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Abstract
We present a novel framework for efficient and robust facial feature representation based upon Local Binary Pattern (LBP),
called Weighted Statistical Binary Pattern, wherein the descriptors utilize the straight-line topology along with different
directions. The input image is initially divided into mean and variance moments. A new variance moment, which contains
distinctive facial features, is prepared by extracting root k-th. Then, when Sign and Magnitude components along four
different directions using the mean moment are constructed, a weighting approach according to the new variance is applied
to each component. Finally, the weighted histograms of Sign and Magnitude components are concatenated to build a novel
histogram of Complementary LBP along with different directions. A comprehensive evaluation using six public face datasets
suggests that the present framework outperforms the state-of-the-art methods and achieves 98.51% for ORL, 98.72% for
YALE, 98.83% for Caltech, 99.52% for AR, 94.78% for FERET, and 99.07% for KDEF in terms of accuracy, respectively.
The influence of color spaces and the issue of degraded images are also analyzed with our descriptors. Such a result
with theoretical underpinning confirms that our descriptors are robust against noise, illumination variation, diverse facial
expressions, and head poses.

Keywords Local binary patterns · Completed LBP · Statistical moments · Facial feature representation

1 Introduction

Artificial intelligence has been developing rapidly with
many real-world applications such as time series prediction
[24], image classification [40, 46], and smart cities [28].
Among them, personal identification using biometric traits
is a hot trend nowadays and has received increasing
attention in the computer vision community. With biometric
characteristics, the face image can be easily obtained
from the camera as a non-invasive acquisition process.
Therefore, face recognition can be widely applied to public
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environments such as video surveillance, criminal detection,
access control system, mobile device security, etc. [9].
Although diverse methods for face recognition have been
introduced [18, 26, 36], they still have shortcomings.
For this reason, face recognition is a challenging topic.
Figure 1 shows several face recognition challenges,
such as facial expression, head pose, illumination, and
background complexity. Also, it has other difficulties,
including occlusion, aging, makeup, image quality, etc.
These challenges are formidable to deal with well.

A face recognition application typically consists of face
detection, feature extraction, and classification. In general,
the feature extraction stage plays a vital role because it
will fail to achieve decent results when the employed
feature descriptor is not adequate. Indeed, most well-
known methods have robust feature descriptors, highly
discriminative, and robust to extrinsic changes. In recent
years, most face recognition algorithms, which have been
studied extensively in addressing robust and discriminative
descriptors, focus on three primary techniques: holistic,
local, and hybrid models [23]. The holistic approach
exploits the entire face and projects it into a small subspace
such as Eigenfaces in manifold space [45], Fisherfaces [16,
33]. The local approach considers certain facial features
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Fig. 1 Representative
challenges in recognizing face. a
illumination variations b head
pose/viewpoint variations c
facial occlusion d facial
expressions

such as Speed-up robust features (SURF) [17], Local Binary
Patterns (LBP) [22]. The local information combines with
the holistic information to enrich feature descriptors for
performance improvements in the hybrid approach: the
fusion of 54 Gabor functions and fuzzy logic for facial
expression recognition [15], two-color local descriptors,
called Color ZigZag Binary Pattern (CZZBP) [19], or a
fusion of Deep features [12].

Thanks to the low computational cost and efficient
feature extraction capability, the LBP-based methods have
been studied and widely applied to many tasks such as
face recognition, facial expression classification, or texture
classification. A large number of the LBP variants and
hybrid models based on LBPs have been introduced [1,
36] for face recognition. However, they still have some
drawbacks, such as noise sensitivity, contrast information,
or illumination variation. This paper proposes a weighting
statistical binary pattern framework that can improve the
local descriptor in terms of discriminative power and robust
against noise and illumination variation.

This work is extended from our prior efforts where we
consider neighborhoods in straight-line topology [44] to
utilize more useful information for local feature descriptors
by statistical binary patterns [14, 37]. In this way,
the proposed framework firstly considers two statistical
moments (mean and variance) for noise elimination and

obtain complementary information. Then, the proposed
LBP variant is applied to the first-moment image for LBP
representations. The second-statistical moment image is
a complementary component for building the weighted
histogram to incorporate each pattern contribution. This
proposed framework can enrich local descriptors by
utilizing both moments without increasing the fused
histogram dimension. The present study addresses prior
shortcomings and proposes an upgraded descriptor for face
recognition. The contributions of it are given as follows:

– We present a straight-line topology approach with LBP
by direction (known as LBPα), which is robust against
several visual challenges, such as noise, illumination,
and facial expressions, as a base foundation.

– Then, we propose a novel complementary LBP variant
(known as CLBPα), which is inspired by the local
difference magnitude-sign transform to complement
information for the local descriptor.

– To extract more robust descriptors from salient informa-
tion in statistical moments, we propose the fused his-
togram of CLBPα , that is constructed by using WSBPα

to obtain enriched features.
– A comprehensive evaluation of six public datasets

suggests that our proposed framework outperforms the
state-of-the-art methods.
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The paper is organized as follows. Section 2 prepares
some background on LBP. Section 3 details the proposed
framework. In section 4, we analyze the implementations
through several parameter settings for evaluations. Experi-
mental results are interpreted in Section 5. A discussion for
our proposed framework is analyzed in Section 6, and the
last one consists of our conclusion and future works.

2 Related works

Many methods based on basic LBP descriptors, that can
encode the local appearance by the relation between
neighborhoods, have been introduced. However, there
exist several shortcomings, such as local information
loss or sensitivity to noise. Diverse LBP variants have
been proposed to address these shortcomings. Several
neighborhood topologies or encoding operators have been
introduced, such as Dominant Rotated Local Binary
Patterns (DRLBP) [32] and Enhanced Line Local Binary
Pattern (EL-LBP) [44].

Recently, several hybrid models based on LBP-like
descriptors for face analysis have been examined and
proved to have highly discriminative power [22]. Lin et al.
[27] proposed a fast algorithm, called LBP edge-mapped
descriptor, which was to fuse LBP and SIFT using the
maxima of gradient magnitude points on the image to
illustrate facial contours for face recognition. Ding et al.
[11] introduced the Dual-Cross Patterns (DCPs) as a core
algorithm to extract facial features at both the holistic
and component levels of a human face, then applied the
first derivative of Gaussian for eliminating the differences
of illumination. The Multi-scale block Local Multiple
Patterns (MB-LMP) [49] exploited multiple feature maps
based on the modified Weber’s ratio, then fused the
histograms of non-overlapping patches for more robust
features. Kas et al. [21] addressed shortcomings of previous
LBPs and proposed Mixed Neighborhood Topology Cross
Decoded Patterns (MNTCDP) by considering multi-radial
and multi-orientation information simultaneously to exploit
the relationship between the referenced point and its
neighbors on each 5 × 5 pixel block. Inspired by
LBP-like in face recognition, Shu et al. [43] proposed
Equilibrium Difference LBP (ED-LBP) in multiple color
channels (RGB, HSV, YCbCr) accompanied with an SVM
classifier for face spoofing detection. Unlike the traditional
LBP circle, the Local Diagonal Extrema Number Pattern
(LDENP) [42] descriptor only encoded information within
the local diagonal neighbors using the first-order local
diagonal derivatives to obtain a compact description for
face recognition. Deng et al. [10] proposed an accurate
face recognition by exploiting the compressive binary
patterns (CBP) on a set of first six random-field eigenfilters,

which reduced the bit error rate of LBP-like descriptor
and were more robust against additive Gaussian noise.
According to LBP, another approach encoded information
by examining neighboring pixels at different distances
across different derivative directions called Local Gradient
Hexa Pattern (LGHP) [6] which generated discriminative
inter-class facial images. Lu et al. [29] proposed an
unsupervised feature learning to represent face images
from raw pixels and jointly encoded codebook for small
regions to obtain high discrimination in descriptors, called
Simultaneous Local Binary Feature Learning and Encoding
(SLBFLE).

