e manufacturers etc,
it works in dynamic environment where location and
distribution of the task points might not be fixed beforehand.

Task allocation in a large number of tasks and robot
is proposed in [18], where after clustering the entire
task into number of robots, GA and imitation learning
algorithm are applied for task allocation individually in each
cluster. While they used a simple k-means algorithm to
cluster the task at the beginning, in our approach we are
using an adopted method upon Voronoi and GVD. In our
implementation we compared both approaches. In [67] a
solution for Multi-Robot Dynamic Task Allocation problem
is proposed. They defined clusters containing one or more
robots. Genetic algorithm is used to find a solution of
predicated task allocation given objectives authors defined,
later the solution is considered as a bid in an auction
between the robots. In comparison to the algorithm we
proposed in this paper, their approach is more theoretical
than practical for real robot scenarios. Unlike this paper,
in [62] author proposed a solution to the task allocation
problem in a team of UAVs in a decentralized way. Task
allocation is decided by robots themselves, however, it
was assumed that communication among the UAVs is
complete and never fails. In a retirement home application,
a deterministic approach upon mixed-integer programming
(MIP) and constraint programming (CP) is proposed for
planning and scheduling of multiple social robots [5]. In
[11], a formal restricted model of MRTA over time for
vacancy chain scheduling is presented, which divides global
system performance into individual robot contributions.
Authors in [25] applied GA for task scheduling between
robots, they also used A* algorithm for path planning with
collision avoidance. In a different way in [28] author applied
cellular automata for allocating spatial–temporal tasks in
multi-agent systems. Task allocation for search application
is studied in [71], where an auction based strategy is
applied on graph representing the environment. Retrieving
task after finding the target is one of the concern in this
work which makes the paper different in comparison to
others. Given the importance of task allocation in many
multi-robot systems, a comprehensive review challenging
aspects of MRTA problem can be found in [33] and
[27].

In this study, for a different purpose objectives such as
tasks’ priority is not our concern, a practical and generic
framework is proposed where take real world problems’
parameters into account. Moreover, a deployment scheme
is applied for assigning task between the robots, where in
contrast to literature considers tasks’ dynamic distribution
upon a new distance metric.

2191Multi-robot exploration in task allocation problem

2.2 Multi-robot exploration and deployment

In multi-robot deployment problem, a team of robots are
distributed in an environment in order to explore and
execute part of an entire mission. A common utility of
deploying scheme is to solve coverage problem, whereas
robots cover their dedicated region after the distribution.

Techniques for deployment can be divided in two cate-
gories; in the first one, forces in the environment lead the
robot to do the desired task. For instance, attractive and
repulsive forces were applied in a mobile sensor network
to control robots deploying in [56]. A low-level control
is developed by authors in [53] based on attractive and
repulsive forces as well. In their work, a group of homo-
geneous robots is distributed in an uncluttered environment
to observe multiple moving targets. The second category is
based on coverage control approach defined with respect to
the centroids of Voronoi cells resulting from the Voronoi
tessellation of the domain. Authors in [10], presented a dis-
tributed approach for optimally deploying a uniform robotic
network in a domain based on an optimized quantization
framework derived in [43]. Each robot follows a control
law, which is a gradient descent algorithm that minimizes
the functional encoding the quality of the deployment. A
variation of Cortes’ work has been considered, including
non-convex environment with heterogeneous robots by [54],
discrete partitioning and coverage optimization algorithm
in [21], and with short-range communication in [14]. Self-
triggered coverage is addressed in [50], a discrete control
setup is proposed by [4] and [73]. Authors in [22] presented
a multi-objective approach for single robot searching pur-
pose. They focus on path planning by solving Chinese Post-
man Problem (CPP). The same authors proposed a multi-
objective multi-robot deployment approach in [20], where
the environment is dynamic and robots need to be rede-
ployed periodically. In part of our proposal, the deployment
scheme with a major modification inspired from this work.
Although in this work the objective was to move the robot
toward the position where the deployment function is mini-
mized, without considering the robots passing routes. How-
ever in our proposal the paths of the robots are also our con-
cern, which means robots are forced to move on the paths
in our GVD graph representation in such way that the entire
graph nodes and edges must be visited at the end. Authors
in [12] addressed exploration in unknown environments
using a discrete event system with a supervisory control
to monitor robots movement toward target points. Explo-
ration for target searching purpose is addressed in [65],
where authors applied a hybrid Fruit Fly Optimization
Algorithm(FOA) and Particle Swarm Optimization (PSO)
algorithm to find best next optimal robot position.

In the current paper different from cited works, for
deployment we partition the map by considering the

distribution of task points and length of the routes robots
need to visit all the task points in the environment.

2.3 Multi-robot routing

When a robot wants to visit a set of task points, it needs to find
the shortest route, somehow it can be path planning [15, 34].
A similar subject to our problem can be found in vehicle rout-
ing problem. This problem received a great deal of attention
due to the applicability in the real world. Several algorithms
are available for this problem. As far as this problem is hard
combinatorial, solutions based on exact methods have a poor
performance in larger scenarios. Thus numerous heuristics
algorithm beside many different variations of this problem
have been proposed in the literature [39, 52, 70]. Among
them, we focus on Multi-Vehicle routing, where vehicles
depart from different locations, namely Multi-Depot Vehi-
cle Routing Problem. This problem is addressed in [51],
where authors decomposed the problem into subproblems
and applied a coevolutionary algorithm in parallel scheme
to solve the problem. In a different version author present
a meta heuristic approach to solve Multi-depot vehicle
routing problem with simultaneous deliveries and pickups
(MDVRPSDP) in [38]. Authors in [68] solved multiple-
depot multiple traveling salesman problem (MD-MTSP)
using fuzzy logic, which works in two phases: assignment
and tour construction. An exact method developed for Multi-
depot vehicle routing problem (MDVRP) under capacity
and route length constraints by Contardo et al. in [9]. Het-
erogeneity of the vehicles is considered by Salhi et al. in
[60], where several local search algorithm are applied to find
the solution. A version of this problem is called multi-depot
open vehicle routing problem (MDOVRP) [35], where vehi-
cles are not required to return to the departure point after
delivering the goods to the customers.

As we represent our map into a graph, in the sense of
routing, our problem is similar to MDOVRP, but differently
robots must cover all the edges to visit all the task points dis-
tributed along the edges. Thus, beside shortness and safety
routes contain all the edges in robots’ assigned regions (or sub
graphs), although we can avoid robots passing unnecessary
edges i.e. edges in a route with no task point along and after it
in the route, or unvisited edges after visiting all the task points.

To the best knowledge of authors the combinatorial task
allocation, exploring and routing problem considering our
problem specification using a new end-to-end framework
in this paper addressed for the first time as we reviewed
in the literature. Although there exist some research in
area coverage [1, 72] where the solution can be used in
our problem as well. But as we will show in experimental
result they do not work well since they do not consider
the objectives which are our concern. We propose a multi-
objective meta-heuristic framework to find the best robots’

2192 R. J. Alitappeh and K. Jeddisaravi

deployment in the environment by partitioning the graph
given the distribution of the tasks, minimizing the length
of total path traversed by every robot in its sub-region to
visit task points and maximizing robot’s motion safety with
minimizing the probability of robots’ collision. It should
be noticed that our focus is developing high level strategy
for multi-robot motion, instead of localization, mapping,
communication or other multi-robot concerns.

2.4 Exploration with Q-learning

As a goal-oriented method, reinforcement learning is a
model-free approach, where differ form supervised and unsu-
pervised learning does not need labeled dataset. However,
agents in this approach learn to make sequence of deci-
sions given their current state and selected action. To do
so, a reward strategy is applied, where agents get either
rewards or penalties for the selected actions. As one of the
most popular version of reinforcement learning, here we
applied Q-learning, where seeks to learn a policy that max-
imizes the expected value of the total reward over any and
all successive steps. There are many applications of rein-
forcement and Q-learning in robotics and computer games,
where robots or agents can learn from scratch i.e. [7].

