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Abstract
Small sample time-series data with insufficient information are ubiquitous. It is challenging to improve the classification reliability
of small sample time-series data. At present, the dynamic classifications for small sample time-series data still lack a tailoredmethod.
To address this, we first setup the architecture of dynamic Bayesian derivative classifiers, and then establish a dynamic full Bayesian
classifier for small sample time-series data. The joint density of attributes is estimated by usingmultivariate Gaussian kernel function
with smoothing parameters. The dynamic full Bayesian classifier is optimized by splitting the smooth parameters into intervals,
optimizing the parameters by constructing a smoothing parameter configuration tree (or forest), then selecting and averaging the
classifiers. The dynamic full Bayesian classifier is applied to forecast turning points. Experimental results show that the resultant
classifier developed in this paper is more accurate when compared with other nine commonly used classifiers.

Keywords Dynamic full Bayesian classifier . Multivariate Gaussian kernel function . Smoothing parameter . Classification
accuracy . Small sample time-series data

1 Introduction

Many classifiers have been developed and widely applicated in
the past decades, such as the Support Vector Machine [1], BP
Neural Network [2], Decision Tree [3]. However, these classi-
fiers are mainly oriented to non-time-series data with an under-
lying assumption that the data records are independent and
identically distributed. Therefore, when the data records are
not independent and identically distributed, the classifiers

referred to are difficult to use for processing time-series data.
In addition, models applicable to econometric time-series fore-
casting such as ARIMA [4] and GARCH [5] are suitable for
regression, but not suitable for classification. The dynamic
Bayesian classifier [6] is a temporal extension to the Bayesian
classifier [7], it can be used to solve the classification problems
over large sample time-series data. However, there exist many
forecasts that need to be made based on small sample time-
series data in practice. For example, long-term global economy
growth and monetary policy rules are usually predicted based
on annual data such as GDP and CPI [7, 8]. There is little
tailored research on finding a dynamic Bayesian classifier for
processing small sample data at present. Therefore, in this pa-
per, we propose a dynamic Bayesian derivative classifier which
is predicated on the need to cater for classification problems
related specifically to small sample time-series data.

The last few decades have seen many Bayesian classifiers
[9] designed and proposed that can be divided principally into
two classes: some with discrete attributes and others with con-
tinuous attributes. In relation to the classifiers with discrete
attributes or the discretization of continuous attributes, Chow
and Liu (1968) [10] proposed the Dependency Tree classifier.
Friedman et al. (1997) [11] proposed the TAN (Tree augmented
naïve Bayes) classifier. Domingos and Pazzani (1997) [12] op-
timized the simple Bayesian classifier under 0–1 loss. Campos
et al. (2016) [13] proposed an extended version of the TAN
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classifier by relaxing the independence assumption. Cheng and
Greiner (1999) [14] designed a Bayesian network classifier
based on dependency analysis to determine the network struc-
ture. Petitjean et al. (2018) [15] presented a hierarchical
Dirichlet process to estimate accurate parameters for a
Bayesian network classifier. Yager (2006) [16] provided an
algorithm to obtain the weights associated with the extended
naïve Bayesian classifier. Webb et al. (2005) [17] presented a
classifier with an aggregating one-dependence estimator. Flores
et al. (2014) [18] proposed the semi-naïve Bayesian network
classifier. Daniel and Aryeh (2015) [19] examined the consis-
tency of the optimal naïve Bayesian classifier for weighted
expert majority votes under the small set of samples. Wang
et al. (2013) [20], Sathyaraj and Prabu (2018) [21], Yang and
Ding (2019) [22] and Kuang et al. (2019) [23] proposed
Bayesian network classifiers based on search and scoring.

In respect of classifiers with continuous attributes, two aspects
need to receive particular attention: one is setting up the classifier
structure; the other is estimating the attribute density function.
The structure of the Bayesian classifier with continuous attributes
is similar to that with discrete ones. Currently, Gaussian function
[24], Gaussian kernel function [25] and Copula function [26] are
the main functions adopted to estimate the density of attributes
[27]. John and Langley (1995) [28] established two naïve
Bayesian classifiers by using Gaussian function and Gaussian
kernel function to estimate the marginal density of attributes.
The work is widely perceived as establishing the extended
naïve Bayesian classifiers based on continuous attribute density
estimation. Pérez et al. (2006, 2009) [24, 25] improved the esti-
mation of Gaussian kernel function by introducing and optimiz-
ing the smoothing parameter. He et al. (2014) [29], Luis et al.
(2014) [30] and Zhang et al. (2018) [31] developed the naïve
Bayesian and the full Bayesian classifiers by using Gaussian
function or Gaussian kernel function to estimate attribute density
and applied them to fault diagnosis and spectroscopy analysis.
Xiang et al. (2016) [32] used Gaussian kernel function to esti-
mate attribute marginal density to set up an attribute weighted
naïve Bayesian classifier. Wang et al. (2016) [33] presented a
Bayesian network classifier by using Gaussian kernel function to
estimate attribute conditional density.

The above-mentioned Bayesian classifiers are not suitable
for time-series data classification (especially for small sample
time-series data).

The research that we present here on dynamic Bayesian clas-
sifiers is mainly focused on classification with discrete attributes
and need large sample time-series data for learning. Dang et al.
(2016) [34] proposed a new method for the early detection of
emergent topics, based on Dynamic Bayesian Networks in
micro-blogging networks. Xiao et al. (2017) [35] proposed a
novel time-series prediction model using a dynamic Bayesian
network based on a combination of the Kalman filtering model
(KFM) and echo state neural networks (ESN). Premebida et al.
(2017) [36] addressed a time-based Dynamic Bayesian Mixture

Model (DBMM) and applied it to solve the problem of semantic
place categorization in mobile robotics. Extensive experiments
were performed to highlight the influence of the number of time-
slices and the effect of additive smoothing on the classification
performance, and the results showed the effectiveness and com-
petitive performance of theDBMMunder different scenarios and
conditions. Rishu et al. (2019) [37] developed a smartphone-
based context-aware driver behavior classification using a
Dynamic Bayesian Network (DBN) system, which demonstrat-
ed competitive performance when considering cost-effective-
ness. Song et al. (2020) [38] proposed a Dynamic Hesitant
Fuzzy Bayesian Network (DHFBN) to solve the optimal port
investment decision-making problem of the “21st Century
Maritime Silk Road”.

