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Abstract

In this study, we propose a lightweight surrogate random forest (L-SRF) algorithm that can be interpreted through a new
rule distillation method. The common surrogate models replace the existing heavy and deep but high-performance black
box model using a teacher—student learning framework. However, the student model obtained in this way must maintain
the performance of the teacher model, and thus the degree of model simplification and transparency is extremely limited.
Therefore, to increase model transparency while maintaining the performance of the surrogate model, we propose two
methods. First, we propose a cross-entropy Shapley value to evaluate the contribution of each rule in the student surrogate
model. Second, a random mini-grouping method is devised to effectively distilless important rules while minimizing the
overfitting problem caused by a model simplification. The proposed L-SRF based on a rule contribution has the advantage
of improving the degree of simplification and transparency of the model by realizing the large distillation ratio against the
initial SRF model. In addition, because the proposed L-SRF removes unnecessary rules, it is possible to minimize the loss
of the importance and relevance of each feature. To demonstrate the superior performance of the proposed L-SRF method,
several comparative experiments were conducted on various data sets. We proved experimentally that the proposed method
achieves a more effective performance than black box Al models in terms of model transparency and memory requirement,
as well as the interpretation of the feature relevance.

Keywords Explainable artificial intelligence - Surrogate random forest - Rule distillation - Cross-Entropy Shapley

1 Introduction

When classifying artificial intelligence (Al) into four waves,
deep neural network (DNN)-based algorithms, for example,
a convolutional neural network (CNN), a recurrent neural
network (RNN), and a generative adversarial network
(GAN), correspond to the second wave and focus on
improving the prediction ability by conducting learning
with a large amount of data. Despite the excellent
recognition performance of DNN-based algorithms, a DNN
is greedy in terms of requiring large amounts of training
data. Because the learning of a DNN relies on an error
backpropagation algorithm, this DNN-based model cannot
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explain the structure of a black box model or the results of
inference. The current generation of Al systems are opaque,
non-intuitive, and difficult for people to understand owing
to their difficulty in explaining their decisions and actions
to users. Therefore, as the third wave of Al, the ability
to observe the cause and effect of reasoning in a machine
learning model is required, and as a result, the necessity
of explainable AI (xAI) or interpretable machine learning
(IML) research has emerged [1]. XAl is essential for the
decision-making of users because users should be able to
understand Al decisions, trust the results, and manage such
information effectively.

xAl technologies can be largely divided into a trans-
parent design and post-hoc explainability. An Al model is
considered to be transparent if the model structure is under-
standable by itself. Transparent Al models contain one or
all levels of model transparency (e.g., simulatability, decom-
posability, and algorithm transparency) [2]. Representative
algorithms of transparent Al models include decision trees,
k-nearest neighbors, and Bayesian models. These meth-
ods have an advantage in that there are few variables and
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the relationship between the variables is readable; however,
there is a disadvantage in that the prediction performance is
lower than that of a DNN. In terms of the model prediction
performance, the performance of black box models, such as
a DNN, exceeds that of simple machine learning algorithms.
Howeyver, because black box models cannot meet the model
explainability, the goal of a post-hoc explanation is to cre-
ate a separate explainable subsystem while leaving the black
box model as is in terms of how the model applies inference
predictions for the inputs.

Post-hoc explainability can be further divided into
model-agnostic and model-specific methods [1, 2]. Because
model-agnostic methods are not tied to a specific type
of ML model, they are suitable for more general-purpose
applications. Among several model agnostic approaches,
we focus on model simplification, in which the model
is simplified by eliminating parameters that approximate
a complex model as a transparent model. Because a
model simplified by imitating a complex model has
some properties of model transparency, an explanation by
simplification is possible and has the advantage of not
losing the prediction performance of the original model.
An explanation by simplification refers to the technique
of rebuilding an entirely new system based on the trained
model to be explained. Models that have simplified the
previous complex model typically attempt to reduce the
complexity and maintain a similar prediction performance
while optimizing the functionality and similarity of the
previous model [2]. In addition, it is possible to describe
the feature relevance for training and test data through a
simplified approach.

Explanation by simplification is a technique that can be
applied most widely in the category of post-hoc model-
agnostic methods regardless of the complexity of the black
box model [2]. In recent years, there have been many studies
on model simplification in the field of xAl, indicating that
this approach is expected to continue to play a central role in
xAl Similar studies related to explanation by simplification
are as follows.

Bastani et al. [4] proposed model extraction for
interpreting the overall reasoning process achieved by a
model. Given a model f, the interpretation produced by
the proposed approximation is 7 (x) =~ f(x), where T is
an interpretable model. This method takes T as a decision
tree, which has been established as highly interpretable.
However, an interpretable decision tree incurs an overfitting
and a deteriorated performance compared to a complex
model. Tan et al. [3] proposed a model distillation algorithm
called distill-and-compare. With this method, a transparent
student model is trained to mimic the risk score assigned
by the black box model as a teacher to gain insight into
the black box model. However, this method does not
present the difference in prediction performance and feature
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contribution according to the degree of distillation of the
mimic model, which is an important measure of model
simplification.