In several works authors combined meta heuristic algo-
rithm with Q-learning for different purpose [13, 58]. In
[13], multi-robots path planning in clutter environment
using Q-learning and Particle Swarm Optimization (PSO) is
addressed. As their objectives to be minimized, path length,
arrival time and turning angle were taken into account. PSO
is used for a selecting the next best action in hybridization of
Q-learning. In another work, firefly algorithm is joints with
Q-learning, where its parameters are learned over learning
phase [58]. Similar objectives are considered in [30] for
mobile robot path planning. To do so, they extended Q-
learning algorithm to minimize traversed time, number of
states and robot’s turns. Authors in [7], proposed an incre-
mental Q-learning for mobile robot motion planning over a
PID controller. Geographic routing in a sensor network is
addressed in [26], where routing is needed among number
of distributed sensors in an area. In order to increase con-
vergence speed in Q-learning, an approach is developed by
authors in [44]. They applied flower pollination algorithm
to improve Q-learning initialization.

In [3], author proposed a combiatorial optimization
framework based on neural network and reinforcement learn-
ing with focus on the TSP problem in 2 dimensional Euclidean
space for the city coordinates. To optimize the parame-
ters of the pointer networks which contains two recur-
rent networks, policy gradient is performed. Although
the proposed framework can be generalized to solve other
problem than the TSP, e.g. the Knapsack, to apply this
framework in our problem we need to modify the approach

to consider our problem’s specifications. Furthermore,
retraining will be a big issue as far as in our application
environment might changes frequently. The same issue is
applied for the extension of this work in [47], where authors
addressed VRP using neural network and RL. They solved
the limitation of the previous work by considering system
variation on time using an attention mechanism on top of
RNN. In a similar scheme author in [32] improved train-
ing algorithm by changing the attention layer on the pointer
network. All these approaches are designed for a single
agent(vehicle) in pure routing problems, i.e. TSP, VRP,
which is not the case in our problem.

In a different scheme, given the recent success of deep
learning, deep Q-learning (DQN) is proposed upon deep
neural network [45]. In this way, deep network approaches
improved solutions for complex robotic tasks, for example,
in [17], a 7-DOF manipulator is controlled by training
images to the network as input and motor velocity as output.
Robot navigation using depth data as input of DQN and
neural network is proposed in [64] and [42], respectively.
Moreover, In [23], authors applied DQL for robot path
planning and obstacle avoidance.

In the aforementioned works, researcher either adapted
Q-learning in their specific problem, or improved Q-
learning algorithm given modifications they proposed.
Similarly, in our work, we modified standard Q-learning
according to the specification we have in our problem, i.e.
graph representation and multiple objectives.

3 Problem formulation

Given a team of mobile robots and a set of task points in an
environment, the main goal is to allocate tasks among robots.
Robots move in the environment and visit all its correspond-
ing task points for i.e. searching purpose. We assume that
the map of the environment and task points are known for all
the robots and a centralized system performs task allocation.
We decompose the original problem into following:

Problem 1 (Region partitioning (task allocation)) An envi-
ronment Ω ⊂ R

2 contains task points T = {t1, . . . , tm} ∈
Qf ree (where Qf ree is free configuration space, Qf ree ⊂
Ω), |T | = m, and a team of n robots. In this scenario,
the objective is to find robots’ initial position P =
{p1, . . . , pn} ∈ Qf ree, and partition the environment into n

subregions based on a deployment scheme. Task points in
each subregion are allocated to one of the robots. Partition-
ing runs in a way that the load of executing tasks i.e. the
time of visiting and performing tasks are balanced among
the robots. We represent the environment by a grid graph, so
by solving graph partitioning we allocate nodes containing
task to the robots.

2193Multi-robot exploration in task allocation problem

Problem 2 (Routing) In the environment Ω with presence
of obstacles, robots need to find routes to visit task points,
which are not only short but also safe. To solve this
problem, we create GVD graph over the environment that
covers all the area, and find the route passing all the edges
in GVD, thus robots visit task points when moving on
GVD graph. Both indicated problems are addressed in the
end-to-end proposed framework upon a tailor-made GA.

4 Proposed framework

As shown in Fig. 2, in the proposed method, for simplifi-
cation we construct two graphs given the input map: grid
graph (GGrid) and GVD graph (GGV D). While the earlier is
used for partitioning, the later one is for routing. After parti-
tioning the graph, robots follow the routes in their allocated
region to visit task points inside the region. In this section
we will go through detail of each step.

4.1 Map representation

In the proposed framework, from a continuous space the
input map is converted to two discrete graphs. To create a
grid graph, we applied a similar approach to [20], where
based on an occupancy grid and cell discretization, graph
GGrid = {V, E,W} is defined, V is vertices, E : V × V →
R

+ is edges and W is weights of graph which are specified
by Euclidean length between cells (See Fig. 3a). As can be
seen, the map is discretized into cells so that the number of
cells is proportional to a default rate α. (α is defined by the
robot’s size). It should be noticed that task points are located
inside cells. Beside grid graph GGrid , we defined a graph

GGV D based on GVD. The Generalized Voronoi diagram
(GVD) is one of the most famous roadmaps for path planning.
The main advantages of this roadmap is safety, which can
be applicable in exploration of cluttered environments. The
definition of GVD is given in the next lines.

Let set Qf ree in the environment Ω ⊆ R
2 represent

the free configuration space as defined in [8], where the
robot can move freely without colliding with obstacles. The
Voronoi diagram is partitioning of Qf ree into zones, called
Voronoi regions. Each region has a specific point that is
called site or seed. If robots’ position P = {p1, p2, ..., pn}
denotes the set of seeds, the formal definition of Voronoi
region will be given by:

vi = {q ∈ Qf ree|d(q, pi) ≤ d(q, pj),∀i �= j}, (1)

where d(q, pi) denotes the distance between a point q ∈
Qf ree and pi , which is the region site. If we define obstacles
as a set of single points, then this set can be considered
as a seed. Consequently, the definition of Voronoi region
is extended by considering the seeds to be sets instead of
single points. GVD is defined as the set of points where the
distance to two closest obstacles is the same [8]:

Tij = {q ∈ Sij |d(q,QOi) ≤ d(q,QOh),∀h}, (2)

where QOi , QOh are two closest obstacles to q and Tij is
termed two-equidistant faces. Sij is the set defined by:

Si,j = {
q ∈ Qf ree|d(q,QOi) = d(q,QOj) and

s∇d(q,QOi) �= ∇d(q,QOj)
}
, (3)

Now the definition of the GVD can be more precise:

GV D =
⋃

i

⋃

j

Ti,j . (4)

Fig. 2 After creating GVD and grid graph given input map, robots are deployed on GVD. Later robots visits task points based on the route founded
on GVD

2194 R. J. Alitappeh and K. Jeddisaravi

Fig. 3 A representation of a map
in grid graph with 8-connectivity
links between nodes

This graph is the safest path that robots can move on it (see
Fig. 3b). We merged these graphs and construct a graph G

based on a new metric proposed by [19], explained in the
following.

Definition 1 (Geodesic GVD (GGVD)) In an environment
with GVD as a roadmap, finding a path from an initial point
qstart to a final point qgoal , Geodesic Distance Based on
GVD (GGVD) is defined as:

dg(pi, pj) = W1.||pi − Πi(GV D)||+W2.g(Πi(GV D),

Πj (GV D)) + W1.||pj − Πj(GV D)|| , (5)

with the following properties:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dg(xi, xi) = 0,

dg(xi, xj) = dg(xj , xi),

dg(xi, xj) ≥ 0,

dg(xi, xj) ≤ dg(xi, xk) + dg(xk, xj)

where g(xi, xj) gives the shortest distance between two
points xi and xj on the GVD, Πi(GV D) represents the
projection of the point pi onto the GVD which corresponds
to the closest point on the GVD to pi , and W1 and W2 are
the weights of each part of the path.

By assigning a higher value to W1 the cost of path from
qstart to GVD or from GVD to qgoal will increase. An
example of a path from two arbitrary points based on the
new metric is shown in Fig. 3 b).

Resulting graph G is created by modifying Ggrid , such
that:

G = {V, E,W}, where W(Vi ,Vj) = dg(Vi ,Vj),

∀ Vi ,Vj ∈ V, i �= j ‘

An example of graph G with the new metric is illustrated
in Fig. 4, where the distance from 3 robots to all the cells is
computed and illustrated by different colors.