Almost all the dynamic Bayesian network classifiers devel-
oped at present need large sample discrete time-series data for
learning, which is not available for small sample time-series data
problems. In this paper, a dynamic full Bayesian ensemble clas-
sifier with continuous attributes fitting for small sample data
classification is proposed. The structure of the Bayesian classifier
has been developed, and the density of attributes has been esti-
mated. In addition, the classifier is applied in forecasting the
turning points for indexes. The experimental results indicate that
the classifier proposed in this paper has good classification accu-
racy in dealing with small sample time-series problems.

The main contributions of this paper are as follows:

(1) Dislocated transformation between variables and classes
is utilized in developing the temporal asynchronous
(non-synchronous) dynamic Bayesian derivative classi-
fiers with continuous attributes.

(2) The multivariate Gaussian kernel function with smoothing
parameters is used to estimate the joint density of attributes.
Based on that, we develop a synchronous dynamic full
Bayesian ensemble classifier to solve the multivariate
small sample time-series data classification problems.

(3) We propose the architecture of the dynamic Bayesian
derivate classifiers by extending the dependency of var-
iables and dislocated transforming of variables based on
dynamic Bayesian classifiers, dynamic full Bayesian
classifiers and dynamic Bayesian network classifiers,
which provides support for further research on dynamic
Bayesian derivate classifiers.

This paper is organized as follows: Section 1 reviews and
analyses on the research of Bayesian classifiers and dynamic
Bayesian classifiers; Section 2 presents the definition and repre-
sentation of Bayesian classifiers and dynamic Bayesian classi-
fiers, as well as the structure of dynamic Bayesian derivative
classifiers; Section 3 presents the definition and representation
of dynamic full Bayesian classifier, the estimation method for
attribute joint density, classification accuracy criterion for the
time-series progressiveness, an algorithm for constructing a

1060 S. Wang et al.



smoothing parameter configuration tree and the ensemble of dy-
namic full Bayesian classifiers; Section 4 conducts the experi-
ments and analysis on small sample time-series dataset problems;
Section 5 concludes this work with further directions.

2 Architecture of dynamic Bayesian derivative
classifier

Definitions for Bayesian classifiers and dynamic Bayesian
classifiers (both synchronous and asynchronous) are given
firstly in this section, and on this basis, the architecture of
dynamic Bayesian derivative classifiers is established.

2.1 Dynamic Bayesian classifier

Suppose that the attribute and class variables of a non-time-series
dataset are denoted as X1,…, Xn andC, and x1,…, xn, c are their
specific values. Let D be a non-time-series dataset with N
instances.

Definition 1 We call the classifier with the structure shown in
Fig. 1 the Bayesian classifier (BC) [9].

According to the Bayesian network theory [39], a BC can
be represented as:

argmax
c x1;…;xnð Þ

p cjx1;…; xnð Þf g ð1Þ

We use X1[t], X2[t],…, Xn[t] and C[t] for attribute and class
variables of a time-series dataset, and x1[t], x2[t],…, xn[t], c[t]
to denote specific values taken by those variables. Dataset
sequences in cumulative time-duration are denoted by D[1],
D[2], …, D[t], where D[1] ⊂D[2] ⊂… ⊂D[t], the number of
instances in the corresponding time-series dataset is denoted
by N[1], N[2], …, N[t], where 1 ≤ t ≤ T. A dynamic Bayesian
classifier is an extension of the Bayesian classifier for dealing
with time-series problems. It can be defined in many forms,
and we give the following definition:

Definition 2 The classifier with the structure given in Fig. 2 is
labelled the dynamic Bayesian classifier (DBC) [6].

The above dynamic Bayesian classifier may also be called
the synchronous dynamic Bayesian classifier (SDBC), in
which the attributes and class change synchronously in time.
According to Bayesian network theory [39] and the condition-
al independencies contained in Fig. 2, we can get:

p c t½ �jc 1½ �;…; c t−1½ �; x1 1½ �;…; xn 1½ �;…; x1 t½ �;…; xn t½ �ð Þ
¼ p c t½ �jc t−1½ �; x1 t½ �;…; xn t½ �ð Þ

The DBC (or SDBC) can be expressed as:

argmax
c t½ � c t−1½ �;x1 t½ �;…;xn t½ �ð Þ

p
�
c t½ �jc t−1½ �; x1 t½ �;…; xn t½ �

�n o
ð2Þ

Based on the synchronous dynamic Bayesian classifier, the
asynchronous (non-synchronous) dynamic Bayesian classifier
can be constructed by dislocated transformation of variables
(between attributes and class) in time series.

Definition 3 The classifier with the structure given in Fig. 3 is
called the asynchronous dynamic Bayesian classifier
(ADBC), where the classifier order φ > 0.