The other aspect was to utilize more useful informa-
tion for descriptors to overcome local information loss
within images. For instance, the Completed LBP technique
(CLBP) [14] described local difference Sign-Magnitude
transform to obtain higher performance. Another improve-
ment of CLBP, i.e. the statistical binary patterns model
[37], was built on several statistical moments for robust
descriptors and improved the performance.

2.1 LBP

LBP was first introduced by Ojala et al. [38]. The LBP
feature describes the spatial relationship in an image by
encoding the neighbor points of a given central point. Let
f be an 2D discrete image in Z

2 space. Then, the LBP
encoding of f can be considered as a mapping from Z

2 to
{0, 1}P :

LBPP,R(f )(c) =
P∑

p=0

s(f (gp)−f (c)), with s(x) =
{

1, x ≥ 0
0, otherwise

(1)

and gp are intensity of P neighbors and are measured on the
circle of central point c and radius R.

The dimension of LBP descriptor can be reduced by con-
sidering its uniform patterns, whose values U(LBPP,R) ≤ 2
and defined by the following equation:

U(LBPP,R) =
P∑

p=1

|LBPp
P,R − LBPp−1

P,R | (2)

where LBPp
P,R is the p-th bit of LBPP,R , and LBPP

P,R =
LBP0

P,R . LBPu2
P,R [38] was a very robust and reliable

descriptor for face representation or texture classification.
As a result, the mapping from LBPP,R to LBPu2

P,R produces
L = P(P − 1) + 3 distinct output values by building a
lookup table of 2P patterns. Therefore, the local descriptor
is described as follows:

H = [H0, H1, ..., HL−1]T (3)
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where

Ht =
∑

T
{
LBPP,R(x, y) = t

}
, and T

{
A

} =
{

1, if A is true
0, otherwise

(4)

in which Ht is the occurrence of the t th LBP u2 code, where
t ∈ [0..L−1]. Therefore, the length of histogram in uniform
LBP representation is L = P(P − 1) + 3.

2.2 Completed LBP

Guo et al. [14] considered a local difference sign-magnitude
transform and proposed a completed model as a state-of-
the-art variant of LBP. The transform dp = sp ∗ mp

consists of two components, i.e. signs: sp = sign(dp)

and magnitudes: mp = |dp| = |f (gp) − f (c)|. By
adding components to them, three operators, called CLBP-
Sign (CLBP S), CLBP-Magnitude (CLBP M), and CLBP-
Center (CLBP C), were designed to code three features S,
M, and C. The first operator CLBP S was the same as the
original LBP operator and produced S component. The M
component which expresses the local variance of magnitude
should be consistent with S and defined as follows:

CLBP MP,R(f )(c) = (s(mp − m̄))0≤p<P (5)

where m̄ is the mean value of mp from the whole image.
Moreover, the last component C also carries discriminant
information. Therefore, the CLBP C operator is formulated:

CLBP C(f )(c) = s(f (c) − f̄) (6)

where f̄ is set as the mean gray level of the whole
image. Because of complementary relationship between
these operators, it turns out that the Completed LBP
descriptor is useful for the texture classification task.

2.3 Face representation based on LBPs

The face representation based on LBP descriptors has been
first introduced by Ahonen et al. [1] by analyzing small
local regions in the face instead of striving for a holistic
facial texture representation. In such a local approach, a
face image is partitioned into m non-overlapping patches
R(j) (j = 1..m) where an LBP operator is independently
applied to produce local histograms. It aims to fuse all
LBP histograms as a single vector (also known as local
LBP descriptors) for facial texture representation. The
concatenation approach is a simple and efficient one for
LBP description. Each LBP histogram H(j) by each image
patch R(j) is computed by (3). Finally, the global LBP
descriptor for all patches R(j) is formulated as follows (T is
the transpose operator):

H = [(H(1))T (H(2))T ...(H(m))T ]T (7)

The resulting feature vector has the size of m × n,
where n is the length of LBP histogram along with its
topology. Therefore, this approach for face representation is
more robust under variations such as poses or illumination.
Notably, small patches within an image can be of different
sizes or overlapping regions. Many face recognition works
have followed the local approach and obtained significant
LBP variants [5, 42, 47, 49].

2.4 Statistical moment images

Since we define that f is a 2D discrete image in Z
2 space, we

can obtain a real-valued image in R by a mapping technique.
The spatial support, which is employed to compute the local
statistics, is modeled as B ⊂ Z

2 , such that O ∈ B, where O
is the origin of Z2 [37]. Figure 2 illustrates how to construct
a spatial support B.

The r-order moment image associated to f and B is also a
mapping from Z

2 to R, defined as

mr
(f,B)(c) = 1

|B|
∑

b∈B
(f (c + b))r (8)

where c is a pixel from Z
2, and |B| is the cardinality of

the structuring element B. Accordingly, the r-order centered
moment image (r > 1) is defined as

μr
(f,B)(c) = 1

|B|
∑

b∈B
(f (c + b) − m1

(f,B)(c))
r (9)

where m1
(f,B)

(c) is the average value (1-order moment)
calculated around c. Finally, the r-order normalized
centered moment image (r > 2) is defined as

βr
(f,B)(c) = 1

|B|
∑

b∈B
(
(f (c + b) − m1

(f,B)
(c)

√
μ2

(f,B)
(c)

)r (10)

where μ2
(f,B)

(c) is the variance (2-order centered
moment) calculated around c.

Fig. 2 Illustration of the spatial support with an example B =
{(1, 4); (2, 8)} designed as a collection of neighbor points sampled on
different circles having the same center
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3Weighted Statistical Binary Patterns by
direction α (WSBPα)

We propose the Weighted Statistical Binary Patterns by
direction α (WSBPα) descriptor to enhance the discriminant
capability of LBPs for face recognition while reducing
its sensitivity to representative challenges, such as facial
emotions, noise, or illumination. Such a descriptor can
encode spatial information in a set of local statistical
moment images and maps this coding to uniform LBP
“u2” to produce a more compact descriptor. Because of
complementary and consistent characteristics, two crucial
components CLBP Sα and CLBP Mα (Here, α is a given
direction) are computed on a mean image and weighted by
a variance image to improve the performance. The detail is
given as follows.

3.1 Local Binary Patterns by direction (LBPα)

In the original LBP and several variants, the neighbors gp

have the coordinate (R cos(2πp/P ), R sin(2πp/P )) lying
on a circle of radius R. In the proposed LBPα , we consider
the relationship between pixels by a straight-line topology
on a direction α, given that the coordinate of c is (0,0). The
neighbors of straight-line topology are defined as follows:

gp
α = (

2pR cos α

P
,

2pR sin α

P
)−P/2≤p≤P/2 (11)

When considering a line topology, the number of
neighbors should be an even number, and neighbors are
bilateral symmetry with a central point c. Figure 3 illustrates
four LBPαi

by considering 6 neighbors along with a line
topology.