4.2 Distribution of task points

In this paper, tasks are defined a set of points, T =
{t1, t2, · · · , tm}, where ti ∈ Qf ree that must be visited
by robots. Visiting these points could be for searching
purpose. Since limited number of robots are available, a
good allocation of task points to robots results a better
performance. Although this allocation depends on location
of robots, the density of task points should be considered
as well. In order to find a function φ(ti) → R

+ showing
density of task points we applied Kernel Density Estimation
(KDE) that estimate a bidimensional function. Usually
KDE is used for estimating probability density function
(PDF) of the random variables. For a set of observation
x1, x2, · · · , xn it has following formulation:

f̂n(x) = 1

nh

N∑

i=1

K(
y − xi

h
), (6)

where, h > 0 is the so-called bandwidth: the bandwidth
here acts as a smoothing parameter, controlling the tradeoff
between bias and variance in the result. A larger bandwidth

2195Multi-robot exploration in task allocation problem

Fig. 4 Constructing graph G based on GGrid , GGV D and the new
metric. Obviously robots are forced to move through GVD when they
want to reach to a point in the map. Small displacement caused by
discretization of the map into grid cells

leads to a smoother density distribution. K is the kernel
function which is a symmetric multivariate density. K() can
be different functions i.e. exponential, linear, cosine etc.
However, in this paper we set the kernel as the “Gaussian”
function.

Figure 5a) shows a random distribution of task points.
Accordingly, it can be seen in Fig 5b) and c), the correspond-
ing contour and 3D PDF computed based on KDE method.

4.3 Deployment and partitioning

Suppose we have a group of n robots that are available in a
bounded environment, Ω ⊂ R

2. The deploying position of
robots given by P = {p1, . . . , pn}, where pi ∈ R

2. Also,
Voronoi partitioning applied on environment given (1),
where vi is Voronoi region for robot i, and ∪n

i=1vi = Qf ree.
In other words, region partitioning is computed on graph G

and constructs several sub-graph gi , where ∪n
i=1gi = G.

As a result gi (or sub-region i) contains GVD sub-routes
and task points tpi = {tp, · · · , tq , · · · , tr}, tpi ⊂ vi and
tpi ⊂ T .

In a continuous space, robots drive to centroid of Voronoi
regions in Centoidal Voronoi Tessellation (CVT) [10]. This
approach is based on classic discrete-time Lloyd’s algorithm
[43]. In Fig. 6, by using a CVT scheme the environment is
partitioned between five robots such that robot i moves to
the center of vi and is responsible to tasks inside this region.

In general the quality of deploying can be measured by

using deployment function proposed originally by [10] as
follows:

H(P, V) =
n∑

i=1

H(pi, vi), (7)

where, in our discrete space we have:

H(pi, vi) =
∑

tj ∈tpi

dg(tj , pi)
2φ(tj), (8)

dg(tj , pi) indicates geodesic-GVD distance between robot
position and its dedicated task point (tj ∈ tpi) in Voronoi
region i. As explained before φ(tj) is the PDF of task points
in the map. Therefore, H will have a smaller (better) value
when robots have minimum distance to the task points.

4.4 Finding routes

In order to find routes for the robots, given subregions
including GVD graph inside, we can simply apply single
Chinese Postman Problem (CPP) algorithm. Since we
already partition environment between robots, single CPP
will be used for each robot individually, instead of mixed-
CPP. In this way, the complexity will reduce in comparison
to mixed-CPP. Solving single CPP, however, will cost
expensive in our population based searching algorithm.
Therefore, the routes for each robot will be found within
our genetic algorithm based on representation of the
individual and a DFS-like algorithm, which is explained in
Section 4.6.1.

The result of this step will be a set of routes R =
{r1, · · · , rn}, where ri = {Vp, · · · ,Vq, · · · ,Vr} contains
nodes and edges of graph GGV D , thus ∪n

i=1ri = GGV D .
Given the routes we defined a second objective to minimize
the cost of visiting task points over the routes in (9).

C(R, T) = n
max
i=1

C(ri, tpi), (9)

where,

C(ri, tpi) = Cost (ri) + Cost (tpi), (10)

thus, the total cost for finishing the mission for robot i

is the summation of time needed to traverse its route plus
visit all the task points (performing the desired task i.e.
searching on task points) in its dedicated Voronoi region,
respectively. Given the length of a route and speed of
the robot the time needed to traverse the route can be
computed.

4.5 Visiting task points

Up to this step, we already partition the map and now
robots have routes to explore the map and visit task points
and perform a task on every point. To do so, robots
move on part of GVD graph (GGV D) corresponding to

2196 R. J. Alitappeh and K. Jeddisaravi

Fig. 5 An example of finding
probability density function over
a random distribution of the task
points by using KDE method

the sub-region in G. Accordingly robot may leave the
GVD to visit a task point (this case is shown in Fig. 7)
and come back to the GVD to continue exploration. In
a simple scenario we can assume that a task will be
visited when it is located inside robot sensor range. The
focus of this work, however, is not how to execute tasks,
instead we are dealing with how to allocate tasks between
robots.

Fig. 6 A CVT based deployment for a group of robots, where each
robot is located on centroid of its Voronoi region

4.6 Methodology I

According to the proposed approach, there might be many
different partitioning and routes for a team of robot
to visit task points. In order to find a near optimal
solution we applied a meta heuristic algorithm similar to
genetic algorithm (NSGA-II), with different techniques for
exploration and exploitation.

Fig. 7 Robot leaves the GVD in order to visit a task point which is out
of its sensor range

2197Multi-robot exploration in task allocation problem

Considering the objective functions defined in (7) and
(9), Algorithm 1 is used to find a near optimal solution
by searching the solution space. In order to create initial
population (lines 5-7), a random set of nodes from GGV D

is selected as starting points of robots. In line 6 by
calling Partition() function, Voronoi region Vpop, routes
Rpop and task points Tpop of each robots is computed in
Algorithm 2. As we explained the function FindRoute()

is implemented by a DFS-like algorithm, however we use
CPP algorithm in our simulation as well. In general to
explore all the edges of a graph Chinese Postman Problem
(CPP) algorithm is used. In lines 8 to 10, three different
operators are applied on selected parents: a local search
algorithm, mutation and cross-over operators are explained
in Section 4.6.2. The evolution happens in lines 8 to 15.

4.6.1 Representation of the problem

We defined a specific structure of nodes to represent the
problem. In Fig. 9 we show the representation in the
GA corresponding to Fig. 8. For example, robot 3 is
located on node 18 and has 7 nodes in its Voronoi region
(1, 2, 13, 14, 17, 18, 19).

For the routing purpose, we use the nodes in each
chromosome and try to find a shorter route which pass all
the edges connecting nodes in each row (See Fig. 9). As
far as the objective is to explore edges between nodes, we
guarantee that all the edges will be explored by considering
all the links in adjacency subgraph matrix for every robot.
Although we apply a DFS-like algorithm to find the routes,
during evolution we expect that the nodes and routes will
evolve given their fitness values (objective functions). In our
DFS-like algorithm, to find a route for robot i, if there is a
link which is not a part of its Voronoi but makes the entire
route shorter, it may be in the route of robot i. The other
challenge is assigning common edges between two robots
which will be explained in Section 4.6.3.

Fig. 8 An input map is represented in a graph with nodes on GVD’s
meet points and end points. After computing Voronoi region (by the
new metric) for 4 robots, each of which has its own region (subgraph)
with nodes to travel

2198 R. J. Alitappeh and K. Jeddisaravi

Fig. 9 A chromosome contains 4 robots’ positions and nodes
according to Fig. 8

4.6.2 Local search, mutation and crossover

To have a trade off between exploration and exploitation
in searching phase, we defined three different operators.
In one hand, for the local exploration purpose we change
the location of some robots to nearby nodes, which causes
recomputing Voronoi diagram etc. An example is shown
in Fig. 10a), where a chromosome among the population
is selected randomly. Later a randomly selected gen will
be replaced by a node (which also is randomly selected)
through its neighbor nodes in the graph i.e. in our example
nodes 11 and 29 are replaced by 10 and 21 respectively
(Fig. 8 illustrates the neighbor nodes). Beside this operator,
we applied a mutation operator which selects a random

gene from the chromosome and changes the node to another
arbitrary node located in its Voronoi region (Fig. 10b));
in contrast to local search where the new node must be
the neighbor node in the graph. This operator promotes
variety in the population by applying randomness. And
finally, exploitation is done by order cross-over operator
(see Fig. 10 b)) which produces a permutation of the parents,
thus nodes will not be repeated.