With the same method, the ADBC can be expressed as:

argmax
c tþφ½ � c tþφ−1½ �;x1 t½ �;…;xn t½ �ð Þ

p
�
c t þ φ½ �jc t þ φ−1½ �; x1 t½ �;…; xn t½ �

�n o
ð3Þ

2.2 Dynamic Bayesian derivative classifier

We label classifiers derived from a dynamic Bayesian
classifier as the dynamic Bayesian derivative classifiers
(DBDC). The DBDCs can be divided into two parts: the
synchronous classifiers and the asynchronous classifiers.
The synchronous classifier can be transformed into the
corresponding asynchronous classifier by the dislocated
transformation between attributes and classes over time
series. According to the definition of the dynamic
Bayesian derivative classifier, the structural changes in
a time point (or a time slice) can be absorbed into the
naïve structure, the full structure, and the Bayesian net-
work structure (the other structures). By increasing the
dependency between attributes and class over time points
(or time slices), we can obtain the extended structure of
temporal dependency; all these structures are synchro-
nous classifiers. In the same way, the asynchronous clas-
sifier structures can be obtained by the dislocated trans-
formation between attributes and class over time series.
The specific structure is shown in Fig. 4.

Figure 4 shows the internal relationships between dif-
ferent dynamic Bayesian derivative classifiers. Future sys-
tematic and in-depth study of these dynamic Bayesian de-
rivative classifiers can be performed based on the structure
of the DBDCs.Fig. 1 The structure of the Bayesian classifier
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3 Dynamic full Bayesian ensemble classifier

The information contained in small sample time-series data is
very limited, and it is hard to effectively perform the classifier
structure learning and parameter estimation of the parameter
model. Therefore, we promote a synchronous dynamic full
Bayesian classifier with continuous attributes to deal with this
kind of classification problem, i.e., when operating with insuf-
ficient information. Instead of “by structure learning”, the
classifier can make full use of each record of information
within datasets by estimating the joint density of attributes
based on multivariate Gaussian kernel function. The classifier
optimization is further improved by adjusting the smoothing
parameters. The synchronous dynamic full Bayesian classifier
is a kind of dynamic Bayesian derivative classifier that can
make full use the information provided by attributes to im-
prove the classification accuracy.

3.1 The definition and expression of the dynamic full
Bayesian classifier

Definition 3 The classifier with the structure given in Fig. 5 is
called as the dynamic full Bayesian classifier (DFBC).

According to the probability formula, the Bayesian net-
work theory [39] and the conditional independencies shown
in Fig. 5, we can show that:

p c t½ �jc 1½ �;…; c t−1½ �; x1 1½ �;…; xn 1½ �;…; x1 t½ �;…; xn t½ �ð Þ
¼ p c t½ �jc t−1½ �; x1 t½ �;…; xn t½ �ð Þ
¼ p c t½ �; c t−1½ �; x1 t½ �;…; xn t½ �ð Þ

p c t−1½ �; x1 t½ �;…; xn t½ �ð Þ
¼ αp c t½ �jc t−1½ �ð Þ f x1 t½ �;…; xn t½ �jc t½ �ð Þ

ð4Þ

where α is a normalization coefficient, which is independent
of C[t]; p(c[t]| c[t − 1]) denotes the transition probability of
class and f(·) denotes the attribute density function.

The DFBC can be expressed as:

argmax
c t½ � c t−1½ �;x1 t½ �;…;xn t½ �ð Þ

p
�
c t½ �jc t−1½ �

�
f
�
x1 t½ �;…; xn t½ �jc t½ �

�n o
ð5Þ

From the definition and expression of the DFBC, we can
determine that the core is to estimate the joint density of attri-
butes f(x1[t],…, xn[t]| c[t]).

3.2 Estimation of joint attributes density function

In this section, we will use the multivariate kernel func-
tion with a diagonal smoothing parameter matrix to es-
timate the attribute density. This method performs well
in local fitting to small sample time-series data, and it
also has good anti-noise performance for dealing with
time-series data classification.

For the dataset D with N records, the multivariate kernel
function with smoothing parameter is denoted as [27]:

ϕ x1;⋯; xnjDð Þ ¼ 1

Nρ1⋯ρn
∑N

m¼1∏
n
i¼1Ki

xi−xim
ρi

� �
ð6Þ

where Ki(·) is the kernel function of Xi, Ki
xi−xim
ρi

� �
¼

1ffiffiffiffi
2π

p
ρi
exp − xi−ximð Þ2

2ρ2i

h i
, ρ1, …, ρn are the smoothing parameters

(or the bandwidth), and xim is the value of the mth record of Xi
in dataset D, 1 ≤ i ≤ n, 1 ≤m ≤N.

In this section, we will use the kernel function with diago-
nal smoothing parameter matrix to estimate the attribute
density.

Let bf x1 t½ �;…; xn t½ �jc t½ �;D t½ �ð Þ denote the estimation of
f(x1[t],…, xn[t]| c[t]), which is an attribute conditional proba-
bility density function in temporal extension to ϕ(x1,⋯, xn|D)
under the classification, then

Fig. 2 The structure of the dynamic Bayesian classifier

Fig. 3 The structure of the asynchronous dynamic Bayesian classifier
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bf x1 t½ �;…; xn t½ �jc t½ �;D t½ �ð Þ ¼ 1

2πð Þn=2N c t½ �ð Þρ21⋯ρ2n
∑t

v¼1 signa c v½ �ð Þ∏n
i¼1exp −

xi t½ �−xi v½ �ð Þ2
2ρ2i

" #( )
ð7Þ

whereN(c[t]) is the number of the instances whenC[t] = c[t] in
D[t], and signa c v½ �ð Þ ¼ 1; c v½ � ¼ c t½ �

0; c v½ �≠c t½ �
�

.
The DFBC can be denoted as:

argmax
c t½ � c t−1½ �;x1 t½ �;…;xn t½ �ð Þ

N c t½ �; c t−1½ �ð Þ
2πð Þn=2N c t½ �ð ÞN c t−1½ �ð Þρ21⋯ρ2n

∑t
v¼1 signa c v½ �ð Þ∏n

i¼1exp −
xi t½ �−xi v½ �ð Þ2

2ρ2i

" #( )( )
ð8Þ

where N(c[t − 1]) are the numbers of the instances when C[t −
1] = c[t − 1] inD[t], andN(c[t], c[t − 1]) are the numbers of the
instances when both C[t] = c[t] and C[t − 1] = c[t − 1] in D[t],
respectively.