In terms of simplification methods of DNN using knowl-
edge distillation, Zagoruyko and Komodakis [5] defined
attention to the CNN, which improves the performance
of the student CNN network by mimicking the attention
map of a powerful teacher network. Similarly, Xu et al.
[6] introduced DarkSight, a dimension reduction technique
for interpreting deep classifiers based on a knowledge dis-
tillation. DarkSight matches the dark knowledge between
students and teachers and compresses the black box teacher
classifier into a simple and interpretable student classifier.
However, because these methods still rely on compress-
ing the existing DNN model to shallow DNN model, the
model’s transparency is limited. Kim et al. [7] proposed
a method for analyzing and simplifying the black box
model of a deep random forest (RF) using the proposed
rule removal. The feature contribution provides the basis
for determining the impact of a feature on the decision-
making process of the rule set, and the black box model can
be simplified by selecting top-k important rules based on
measuring the feature contribution. As a result, the simpli-
fied model has fewer parameters and rules than the original
model. Because this method relies on the traditional tree rule
evaluation method, the reliability of rule removal is weak.
Kim and Boukouvala [8] investigated the effectiveness of a
subset selection method for developing a surrogate regres-
sion that balances accuracy and complexity. The subset
selection produces a sparse regression model by selecting
only a subset of the original features, which are linearly
combined to produce a different set of surrogate models.
However, this method requires high computational cost for
feature selection and identification of model parameters,
and performance degrades as the dimension of the problem
increases. As an application of model simplification, Kim
et al. [9] also proposed a lightweight pupil tracking algo-
rithm for on-device ML that uses a fast and accurate cascade
deep regression forest instead of a DNN. A pupil estimation
is applied roughly in a layer-by-layer regression forest struc-
ture and simplifies each regression forest using the proposed
rule distillation algorithm to select top-k significant rules
that make up the regression forest. The goal of this algo-
rithm is to create a more transparent and adaptable model for
application to on-device ML systems while maintaining an
accurate pupil tracking performance. However, this method
has the disadvantage that the higher the distillation ratio, the
more the model performance is overfit or deteriorated.

The various model simplification methods introduced so
far still have the following limitations. 1) Surrogate models
are still not transparent because they are composed of
several unnecessary rules or layers. 2) The higher the model
distillation ratio, the more the surrogate model is trained to
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overfit and the feature relevance performance decreases. 3)
The algorithm for model distillation is heuristic or relies on
traditional rule contributions.

In this study, we propose a new XAI method called
lightweight surrogate random forest (L-SRF) that simplifies
the model by decomposing the black box teacher model
and increases transparency at the same time. With a pattern
similar to distill-and-compare [3], the L-SRF can replace the
existing heavy, deep, but high performing teacher complex
model while maintaining the performance of the black box
model. Through an L-SREF, it is possible to analyze the
feature relevance that affects the inference, and to explain
how the L-SRF model structures operate in the inference
process. In addition, our approach works with any model
family and is independent of the implementation.

In our initial study [10],! we introduced a brief SRF to
simplify the black box teacher in terms of the model size
and prediction performance for solving the classification.
However, in this study, we focus on a detailed explanation
of how the black box complex model is distilled and rebuilt
into an explainable simplification structure and prove the
efficiency of the L-SRF model in terms of the transparency
and accuracy.

2 Surrogate random forest

DNN models achieve a higher performance as the model
becomes deeper and heavier but has a disadvantage in
terms of the explainability. In addition, owing to the large
number of parameters, the memory usage increases and
the speed decreases. To create a model that is explainable
and lightweight, a surrogate model based on the teacher—
student (T-S) framework [3, 5, 6, 11] was introduced that
can construct a shallow student model by reducing the
size of the teacher model while maintaining a performance
similar to that of the deep and wide teacher model. The
approach for creating a surrogate model can be divided into
two types depending on which model the user is targeting.
If we focus only on reducing the weight of the model,
the complex teacher model can be reconstructed into a
transparent approach such as a decision tree. This method
has an advantage in that the model itself is interpretable
and transparent; however, it has a disadvantage in that the
performance of the surrogate model is much lower than that
of the teacher model when there are numerous classification
classes, and the number of dimensions of the feature vector
is large. Another method is to reduce the surrogate model
itself to a gray box. With this method, the performance

A shorter version of this paper was presented at the Neur[PS2020
Workshop.

of the model is similar to that of the teacher model, and
the feature relevance and importance that contribute to the
decision of the model can be inferred. In this case, a random
forest (RF) [12], gradient boosting method (GBM) [13],
XGBoost [14], and CatBoost [15] methods are used as
surrogate models.

In this paper, we propose an L-SRF model that can
maintain the performance of a complex black box model
while having fewer parameters using the T-S framework.
In addition, instead of a typical post-hoc based method
that must concurrently maintain a black box model for
prediction and a surrogate model for explanation, this
study aims at achieving a prediction and explanation
simultaneously with a single L-SRF. The GBM, XGBoost,
CatBoost and an RF are mainly used as student models to
create an explainable surrogate model. Unlike the GBM,
XGBoost, CatBoost, an RF preserves the properties of the
rules that make up the tree, and thus are more effective
in eliminating unnecessary rules while maintaining the
tree structure. By contrast, boosting-based models change
the structure of a tree by using gradient differences, and
thus it is difficult to apply to a rule distillation using the
characteristics of the rules. To create a surrogate model that
achieves a good performance, it is important to develop a
teacher model with an excellent performance. Therefore,
this paper uses automated machine learning [14] to create
a DNN-based teacher model with the highest performance
for a given dataset. By following the T-S framework and our
proposed rule distillation algorithm, it is possible to create a
reduced L-SRF model that inherits the characteristics of the
teacher.