Similar to traditional LBP, we encode an image by LBPα
operator as defined in (1). Therefore, it can be expressed as
follows:

LBPα(P,R)(f )(c) =
P∑

p=0

s(f (gp
α)−f (c)), with s(x) =

{
1, x ≥ 0

0, otherwise

(12)

where gp
α is defined in (11), and remaining variables such

as f , c, P , and R are defined in (1). As a result, LBPα

operator, which produces 2P distinct patterns, leads to
a huge descriptor. Inspired by the LBP uniform prin-
ciple in Section 2.1, we reduce the number of patterns
by considering the uniform patterns concept for LBPα .
After this process, the LBPα “uniform patterns” have
P(P −1)+3 distinct output values from a lookup table of 2P

values.
The main difference between the circle LBP and the

LBPα is that the LBP considers spatial relationship by a
circle, whereas the LBPα exploits spatial information in the
straight-line of neighbors along with the given directions.
Although several primary factors such as the direction
of exposure, illumination, or facial expressions are given
as challenges in face recognition, it turns out that the
LBPα-based representation is robust against changes of
illumination and scale since it examines micro-patterns in a
line topology. Moreover, by taking advantage of traditional
LBP, the proposed LBPα can characterize the distribution of
local pixels by a direction, and the frequency of occurrences
of LBPα values can be used to represent various facial
structures.

3.2 Complementary Local Binary Patterns by
direction α (CLBPα)

The CLBP [14] had been used for texture classification
by combining three operators CLBP S, CLBP M, and
CLBP C in a joint or hybrid way. Similar to CLBP, we
propose Complementary Local Binary Patterns by direction
α (CLBPα) which considers neighbors gp

α by direction α

for the face recognition task. The proposed CLBPα consists
of two operators: CLBPα-Sign (CLBP Sα) and CLBPα-
Magnitude (CLBP Mα). In general, the CLBP Sα is similar
to the proposed LBPα described in (12). The CLBP Sα

operator describes the structure of image f with respect to
the local relationship, whereas the CLBP Mα complements
local difference Magnitude and is in a consistent format
with that of the CLBP Sα . This operator is defined as
follows:

Fig. 3 An example of several
Local Binary Patterns by
directions
{αi} = {00, 450, 900, 1350},
where {linei} = {yellow, orange,
green, blue}, respectively

1897Weighted statistical binary patterns for facial feature representation



CLBP Mα(P,R)(f )(c) = (s(mp
α − m̄α))0≤p<P ,

mp
α = |dp| = |f (gp

α) − f (c)| (13)

where m̄α is the mean value of m
p
α for the whole discrete

image f . Each component S and M has P(P − 1) +
3 distinct values corresponding to the “uniform” LBPα

coding of discrete image f . Inspired by forming CLBP
descriptors [14], we have two ways to combine different
components for enhanced descriptors. The first descriptor
CLBP S/Mα , which forms a joint 2D histogram from the
CLBP Sα and CLBP Mα codes, has [P(P −1)+3]2 values.
The second descriptor CLBP S Mα , which concatenates
two histograms together, has 2[P(P − 1) + 3] values.
The distribution of the first one can become too sparse
when the dimension (i.e., the number of neighbors P )
increases. However, the marginal histogram of the second
one obtains a reasonable size of 2[P(P − 1) + 3]. As
a trade-off between the performance and computational
cost, the marginal histogram approach is utilized in our
experiments. Note that component C, which expresses
the local gray level in the image, is ignored in our
proposed model. The proposed CLBP S Mα produces more
reliable and significant expressiveness for the facial feature
representation.

3.3Weighted Statistical CLBP by directions αi
(WSBPαi )

An introduction of two first-order moments (mean and
variance moments) into an LBP-based operator was
proposed as Statistical Binary Patterns (SBP) [37]. The
first order, known as mean-valued moment m1, gives
the contribution of individual pixel intensity for the
entire image. The second order, known as variance-valued
moment μ2, is to find how each pixel varies from its
neighboring pixels and represents salient regions in an
image. Our proposed WSBP can build a novel histogram
from CLBPαi

descriptors by computing CLBPαi
image on

the first-order moment m1 and counting occurrences of
every pattern on that CLBPαi

image by a significance index
corresponding to the salient regions using the new second-
order moment μ′

2. The proposed descriptor can discard
the noise, illumination, or near-uniform regions. Figure 4
illustrates the flow diagram of our descriptor based on the
WSBPαi

descriptors. With the mean image m1, the spatial
relationship between local structures is represented using
CLBPαi

operator to obtain two essential components Sαi

and Mαi
. Then, each component (Sαi

and Mαi
) obtained by

CLBPαi
operator is weighted by the contribution of every

local pattern according to the new variance image μ′
2 for the

weighting histogram.
Let H be the histogram vector of each component,

and (x, y) be location of pixel in each component

of CLBPαi(P,R) image. Then, the histogram for each
component is based on the contribution of every location
(pixel) in new variance moment μ′

2. Equation (4) defines the
occurrence of every CLBPαi(P,R) code t th as follows:

Ht =
⎧
⎨

⎩

∑
∀(x,y)

μ′
2(x, y), if CLBPαi(P,R)(x, y) = t

0, otherwise
(14)

The SBP descriptor [37] produces enhanced descriptors
and only considers all patterns having the same weights
and ignoring their significance. In this paper, the WSBPαi

descriptors capture the local relationships within images
corresponding to the mean moment, and exploit contrast
and gradient magnitude information through variance
moment to enhance the local relationship description.
Equation (14) describes how every pixel occurrence is
weighted by its contribution corresponding to those pixels
in a new variance moment μ′

2. Therefore, the histogram
of each component Sαi

and Mαi
has P(P − 1) + 3

values. Finally, the dimensionality of WSBPαi
descriptor

is 2[P(P − 1) + 3] because of the concatenation of
histograms. As a result, the WSBPαi

descriptor is not only
compact but also robust to noise, illumination and other
variations.

3.4 The computational complexity

In this section, we address the computational complexity
of WSBP descriptor for an input image of size N × N .
Suppose that the pre-defined spatial support B is defined
as (R1, P1), (R2, P2); WSBPα is calculated by considering
P neighbors. The computational complexity of WSBP
descriptor depends on the following factors.

– Construction of moment images: At each pixel,
the mean value can be obtained after O(P1 +
P2) operations, while the variance value requires
O((P1 + P2)

2) operations. Therefore, the construction
of moment images can be done in O((P1 + P2)

2N2) =
O(N2).

– Construction of CBLPα: CBLPα consists of 2
components CBLP Sα and CBLP Mα . The first one is
calculated in O(PN2). The second one has the same
complexity of O(PN2). As a result, the complexity of
CBLPα is O((2PN2) = O(N2).

– Construction of WSBPα: WSBPα addresses CBLPα

on mean image and considers variance image for
constructing the weighted histogram. As mentioned
above, each component can be done in O(N2).

Therefore, the computational complexity of WSBP is
O(N2). It is evident that WSBP requires more calculation
than LBP, but both are in the same computational

1898 H. P. Truong et al.



Fig. 4 The flow diagram of our WSBPαi
descriptors. The input image

is initially divided into mean (m1) and variance (μ2) moments. A
new variance moment (μ′

2), which contains distinctive facial features,
is prepared by extracting root k-th. Then, when Sign and Magnitude
components along four different directions using the mean moment

are constructed, a weighting approach according to the new variance
is applied to each component. Finally, the weighted histograms of
Sign and Magnitude components are concatenated to build a weighted
CLBP histogram

complexity order. Such a constraint guarantees that our
operator is effective as the non-LBP methods in terms of
computation time.

4 Implementation

In this section, we detail the configuration of the WSBP
descriptor.