The smoothing parameters that shape the curve (or surface)
of a Gaussian function will have great influence on the per-
formances of a DFBC. To balance the training and generali-
zation of the DFBC, we construct a smoothing parameter con-
figuration tree (or forest) to optimize the DFBC, where the
scoring and search method is used under the time-series pro-
gressiveness classification accuracy criterion.

3.3 Information analysis of attributes providing for
class

In dynamic Bayesian derivative classifiers, attributes can
provide three kinds of dependency information for class,
namely transitive dependency information, directly

induced dependency information and indirectly induced de-
pendency information [20, 39]. The attributes of a dynamic
naïve Bayesian classifier can only provide transitive depen-
dency information, but the attributes of a dynamic full
Bayesian classifier (DFBC) can provide all three kinds of
dependency information, hence the DFBCs have better per-
formance in relation to classification accuracy. Figure 6
shows the way in which the different dependency informa-
tion that attribute variables providing for class variable
among dynamic Bayesian derivative classifiers with differ-
ent network structures.

In the dynamic naïve Bayesian classifier that is shown in
Fig. 6(a), the attributes only provide transitive dependency
information for class, although this kind of information is
the primary one for classification, the other two kinds of in-
formation cannot be ignored. In the dynamic tree Bayesian
classifier shown in Fig. 6(b), apart from transitive dependency
information,X1[t] and X2[t] also provide direct induced depen-
dency information for C[t]. In the dynamic full Bayesian

Fig. 4 The architecture of the DBDCs
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classifier (DFBC) shown in Fig. 6(c), C[t − 1] and X5[t] pro-
vide only transitive dependency information for C[t], whereas
X1[t], X2[t], X3[t] and X4[t] provide all the three kinds of de-
pendency information.

3.4 Classification accuracy criterion of time-series
progressiveness

For the time-series dataset D[T], the threshold of initial pre-
diction time point (or time slice) T0 can be determined accord-
ing to the time-series size, class probability validity, and attri-
bute density estimation, or actual needs.We useD[t − 1] as the
training set, x1[t], …, xn[t] as the input and ρ = (ρ1,⋯, ρn) as
the smoothing parameter vector, and denote the classification
accuracy, classification result, and true numerical result of c[t]
in DFBC as accuracy(ρ,D[T], T0), cprediction[t], and ctrue[t],
respectively. Then we have:

accuracy dfbc;ρ;D T½ �; T0ð Þ

¼ 1

T−T 0 þ 1
∑T

t¼T0
signb cprediction t½ �; ctrue t½ �

� 	 ð9Þ

where

signb cprediction t½ �; ctrue t½ �
� 	 ¼ 1; cprediction t½ � ¼ ctrue t½ �

0; cprediction t½ �≠ctrue t½ �
�

:

3.5 Optimization of smoothing parameters

When dealing with time-series data, since a close relation-
ship exists between the same class variable over different
time points (or time slices), the classifier that can accurate-
ly classify the most adjacent class values in time sequences
should be the most reliable. Inspired by this fact, the
smoothing parameter configuration tree (or forest) is
established over adjacent time points (or slices), and the
smoothing parameters are optimized based on the config-
ured tree (or forest).

The smoothing parameters that shape the curve (or sur-
face) of a Gaussian function will directly affect the perfor-
mance of a classifier. The smaller the value of the smooth-
ing parameter and the steeper the density curve is, the bet-
ter fit between classifier and data is achieved, although the
generalization ability will appear worse. To trade-off be-
tween the fit and generalization ability of the classifier, we
construct a smoothing parameter configuration tree (or for-
est) and use it to optimize the smoothing parameter config-
uration. The depth-first search method is adopted to build
the smoothing parameter configuration tree (or forest), and
the optimal synchronous change parameter is used to ini-
tialize all smoothing parameters. We take the latest class
value as the starting point to search under the cumulative
classification accuracy criterion of time-series progressive-
ness. If the cumulative classification accuracy(dfbc, ρ,
D[T], T0) = 1, then ρ* ¼ argmaxρ accuracy dfbc;ρ;D T½ �; T0ð Þ ¼ 1f g,
that is, the generalization ability of the classifier is im-
proved by taking the maximum value of smoothing param-
eter configuration; otherwise, the branch search ends.

When it is necessary to search space for the smoothing pa-
rameters, the final set-up construction is a smoothing parameter
configuration tree (or forest) with or without repeated searches,
which depends onwhether, or not, the search space includes the
smoothing parameters that have assigned values. Although
more search space is needed to build a smoothing parameter
configuration tree (or forest) with repeated searches, the results
gained by repeated searches present a better investment. By
repeated search space experiments, we found that the interval
of smoothing parameters with the greatest influence on the
DFBC classification accuracy is (0, 1].

We use H = {ρ1, ρ2,…, ρL} to denote the set of values

for each smoothing parameter and ρ j
i 1≤ i≤ j; 1≤ j≤Lð Þ to

denote the jth value of the smoothing parameter ρi of the
attribute Xi, where L denotes the numbers of values ob-
tained by discretizing each smoothing parameter with in-
terval (0, 1] in the step (step size 0.001) In the following,
we give the algorithm to construct a smoothing parameter
configuration tree by combining classification accuracy
criterion of time-series progressiveness and non-repeated
search.

Fig. 5 The structure of the DFBC
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L is independent of n or T. Based on the classification
accuracy estimation equation, the time complexity of the al-
gorithm constructing a smoothing parameter configuration
tree (or forest) is O(nT2), and that of the algorithm calculating
a Gaussian function is O(n2T3).