4.6.3 Modifying Voronoi region by considering common
edges

As we mentioned to consider sub GVD graph of each
Voronoi region, we have some edges which are common
between two neighbor robots. So:

{∀i, j ∃ E(Vi ,Vj), where Vi ∈ vi and Vj ∈ vj }.
To handle these edges, our solution is to compute the

load of assigned task for the neighbor robots and assign
this specific edge to the robot with lighter mission. We
applied this modification by computing the following term
for neighbor robots:

Li =
∑

tj ∈tpi
dg(pi, tj)

∑
tj ∈tpi

φ(tj)
, (11)

where, dg(pi, tj) is the distance between robot i and its task
points, and φ(tj) shows the PDF of task points in vi . In

Fig. 10 Two operators are applied to do exploration and exploitation in problem space

2199Multi-robot exploration in task allocation problem

Fig. 11 Common edges
between 4 robots in example
given in Fig. 8

this way, Li computes the ratio of the area and PDF of task
assigned to robot i. For a big area with few task points, Li is
bigger value than with more tasks and vice versa. Thus, we
are interested to give the common edge (task) to the robot
which has lower Li . Accordingly, the Voronoi region of two
neighbor robots will be modified, thus one will receive more
task to do while the other one less.

To know which edges are common between two robots
(or two sub-graph gi and gj) we find the links (edges) that
connect two subgraphs. Given example in Fig. 8, can be
seen common edges in Fig. 11, where robot 1 has 3 edges
(15 → 14, 16 → 17 and 16 → 29) in common with robots
3 and 4.

After finding common edges, they must be added in the
corresponding chromosome. The modified chromosome is
shown in Fig. 12. Common edges are added to the robots
with less load (according to (11)). In this specific example
robot 4 does not receive new nodes.

4.7 Methodology II

In our second methodology we propose a Q-learning
algorithm to solve the problem. As one of the traditional
RL algorithm, Q-learning computes estimation of the

Fig. 12 Modified chromosome by considering common edges in
Fig. 8. New nodes are added at the end

state-action pair value function Q(s, a). In the learning
process, sequence of state-action value tried to find optimal
value function Q∗(s, a). In iteration t , agent observe state
s, select an action a, and receive immediate reward r .
The most common action-value function in reinforcement
learning task is Bellman function, which is given by:

Q(s, a) ← Q(s, a) + α[r + γ maxQ(s′, a)] (12)

where, α is learning rate, γ is discount factor for balancing
immediate and future reward. In Q-learning agents try
different actions given the different states, to learn the policy
which maximize the Q-value. In action selection agents
need to keep a trade-off between exploration to explore the
environment and exploitation to learn the most rewarding
actions. To do so, we applied ε-greedy policy, where a
parameter ε ∈ [0, 1] controls exploration and exploitation
rate, after generating a random number b ∼ N (0, 1), if b

is larger than ε, the greedy action is selected, otherwise a
random action among the possible action list is selected:

π(a|s) =
{

arg max Q(s, a) if b ≥ ε

a ∈ [La \ arg max Q(s, a)] otherwise
,

(13)

Given the graph G, action set a = a1, a2, · · · , an,
where ai = n1, n2, · · · , nk , is the neighbor nodes of ai ,
indicating the possible action that the agent can apply
in its current position (node ai). In our scenario to list
potential solution for robots’ next position, all combina-
tions of the next nodes connected to the robots’ current
position are considered. As in Fig. 13 suppose that we
have 3 robots, reaching to nodes 3, 12, 20, which has
2 options nodes each. In this way, potential action list
includes all combination of neighbor nodes i.e. La =
{(2, 13, 18), (2, 13, 22), (26, 13, 18), (26, 13, 22), · · · },
where |L| = 8 in this example.

In a state, to find the best action which yields maximum
value, in a multi-objective Q-learning scheme, we applied

2200 R. J. Alitappeh and K. Jeddisaravi

Fig. 13 Robots are located on nodes 3, 12 and 20, where they have
two potential nodes for their next position

a non-dominated sorting approach. Therefore, in our graph
representation to select next best node, considering path
between current and next node plus the time needed to
service task point in the route the same objective functions
in (8) and (9) are computed. In general, robots start from a
random position, and move to the position where minimize
the objective functions. However, there might be a case that
two robots want to move to the same node at the same
time, where the robot with less cost can be the winner.
Algorithm 3 shows the details in the proposed approach.

In this algorithm Q-table with size N × N (where N is
number of nodes in the graph) is initialized. In the inner
loop after creating a list of possible action for the next state,
we compute our objective functions defined in (8), (9), and
select one of them given the ε-greedy policy (13). In the
greedy scheme we apply non-dominated sorting approach
to consider both objectives and select one with smaller F2

value among non-dominated solutions. Later the node is
selected and the reward must be given to the action. To do
so, we applied the objective function values to reward the
action, and finally change the state to the current one.

4.8 Robot control

Given a nonholonomic robot in Fig. 14, to move on GVD,
we consider waypoints (wpi) among that. Therefor, from
current position, robots move by following a vector aligned
to next waypoint d. In this work, although we attempted to
maximize safety, however, a moving unanticipated obstacle
i.e. other robots might appear and hinder robots to move
along the routes. There are many researches in obstacle
avoidance [36, 57, 66, 74], since the focus of this paper is
not in obstacle avoidance, authors are referring the reader
to related cited papers. Nevertheless, we address obstacle
avoidance problem by simply re-planning. Thus, after
detecting an unexpected obstacle with an equipped sensor
i.e. laser range finder, robot moves along the new local path
to detour this unexpected obstacle. To do so, in a vector
filed scheme, we consider attractive and repulsive force
from goal (next waypoint to go) and obstacle, respectively
as following:

U = Uatt + Urep, (14)

where,

U = 1

2
ηd(pi, wpk)

2 + 1

2
η

(
1

d(pi, uok)
− 1

q∗

)
(15)

In (15), η is a scaling parameter for distance d(pi, wpk)

of robot to goal (waypoint), d(pi, uok) indicates the

Fig. 14 A model of nonholonomic robot in working space with state
vector [x, y, θ]T . Robot moves toward waypoints located on GVD
given the vector d

2201Multi-robot exploration in task allocation problem

Fig. 15 Addressing unforeseen obstacle by applying potential vector
filed. Two robots pass each other by following the gradient vector F

distance of robot’s current position to the unseen obstacle,
and q∗ < ς is the effective distance from obstacle, thus
if the robot is far enough(d(pi, uok) > q∗) from obstacle
Urep = 0.

Given above explanation, to move robots toward the next
waypoint, the gradient of vector U is needed, hence we
define function F = −∇U . By feeding the gradient vector
([Fx Fy]T) into feedback linerarization controller [49], we
achieve:
[

v

ω

]
=

[
cos(θ) sin(θ)

−sin(θ)/ l cos(θ)/ l

] [
Fx

Fy

]
, (16)

where, robot inputs v and ω are linear and angular velocity.
l is the distance from the center of the robot to its
control point and θ is the angle between the robot and the
reference frame W (See Fig. 14). An example is shown
in Fig. 15, where robot confronts with a moving obstacle.
With the controlling rule in (15) each robot can pass each
other. Another uncertainty could be robots failure, since
the system is centralized after determining a failure, task
assignment algorithm will be re-executed for the remaining
tasks, hence available robots will be part of the new mission.

5 Simulation results

We tried to implement several methods to compare with our
proposal, however some of them didn’t fit on our problem,
i.e one couldn’t work in our representation, the other didn’t
consider our continuous density function, etc. However, we
selected most similar approaches which we could apply
in our problem with minor modification. Thus, in some
of them we consider our formulation and parameters to
have a fair comparison. The most similar solutions to the
problem (without considering distribution of task points)
addressed in this paper is the family of Chinese Postman
Problem (CPP) and Vehicle Routing Problem (VRP), which

are NP-hard problems. In other word, it is very difficult to
find optimum solution by applying centralized solvers. For
instance, in one of our try, for a graph with 22 nodes and 3
robots after 10 hours running no result was found for m-CPP
problem. In this way, we could not compare the proposed
method with centralized solvers. However, we compare our
algorithm with a similar approaches proposed in [1, 18, 24,
59].