4.1 The fusion of different descriptors WSBPαi

Suppose that WSBPα considers only one direction (α
is a given direction), it could lead to an inadequate
description simply because such a descriptor would exploit
only the local relationship along that direction. What we
aim here is that this descriptor should utilize every useful
surrounded features. Inspired by LBP operators in a circle
topology (with scale of (P, R) = (8, 1)), we propose to
consider at least four directions for the fused histogram,
αi ∈ {00, 450, 900, 1350} (see Section 5). Figure 5 shows
components S and M of CLBP at four directions {αi} as four
views of a given image. The fusion of four views could be an
adequate descriptor in recognizing face against illumination

or head pose variations. Such a WSBP can be expressed as
follows:

– WSBP = WSBPα1 WSBPα2 WSBPα3 WSBPα4

Fig. 5 Illustration of CLBPαi
for component S (a, b, c, d) and M (e,

f, g, h) with four different directions {00, 450, 900, 1350}, respectively.
Each CLBPαi

operator, consisting of two components, is computed on
mean moment with a structuring element B = {(1, 8)}

1899Weighted statistical binary patterns for facial feature representation



Fig. 6 Illustration of c Mean
(m1) and d Variance (μ2)
moments for a the given input
using b the structuring element
B = {(1, 8)}. e A new variance
(μ′

2) can be obtained by
extracting root 9-th from μ2

4.2 Moment parameters

For a successful implementation of our descriptor, a proper
parameter setting has to be made. As a pre-processing step,
the mean (m1) and variance (μ2) moments obtained by
computing the spatial support B are used to reduce the
noise sensitivity. Thus, moment parameters should be in the
optimal settings for this purpose.

We define the structuring elements as a circle spatial
support B = {{(Ri, Pi)}}, such that (Pi) is the number
of neighbors and (Ri) is its radii. Figure 6 shows an
example of two-moment images using B = {(1, 8)}. Given
that the second-order moment (variance moment) tends to
emphasize only dominant edges, some potentially important
information could be discarded. To handle this problem, we
propose to perform an extraction of root k-th for the variance
moment as μ′

2 = k
√

μ2 (k ∈ [2, 16]). For example, Fig. 6e
shows the new variance moment (μ′

2), built by extracting
root 9-th from the original one. With this method, more
useful facial features, such as eye, nose, and mouth, can be
enhanced as salient regions. Thus, the weighted histogram
can enrich the essential areas by exploiting the contribution
of every statistical pattern in the variance image. In the next
section, we show how μ′

2 = 9
√

μ2 under the B = {(1, 6)}
for structuring element makes a huge difference through a
series of experiments with six public face datasets.

5 Experiments

This section describes experiments with six face datasets,
such as ORL, YALE, AR, Caltech, FERET, and KDEF.
Our statistical feature descriptors were processed with the
algorithm mentioned above. Below features, that were
the concatenation of 4 directions in exploiting CLBPαi

operators, were used in our experiments:

– CLBP S(m1) = CLBP S0 CLBP S45 CLBP S90

CLBP S135

– CLBP M(m1) = CLBP M0 CLBP M45 CLBP M90

CLBP M135

– CLBP S(m1, μ
′
2) = CLBP S(m1) CLBP S(μ′

2)
– CLBP M(m1, μ

′
2) = CLBP M(m1) CLBP M(μ′

2)
– CLBP S M(m1) = CLBP S(m1) CLBP M(m1)

– CLBP S M(m1, μ
′
2) = CLBP S M(m1)

CLBP S M(μ′
2)

– WSBP S, WSBP M, and WSBP were weighted-
statistical CLBPs applied to S, M, and a fusion of S
and M components as described in Section 3, respec-
tively. Note that each descriptor had the concate-
nated histogram by 4 directions of CLBPαi

, {αi} =
{00, 450, 900, 1350}.

The fusion of different directions and components (S,
M, m1, μ′

2) would lead to a very long descriptor as the
concatenation of histograms. To handle this problem, the
Principal Component Analysis (PCA) with the percentange
of cumulative sum of eigenvalues of 95%, was adopted for
the dimension reduction purpose. For the classification task,
the Linear SVMs were utilized.

5.1 Databases and experimental protocols

The ORL dataset 1 had 40 subjects and 10 different gray-
scale images with a size of 92 × 112 were collected from
each subject. All ORL images were collected under various
conditions such as facial expression, illumination changes,
occlusion (sun glasses), see Fig. 7.

The YALE Face dataset 2 included 165 images from 15
individuals and 11 different images with the size of 243 ×
320 were collected from each subject. The dataset had
various expressions and lighting conditions, see Fig. 8.

The Caltech 1999 dataset 3 produced by California Institute
of Technology had 447 images from 26 persons, yet
the number of images for each person was different
and collected under the unconstrained background. The
dataset had various conditions such as different expression,
illuminations and occlusions, see Fig. 9.

The KDEF dataset 4 [3] is a set of 4900 photographs of
facial expressions. The set had 70 persons (35 males and
35 females) displaying seven facial expressions under five

1https://cam-orl.co.uk/facedatabase.html
2http://vision.ucsd.edu/content/yale-face-database
3http://www.vision.caltech.edu/html-files/archive.html
4https://www.kdef.se/index.html
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Fig. 7 The ORL dataset samples
which are decomposed into
pairs of moment images (mean
m1, variance μ′

2) for each
two-row pair

different viewing angles. For the present evaluation, the
frontal view was considered for each facial expression.
This subset contained 490 color images for 70 individuals
as shown in Fig. 10 where each subject expressed seven
different emotions.

TheARdataset 5 [31] had 3016 face images for 116 persons
(63 men and 53 women), each having 26 color images
(768×576) under severe illumination conditions (left-light,
right-light or all sidelights), 7 basic emotions (happy, sad,
neutral, sleepy, anger, surprised and wink), head poses,
and occlusion (sun glasses and bangs). Figure 11 shows
several examples in which original color images were
converted to gray-scale images and decomposed into mean
and variance moment images. For the dataset, we conducted
two experiments for comprehensive evaluation. Because of
color images, the first experiment was examined with gray-
scale images following the same protocol as other datasets,
while the other was carried on other color channels to give
several our perspectives.

The FERET dataset 6 [41], collected in 15 sessions during
four years, was a large benchmark used extensively for
comparison. The dataset comprised a total of 14,126 images
from 1199 individuals. A subset adopted for evaluations
had 1400 images of 200 subjects (7 images per person),
including variations in poses, expression, and illumination.
Figure 12 shows images under 7 states of each person.

5.2 Results with the ORL and YALE datasets

For the ORL dataset, Ntrain training images per subject
were randomly selected (Ntrain = 2, 4, 5, 8) while the
remaining (10 - Ntrain) images were used for testing. For

5https://www2.ece.ohio-state.edu/∼aleix/ARdatabase.html
6http://www.itl.nist.gov/iad/humanid/feret/feret master.html

the YALE dataset, Ntrain training images per subject were
randomly selected (Ntrain = 2, 4, 6, 8) and the remaining
(11 - Ntrain) images were carried out for testing. The
measurements were repeated 100 times by shuffling data
process. Results were shown in Tables 1 and 2 for the
average classification rate.

Tables 1 and 2 summarised our experimental results
under the various configurations. First, the CLBP S(m1)
and CLBP M(m1), the WSBP S and WSBP M produced
similar recognition results. The CLBP S(m1) and WSBP S
played a major role in achieving good results, suggesting
that the S component encoded more valuable information
from each face image. Second, when utilizing both mean
(m1) and variance (μ′

2) moments as the input data for CLBP,
the CLBP S(m1, μ

′
2) and CLBP M(m1, μ

′
2) dramatically

increased the classification rate than considering only the
first-order (m1) moment, suggesting that fusion of S and
M components improved the performance. Indeed, the
CLBP S M(m1) produced better results. For instance, when
(P, R) = (4, 2), the best results obtained by CLBP S M(m1)
with the number of training images (N = 2, 4, 5, and
8) for the ORL dataset were 86.22%, 96.2%, 98.25%,
and 99.45%, respectively. Similarly, the WSBP descriptors
reached 87.91%, 96.77%, 98.51%, or 99.41%, respectively.
On the other hand, WSBP and CLBP S M(m1, μ

′
2) were

similar. For the YALE dataset (Table 2), our WSBP
outperformed the other methods: 91.95%, 97.14%, 98.72%,
and 99.44% at the scale of (P, R) = (4, 2).