The smoothing parameter configuration tree (or forest)
formed by repeated search will be more complex than that
of a non-repeated search. A new configuration tree can be
derived by resetting the smoothing parameter in an existing
configuration tree. Therefore, the final smoothing parameter

1065Research on a dynamic full Bayesian classifier for time-series data with insufficient information



configuration formed by repeated search is commonly denot-
ed a forest. When constructing a smoothing parameter config-
uration tree (or forest) by repeated search, we avoid the pos-
sible looping situation (although the possibility is small) by
limiting the number of generated subtrees. Additionally, by
limiting the number of generated subtrees, the time complex-
ity of the algorithm constructing the smoothing parameter
configuration tree (or forest) based on repeated search will
be the same as that based on a non-repeated search. We can
also improve the smoothing parameter configuration tree (or
forest) by using a repeated search and a non-repeated search
strategy and adjust the classification accuracy criterion from

completely cumulative accurate into partially accurate, which
forms the basis for future work that we will do.

3.6 Ensemble DFBC by model averaging

Let ρ1, ⋯, ρU denote the smoothing parameter configuration
vector with minimum threshold and DFBCu denote the corre-
sponding dynamic full Bayesian classifier with the parameter
configuration ρu(1 ≤ u ≤U). Dynamic full Bayesian ensemble
classifier (DFBEC) is established by averaging these classi-
fiers, the structure of DFBEC is shown in Fig. 7.

DFBEC can be expressed as:

argmax
c t½ � c t−1½ �;x1 t½ �;…;xn t½ �ð Þ

1

U
∑U

u¼1

N c t½ �; c t−1½ �ð Þ
2πð Þn=2N c t½ �ð ÞN c t−1½ �ð Þ ρu1

� 	2⋯ ρun
� 	2 ∑t

v¼1 signa c v½ �ð Þ∏n
i¼1exp −

xi t½ �−xi v½ �ð Þ2
2 ρuið Þ2

" #( )( )
ð10Þ

where ρui is the ith component of ρu.

4 Experiment and analysis

We use time-series datasets from the UCI [40] Machine
Learning Repository and the Wind Economic Database
for experiments. The indexes are selected as class variables,
and the related factors that affect these indexes are selected
as attribute variables. Each index g(t) is binary discretized
over the time-series and fall into the class labeled c[t]: if g(t)
reaches an extremum at tj, then c[t] = 1, and tj is the turning
point or extreme point; or else c[t] = 0, and tj is the non-
turning or non-extreme point. We repair records for the
missing data using a moving average method, discretizing
the class variables over the time-series according to the

turning points and normalizing the attribute variables over
the time-series. The experiment is comprised of five exper-
imental modules: (1) the construction of a smoothing pa-
rameter configuration tree (or forest); (2) the comparison of
classification accuracy (or error rate); (3) the influence of
smoothing parameter changes on classification accuracy;
(4) the influences of the minimum and maximum

Fig. 7 The structure of DFBEC

Fig. 6 The dependency information provided by attributes in dynamic naïve, dynamic tree and dynamic full Bayesian classifiers. a dynamic naïve
Bayesian classifier, b dynamic tree Bayesian classifier, c dynamic full Bayesian classifier
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smoothing parameter configurations on classification accu-
racy and (5) the anti-disturbance of DFBEC.

4.1 Construction of smoothing parameter
configuration tree and forest

We choose the GDP annual data to create the smoothing pa-
rameter configuration tree (or forest). Setting the threshold for
the initial perdition time point or time slice (threshold for
short) T0 = 15 and H = {0.002 + 0.002k| 0 ≤ k ≤ 500}, we ob-
tain the initial configuration of smoothing parameters ρ0 = 1,
and T0 = 23. Next, we present the smoothing parameter con-
figuration tree with non-repeated searches and repeated
searches, respectively.

(a) Construction of smoothing parameter configuration tree
with non-repeated searches

The smoothing parameter configuration tree of GDP on
one path with non-repeated searches is shown in Fig. 8.

In the smoothing parameter configuration tree, each path
from the root to the leaf corresponds to a configuration vector.
We form a DFBC from each smoothing parameter configura-
tion vector. The minimum threshold T0 = 17 is found by tra-
versing the smoothing parameter configuration tree, and the
corresponding configuration vectors are as follows:

1; 1; 1; 1; 0:036; 1; 0:016; 1; 0:088; 1; 1; 1; 0:09; 1; 1; 1; 1ð Þ
0:132; 1; 1; 1; 0:036; 1; 0:016; 1; 1; 1; 1; 1; 0:052; 1; 1; 1; 1ð Þ
1; 1; 1; 1; 0:036; 1; 0:016; 0:03; 1; 1; 1; 1; 0:052; 1; 1; 1; 1ð Þ
1; 1; 1; 1; 0:022; 1; 1; 0:01; 0:036; 1; 1; 1; 1; 1; 1; 1; 1ð Þ

We can obtain 4 DFBCs from the above 4 smoothing pa-
rameter configuration vectors, and the DFBEC is formed by
averaging these classifiers. The restriction of the minimum
threshold can also be extended. If we select T0 = 19 as the

threshold, we will obtain 13 smoothing parameter configura-
tion vectors and the corresponding 13 DFBCs.

(b) Construction of smoothing parameter configuration for-
est with repeated searches

When we repeat the search space for a smoothing parame-
ter, we can obtain a smoothing parameter configuration forest.
One of the configuration trees of the forest is shown in Fig. 9.

Where the nodes with “*” will produce the new trees. The
tree derived by (*)ρ7 = 0.076(6) is shown in Fig. 10(a). The
trees derived by (*)ρ14 = 1(61) and (*)ρ16 = 0.034(62) from
Fig. 10(a) are shown in Fig. 10(b) and 10(c), respectively.