The main concern in exploration problem is the length
of the final route that robots must explore. In the case of
multi-robot system, depends on the number of task points in
each region and the time taken to perform tasks, the cost of
the robot that finish its mission lastly, is considered as total
cost.

In our simulation, for instance, the average speed of
robots is s = 0.05 m/sec, and 1 second is considered to visit
a single task point when it is inside robots laser range (ς).
Otherwise, robot moves toward the task point until it lies
inside robot’s sensor range. Therefore, to compute the cost
of routes we rewrite (10) as following:

C(ri, tpi) = Len(ri) · s +
∑

j∈tpi

CE
tp
j , (17)

where, Len(ri) is the length of the route i, and the cost of
visiting task points CE

tp
j is defined in two cases:

CE
tp
j =

{
1 sec if tj ∈ ς

1 sec +Len(r
j
i) · s Otherwise

,

in the second case, if robot i needs to move toward task point
tj , sub-route r

j
i can be defined as a line in the following:

r
j
i = λ · pi + (1 − λ)(|tj − ς |), ∀λ ∈ [0, 1].

It should be noticed that the map is an images, so the length
can be considered the number of pixels. Simulations are
done in 5 different scenarios which are mentioned in Table 1,
including number of task points, node and time needed to
search each task point. While 3 first maps can be considered
as a real map with present of obstacle (See Fig. 16), 2 last
maps are graphs without obstacle. To show the consistency
and convergence of the proposed algorithm Monte-Carlo

Table 1 The time (in second) needed to execute algorithm to find a
solution

Map
num.

Name task
point
num.

Node
num.

task
duration

Obstacle

1 office1 352 34 1 No

2 midmap [1] 110 22 1 Yes

3 office2 294 120 1 Yes

4 graph1 2000 500 1 No

5 graph2 4000 1000 1 No

2202 R. J. Alitappeh and K. Jeddisaravi

Fig. 16 3 main maps where applied in our simulation with their distribution of tasks. Probability density function is computed by KDE method
according to the distribution of the task

2203Multi-robot exploration in task allocation problem

Fig. 17 The estimated Pareto set
with 4 robots. Different
partitions are shown with
different colors. Squares
indicate the robots’ positions

simulations are performed in our experiments. Experiments
are implemented in Matlab on a computer with processor
Intel (R) Core (TM) i7-3520M 2.90 GHz with 12 GB RAM.

5.1 Partitioning and routing

In the first simulation the proposed approach is executed
on the map office1 with 34 nodes. Our objective is to
evaluate our routing and partitioning approach in our
specific problem in comparison to well-known CPP and K-
means algorithms, respectively. Given a set of solutions in
the estimated Pareto front we select the one which has a
better routing (smaller C(R, T)). For instance, some of the
solutions in the estimated Pareto front are shown in Fig. 17
a-d). Each partition assigned to a robot, where is located
inside that partition (Square).

Table 2 The result of applying proposed algorithm with two routing
methods

Method/C Min Max STD Mean

Single CPP 98.30 172.91 24.06 124.90

Proposed Method I 73.64 165.39 21.09 120.25

C is defined in (17)

After 30 Monte-Carlo simulations with varying robot’s
initial location we achieved following results in Table 2. In
this table the cost given (9) and (17) is computed and its
min, max, mean and standard deviation of runs is shown. In
each run the maximum cost is considered.

Since the location of robots changes in different runs, the
standard deviation of maximum cost varies as well. Both
approaches find the near optimum solution, however, we
preferred to apply our DFS-Like instead of single CPP;
while the former is embedded in the searching algorithm,
the latter run separately. In searching algorithm we penalize
the longer routes, simultaneously, with finding the route,
therefor in the sense of computational time this method
works in an efficient way in comparison to CPP.

We also show the algorithm execution time to find a
solution in Table 3. As it can be seen among two applied
methods for routing: our DFS-like and CPP, the proposed
method runs faster. However both can find a solution in

Table 3 The time (in second) needed to execute algorithm to find a
solution

Method/sec Min Max STD Mean

Single CPP 515 1229 194.52 814.67

Proposed Method I 329 845 138.89 552.93

2204 R. J. Alitappeh and K. Jeddisaravi

Table 4 The result of applying our proposed algorithm with two
clustering methods

Method/C Min Max STD Mean

K-means Clustering 101.96 227.46 39.02 163.46

Proposed Method I 72.94 166.79 29.81 117.88

C is defined in (17)

an acceptable time, while using m-CPP solvers will not be
practical.

In another simulation, to compare the performance of
our clustering algorithm, we applied k-means clustering
instead of our Voronoi GVD-based method, and as it shown
in Table 4, the result is better in our method. Beside
the weakness of k-means in none hyper-ellipsoids space,
which might be the case in our application, it brings an
extra burden in our framework which does the partitioning
together with searching.

5.2 Comparison with similar methods

In order to show the performance of the proposed
algorithms, we compare our methods with several most

similar approaches in [1, 18, 24, 59]. For example, in [1],
author used a swap algorithm [6] for partitioning the area,
and in the iterative approach genetic algorithm is applied for
Single Traveling Salesman Problem to find the shortest tour
in each sub region. We also applied the approach proposed
by Chen et al. in [24], where genetic algorithm is used
to solve our MRTA problem. We feed the parameter in a
way that is compatible to their approach. Moreover, works
proposed in [18] and [59] are considered in our comparison
as well. The result of our experiment is shown in Table 5,
where minimum, maximum, standard deviation and mean
of 5 scenarios are listed in this table. Number of robot in
each scenario varies given the size and task points number.
It can be seen that our proposed algorithms could find
a better solution in most of the scenarios with a smaller
mean value. However, in the first 3 maps our algorithms
work much better than others in comparison to the two last
maps. Seems that, other approaches work well in obstacle
free environment. It should be mentioned that in contrast
to our proposed method, the compared approaches do not
consider the distribution of the task points. Therefore, we
achieved a better performance in the proposed method since
we partition and deploy the robots based on distribution of

Table 5 The cost of running
the exploration algorithms on 5
different scenarios for 30 runs.
Minimum average cost is
bolded in each scenario

Scenario GA Clus
tering
[18]

GA
([24])

Swap
GA [1]

Hyb
MH
[59]

Proposed
Meth1

Proposed
Meth2

office 1 Min 75.14 80.61 85.06 79.23 68.11 72.36

5 rob Max 115.65 126.03 108.70 149.72 129.95 121.56

STD 10.99 11.57 6.19 16.39 15.17 9.12

Mean 84.72 90.01 91.83 87.39 79.88 77.63

midmap Min 25.002 24.06 28.45 26.34 23.17 23.13

4 rob Max 39.18 41.82 45.66 50.68 36.31 40.68

STD 3.83 4.59 4.61 5.31 3.29 3.23

Mean 30.06 28.39 32.01 31.88 26.05 25.79

office 2 Min 58.05 61.01 62.45 65.49 55.03 57.11

7 rob Max 90.56 89.70 84.89 78.77 75.59 81.90

STD 7.62 8.28 4.2 3.67 3.63 4.43

Mean 68.80 67.29 69.06 69.50 57.78 58.84

graph 1 Min 439.54 445.23 464.30 449.72 462.19 436.50

10 rob Max 945.63 939.78 970.18 944.34 907.20 929.53

STD 139.61 129.34 125.45 128.90 101.90 107.09

Mean 552.61 576.76 594.12 624.79 563.38 556.28

graph 2 Min 739.20 854.36 760.98 762.94 763.41 722.55

20 rob Max 1416.71 1497.27 1490.50 1224.63 1357.77 1423.37

STD 174.07 180.16 183.53 117.72 111.52 156.37

Mean 877.008 975.84 878.74 859.49 835.2 853.17

C is defined in (17)

2205Multi-robot exploration in task allocation problem

Table 6 The duration of
running the exploration
algorithms on 5 different
scenarios for 30 runs (in
second). Shortest duration
among the scenarios are bolded
in each row

Scenario GA Clus
tering [18]

GA [24] Swap
GA [1]

Hyb
MH
[59]

Proposed
Meth1

Proposed
Meth2

office 1 65.03 69.02 72.04 67.99 63.80 60.74

midmap 21.84 20.93 23.90 22.42 19.98 18.43

office 2 49.55 47.52 50.85, 53.72 43.33 45.99

graph 1 140.05 157.16 170.19 173.15 153.85 144.53

graph 2 277.83 297.87 282.26 283.99 268.10 286.13

the tasks. Thus, locations with bigger peak of task have more
robot to be deployed, which yields a better load balancing
in task allocation.