Also, our proposed method was compared with other
state-of-the-art methods as shown in Table 3, that summa-
rized techniques and recognition rate corresponding to each
method. Ten methods on the top, including ours, were based
on several hand-crafted features, and three remaining ones
were based on deep features. Our method achieved 98.51%
and 98.72% recognition rates for ORL and YALE datasets,
which were greater than other methods, suggesting that
our descriptor was robust against visual challenges, such

1901Weighted statistical binary patterns for facial feature representation
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Fig. 8 The YALE dataset
samples which are decomposed
into pairs of moment images
(mean m1, variance μ′

2) for each
two-row pair

as illumination variation, facial expressions, head poses
(multi-orientation), and occlusion.

5.3 Results with Caltech 1999 and KDEF datasets

Since the number of images for each class in Caltech
1999 dataset varied, we did not change the number of
training images for each class like the previous experiments.
Here, we randomly chose half of the images in each
class as a training set, and the remaining ones were
used as a testing set. Table 4 showed our results for
three configurations of (P, R), respectively, suggesting that
our WSBP and CLBP S M(m1, μ

′
2) achieved the highest

recognition rate. Table 5 compared our results with a deep
learning approach based on Deep Stack Denoising Sparse
Autoencoders (DSDSA) [13]. As can be seen from these
tables, even using one single small scale (P, R) = (4, 2), our
descriptor WSBP (Ours 1), CLBP S M(m1, μ

′
2) reached the

recognition rate of 98.83%, 98.96%, respectively, which
were greater than the performance of DSDSA. When we
considered CLBP S M(m1, μ

′
2) at the scale of (P, R) = (6,

3), the performance was 99.03% (Ours 2).
For the KDEF dataset, we conducted the face recogni-

tion task by changing the number of training images for
each person to verify the accuracy rates of each train/test

portion. Indeed, several training images Ntrain (Ntrain =
2, 3, 4, 5) were randomly chosen while the remaining
images (7 - Ntrain) were used for test. Here, the evalua-
tion was repeated 100 times by shuffling data to get the
average accuracy. Table 6 showed our results for three
configurations of (P, R), respectively. Specifically, at the
scale of (P, R) = (4, 2), our descriptor WSBP substantially
increased the accuracy up to 94.11%, 97.87%, 99.07%, and
99.33% with the number of training images Ntrain = 2,
3, 4, and 5, respectively. Such high performance suggests
that our descriptor could effectively deal with visual chal-
lenges such as diverse facial expressions, illumination or
occlusions.

5.4 Results with the AR dataset

5.4.1 Evaluation with gray-scale images

We carried out the cross-validation for training and testing.
The different number of training images (Ntrain = 10,
13, 15, 20) and the remaining (26 - Ntrain) were used
for training and testing sets to guarantee they had unseen
images. Results using 100 shuffle splits were summarized
in Table 7 for the recognition rate and Table 8 for comparing
with other methods, respectively.

Fig. 9 The Caltech 1999 dataset
samples which are decomposed
into pairs of moment images
(mean m1, variance μ′

2) for each
two-row pair
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Fig. 10 The KDEF dataset
samples which are decomposed
into pairs of moment images
(mean m1, variance μ′

2) for each
two-row pair

Table 7 showed several LBPs results obtained with var-
ious parameters. As it can be seen, the CLBP S(m1) and
CLBP M(m1) obtained the base results. With a specific
parameter of (P, R) = (6, 2), the best results obtained
by CLBP S(m1) with Ntrain = 10, 13, 15, 20 were
respectively 82.87%, 88.83%, 90.79%, 95.90%. Similarly,
the results of CLBP M(m1) were respectively 80.09%,
86.22%, 89.83%, 95.67%. However, the recognition rates
were improved significantly when bilaterally comple-
menting S and M components with CLBP S M(m1), the
results were 98.46%, 98.68%, 99.04%, 99.93%, respec-
tively. In this case, the CLBP S M(m1) had a significant
improvement which could increase 12.46% at Ntrain = 13
(compared to CLBP M(m1) and CLBP S(m1)). Moreover,
CLBP S M(m1, μ

′
2) and WSBP descriptors also signifi-

cantly increased the performance when reaching 98.79%
and 99.37%. With this parameter, our proposed frame-
work WSBP outperformed the CLBP S M(m1) (0.69%)
and CLBP S M(m1, μ

′
2) (0.58%). Notice that the improve-

ment of WSBP could reach 13% compared to the original
LBPs.

Table 8 compared our method with others. In terms
of the recognition rates, Ours outperformed the state-of-
the-art methods, including hand-crafted features and deep
features techniques. Also, our WSBP was better than
Multi-resolution dictionary [30] (82.19%), MNTCDP [21]
(96.18%), Local Multiple Patterns [49] (98.00%), or even
deep facial features CS [2] (93.99%) by a substantial
margin. The remaining algorithms, including EL-LBP [44]
(98.27%) and deep feature FDDL + CNN [39] (98%) were
comparable with our descriptors, and yet ours prevailed.

5.4.2 Evaluation with color channel

The motivation of this experiment was to check the
behaviors of facial descriptors for the color channel. The
experiment was conducted with the HSV color images
by keeping the other experimental setting was similar to

Fig. 11 The AR dataset samples
which are decomposed into
pairs of moment images (mean
m1, variance μ′

2) for each
two-row pair
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Fig. 12 The FERET dataset
samples which are decomposed
into pairs of moment images
(mean m1, variance μ′

2) for each
two-row pair

that of the gray-scale image. First, an RGB color image
was converted into an HSV color image. Second, the Hue
channel was extracted from the HSV space, called it H
image, and fed it as an input for our experiment. Our
descriptors were able to extract the eyes, eye-blows and
mouth from H image probably because these areas had
the distinctive colors. And yet the Sign (S) and Magnitude
(M) components, computed by CLBPα on m1, could not

discriminate the subtle color change occurring within the
facial skin area, as shown in Fig. 13.

An evaluation with color channel was conducted with
the same protocol settings of the gray-scale case. Result
with 100 shuffle splits was summarized in Table 9. Note
that (P, R) = (4, 2), and Ntrain = 13 were specific
parameters chosen from Table 9, suggesting that S worked
better than M for three cases. For instance, the accu-

Fig. 13 Illustration of resulting images for H (Hue) and gray-scale
images. The upper part contains the mean (m1) and new variance
(μ′

2 = 9
√

μ2) images of H image by using the structuring element
B = {(1, 5); (2, 8)} and its Sign-Magnitude components calculated by

CLBPαi
operators. The lower part is similar to the upper one but using

the gray-scale image with the structuring element B = {(1, 8)}. All
resulting images are put together for a comprehensive viewing
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Table 1 Recognition rates for the ORL dataset

(P, R) = (4, 2) (P, R) = (6, 2) (P, 2) = (6, 3)

Ntrain 2 4 5 8 2 4 5 8 2 4 5 8

CLBP S(m1) 84.44 94.92 96.97 98.56 84.18 94.82 96.93 98.63 82.34 93.63 96.13 98.62

CLBP S(m1, μ
′
2) 85.20 95.35 97.32 98.83 85.02 95.09 97.19 98.75 83.22 94.31 96.75 98.88

WSBP S 86.32 95.70 97.72 98.98 84.33 94.85 96.94 98.66 83.79 94.63 96.92 98.94

CLBP M(m1) 75.62 82.34 84.52 86.30 76.05 82.6 84.78 86.68 74.19 80.98 83.21 86.86

CLBP M(m1, μ
′
2) 82.24 93.99 96.70 99.21 82.41 94.23 96.91 99.30 80.85 93.39 96.15 98.33