We find the minimum threshold T0 = 12 by traversing the
smoothing parameter configuration forest, and the corre-
sponding configuration vectors are as follows:

0:136; 1; 0:064; 1; 0:036; 1; 0:076; 1; 1; 1; 1; 1; 1; 1; 0:056; 0:034; 1ð Þ
0:116; 1; 1; 1; 0:036; 1; 0:052; 1; 0:246; 1; 1; 1; 0:254; 1; 0:072; 1; 1ð Þ
0:116; 1; 1; 1; 0:036; 1; 1; 1; 0:08; 1; 1; 1; 1; 1; 0:048; 1; 1ð Þ
0:116; 1; 1; 1; 0:036; 1; 0:052; 1; 0:142; 1; 1; 1; 1; 1; 0:072; 0:032; 1ð Þ

The restriction of the minimum threshold can also be extend-
ed. If we select 19, 18, 17, 16, 15, 14 and 13 as the thresholds T0,
we will obtain 26, 19, 15, 12, 11, 9 and 6 smoothing parameter
configuration vectors and DFBCs, respectively.

4.2 Comparison of classification accuracy

We choose 9 commonly used classifiers together with DFBEC
classifier for comparing classification accuracy. 21 time-series
datasets from the UCI and 24 time-series datasets from the
Wind database are selected for experiments. Firstly, we select a
dataset of 30 in front of the time-series dataset to establish the
smoothing parameter configuration tree and determine the pa-
rameter configuration. Then, we take the latest 113 (or 103) data

Fig. 8 The smoothing parameter configuration tree of GDP
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in the time-series dataset as the testing set to carry out a sliding
test, with a fixed window size (training set size) of 30.

Descriptions of the comparison classifiers are as follows:

& GDNBC:dynamic naïve Bayesian classifier based on
Gaussian density [33]

& KDNBC:dynamic naïve Bayesian classifier based on
Gaussian kernel density [6, 33]

& FMDBN:a first-order Markov dynamic Bayesian network
classifier based on Gaussian density [6]

& KDTBC:dynamic tree Bayesian classifier based on
Gaussian kernel density [6, 33]

& GDOBC:dynamic One-dependence [17] Bayesian classi-
fier based on Gaussian density [33]

& KDOBC:dynamic One-dependence [17] Bayesian classi-
fier based on Gaussian kernel density [6, 33]

& RNN: Recurrent Neural Network [41]
& LSTM: Long Short-Term Memory [42]
& GRU: Gated Recurrent Unit [43]
& DFBEC: Dynamic Full Bayesian Ensemble Classifier

Among these, the parameter configurations for RNN, LSTM
and GRU are: (a) RNN, 1 hidden layer, units = 32,
active_function = 'tanh', loss = ‘mean_squared_error’, optimizer = ‘

Fig. 9 The smoothing parameter configuration tree of GDP with repeated searches

Fig. 10 Derivative trees from (*)h7 = 0.076(6). a Derivative tree of No. 6, b. Derivative tree of No. 61, c Derivative tree of No. 62
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rmsprop’,metrics = [‘accuracy’]; (b) LSTM: 1 hidden layer, units =
32, active_function= ‘relu’, loss = ‘mean_squared_error’, optimiz-
er = ‘adam’,metrics = [‘accuracy’]; (c)GRU: 1hidden layer, units =
32, active_function = 'tanh', loss = ‘nn.CrossEntropyLoss’,
optimizer = ‘optim.SGD’, metrics = [‘accuracy’].

A statistical comparison of the classifiers’ performances
over error rate (error rate = 1-accuracy) is conducted by taking
the Friedman Test with the post-hoc Bonferroni-Dunnmethod
and Wilcoxon Signed-Ranks Test [44]. The differences
amongst the 10 classifiers’ performances are first examined
via the Friedman Test, and the pairwise comparisons are then
realized by the post-hoc Bonferroni-Dunn method, showing
the critical value at a significance level of 0.05 to be 2.773. If
the difference between average ranks for pairwise classifiers is
greater than the critical value, then we say the performance of
the two classifiers is significantly different. We then use the
Wilcoxon Signed-Ranks Test to examine the difference be-
tween each pairwise comparison (other classifier vs. DFBEC
classifier). The test results listed at the bottom of Table 1 show
significant differences in classification error between DFBEC
and other classifiers. Considering the overall average classifi-
cation performance, the classification accuracy of DFBEC is
15.81%, 12.95%, 9.47%, 14.13%, 15.33%, 18.62%, 12.62%,
18.46% and 13.79% larger than the other 9 classifiers by sim-
ple calculation.

The classification error rates of DFBEC and the other clas-
sifiers are shown in Fig. 11 as scatter-plot graphs, where the
coordinates of each point represent the error rates of the two
compared classifiers. The points above each diagonal line
show that the error rates of DFBEC are smaller than those of
the given classifier, and the points below the diagonal line
show that the error rates of DFBEC are greater than those of
the given classifier.

From Fig. 11, we can clearly see that the classification error
rates of DFBEC are smaller than those of the other classifiers.
Overall, the results of significance tests of difference, average
value comparison and scatter diagrams show that DFBEC has
significant advantages over the other 9 classifiers in terms of
classification error rate.

Classification is one kind of human concept learning
based on computer simulation. In human concept learning,
to make full use of sample information (fitting data), rote
learning (data overfitting) should be avoided as much as
possible, and flexible learning (generalization ability)
should be promoted when there are relatively few refer-
ences. In our research, multivariate Gaussian kernel func-
tion is used to estimate attribute joint density, and the
smoothing parameters are optimized based on the config-
ured tree (or forest), so that DFBEC can fit data well. In
addition, on the premise of maintaining the accuracy of
classification, we reduce the overfitting by taking the max-
imum value of the smoothing parameter configuration, and
thus improve the generalization ability of DFBEC.