The process of generating a student RF model based
on the T-S framework is as shown in Fig. 1. The training
dataset is divided into dataset A for training the teacher
model and dataset B for training the student model. First,
the teacher DNN model is obtained by applying dataset
A labeled with Os and 1s (hard target) to AutoML (http://
AutoML.org). Then, by inputting the unlabeled dataset B
in the trained teacher DNN, a soft target, which is a class-
specific probability value output from softmax, is assigned
as a label to dataset B. Now, we train the student RF
model using dataset B, which is labeled a soft target.
The student RF selects the model with the most similar
performance as the teacher while controlling the number
and depth of the tree. During this process, to prevent
an RF overfitting, various RFs are learned using the M-
fold-cross-validation method, and the RF with the best
performance is selected as the final student RF. The selected
student RF model can be trained to consider the inter-
class relationships of the teacher DNN model by using
training data labeled as a soft target. The student RF model
created through a T-S framework learning is called the
SRF model.
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Fig. 1 Teacher-student training framework: a the training dataset is
divided into labeled dataset A and unlabeled dataset B. The teacher
DNN model is trained with dataset A. b unlabeled dataset B is applied
to the trained teacher DNN and a class-specific probability value is

3 Lightness of SRF

A Shapley additive explanation [16] is a representative
surrogate model-based feature relevance estimation method.
With this method, a data prediction is conducted using a
black-box model, and the feature relevance is applied using
a surrogate model. Therefore, for an explainable prediction
of the data, the black box model and the surrogate model
must be used at the same time. However, this typical post-
hoc based method is difficult to use in a lightweight system
because the size of the model becomes excessively large.
Therefore, our proposed L-SRF has the following goals: 1)
L-SRF does not maintain a separate black box model, but
can preserve the data prediction performance, and 2) the
model itself has better transparency than the initial surrogate
model. 3) It makes the SRF lighter but maintains the
explainability of the feature relevance of the initial surrogate
model by eliminating only redundant or unnecessary rules.
To further lighten the SRF model obtained from the T-S
framework, we proposed a rule distillation method based on
the Cross-Entropy Shapley (CES) value.

3.1 Cross-entropy Shapley value

The RF is an ensemble model of decision trees, where each
decision tree is a set of rules that are paths from a root to an
intermediate and finally to a leaf node [12]. We can reduce
the rules of the RF by evaluating the contribution of all the
rules constituting the decision trees and eliminating the rules
with a low contribution. In this study, we use the Shapley
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assigned as a label to dataset B. ¢ soft target dataset B is used to train
the student RF model. d the RF with the best performance is selected
as the final student surrogate RF using M-fold-cross-validation method

value [17] to determine the contribution of the rule. The
original Shapley value was used to measure the contribution
of the input feature from a machine learning model. This
value measures the difference in accuracy according to the
presence or absence of a specific feature, and the greater the
difference, the higher the degree of contribution given to the
corresponding feature. In this study, instead of determining
the contribution of the input feature, the Shapley value
is used to determine the contribution to the rule in
the SRF.

Because the Shapley value is an algorithm that deter-
mines the contribution of individual features, it is necessary
to modify the algorithm to evaluate the contribution of the
rules constituting the SRF. Therefore, we propose a new
CES value to evaluate the contribution of each rule of the
SRF. Whereas the existing rule elimination method evalu-
ates the prediction accuracy according to the rule of the tree
[10], the proposed CES values can be used to evaluate the
more detailed rule contribution by considering the proba-
bility for each class of a particular rule used in the tree.
First, suppose that the rule set R of SRF consists of N rules.
Here, r; is the j-th rule constituting R, and R is a subset
R composed of N — 1 rules excluding the r; rule. In this
case, the contribution of the r; rule in a subset R can be cal-
culated by considering the classification probability p; for
each class c. In addition, T¢ E(R, rj) represents the cross-
entropy between a subgroup g and an individual rule r;.

Tee®,rj) ==Y pi(RUr;)log(pi(R)) (1)

i=1
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The CES value ®(r;) of a j-th rule is the weighted and
summed contribution of all possible rule combinations that
the j-th rule can contain:

2

rn}\rj

IRI!(N — [R| — 1)!
N!

Rc{r|

TceR, 7)) ()
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By measuring the CES value for each rule of the initial
SRF, the SRF is reduced by eliminating the rule with a low
contribution.

3.2 Rule distillation using mini-grouping

In general, the number of rules of an SRF ranges from tens
of thousands to millions of rules, depending on the tree and
node depth. The individual rule’s contribution check and
distillation process for the entire rule not only requires a
lengthy processing time, it can also cause an over-fitting of
the model. Therefore, in this study, a random mini-grouping
method was devised to minimize the overfitting problem
caused by rule distillation based on individual contribution
checks. In the random mini-grouping, the rules of the SRF
are randomly grouped into K mini-groups, as shown in
Fig. 2b, and the degree of contribution is evaluated by
estimating the CES value for each mini-group. The CES
value for each mini-group is measured (Fig. 2c) against rest
mini-groups in the same manner as the original Shapley
method. This process is repeated H times, and the final
contribution of the rule is determined by the average value
of each rule in the mini-group, as shown in Fig. 2c. Finally,
by eliminating the rules with a low contribution according
to the measured contribution, the model can greatly distill
the model size while maintaining the existing prediction
performance.