Table 6 shows the time traveled by the robots in the 5
scenarios. More precisely, the duration to visit the last task
point with one of the robots in the map. It can be seen that,
in general, the proposed techniques overcome the state of
the art. In smaller map, the range of the robots’ sensor is big
enough to visit the task points while passing over the GVD
road map, in contrast the bigger map is, the more task points
to visit by leaving the road map occurs, meaning that task
completion time increases. Although in our experiments
we consider more task point with more graph nodes in in
different maps to testify the performance of the proposed
approaches considering scaling factor.

For better understanding the final route for exploring
map “midmap” is shown in Fig. 18, where two different
approaches created two different rout for the robots. To have
a fair comparison, in computing C for the proposed method
in [1], we find the shortest path from robot’s position to the
task point given the route yield by their approach.

5.3 Impact of number of task points

In another comparison, we defined a range of the task points
for 7 robots in offcie2 map and compute the exploration cost
for different approaches. It can be seen in Fig. 19 that, our
methods outperforms the other approaches. This is due to
the GVD graph we used, it means robots will be always on
the roadmap which has minimum distance to task points,
therefore by increasing the number of task points route cost
(C) increases smoothly.

5.4 Impact of number of robots

In this simulation, we change the number of robots in office2
map. The result of deployment (8) and route cost (17)
functions for 2-10 robots is shown in Fig. 20. Obviously, by
increasing the number of robots functions are decreasing. In
this algorithm, if we only consider maximum rout cost the
performance of individual robots becomes more important
than the whole system. Therefore, our first objective
deployment function play a complementary role to take the

Fig. 18 The map of second scenario with the distribution of the tasks and results of applying two methods

2206 R. J. Alitappeh and K. Jeddisaravi

Fig. 19 Comparison between 6 strategies on office2 map by
considering different number of task points

performance of the whole system into consideration, by
optimizing the deploying location of the robots given the
distribution of the task points. From this figure, we can
depict that by increasing the number of robots cost functions
will not decrease drastically in some points, which means no
need to increase the number of robots after a given number.

For better understanding, in Fig. 21, the exploration time
for 30 Monte-Carlo runs for different number of robots is
shown. It can be seen that the exploring time decreases
drastically when the number of robots varies from 2 to 6.
However, we do not see a considerable decrease for number

Fig. 21 Time needed to explore longest route with different number of
robots in office2 map

of robots between 6 to 10. This result shows that, in general,
multiple robots solves the problem faster.

We visualized one of the solutions in Fig. 22, where 8
robots are distributed over the map and each one has its
own region and edges to visit the tasks within their allocated
regions.

Fig. 20 The behavior of
deployment and route cost
function with increasing number
of robots. Both function values
are normalized

2207Multi-robot exploration in task allocation problem

Fig. 22 A visualization of the best solution in office-like map for 8
robots

5.5 Impact of task distribution

To testify the convergence of the algorithm given different
distribution, with the same number of task points, 294, we
created 5 different distributions on office2 map, and run the
algorithm 30 times with fixed number of robots 10. Cost
values in Table 7 shows that with different distribution our
proposed approach solve the problem with a stable behavior.
Standard deviation in all 5 scenarios indicates algorithm
convergence.

5.6 Videos of multi-robot exploration

To realize how robots will execute the exploration task given
their assigned routes we upload two videos on youtube. In
this simulation we simplified the robot as a a holonomic
one, so it can move to any direction instantaneously. The
first video can be found in https://youtu.be/toKfazC-PR0
which is for the first scenario (Office1 map) with four
robots. In the second video https://youtu.be/eteE33wuYOw,
we show the performance of our proposed method on the
midmap given from [1].

Table 7 The cost for 5 distributions and 10 robots after 30 runs

C Dist1 Dist2 Dist3 Dist4 Dist5

Min 37.62 35.003 30.02 28.10 30.36

Max 60.71 65.11 48.97 73.78 60.75

STD 5.35 5.41 3.56 10.72 5.46

Mean 43.24 39.11 34.34 36.66 34.25

C is defined in (17)

6 Conclusion

In this work, we addressed multi-robot task allocation
problem. Robots must explore the environment in order to
execute tasks on their assigned region. Thus, by interpreting
the original problem as a task allocation problem, we
proposed a new end-to-end multi-objective framework
based on multi-robot deployment scheme. The map will
be divided into regions based on the distribution of the
task points, and each robot will be allocated to one of
the regions given its location. For the simplification we
represent the input map into a GVD graph (based on a
traditional roadmap GVD), and also a grid graph. Later,
two graphs merged into a single one given a new metric,
which forces the robots to move toward GVD (as the safest
path) from the shortest path. In this problem we defined
two objectives for deployment/partitioning and routing,
respectively. By applying a meta-heuristic and Q-learning
approach we tried to minimize the objective functions.
Simulation results prove the applicability of the proposed
framework to solve our NP-hard problem in comparison
to exact methods. Moreover comparing our method to the
similar approaches shows the performance of our method
in compatibility and consistency. Some shortage must be
done in future work, i.e. the proposed approach does not
work efficiently in a filed where there is no obstacle i.e. a
farm, so using other type of meshing techniques for graph
creation is necessary instead of using GVD. Also it needs
an infrastructure which provides minimum requirement for
communication between robots and monitoring task points.
We should note that our main goal was to develop an end-to-
end framework for addressing task allocation, exploration
and routing simultaneously, however checking performance
of other substitution remains open for future work as well.

References

1. Ann S, Kim Y, Ahn J (2015) Area allocation algorithm for
multiple uavs area coverage based on clustering and graph method.
IFAC PapersOnLine 48(9):204–209

2. Bao B, Yang Y, Chen Q, Liu A, Zhao J (2014) Task allocation
optimization in collaborative customized product development
based on double-population adaptive genetic algorithm. Journal of
Intelligent Manufacturing

3. Pham H, Le QV, Norouzi M, Bengio S (2017) Neural combinato-
rial optimization with reinforcement learning. arXiv:1611.09940

4. Bhattacharya S, Ghrist R, Kumar V (2013) Multi-robot coverage
and exploration in non-euclidean metric spaces. Algo Foundat
Robot X Springer Tracts in Adv Robot 86:245–262

5. Booth KEC, Nejat G, Beck JC (2016) A constraint programming
approach to multi-robot task allocation and scheduling in
retirement homes. In: Rueher M (ed) Principles and practice
of constraint programming, springer international publishing,
pp 539–555

2208 R. J. Alitappeh and K. Jeddisaravi

https://youtu.be/toKfazC-PR0
https://youtu.be/eteE33wuYOw
http://arxiv.org/abs/1611.09940

6. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy
minimization via graph cuts. IEEE Trans Pattern Anal Machine
Intell 23(11):1222–1239

7. Carlucho I, Paula MD, Villar SA, Acosta GG (2017) Incremental
q-learning strategy for adaptive pid control of mobile robots.
Expert Syst Appl 80:183–199. https://doi.org/10.1016/j.eswa.20
17.03.002. http://www.sciencedirect.com/science/article/pii/S095
7417417301513

8. Choset H, Lynch KM, Hutchinson S, Kantor G, Burgard W,
Kavraki LE, Thrun S (2005) Principles of robot motion: Theory,
algorithms and implementation. MIT Press, Boston

9. Contardo C, Martinelli R (2014) A new exact algorithm for the
multi-depot vehicle routing problem under capacity and route
length constraints. Discret Optim 12:129–146

10. Cortes J, Martinez S, Karatas T, Bullo F (2004) Coverage
control for mobile sensing networks. IEEE Tranact Robot Autom
20(2):243–255