4.3 Influence of smoothing parameter changes on
classification accuracy

The smoothing parameters determine the shape of the
Gaussian function curve, so any change to the smoothing pa-
rameter will affect the fit accuracy of the classifier to the data.
We choose 6 time-series datasets for experiments: the
Dow_jones_index (DJI), Drink_glass_model_1 (DGM),
Energydata_complete (EDC), ME_BTSC3 (MEB),
Gold_ICP (GIC) and Fund_MTUNV (FMA). We use s1,
…, s9, s10, …, s18, s19, …, s27, s28 forρ when they are
0.001,…, 0.009,0.01,…, 0.09,0, 1,…, 0.9,1, corresponding-
ly. The experiments and analysis of that the influence of
smoothing parameter changes on classification accuracy are
carried out under both temporal synchronous and asynchro-
nous situations. The influence of smoothing parameter chang-
es on classification accuracy is shown in Fig. 12, where the
horizontal axis represents the value of smoothing parameter,
and the vertical axis represents the classification accuracy. To
reduce the influence of initial configuration on smoothing
parameter changes, in the asynchronous change situation,
the initial values of the smoothing parameters are set to 1 for
the 6 time-series datasets. In the asynchronous change situa-
tion, the smoothing parameters ρ11, ρ7, ρ20, ρ6, ρ3 and ρ19 are
selected for the 6 indexes according to the sequence of the
datasets, respectively.

In Fig. 12, we find that the smoothing parameter changes
on the 6 time-series datasets all have significant influence on
DFBECs’ classification accuracies in both temporal synchro-
nous and asynchronous situations. In the synchronous chang-
es, the maximum classification accuracy differences are
23.01%, 29.20%, 25.66%, 33.63%, 23.01% and 12.39% (with
an average of 24.48%); in the asynchronous changes, themax-
imum classification accuracy differences are 41.60%, 5.31%,
21.24%, 24.78%, 21.24% and 7.96% (with an average of
20.35%). The significance of the differences illustrates both
that the smoothing parameters need to be optimized and the
benefit of doing so.

4.4 Influence of the minimum and maximum
smoothing parameter configurations on classification
accuracy

In this part, we discuss the influence of the minimum and
maximum smoothing parameter configurations on DFBECs’
classification accuracy. These experiments and analyses are
carried out based on the 45 datasets from the UCI and the
Wind database and are discussed under both the temporal
synchronous and asynchronous situations. The experimental
results are shown in Fig. 13, where the horizontal axis repre-
sents the number of datasets, and the vertical axis represents
the classification accuracy.
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Table 1 Classification error rate of 10 classifiers on 45 time-series datasets

Dataset GDNBC KDNBC FMDBN KDTBC GDOBC KDOBC RNN LSTM GRU DFBEC

1. Absenteeism_at_work 0.3629 0.3983 0.3717 0.3717 0.3806 0.4514 0.4336 0.4159 0.4513 0.3732

2. Boy_building_buy 0.4337 0.4425 0.4071 0.4160 0.3983 0.4337 0.3982 0.4779 0.4690 0.3540

3. Brush_teeth_1 0.5133 0.4956 0.3806 0.3894 0.4868 0.4691 0.3451 0.4779 0.3717 0.3629

4. Change_mind_cold_come 0.4956 0.4602 0.4248 0.4956 0.4425 0.5133 0.4514 0.4956 0.5044 0.3806

5. Climb_stairs_1 0.4425 0.4514 0.3982 0.4514 0.4602 0.4779 0.4956 0.4867 0.4956 0.3098

6. CMHS_CE_1 0.4337 0.4248 0.3540 0.5399 0.4337 0.5399 0.5133 0.5310 0.5398 0.3629

7. CMHS_CE_2 0.3806 0.3540 0.5487 0.5576 0.3275 0.5576 0.5398 0.5221 0.5221 0.3629

8. CMHS_CP_1 0.4602 0.4425 0.4514 0.5399 0.4691 0.5399 0.5487 0.5752 0.5487 0.3983

9. Computer_cost_crazy 0.3186 0.3894 0.4425 0.3806 0.3717 0.3452 0.3982 0.4425 0.4159 0.3629

10. Dow_jones_index 0.2478 0.2655 0.2213 0.3629 0.2124 0.4337 0.2832 0.4602 0.3097 0.1859

11. Draw_drink_eat 0.4602 0.3983 0.4868 0.4602 0.3717 0.5222 0.5398 0.5133 0.5221 0.3009

12. Drink_glass_model_1 0.4160 0.4779 0.3363 0.3098 0.4071 0.3098 0.3097 0.3097 0.3097 0.2743

13. Drink_glass_model_2 0.5045 0.5133 0.3983 0.3894 0.5487 0.3629 0.3717 0.3805 0.3628 0.3540

14. EEG_steady_state_A001SB1 0.3540 0.4514 0.4160 0.5310 0.4602 0.5310 0.5221 0.4956 0.5133 0.3452

15. Energydata_complete 0.5310 0.3363 0.5044 0.5664 0.5310 0.4602 0.3363 0.5133 0.3363 0.2567

16. Exit_flash_light_forget 0.4867 0.4248 0.4337 0.4425 0.4956 0.5399 0.4867 0.6018 0.4867 0.3806

17. Girl_give_glove 0.4337 0.4691 0.4425 0.4248 0.4337 0.4514 0.4779 0.4867 0.4867 0.3629

18. GSAFM_1 0.3009 0.3186 0.3629 0.3275 0.4160 0.3717 0.3363 0.3629 0.3540 0.3452

19. head_hear_hello 0.4868 0.4779 0.4779 0.4691 0.4691 0.4868 0.4956 0.5221 0.5133 0.4248

20. her_hot_how 0.5399 0.4779 0.4513 0.4248 0.5222 0.4160 0.4602 0.4425 0.4513 0.4071