Algorithm 1 introduces the rule distillation process
through a random mini-grouping using the CES value of
the SRF model. Equation 3 of Algorithm 1 was modified

to calculate the CES value between the mini-group set and
each mini-group g instead of calculating the CES value
between a subset R and individual rule r.

Algorithm 1 Rule distillation using random mini-grouping.

Input: Trained SRF, Number of rules N, Number of mini-groups
K, Number of iterations H, Rule set R = {ry,r, ..., r},
Group set G = {g1, g2, ..., gk}, mini-group g, rule elimination
rate 8

Output: L — SRF

. R, G, gk <0

t|lgl=N/K > the number of rules in each mini-group

. Generate rule set R from SRF (Fig. 2a)

forh =1to H do
fork =1to0o K do

gr = random.choices(R)
mini-group g from R (Fig. 2b)
G'=G"ug > stack each mini-group g to h-th
group set G” (Fig. 2b)
end for
G" = {31, g2, ..., &}
fork =1t0 K do

> repeat H times
> repeat K mini-groups
> randomly extract a

> a generated group set
10: > repeat K mini-groups

11:

& calculate the /-th CES value " of k-th mini group g in a

group set G" (Fig. 2c)
end for
end for
fori =1to N do > repeat N rules
> average calculation of CES values for each rule r;

belonging to the mini-group g (Fig. 2d)
15:

S =L K (@ (g1 () )

> where indicator function 1(-) < lifgx > r;

12:
13:
14:

16:
17:

end for

R* «— sort(ﬁ)(ri), ascend)
values

L — SRF <« build_RF_from_rules(R*[: N x §])
eliminate weak ruels and rebuild L-SRF

> sort existing rules by CES

18: >

Fig.2 Rule distillation process [ G Hterafion 1
using random mini-grouping Rule setR [ G2 _lteration 2
and CES: a arule set R F—— Iteration 1 P ‘
consisting of rules extracted #ry P oeoeemiesiooooooes : = okey B R i SO G
from the SRF and b mini-groups PR e ! 8 e[ : :
randomly generated from R and - ! &*’w ; — H : ® (r12) = (9 (g 3 T Mg It 40" (g 3 112))/h ‘
¢ the CES value is measured for - A Beme <A o a :
each mini-group. This process is i | SR | e i[_ g o i> ’ ® (26) = (@81 3 120) + ©7(81 3 o).+ e 3 o)/ ‘
repeated H times. d Average E> Dotrigan | @ ] —3 :
calculation of CES values for E 2. | < o | —a — ’6(%2) = (0'(g I BTl " (81 3 192))/h ‘
each rule belonging to the mini- i || okl o) e o —2 2w :
group. Rules with small average . : irr,. B YR ¢ ’ 3 ‘Erzl)n))/: (@1(82 3 T210) + (812 3 Taso)+... +O" (g ‘
CES values are eliminated ) L Y ﬂ#n v e

= N

(a) (b) © (d)
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4 Materials and methods
4.1 Datasets

The UCI repository [18] and the Penn Machine Learning
Benchmarks (PMLB) [19] provide several datasets for
testing the machine learning and intelligent systems. In
this paper, we prove the effectiveness of the proposed
method using Adult Income among UCI datasets, and the
Phoneme, Car, Mushroom, Chess, and the Mfeat factors
among PMLB. The Adult Income dataset predicts whether
an individual’s income will exceed $50,000 per year,
based on demographics of adults aged 16 and older. This
dataset contains 48,842 demographic data on people who
participated in the 1994 census for 14 attributes such as
age, gender, occupation, workclass, and education. The
Phoneme is a dataset to distinguish between nasal and oral
sounds. It contains 5,404 data for six attributes. The Car
is a dataset for evaluating cars according to the conceptual
structure, such as the estimated safety of the car, trunk size,
number of people carrying, number of doors, etc. It consists
of 1,728 samples for seven attributes. The Mushroom is
a dataset containing physical properties for classification
as poisonous or edible and contains 8,124 samples with
20 properties. The Chess is a dataset for estimating the
result of a chess match when only king and pawn remain
in the white side and king and rook remain in the black
side. It consists of 3,196 samples with 20 attributes. The
Mfeat factor is a dataset for recognition of handwritten
numerals (0-9). 200 instances per class (for a total of 2,000
samples) have been digitized in binary images with 216
attributes. We conducted experiments using each dataset
during the training and testing processing for the models.
The UCI adult income dataset was divided into a ratio
of approximately 7:3 following the official training/testing
split, and the other datasets were divided into five-folds.

4.2 Toolkit and library

In this study, the AutoGluon [20] toolkit is used to generate
the AutoML-based teacher model, and Scikit-learn and
Python are used to implement the surrogate RF model. In
addition, we use the SHAP package in Python to visualize
the influence of the feature vectors on the output.