11. Dahl TS, Matarić M, Sukhatme GS (2009) Multi-robot task
allocation through vacancy chain scheduling. Robot Auton Syst
57(6):674–687

12. Dai X, Laihao J, Zhao Y (2016) Cooperative exploration based on
supervisory control of multi-robot systems. Appl Intell 45

13. Das P, Behera H, Panigrahi B (2016) Intelligent-based multi-
robot path planning inspired by improved classical q-learning
and improved particle swarm optimization with perturbed
velocity. Eng Sci Technol Int J 19(1):651–669. https://doi.
org/10.1016/j.jestch.2015.09.009, http://www.sciencedirect.com/
science/article/pii/S2215098615001548

14. Durham J, Carli R (2012) Discrete partitioning and coverage
control for gossiping robots. IEEE Trans Robot 28(2):364–378

15. Hidalgo-Paniagua A, Vega-Rodriguez MA, Ferruz J, Pavon
N (2015) Mosfla-mrpp: Multi-objective shuffled frog-leaping
algorithm applied to mobile robot path planning. Eng Appl Artif
Intell 44:123–136

16. Hussein A, Adel M, Bakr M, Shehata OM, Khamis A (2014)
Multi-robot task allocation for search and rescue missions. J Phys
Conf Series 570(5):052006

17. James S, Johns E (2016) 3d simulation for robot arm control with
deep q-learning. arXiv:160903759

18. Janati F, Abdollahi F, Ghidary SS, Jannatifar M, Baltes J,
Sadeghnejad S (2017) Multi-robot task allocation using clustering
method. In: Robot intelligence technology and applications
4: Results from the 4th International Conference on Robot
Intelligence Technology and Applications, Springer International
Publishing, pp 233–247

19. Javanmard AR, Pimenta CAL (2014) Distributed safe deployment
of networked robots. In: Proc. of the 12th international symposium
on distributed autonomous robotic systems (DARS), pp 452–
464

20. Javanmard Alitappeh R, Jeddisaravi K, Guimaraes FG (2016)
Multi-objective multi-robot deployment in a dynamic environ-
ment. Soft Comput 1–17

21. Javanmard Alitappeh R, Pereira ASG, Araújo RA, Pimenta CAL
(2017) Multi-robot deployment using topological maps. J Intell
Robot Syst 86(3):641–661

22. Jeddisaravi K, Alitappeh RJ, Pimenta ALC, Guimarães FG (2016)
Multi-objective approach for robot motion planning in search
tasks. Appl Intell 45(2):305–321

23. Jiang L, Huang H, Ding Z (2019) Path planning for intelligent
robots based on deep q-learning with experience replay and
heuristic knowledge. IEEE/CAA Journal of Automatica Sinica
1–11

24. Jianping C, Yimin Y, Yunbiao W (2009) Multi-robot task
allocation based on robotic utility value and genetic algorithm.
In: IEEE International conference on intelligent computing and
intelligent systems, vol 2, pp 256–260

25. Jose K, Pratihar DK (2016) Task allocation and collision-free path
planning of centralized multi-robots system for industrial plant
inspection using heuristic methods. Robot Auton Syst 80:34–
42

26. Jung W, Yim J, Ko Y (2017) Qgeo: Q-learning-based geographic
ad hoc routing protocol for unmanned robotic networks. IEEE
Commun Lett 21(10):2258–2261

27. Khamis A, Hussein A, Elmogy A (2015) Multi-robot Task allo-
cation: A Review of the State-of-the-Art. Springer International
Publishing 31–51

28. Khani M, Ahmadi A, Hajary H (2019) Distributed task allocation
in multi-agent environments using cellular learning automata. Soft
Comput 23(4):1199–1218

29. Kim YG, Kwak JH, Hong DH, Ahn JH, Wee SG, An J
(2013) Localization strategy based on multi-robot collaboration
for indoor service robot applications. In: 2013 10th international
conference on ubiquitous robots and ambient intelligence (URAI),
pp 225–226

30. Konar A, Goswami Chakraborty I, Singh SJ, Jain LC, Nagar AK
(2013) A deterministic improved q-learning for path planning of
a mobile robot. IEEE Trans Syst Man Cybern Syst 43(5):1141–
1153

31. Kong CS, Peng NA, Rekleitis I (2006) Distributed coverage
with multi-robot system. In: Proceedings 2006 IEEE international
conference on robotics and automation, 2006. ICRA 2006,
pp 2423–2429

32. Kool W, van HoofH, Welling M (2019) Attention, learn to solve
routing problems! arXiv:1803.08475

33. Korsah GA, Stentz A, Dias MB (2013) A comprehensive
taxonomy for multi-robot task allocation. Int J Robot Res
32(12):1495–1512

34. Lacomme P, Moukrim A, Quilliot A, Vinot M (2017) A new
shortest path algorithm to solve the resource-constrained project
scheduling problem with routing from a flow solution. Eng Appl
Artif Intell 66:75–86

35. Lalla-Ruiz E, Exposito-Izquierdo C, Taheripour S, Voss S (2016)
An improved formulation for the multi-depot open vehicle routing
problem. OR Spectrum 38(1):175–187

36. Lam CP, Chou CT, Chiang KH, Fu LC (2011) Human-centered
robot navigation towards a harmoniously human-robot coexisting
environment. IEEE Trans Robot 27(1):99–112

37. Lemaire T, Alami R, Lacroix S (2004) A distributed tasks alloca-
tion scheme in multi-uav context. In: Robotics and Automation,
2004. Proceedings. ICRA ’04. 2004 IEEE International Confer-
ence on, vol 4, pp 3622–3627

38. Li J, Pardalos PM, Sun H, Pei J, Zhang Y (2015) Iterated
local search embedded adaptive neighborhood selection approach
for the multi-depot vehicle routing problem with simultaneous
deliveries and pickups. Expert Syst Appl 42(7):3551–3561

39. Li J, Zhou M, Sun Q, Dai X, Yu X (2015) Colored traveling
salesman problem. IEEE Trans Cybern 45(11):2390–2401

40. Lin YK, Chong CS (2015) Fast ga-based project scheduling for
computing resources allocation in a cloud manufacturing system.
Journal of Intelligent Manufacturing

41. Liu C, Kroll A (2015) Memetic algorithms for optimal task
allocation in multi-robot systems for inspection problems with
cooperative tasks. Soft Comput 19(3):567–584

42. Liu Y, Liu H, Wang B (2017) Autonomous exploration for mobile
robot using q-learning. In: 2017 2nd international conference on
advanced robotics and mechatronics (ICARM), pp 614–619

43. Lloyd S (1982) Least squares quantization in pcm. IEEE Trans Inf
Theory 28(2):129–137

44. Low ES, Ong P, Cheah KC (2019) Solving the optimal path
planning of a mobile robot using improved q-learning. Robot
Auton Syst 115:143–161. https://doi.org/10.1016/j.robot.2019.02.

2209Multi-robot exploration in task allocation problem

https://doi.org/10.1016/j.eswa.2017.03.002
https://doi.org/10.1016/j.eswa.2017.03.002
http://www.sciencedirect.com/science/article/pii/S0957417417301513
http://www.sciencedirect.com/science/article/pii/S0957417417301513
https://doi.org/10.1016/j.jestch.2015.09.009
http://www.sciencedirect.com/science/article/pii/S2215098615001548
http://www.sciencedirect.com/science/article/pii/S2215098615001548
http://arxiv.org/abs/160903759
http://arxiv.org/abs/1803.08475
https://doi.org/10.1016/j.robot.2019.02.013

013. http://www.sciencedirect.com/science/article/pii/S092188901
8308285

45. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou
I, Wierstra D, Riedmiller M (2013) Playing atari with deep
reinforcement learning arXiv:1312.5602. Comment: NIPS Deep
Learning Workshop

46. Nair R, Ito T, Tambe M, Marsella S (2002) Task Allocation in
the RoboCup Rescue Simulation Domain: A Short Note. Springer,
Berlin, pp 751–754

47. Nazari M, Oroojlooy A, Snyder LV, Takáč M (2018) Rein-
forcement learning for solving the vehicle routing problem.
arXiv:1802.04240

48. Nouri HE, Belkahla Driss O, Ghédira K (2016) Hybrid
metaheuristics for scheduling of machines and transport robots in
job shop environment. Appl Intell 45:808–828