WSBP M 75.95 82.54 84.89 87.56 76.56 83.12 85.38 87.86 74.93 82.01 84.17 88.46

CLBP S M(m1) 86.22 96.20 98.25 99.45 86.34 96.25 98.26 99.53 84.45 95.23 97.63 99.29

CLBP S M(m1, μ
′
2) 86.09 96.28 98.33 99.59 86.07 96.25 98.36 99.59 84.52 95.44 97.77 99.35

WSBP 87.91 96.77 98.51 99.41 85.43 96.13 98.02 99.44 84.99 95.78 97.74 99.21

racy for CLBP S(m1), CLBP S(m1, μ
′
2), and WSBP S was

49.41%, 93.56%, and 90.28%, respectively, while that of
CLBP M(m1), CLBP M(m1, μ

′
2), and WSBP M was low

as 24.36%, 55.32%, and 57.06%, respectively, indicat-
ing that the combination of S and M somehow impaired
the overall accuracy compared to the S case. In addition,
the accuracy for CLBP S M(m1), CLBP S M(m1, μ

′
2),

and WSBP reached 33.73%, 82.52%, and 83.05%,
respectively.

CLBPα , which was inspired from CLBP [14], was
designed for the gray-scale case to complement the crucial
component M. It was not very effective in discriminating
the color change within facial skin (see Magnitude
components of H and the gray-scale images in Fig. 13).
On the other hand, S component worked very well on
H image by utilizing statistical moments (m1, μ

′
2), since

its accuracy was comparable with the state-of-the-art
methods. For instance, the accuracy of CLBP S(m1, μ

′
2)

and WSBP S reached 93.56% and 90.28%, respectively,
while CLBP S(m1) reached 49.41%. Notice that the

accuracies of CLBP S(m1, μ
′
2) and WSBP S were better

than that of CLBP S(m1) since margins were 44.15%
and 40.87%, respectively. These results suggest that our
descriptor was designed to extract the spatial relationship
of the neighboring pixels, not to simply discriminate the
magnitude between pixels.

5.5 Results with the FERET dataset

Previous works [10, 29] in the literature performed their
experiments with a protocol by using only frontal sets (Fa,
Fb, Fc, Duplicate I, and Duplicate II) where Fa with 1196
images known as the gallery and others known as probes.
Unlike the previous protocol, we did with a subset created
from 1400 images (ba, bd, be, bf, bg, bj, bk) in which
each person had two facial expression images, two left pose
images, two right pose images, and one illumination image.
This subset was more challenging than the previous one
since it comprised not only frontal faces but also multiple
orientations, expressions. Moreover, experimental results

Table 2 Recognition rate for the YALE dataset

(P, R) = (4,2) (P, R) = (6,2) (P, R) = (8,4)

Ntrain 2 4 6 8 2 4 6 8 2 4 6 8

CLBP S(m1) 89.77 93.65 94.8 95.67 89.70 93.84 94.81 95.40 91.04 94.53 94.96 95.76

CLBP S(m1, μ
′
2) 89.53 94.34 95.24 96.18 89.54 94.40 95.47 96.04 90.97 94.69 95.57 96.27

WSBP S 87.23 91.93 93.29 93.91 87.50 91.90 93.31 93.91 89.54 93.50 94.53 95.04

CLBP M(m1) 80.87 86.64 87.85 88.42 80.30 86.19 87.60 88.04 81.00 87.41 88.93 89.47

CLBP M(m1, μ
′
2) 83.17 89.80 92.21 94.09 83.13 89.77 92.33 94.44 83.96 89.94 91.79 93.42

WSBP M 81.7 88.53 90.07 91.33 80.68 88.11 89.71 90.49 82.65 88.53 90.03 90.71

CLBP S M(m1) 90.36 96.55 98.4 99.27 86.05 95.90 98.12 98.89 73.39 94.5 96.48 98.51

CLBP S M(m1, μ
′
2) 88.61 95.91 97.69 98.62 81.47 95.10 97.39 98.29 70.82 94.08 97.24 98.20

WSBP 91.95 97.14 98.72 99.44 87.13 96.44 98.19 98.91 72.52 94.87 97.37 98.04
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Table 3 Performance
comparison with the ORL and
YALE datasets

Method Techniques ORL YALE

Ours WSBP 98.51 98.72

Truong et al. [44] EL-LBP 97.12 95.27

Liang et al. [25] Wavelet + PC – 98.60

Karczmarek et al. [20] CCBLBP(7px,3×3,400) 98.45 –

Kas et al. [22] AECLBP-S (B16) 97.02 84.00

Moussa et al. [34] DCT + PCA + GA 92.62 95.50

Kas et al. [21] LQPAT 97.8 90.8

Luo X. et al. [30] Multi-resolution dictionary 92.15 –

Khanbebin et al. [35] DR-LBP + LDA 95.95 94.09

Pillai A. et al. [42] LDENP + Chi-square distance 94.60 –

Biswas et al. [2] Compressive Sensing (CS) 91.50 –

Chen et al. [8] Gabor + DBN (GDBN) 94.98 98

Görgel et al. [13] Deep Autoencoders (DSDSA) 97.50 98.16

under this subset could reflect changing accuracy rates of
each train/test portion.

The experiment was carried out with random Ntrain

training images of each class (Ntrain = 1, 2, 3, 4, 5, 6), and
Ntest testing images (Ntest = 7 - Ntrain) by 100 splits for
average accuracy. Table 10 illustrates the achieved results on
CLBPαi

operators at various scales of (P, R). For most cases,
WSBP obtained the best results and reached over 90%
accuracy with 2 training images only. Table 11 compared a
few recent methods and stated that our descriptors achieved
the best performance. In detail, WSBP with 3 training
images exceeded MNTCDP [21] at 2.57%, which was not
easy to deal with the challenging FERET dataset having
images under multiple orientations. As mentioned above,
FERET had two different protocols for evaluations. It would
not be a fair evaluation if we compared such methods under
different protocols. And yet, it is interesting to evaluate
the previous reports. For this purpose, we performed the
average accuracy result based on recent reports: CLBP [10],
SLBFLE [29], and WPCBP+FLD (HI) [47] (see Table 11),

Table 4 Recognition rates for the Caltech dataset

(P, R) = (4, 2) (P, R) = (6, 2) (P, R) = (6, 3)

CLBP S(m1) 90.99 90.65 91.48

CLBP S(m1, μ
′
2) 97.62 97.47 97.81

CLBP M(m1) 91.74 91.84 91.84

CLBP M(m1, μ
′
2) 97.21 97.25 97.33

CLBP S M(m1) 96.20 95.6 96.01

CLBP S M(m1, μ
′
2) 98.96 98.91 99.03

WSBP 98.83 97.89 98.32

wherein these methods performed efficiently with the subset
of the frontal face cases.

5.6 Robustness against degraded images

In practical surveillance scenarios, the degradation of
images often happened during the acquisition process
and could significantly affect the system performance.
Therefore, motivation of this experiment was to examine
how our facial descriptors dealt with such problems. In the
first scenario, the Gaussian noise was added to the original
image. For instance, five different levels of Gaussian noise
were added by levels = {10%, 20%, 30%, 40%, 50%}
using the Matlab function “imnoise”. In the second scenario,
occlusion was simulated by adding a white rectangle of
random positions within the face region. Each rectangle
had various sizes, ranging from [20, 20] to [30, 60] with a
Matlab function “insertShape”. Figure 14 showed the both
scenarios.