5 Experimental results

Selecting an accurate teacher model is one of the essential
factors in the T-S framework because the performance of
the student model largely depends on the performance of
the teacher model. Various machine learning algorithms
can be used as the teacher model, but in this study,
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AutoGluon, an AutoML toolkit [20] for deep learning, is
used. AutoML is highly adaptable to various real-world
applications such as images, text, or tabular data, and can
automatically utilize the latest deep learning technologies
without expert knowledge. In addition, AutoML makes it
easy to utilize automatic hyperparameter tuning, model
selection/architecture discovery, and data processing. For
the student model SRF, Scikit-learn and Python were
applied.

5.1 Hyper-parameter evaluation for model
simplification

The mini-grouping process requires two hyper-parameters,
the number of mini-groups, and the number of grouping
iterations. Because the size and performance of the L-SRF
depend on two parameters, it is necessary to find the optimal
parameters to create a lightweight and generalized L-SRF.
First, to find the optimal iteration, we measured the F1-score
by changing the number of iterations and the distillation
rate for the initial SRF using the UCI Adult Income dataset,
as shown in Table 1. At this time, the maximum number
of allowed mini-groups was fixed at 50. If the maximum
number of allowed mini-groups is too large, an overfitting
may occur because the number of rules allocated to one
mini-group is too small. Here, the initial SRF model created
based on the T-S framework has 100% (1.0) of the rules
before rule distillation is applied. From the initial SRF, we
repeatedly removed the number of rules by 10% (0.1) and
evaluated the relative F1-score.

As shown in Table 1, the difference in F1-score according
based on the number of iterations is low. This means that
the number of iterations does not significantly affect the

Table 1 Comparison of Fl-score performance according to number
of iterations for mini-grouping with rule distillation rate for the SRF
using UCI Adult Income dataset

Rule F1-Score

distillation Number of Iterations

rate (8) 1 3 5 10 15
1.0 90.40 90.40 90.40 90.40 90.40
0.9 90.39 90.41 90.40 90.40 90.39
0.8 90.39 90.43 90.43 90.40 90.38
0.7 90.38 90.44 90.42 90.37 90.34
0.6 90.38 90.42 90.41 90.34 90.33
0.5 90.16 90.38 90.42 90.31 90.28
0.4 90.15 90.39 90.41 90.27 90.31
0.3 89.86 89.96 90.34 89.74 90.22
0.2 79.09 89.33 89.46 89.12 89.57
0.1 72.99 81.76 86.12 83.34 87.50
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improvement in the performance of the L-SRF. When the
number of iterations is 3, the average Fl-score of the all
rule distillation rate shows slightly higher than other cases.
Increasing the number of iterations for L-SRF increases
the effort required during the learning process, and thus
when the performance is similar, an effective approach
is to selectively limit the number of iterations as much
as possible and find the optimal number of mini-groups,
which is another parameter. Therefore, according to the
experimental results listed in Table 1, we determined the
optimal number of iterations to be 3. According to the
results, the number of iterations was therefore set to 3, and
the number of minigroups was repeatedly changed. Table 2
shows the resulting measurement F1-score while adjusting
the rule distillation rate and the number of mini-groups. As
shown in Table 2, it can be seen that the highest F1-score
is obtained when the number of mini-groups is 50 and the
rule distillation rate is 0.7. In addition, in terms of F1-score,
SRF (0.7) shows an approximately 0.04% higher F1-score
than the initial SRF (1.0) without a rule distillation, and thus
it can be seen that unnecessary rules or rules with a low
contribution are effectively eliminated through the proposed
algorithm.

The purpose of the proposed L-SRF is to design a
lightweight surrogate model that can operate in a device
with low specifications while maintaining the performance
of the teaching model. Therefore, we evaluated how the
number of parameters and operations decreased according
to the rule distillation rate in the SRF. Similarly, a change in
performance according to the rule distillation rate was also
observed. During the experiment, the number of iterations
was set to 3, and the number of mini-groups was set to 50
according to the results of the previous experiments.

Table2 Comparison of F1-score performance according to number of
mini-groups with rule distillation rate for the SRF using UCI Adult
Income dataset

As shown in the experimental results in Table 3, the
number of SRF parameters decreased in proportion to the
rule distillation rate. In particular, when we eliminated 70%
of the rules from the complete set of rules (SRF(0.3)),
the number of parameters was reduced by approximately
53% while maintaining the same level of F1-score. Through
these experiments, it can be seen that the proposed model
simplification method can effectively distillate the size
of the model while maintaining the existing Fl-score. In
particular, in the case of SRF (0.1), the number of rules is
reduced to about 300, so the variables included in the rules
can be read, and the size of the rule set can be managed by
humans without external assistance.

5.2 Surrogate model comparison

Representative surrogate models used in machine learning
include the GBM [13], XGBoost [14], CatBoost [15] and
an RF [12]. With the GBM, the gradient informs the
weakness of the classifier learned thus far, and the model
learns to compensate for the weakness. The GBM has an
excellent boosting ability, but the learning is slow and has
an overfitting problem. XGBoost was proposed to overcome
the shortcomings of the GBM. This method is faster than
the GBM and provides regulation and an early stopping
function to prevent an overfitting. CatBoost provides a novel
gradient boosting scheme for reducing overfitting, as well
as this method allows to fast parameter tuning through
categorical feature supporting. To test this possibility as a
surrogate, we first trained four surrogate models with the
output of the same teacher DNN using the same Adult
Income dataset. All four methods consisted of 10 trees, and
the maximum depth was fixed at 7, and the number of
features was set to +/d for finding the best splits in each tree
nodes.