49. dAndrea Novel B, Campion G, Bastin G (1995) Control
of nonholonomic wheeled mobile robots by state feedback
linearization. Int J Robot Res 14(6):543–559

50. Nowzari C, Cortes J (2012) Self-triggered coordination of robotic
networks for optimal deployment. Automatica 48(6):1077–1087

51. de Oliveira FB, Enayatifar R, Sadaei HJ, Guimaraes FG, Potvin JY
(2016) A cooperative coevolutionary algorithm for the multi-depot
vehicle routing problem. Expert Syst Appl 43:117–130

52. Ozturk S, Kuzucuoglu A (2015) Optimal bid valuation using path
finding for multi-robot task allocation. J Intell Manuf 26

53. Parker LE (2002) Distributed algorithms for multi-robot observa-
tion of multiple moving targets. Autonomous Robots 12(3):231–
255

54. Pimenta LCA, Kumar V, Mesquita RC, Pereira GAS (2008)
Sensing and coverage for a network of heterogeneous robots. In:
Proc. of IEEE conference on decision and control (CDC), vol 2,
pp 3947–3952

55. Pimenta LCA, Schwager M, Lindsey Q, Kumar V, Rus D,
Mesquita RC, Pereira GAS (2010) Simultaneous coverage and
tracking (SCAT) of moving targets with robot networks. Springer,
Berlin, pp 85–99

56. Poduri S, Sukhatme GS (2004) Constrained coverage for mobile
sensor networks. In: Proc. of IEEE international conference on
robotics and automation (ICRA). IEEE, pp 165–171

57. Pozna C, Precup RE, Koczy LT, Ballagi A (2002) Potential field-
based approach for obstacle avoidance trajectories. IPSI BgD
Trans Internet Res 8(2):40–45

58. Sadhu AK, Konar A, Bhattacharjee T, Das S (2018) Synergism
of firefly algorithm and q-learning for robot arm path planning.
Swarm and Evolution Comput 43:50–68. https://doi.org/10.1016/j.
swevo.2018.03.014. http://www.sciencedirect.com/science/article/
pii/S2210650217306776

59. Saeedvand S, Aghdasi H, Baltes J (2019) Robust multi-objective
multi-humanoid robots task allocation based on novel hybrid
metaheuristic algorithm. Appl Intell 49

60. Salhi S, Imran A, Wassan NA (2014) The multi-depot vehicle
routing problem with heterogeneous vehicle fleet: Formulation
and a variable neighborhood search implementation. Comput Oper
Res 52:315–325

61. Sariel S, Balch T (2005) Integrating planning into scheduling.
American Association for Artificial Intelligence (AAAI)

62. Schwarzrock J, Zacarias I, Bazzan ALC, de Araujo Fernandes
RQ, Moreira LH, de Freitas EP (2018) Solving task allocation
problem in multi unmanned aerial vehicles systems using swarm
intelligence. Eng Appl Artif Intell 72:10–20

63. Su X, Wang Y, Jia X, Guo L, Ding Z (2018) Two innovative
coalition formation models for dynamic task allocation in disaster
rescues. J Syst Sci Syst Eng 27

64. Tai L, Liu M (2016) A robot exploration strategy based on q-
learning network. In: 2016 IEEE international conference on

real-time computing and robotics (RCAR), pp 57–62
65. Tang H, Sun W, Yu H, Lin A, Xue M, Song Y (2019) A novel

hybrid algorithm based on pso and foa for target searching in
unknown environments. Appl Intell 49

66. Tang L, Dian S, Gu G, Zhou K, Wang S, Feng X (2010) A novel
potential field method for obstacle avoidance and path planning of
mobile robot. In: 2010 3rd international conference on computer
science and information technology, vol 9, pp 633–637

67. Tolmidis AT, Petrou L (2013) Multi-objective optimization for
dynamic task allocation in a multi-robot system. Eng Appl Artif
Intell 26(5):1458–1468

68. Trigui S, Cheikhrouhou O, Koubaa A, Baroudi U, Youssef H
(2017) Fl-mtsp: A fuzzy logic approach to solve the multi-
objective multiple traveling salesman problem for multi-robot
systems. Soft Comput 21(24):7351–7362

69. Triki H, Mellouli A, Masmoudi F (2014) A multi-objective genetic
algorithm for assembly line resource assignment and balancing
problem of type 2 (ALRABP-2). J Intell Manuf 2

70. Wang J, Zhou Y, Wang Y, Zhang J, Chen CLP, Zheng Z
(2016) Multiobjective vehicle routing problems with simultaneous
delivery and pickup and time windows: Formulation, instances,
and algorithms. IEEE Trans Cybern 46(3):582–594

71. Wei C, Hindriks K, Jonker C (2016) Dynamic task allocation for
multi-robot search and retrieval tasks. Appl Intell 45:383–401

72. Xu L, Stentz A (2011) An efficient algorithm for environmental
coverage with multiple robots. In: Robotics and automation
(ICRA), 2011 IEEE International Conference on. IEEE, pp 4950–
4955

73. Sk Yun, Rus D (2013) Distributed coverage with mobile robots
on a graph: locational optimization and equal-mass partitioning.
Robotica 32(02):257–277

74. Zhang Q, Sg Yue, Qj Yin, Yb Zha (2013) Dynamic obstacle-
avoiding path planning for robots based on modified potential field
method. In: Intelligent computing theories and technology: 9th
international conference, ICIC 2013, nanning, china, july 28-31
2013 Proceedings. Springer, Berlin, pp 332–342

75. Zhang Y, Dw Gong, Zhang JH (2012) Robot path planning
in uncertain environment using multi-objective particle swarm
optimization. Neurocomputing 103:172–185

76. Zhao S, Chen BM, Lee TH (2013) Optimal sensor placement
for target localisation and tracking in 2d and 3d. Int J Control
86(10):1687–1704

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Reza Javanmard Alitappeh
is currently an Assistant Pro-
fessor at the University of
Science and Technology of
Mazandaran, Iran. In 2019 he
worked as a research fellow
at Visual Artificial Intelli-
gence Laboratory in Oxford
Brookes University (UK) with
Prof Fabio Cuzzolin and Dr
Bradley. He completed his
PhD in 2016 in artificial intel-
ligence and robotics under the
supervision of Prof Pimenta
and Chaimowicz at the Fed-
eral University of Minas

Gerais, Brazil. He is a reviewer for various journals and conferences.

2210 R. J. Alitappeh and K. Jeddisaravi

https://doi.org/10.1016/j.robot.2019.02.013
http://www.sciencedirect.com/science/article/pii/S0921889018308285
http://www.sciencedirect.com/science/article/pii/S0921889018308285
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1802.04240
https://doi.org/10.1016/j.swevo.2018.03.014
https://doi.org/10.1016/j.swevo.2018.03.014
http://www.sciencedirect.com/science/article/pii/S2210650217306776
http://www.sciencedirect.com/science/article/pii/S2210650217306776

Kossar Jeddisaravi received
her MSc degree in Com-
puter Systems and Robotics
from the Federal University
of Minas Gerias, Brazil, in
2014, with a dissertation on
multi-objective robot explo-
ration. She obtained a PhD
from the same university in
2017, under the supervision
of Prof Frederico Guimaraes.
Since 2017 she is a lecturer
in programming language and
image processing at the Uni-
versity of Science and Tech-
nology of Mazandaran. Her

research interests include multi-agent systems and machine vision.

2211Multi-robot exploration in task allocation problem

	Multi-robot exploration in task allocation problem
	Abstract
	Introduction
	Related work
	Multi-robot task allocation (MRTA)
	Multi-robot exploration and deployment
	Multi-robot routing
	Exploration with Q-learning

	Problem formulation
	Proposed framework
	Map representation
	Distribution of task points
	Deployment and partitioning*-1pt
	Finding routes
	Visiting task points
	Methodology I
	Representation of the problem
	Local search, mutation and crossover
	Modifying Voronoi region by considering common edges

	Methodology II
	Robot control

	Simulation results
	Partitioning and routing
	Comparison with similar methods
	Impact of number of task points
	Impact of number of robots
	Impact of task distribution
	Videos of multi-robot exploration

	Conclusion
	References