In each scenario, five images were chosen in each
class as training samples, whereas the rest as testing
samples, by splitting the data into 100. The average
recognition rates from the different methods were shown in
Table 12. Here, we fine-tuned the structuring element B2 =
{(1, 5); (2, 6)} to obtain the best achievements for WSBP

Table 5 Performance comparison with the Caltech dataset

Method Result

Ours 1 (WSBP) 98.83

Ours 2 (CLBP S M(m1, μ
′
2)) 99.03

Görgel et al. [13] 97.50
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Table 6 Recognition rate for the KDEF dataset

(P, R) = (4, 2) (P, R) = (6, 2) (P, R) = (6, 3)

Ntrain 2 3 4 5 2 3 4 5 2 3 4 5

CLBP S(m1) 90.69 93.18 95.18 95.90 90.68 93.23 95.07 96.11 91.19 93.63 95.40 96.31

CLBP S(m1, μ
′
2) 94.85 97.23 98.47 98.91 94.84 97.18 98.46 98.79 94.98 97.33 98.60 98.99

WSBP S 89.66 92.11 94.20 95.26 89.58 92.32 94.24 95.26 90.51 92.79 94.93 95.68

CLBP M(m1) 78.14 81.68 85.35 87.47 78.45 81.77 85.32 87.41 78.88 82.76 85.78 87.99

CLBP M(m1, μ
′
2) 84.51 91.16 94.75 95.82 84.33 91.25 94.73 95.75 84.88 91.19 94.84 96.15

WSBP M 78.79 82.85 86.80 88.41 79.43 83.30 87.00 88.51 79.92 83.84 87.17 89.11

CLBP S M(m1) 88.07 91.25 93.32 93.91 88.29 91.25 93.41 94.10 88.43 91.53 93.41 94.11

CLBP S M(m1, μ
′
2) 91.30 95.48 97.13 97.81 91.15 95.37 97.04 97.91 91.26 95.46 97.16 97.87

WSBP 94.11 97.87 99.07 99.33 90.12 96.51 98.34 98.79 90.76 97.11 98.84 99.36

and CLBP S M(m1, μ
′
2). This structuring element made

our descriptors more robust against noise and occlusion
comparing to other methods.

5.7 The processing time

This section describes the computational cost of several
descriptors based on LBPs. Experiments of the ORL dataset
for 400 images with 92 × 112 pixels were carried out with a
machine with 3.5GHz CPU, 32GB RAM, and Windows 10
64-bit operating system. Table 13 showed the computational
cost from two aspects: firstly, the processing time for
the feature descriptor extraction phase and; secondly, the
processing time for the matching phase (in seconds) of
various descriptors with three different configurations of (P,
R). The processing time measured here was based on the

structuring element B = {(1, 6)}, where the training set had
200 images and the testing sets had 200 images.

Table 13 showed that the WSBP required a longer
processing time for the feature extraction and matching
phase than CLBP S(m1) or WSBP S. Indeed, it took
much more processing time proportionally to a size of
(P, R) due to larger dimension. And yet, notice that our
WSBP descriptor was effective when it was compared
with CLBP S M(m1, μ

′
2) since both recognition rates were

approximately the same; see Tables 13 and 1.

6 Summary and discussion

Based on our experiments, we summarize and discuss
several advantages of our proposed descriptors:

Table 7 Recognition rate for the AR dataset

(P, R) = (4, 2) (P, R) = (6, 2) (P, R) = (6, 3)

Ntrain 10 13 15 20 10 13 15 20 10 13 15 20

CLBP S(m1) 83.06 89.20 91.05 96.1 82.87 88.83 90.79 95.9 84.33 89.92 91.77 96.58

CLBP S(m1, μ
′
2) 98.20 98.25 98.52 99.92 98.16 98.21 98.5 99.92 98.27 98.31 98.55 99.93

WSBP S 81.87 87.81 89.63 95.48 81.64 87.65 89.41 95.20 83.39 88.62 90.64 96.03

CLBP M(m1) 81.49 87.35 90.56 95.88 80.09 86.22 89.83 95.67 80.99 87.41 90.80 96.43

CLBP M(m1, μ
′
2) 94.67 96.78 97.83 99.77 94.49 96.65 97.63 99.75 94.71 96.66 97.75 99.75

WSBP M 83.24 89.48 92.08 97.27 82.13 88.33 91.51 96.88 82.79 88.93 91.85 97.62

CLBP S M(m1) 98.57 98.70 99.09 99.93 98.46 98.68 99.04 99.93 98.49 98.64 99.01 99.93

CLBP S M(m1, μ
′
2) 98.47 98.81 99.19 99.93 98.39 98.79 99.16 99.93 98.41 98.7 99.15 99.93

WSBP 98.71 99.42 99.55 99.89 98.62 99.37 99.53 99.86 98.92 99.52 99.66 99.89
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Table 8 Performance comparison with the AR dataset

Method Techniques Result

Ours WSBP 99.52

Truong et al. [44] EL-LBP 98.27

Kas M. et al. [21] MNTCDP 96.18

Luo X. et al. [30] Multi-resolution dictionary 82.19

Yang W. et al. [49] Local Multiple Patterns 98.00

Ouanan et al. [39] FDDL + CNN 98.00

Biswas et al. [2] Compressive Sensing (CS) 93.99

– The WSBP descriptor is designed to extend the LBPs
with local difference Sign-Magnitude distributions on
statistical moments. As a pre-processing step, statistical
moment images obtained by spatial support B of local
filters can eliminate noise coming from contrast change
or illumination variation (mean moment) and yet derive
useful information from the salient regions in a face
image (variance moment) (see Fig. 6).

– The classical LBPs consider neighborhoods bilaterally
in a circle, whereas our WSBP descriptors are to exploit
CLBPαi

operators along with multiple directions, i.e.
four directions, independently and combine them in
the final descriptors. It is found that they are robust
against different lighting conditions, head poses, and
facial expressions to achieve high performance (see
CLBP S M(m1), CLBP S M(m1, μ

′
2), and WSBP in

Tables 1, 2, 4, 7, and 10).
– Since the WSBP is built by fusing CLBPs along four

different directions {αi} = {00, 450, 900, 1350}, it works
well with a single scale (P, R) of CLBP operators. It
is then unnecessary to exploit a multi-scale approach

Table 9 Performance
comparison with S, M and S-M
components where the
structuring element was
B = {(1, 5); (2, 8)}

(P, R) = (4, 2) (P, R) = (6, 2) (P, R) = (6, 3)

Ntrain 10 13 15 20 10 13 15 20 10 13 15 20

CLBP S(m1) 38.83 49.41 55.98 70.00 37.59 47.68 54.02 68.52 40.48 51.51 58.25 71.72

CLBP S(m1, μ
′
2) 90.22 93.56 94.98 98.43 89.64 93.16 94.58 98.27 91.19 94.18 95.48 98.80

WSBP S 84.35 90.28 92.24 95.48 80.20 87.22 89.88 93.87 83.88 90.10 92.30 95.58

CLBP M(m1) 19.99 24.36 26.99 32.48 20.03 24.39 27.16 33.04 19.70 24.33 27.16 32.85

CLBP M(m1, μ
′
2) 46.69 55.32 57.77 66.98 47.40 56.57 58.92 68.08 46.93 55.72 58.49 67.62

WSBP M 48.88 57.06 61.03 66.14 45.18 53.06 57.00 62.12 46.17 54.22 58.04 63.04

CLBP S M(m1) 31.33 33.73 35.17 40.26 30.79 33.20 34.54 39.36 29.87 32.73 34.57 40.22

CLBP S M(m1, μ
′
2) 69.93 82.52 84.22 90.43 69.99 82.60 84.40 90.70 69.93 82.28 84.50 90.82

WSBP 74.11 83.05 86.46 91.00 67.16 76.34 80.57 85.97 71.55 80.52 84.38 89.38

Table 10 Recognition rate for the FERET dataset

(P, R) Ntrain CLBP S M(m1) CLBP S M(m1,μ′
2
) WSBP

(4,2) 1 66.27 69.81 75.16

2 79.25 86.10 91.20

3 83.22 90.89 94.78

4 86.43 94.15 96.86

5 87.81 95.35 97.53

6 87.99 94.30 97.90

(6,3) 1 65.43 69.12 73.45

2 78.34 85.81 90.68

3 82.49 91.00 94.48

4 85.77 94.33 96.61

5 86.93 95.58 97.22

6 87.67 94.60 97.27

(8,4) 1 66.04 70.10 69.42

2 78.93 86.44 90.05

3 83.12 91.30 94.66

4 86.41 94.48 96.93

5 87.59 95.53 97.57

6 88.11 94.45 97.84

using many parameters (P, R) because it could lead to a
high dimensional descriptor.