Rule F1-Score Table3 The change in model size according to the rule distillation rate
with the UCI Adult Income dataset

distillation Number of mini-groups
Rule distillation Precision Recall F1-score Number of

rate (8) 1 20 30 40 50 60 rate (8) param.

1.0 90.40 9040 9040 9040 90.40  90.40 1.0 86.15 95.10 90.40 9,286

0.9 90.40 9041 90.37  90.41 90.41 90.41 0.9 86.08 95.20 90.41 8,901

0.8 90.40  90.39  90.37 90.41 90.43  90.41 0.8 86.09 95.24 90.43 8,428

0.7 90.40 9039 9036 9042  90.44  90.39 0.7 86.13 95.21 90.44 7,912

0.6 90.41 90.39  90.37 9042 9042  90.38 0.6 86.10 95.20 90.42 7,301

0.5 90.40 90.37 9032 9042 9038  90.37 0.5 86.08 95.14 90.38 6,661

0.4 90.27  90.38 90.37 9035 9039  90.39 0.4 86.02 95.24 90.39 5,892

0.3 90.25 90.26  90.04  90.01 89.96  90.05 0.3 86.03 94.27 89.96 4,898

0.2 89.57 89.67 89.91 89.00  89.33 89.44 0.2 86.00 92.92 89.33 3,880

0.1 88.06  84.03 86.05 84.56  81.76  86.69 0.1 86.60 77.43 81.76 2,459
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Table 4 Comparison of precision, recall, F1-score, and number of parameters for four surrogate models trained with a teach model and the UCI

Adult Income dataset

Evaluation Metrics Teacher DNN [20] Surrogate GBM [13] Surrogate XGBoost [14] Surrogate CatBoost [15] SRF(1.0)
Precision 88.62 84.81 87.79 87.33 86.15
Recall 93.41 96.72 93.79 94.13 95.10
Fl1-score 90.79 90.37 90.69 90.60 90.40
Number of param. - 17,162 15,888 17,820 9,286

As shown in Table 4, the GBM showed a level of
Fl-score 0.42% lower than that of the teacher model,
and XGBoost was 0.1%, and CatBoost was 0.19% which
showed no significant difference from the teacher. The
SRF showed a 0.39% lower performance than the teacher
model, which achieved a performance 0.09% lower than
that of XGBoost. In terms of the number of parameters, the
GBM requires approximately 1.84-times more parameters
and XGBoost requires approximately 1.71-times more
parameters, and CatBoot requires approximately 1.91-
times more parameters than the SRFE. From these results,
we confirmed that SRF is a suitable model for model
simplification because it inherits the performance of the
teacher model more closely than other boosting-based
methods and uses a small number of parameters.

5.3 Comparison with machine learning

To prove the excellent performance of the proposed L-
SRF, a comparative experiment was conducted with the RF

[12], ExtRa [21], k-NN [22], SVMs [23], gcForest [24],
AdaBoost [25], GBM [13], XGBoost [14], LGBM [26],
CatBoost [15], NgBoost [27] which is a multi-parameter
boosting algorithm, and KiGB [28] which is an unified
framework for knowledge intensive gradient boosting, and
teacher DNN based on Auto Gluon using additional datasets
such as the Phoneme, Car, Mushroom, Chess, and the Mfeat
factors of PMLB. The evaluation procedure was conducted
under Five-fold cross-validation manner. All 13 methods
used the same trees, the maximum depth, and the number of
features as in previous experiments..

As shown in Table 5, teacher DNN performed the best
for all of the dataset. Among the comparison methods
except for the teacher DNN, XGBoost showed the best
performance for the Car and Chess datasets. Five methods
that do not use boosting ([12, 21, 24]) showed an overall
lower accuracy than the other boosting-based methods
([25], [13, 15, 26, 28]). Three boosting-based methods
(CatBoost [15], NgBoost [27], and KiGB [28]) showed
similar results for five datasets. However, these methods

Table 5 Performance comparison with machine learning models using PMLB datasets

Methods Five-Fold CV Accuracy (%)=std
Phoneme Car Mushroom Chess Mfeat factors

RF [12] 85.124+0.85 84.8443.54 100.0+0.00 94.06+0.73 91.65+1.19
ExtRa [21] 81.18+0.88 85.5942.54 99.78+0.19 94.96+0.74 93.55+0.48
k-NN [22] 88.43+0.38 82.65+6.49 99.98+0.05 95.78+0.42 94.60+0.72
SVMs [23] 83.7940.52 86.87+4.38 99.744+0.18 97.22+0.56 89.20+2.05
gcForest [24] 87.58+0.43 88.954+4.96 100.0+0.00 97.31+0.35 95.35+0.41
AdaBoost [25] 86.07+0.78 90.57+2.77 99.431+0.24 94.52+1.05 92.15+1.53
GBM [13] 86.75+0.41 92.31+3.39 100.0+0.00 97.90+1.02 91.25+1.17
XGBoost [14] 88.34+0.61 93.29+2.52 100.0+0.00 99.12+0.36 94.55+1.20
LGBM [26] 85.604+0.43 83.17+£7.01 99.84+0.14 96.43+0.85 94.05+1.24
CatBoost [15] 86.68+0.52 90.86+2.76 100.0+0.00 98.84+0.23 91.50+1.28
NgBoost [27] 86.68+0.35 92.31+0.10 100.0+0.00 97.28+0.69 90.15+1.60
KiGB [28] 86.8240.58 92.71+2.46 100.0+0.00 97.78+0.91 90.85+0.82
Teacher DNN (AutoML [20]) 91.23+0.49 98.7340.68 100.0+0.00 99.91+0.08 99.90+0.12
SRF(1.0) 86.36+0.73 91.614+2.67 100.0+0.00 97.03+0.89 90.60+0.80
L-SRF(0.7) 85.9940.64 90.22+2.26 100.0+0.00 96.84+0.79 90.20+0.60
L-SRF(0.4) 85.214+0.87 88.8343.57 99.90+0.03 96.71+0.61 88.75+0.79
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still showed a 1-4% difference in accuracy compared to
XGBoost [14]. Compared to L-SRF (0.7), the accuracy
of XGBoost was improved by about 3% overall, but the
number of parameters is actually 2 times more required.
In particular, the L-SRF (0.7) model obtained through rule
distillation showed a similar performance with the original
SRF (1.0) model except the Phoneme generated by teacher
DNN. These results show that the proposed CES value
and random mini-grouping method of L-SRF effectively
eliminate unimportant rules that degrade the performance,
thereby increasing the performance. However, although L-
SRF (0.4) used 1.34 times fewer parameters than L-SRF
(0.7), the accuracy was similar or higher than that of
gcForest [24] and LGBM [26] for the Car, Mushroom and
Chess datasets.

Experimental results showed that the L-SRF model based
on the T-S framework can maintain similar performance to
the method using only the model itself, although it used a
small number of parameters.

5.4 Visualization

Among the post-hoc xAl methods, unlike the DNN-based
method, the biggest advantage of the RF-based surrogate
model is that it can measure the feature relevance. The
contribution of the feature to the output of L-SRF was
analyzed through Shapley additive descriptions (SHAP)
[16], which can measure the feature relevance, and is an XAl
technique. In other words, we use SHAP to quantify how
important the features of the L-SRF model are to the results,
and based on this, we verify that the proposed method
can achieve a model simplification while maintaining the
feature relevance. In addition, by comparing the SHAP
results of the original SRF (1.0) and L-SRF (0.2), it can
be seen that even if the model is light, it does not overfit

Fig.3 Visualization for the
magnitude of influence on the
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model without rule distillation, NativeCouniry ]
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and preserves important rules well, thereby maintaining
the feature relevance similar to that of the original model.
To more easily compare the SHAP values of the original
SRF (1.0) with those of the simplified L-SRF (0.2), the
local importance for individual features was measured and
visualized in a plot using the UCI Adult Income dataset, as
shown in Fig. 3.

As shown in Fig. 3, the two methods show mostly similar
patterns in terms of local importance. The features affecting
the output result and having similar patterns between the
two models are in order of “EducationNum”, “Race”,
and “CapitalGain”, and the positive and negative effects
according to the feature values also show similar patterns.
Although many rules were eliminated from the initial SRF,
the L-SRF (0.2) showed a similar pattern in terms of the
feature correlation, and thus we can see that unnecessary
rules were effectively eliminated through the proposed CES
and mini-grouping

Second, we visualized the correlation between features
using SHAP dependence plots to check whether the
correlations are preserved even in a simplified L-SRF
(0.2) model. Based on a comparison of the correlations
between all features, “EducationNum” was found to have
the highest correlation with the other features. Figure 4
shows the SHAP values for the combination of the
two features, “Age”-“EducationNum” and “WorkClass”-
“EducationNum”, which had a high correlation with
“EducationNum”. Through this result, we can infer that
the proposed L-SRF model achieves a consistent feature
relevance even after the simplification process because it
maintains correlations between features even in lightweight
models. Therefore, the proposed L-SRF method can
improve the model transparency by applying a model
simplification while maintaining the feature relevance,
which is the basic property of XAl explainability.
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Fig.4 Visualization of
correlation between features 0.06
estimated from L-SRF (0.4) 0.04
using UCI Adult Income
dataset, a SHAP dependence
plot between “age” and
“EducationNum” feature, b
SHAP dependence plot between
“WorkClass” and
“EducationNum” feature
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6 Conclusion

In this paper, among several xAl approaches, we proposed a
new L-SRF algorithm that can increase the transparency of
a complex black box model through a model simplification
and analyze the features that influence the prediction
through the feature relevance. The proposed L-SRF method
has confirmed the ability to compress the model on a small
scale while guaranteeing the same prediction performance
as the existing complex model. In particular, by applying
mini-grouping and a CES proposed in an RF to create a
surrogate model instead of XGBoost, GBM or the CatBoost,
we were able to design a lightweight surrogate model that
can effectively reduce the number of rules and maintain the
prediction performance and feature relevance at the same
time.

The proposed L-SRF is similar to XGBoost, GBM, and
CatBoost in terms of accuracy through experiments on
various data sets. In terms of model size, the proposed
method effectively eliminated the less important rules,
thereby significantly reducing the model size and avoiding
the overfitting problem caused by a model reduction. In
future research, we will improve the L-SRF model for
application to a variety of data, including images and videos,
and apply it to an embedded device to test its feasibility
in real problems. Furthermore, because the L-SRF is still
less accurate than XGBoost even if unimportant rules are
removed, it is necessary to devise a lightweight version
of XGBoost by modifying the proposed rule distillation
method to fit the XGBoost.