– Evaluation using six face datasets suggests that our
descriptors outperform state-of-the-art methods, such as
EL-LBP [44], AECLBP-S (B16) [22], Multi-resolution
dictionary [30], DR-LBP + LDA [35], LDENP [42].
Moreover, our WSBP descriptors achieves better results
than some deep facial features such as Deep Belief
Net (GDBN) [8], Deep Autoencoders (DSDSA) [13],
Compressive sensing (CS) [2], or FDDL + CNN [39]
(see Tables 3, 5, and 8).
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Table 11 Performance
comparison with the FERET
dataset

Descriptor 1 2 3 4 5 6

Average recognition rate for different Ntrain

WSBP 75.16 91.20 94.78 96.86 97.53 97.90

CLBP S M(m1, μ
′
2) 70.10 86.44 91.30 94.48 95.53 94.45

MNTCDP [21] 61.57 83.56 92.21 96.48 98.52 99.70

AECLBP-S-MxC [21] 51.42 73.08 83.59 90.44 93.99 97.19

LQPAT [4, 21] 52.48 74.14 83.94 91.96 94.97 97.24

LMP [49] 49.47 67.79 76.22 85.28 90.78 97.65

FLRDP [16] – – – 74.58 82.85 90.70

ALTP [48] 63.75 77.30 72.75 87.33 92.25 91.00

Average recognition rate with the previous protocol

CBP [10] 92.00

SLBFLE (R=4) [29] 96.95

WPCBP+FLD (HI) [47] 97.5

– According to an additional experiment with the color
channel, it is found that the Magnitude transform
captures the relationship of pixel magnitude on gray-
scale image very well, but is not effective with
Hue image (see Fig. 13), since a combination of
Sign-Magnitude of CLBPα in Hue space performs
worse than that of the gray-scale case. Also, fus-
ing statistical moments (m1 and μ2) in CLBP S
and WSBP S achieves the higher accuracy in Hue
space, by ignoring texture pixel intensity. This eval-
uation suggests a new direction in face recogni-
tion problems, such as integrating many color chan-
nels to enhance face spoofing detection performance
[43].

– Although the YALE dataset contains some facial
expression cases, it would be interesting in testing how
our descriptor affords systematic variation of facial
expressions. In addition, we use the KDEF dataset

which has seven facial expressions for each subject to
study the effect of facial expressions. Result suggests
that our descriptor deals with such cases very well.

– Our facial descriptors using both mean (m1) and
variance (μ2) have shown their robustness against
degraded images by evaluating the ORL dataset that
contains artificial noise. Given that the Gaussian noise
level of 50% makes the degraded face more challenging
to recognize by human eyes, our WSBP(B2) descriptor
still reaches the acceptable accuracy of 93.05% for
noise and 85.09% for occlusion, which are much higher
than those of other LBPs.

7 Conclusions and future work

We present a set of descriptors wherein the local difference
distributions in local binary patterns are exploited by

Fig. 14 The modified ORL
images: (1) the first row has five
levels of Gaussian noise
(10%-50%), (2) the second one
has occlusion by white random
rectangles
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Table 12 Performance
comparison for different
descriptors with the ORL
dataset added with Gaussian
noise and occlusion

Gaussian noise Occlusion

Descriptor 10% 20% 30% 40% 50% random

WSBP 96.69 95.18 91.88 91.21 88.04 82.59

WSBP (B2) 97.69 96.80 96.10 94.32 93.05 85.09

CLBP S M(m1, μ
′
2) (B2) 97.14 96.84 95.79 94.39 93.00 87.32

CCBLD(1px,4×4,100) [20] 83.88 61.50 36.43 19.75 13.95 36.35

CCBLD(7px,3×3,400) [20] 97.43 95.40 93.58 90.90 87.48 63.30

LBP 83.68 61.20 33.58 16.08 6.88 32.23

FR(D,5x5,300) [7, 20] 33.63 19.58 12.68 5.33 4.38 23.53

LMP [49] 96.85 95.41 94.16 92.30 88.09 39.55

directions, and then a weighting approach for binary
patterns is applied to statistical moment images for
an efficient and robust facial feature representation.
A comprehensive evaluation with several standard face
datasets is carried out to validate our proposal. We have
analyzed the behaviors of several descriptors with gray-
scale images and found that our method mostly outperforms
state-of-the-arts. Also, an analysis with a set of color images
has also been examined using the Hue channel for AR
dataset. We have also simulated a few practical scenarios,
that can be occurred during the data acquisition stage, by
adding various Gaussian noise and random occlusion to the
ORL dataset. One may understand that the spatial support
strategy is a special preprocessing technique to eliminate
the noise issues, and selecting the structure element B
depends on the levels and types of noise. For the scenarios
examined in this study, it is found that the structuring
element of two circles eliminates noise very efficiently.
Although this issue could downgrade the recognition
performance, our experimental result is still higher than

others. It shows that our proposed descriptor is robust
against the degradation of the given image. Overall, our
experimental results suggest that the proposed descriptor is
robust against noise, contrast change, illumination variation,
and facial expressions by exploiting different directions
of binary pattern operators on the mean moment and
considering the contribution of binary pattern to the variance
moment.

We expect that these descriptors find more applications
in the face recognition area and other areas such as
facial paralysis analysis and face spoofing detection.
Although our proposed framework is novel and high-
performing, it has a few issues to be addressed: (1)
the computational cost for matching increases when the
descriptor dimension becomes larger; (2) it is necessary to
fine-tune the optimal k-parameter for the root extraction
variance moment. We plan to focus on how to deal with
them. Also, it would be interesting to combine the WSBP
descriptors with deep neural network for building powerful
descriptors.

Table 13 The processing time of the descriptors used for the present study with different parameters (FT: feature extraction time, FTS: feature
size of LBPs descriptors without using any dimension reduction techniques, and MT: matching time)

Descriptor (P, R) = (4, 2) (P, R) = (6, 2) (P, R) = (8, 4)

FT FTS MT FT FTS MT FT FTS MT

CLBP S(m1) 4.38 2940 0.59 5.27 6468 2.25 6.47 11564 3.71

CLBP S(m1, μ
′
2) 7.22 5880 1.4 9.23 12936 4.14 11.56 23128 8.77

WSBP S 3.61 2940 0.81 4.63 6468 2.16 5.73 11564 3.83

CLBP S M(m1) 6.20 5880 1.64 7.91 12936 3.93 9.97 23128 7.07

CLBP S M(m1, μ
′
2) 11.17 11760 2.94 14.42 25872 8.02 18.74 46256 15.15

WSBP 4.39 5880 1.62 5.88 12936 3.92 7.78 23128 6.79
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