Acknowledgements This research was supported by the Bisa
Research Grant of Keimyung University in 2021.

References

1. Adadi A, Berrada M (2018) Peeking inside the black-box: A
survey on explainable artificial intelligence (XAI). IEEE Access
6:52138-52160

@ Springer

90

10.

11.

12.

13.

14.

15.

17.

18.
19.

20.

21.

22.

16.00 16.00
0.125
14.12 a 14.12
< 0.100
12.25 o 12.25
£ < 0075 g
10.38 3 S 10.38 3
2 > 0.050 IS
850 S S 850
® g 0.025 . S
662 S 3 « 662 3
> <]
47 & &O-OOO Ll | 4.75 -
15 I 002 o :
2.88 0.050 : 2.88
1.00 1.00
0 1 2 3 4 5 6 7 8
WorkClass

(b)

. Arrieta AB et al (2020) Explainable artificial intelligence

(XAI): concepts, taxonomies, opportunities and challenges toward
responsible AI. ELSEVIER Inf Fusion 58:82-115

. Tan S et al (2018) Distill-and-compare: auditing black-box

models using transparent model distillation. In: 2018 AAAI/ACM
conference on Al, ethics and society. pp 303-310

. Bastani O, Kim C, Bastani H. (2017) Interpretability via model

extraction. arXiv:1706.09773

. Zagoruyko S, Komodakis N (2017) Paying more attention to

attention: improving the performance of convolutional neural
networks via attention transfer. In: ICLR, pp 1-11

. Xu K et al (2018) Interpreting deep classifier by visual distillation

of dark knowledge. arXiv:1803.04042

. Kim S, Jeong M, Ko BC (2020) Interpretation and simplification

of deep forest. TechRxiv, techrxiv. 11661246.v1

. Kim S, Boukouvala F (2020) Machine learning-based surrogate

modeling for data-driven optimization: a comparison of subset
selection for regression techniques. Springer Optim Lett 14:989—
1010

. Kim S, Jeong M, Ko BC (2020) Energy efficient pupil tracking

based on rule distillation of cascade regression forest. MDPI
Sensors 20:1-17

Kim S, Jeong M, Ko BC (2020) Is the surrogate model
interpretable? In: NeurIPS workshops. pp 1-5

Kim SJ, Kwak SY, Ko BC (2019) Fast pedestrian detection in
surveillance video based on soft target training of shallow random
forest. IEEE ACCESS 7:12415-12426

Breiman L (2001) Random forest. Springer Mach Learn 45:5-32
Friedman J (2001) Greedy function approximation: a gradient
boosting machine. Ann Stat 29:1189-1232

Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting
system. In: 22nd ACM SIGKDD International conference on
knowledge discovery and data mining. pp 785-794

Dorogush AV, Ershov V, Gulin A (2018) CatBoost: gradient
boosting with categorical features support. arXiv:1810.11363

. Lundberg SM et al (2020) From local explanations to global

understanding with explainable Al for trees. Nature Mach Intell
2:56-67

Shapley LS (1953) A value for n-person games. In: Contributions
to the theory of games, vol 2, pp 307-317

Dua D, Graff C (2019) UCI Machine learning repository

Olson RS et al (2017) PMLB: a large benchmark suite for machine
learning evaluation and comparison. BioData mining 10:1-13
Erickson N et al (2020) AutoGluon-tabular: robust and accurate
automl for structured data. arXiv:2003.06505

Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized
trees. Mach Learn 63:3-42

Wilson DL (1972) Asymptotic properties of nearest neighbor rules
using edited data. IEEE Trans Syst Man Cybern 3:408-421


http://arxiv.org/abs/1706.09773
http://arxiv.org/abs/1803.04042
http://arxiv.org/abs/1810.11363
http://arxiv.org/abs/2003.06505

Lightweight surrogate random forest support for model simplification and feature relevance 481

23.

24.

25.

26.

Cortes C, Vapnik VN (1995) Support-vector networks. Mach
Learn 20:273-297

Zhou ZH, Feng J (2017) Deep forest: towards an alternative to
deep neural networks. arXiv:1702.08835

Freund Y, Schapire R (1995) A decision-theoretic generalization
of on-line learning and an application to boosting. ] Comput Syst
Sci 55:119-139

Ke G et al (2017) Lightgbm: A highly efficient gradient boosting
decision tree. In: NeurIPS, pp 3146-3154

27. Duan T et al (2020) Ngboost: Natural gradient boosting for
probabilistic prediction. In: ICML, pp 2690-2700

28. Kokel H et al (2020) A unified framework for knowledge intensive
gradient boosting: leveraging human experts for noisy sparse
domains. In: AAAL pp 4460-4468

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer


http://arxiv.org/abs/1702.08835

	Lightweight surrogate random forest support for model simplification and feature relevance
	Abstract
	Introduction
	Surrogate random forest
	Lightness of SRF
	Cross-entropy Shapley value
	Rule distillation using mini-grouping

	Materials and methods
	Datasets
	Toolkit and library

	Experimental results
	Hyper-parameter evaluation for model simplification
	Surrogate model comparison
	Comparison with machine learning
	Visualization

	Conclusion
	References