21. Istanbul_stock_exchange 0.4071 0.4779 0.4071 0.4160 0.4248 0.4779 0.3274 0.4513 0.3186 0.3806

22. ME_Oil_price 0.4956 0.4779 0.4071 0.4602 0.5133 0.4602 0.4336 0.4248 0.4248 0.4160

23. ME_BTSC1 0.3275 0.3363 0.2567 0.3009 0.3186 0.3363 0.3009 0.3186 0.3186 0.1770

24. ME_BTSC2 0.4514 0.3452 0.4514 0.3363 0.4248 0.4071 0.3628 0.3982 0.3540 0.2566

25. ME_BTSC3 0.5664 0.3363 0.3399 0.2390 0.4425 0.3098 0.2743 0.3186 0.2566 0.2301

26. ME_NMPMI 0.5576 0.4514 0.4757 0.4425 0.5930 0.4868 0.4690 0.4602 0.4602 0.4159

27. ME_MPMI 0.3894 0.4425 0.3787 0.4602 0.4160 0.4779 0.5575 0.5221 0.5664 0.4248

28. ME_Prosperity_index 0.4868 0.4691 0.4248 0.3983 0.5133 0.3717 0.3274 0.3628 0.3363 0.3451

29. ME_Global_indicators 0.4956 0.4956 0.4514 0.5222 0.5222 0.5310 0.5841 0.5044 0.5575 0.4159

30. StockEOP 0.4779 0.5045 0.4425 0.4248 0.5222 0.4513 0.4513 0.4602 0.4513 0.4071

31. Stock_EHP 0.5222 0.5310 0.5044 0.4868 0.4691 0.5664 0.5221 0.5310 0.5310 0.3983

32. Stock_ECP 0.4868 0.4691 0.4691 0.4956 0.5222 0.4868 0.5044 0.4956 0.4779 0.4248

33. Stock_MMP 0.4690 0.4868 0.4336 0.4248 0.5222 0.4248 0.4690 0.4248 0.4336 0.4248

34. Fund _BDGR 0.4425 0.4602 0.3981 0.4779 0.5045 0.4690 0.4425 0.4867 0.4690 0.3363

35. Fund_CDAY 0.4272 0.3690 0.4159 0.4272 0.4564 0.4758 0.4369 0.4563 0.4563 0.4078

36. Fund_MTUNV 0.5310 0.5222 0.2832 0.4337 0.2832 0.4956 0.4159 0.4336 0.4248 0.2719

37. Futures_D_OP 0.4956 0.5222 0.4956 0.5045 0.5222 0.5045 0.4602 0.4779 0.5044 0.4337

38. Futures_PM_MP 0.4779 0.4602 0.4159 0.4159 0.4337 0.4071 0.4425 0.4425 0.4248 0.4159

39. Gold_MCP 0.3363 0.3806 0.3186 0.3186 0.3806 0.3540 0.2478 0.3097 0.2655 0.3009

40. Gold_ICP 0.2921 0.2567 0.3274 0.4779 0.3452 0.5310 0.2124 0.4336 0.1770 0.3107

41. ER_CAD_MP 0.4868 0.4691 0.4159 0.4425 0.4868 0.4425 0.4425 0.4425 0.4336 0.4071

42. ER_ARGENTINA 0.4078 0.3981 0.4248 0.4467 0.3884 0.4369 0.4369 0.4369 0.4757 0.3981

43. ER_AUSTRALIA 0.3884 0.3496 0.3593 0.4369 0.3399 0.4952 0.4369 0.4466 0.4466 0.3496

44. ER_BRAZIL 0.4467 0.3981 0.4757 0.4272 0.4272 0.4467 0.4757 0.4369 0.4660 0.3496

45. ER_CANADA 0.4272 0.3787 0.3593 0.4564 0.3787 0.4272 0.4078 0.4660 0.4563 0.3204

Average 0.4421 0.4280 0.4098 0.4339 0.4398 0.4553 0.4263 0.4546 0.4322 0.3539

Average Rank (Friedman Test) 6.0111 5.6111 4.4333 5.4667 6.2556 7.0111 5.5889 6.8222 6.0333 1.7667

p-value (Wilcoxon SR Test) 7.71E-08 7.19E-08 7.91E-08 1.69E-08 2.14E-08 1.07E-08 6.40E-07 7.59E-09 3.43E-07 –
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From both Fig. 13 (a) and (b), we can see that the classifiers
under the maximum smoothing parameter configurations are
more accurate than those under the minimum configurations in
both synchronous changes and asynchronous changes, but espe-
cially for the asynchronous series. Among the 45 classification
problems, in synchronous optimization, the classification

accuracies for 23 out of 45 problems under the maximum con-
figuration is greater than that under the minimum configuration,
and the accuracies occur in 15 of the same problems. In asyn-
chronous optimization, the classification accuracy of 39 prob-
lems under the maximum configuration is greater than that under
the minimum configuration, and the accuracies occur in 3 of the

Fig. 11 Scatter plot graphs of classification error rates. a DFBEC vs GDNBC, b DFBEC vs KDNBC, c DFBEC vs FMDBN, d DFBEC vs KDTBC,
e DFBEC vs GDOBC, f DFBEC vs KDOBC, g DFBEC vs RNN, h DFBEC vs LSTM, i DFBEC vs GRU
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same problems. The comparison results are shown in Table 2.
For synchronous optimization and asynchronous optimization,
the differences between the average classification accuracy of
the maximum configuration and the minimum configuration
are 1.78% and 4.84%, respectively.

We can conclude that, on the premise of maintaining the
classification accuracy of the classifier, data overfitting can be
reduced by selecting the maximum configuration of the
smoothing parameter. This is especially important for the clas-
sification of small sample time-series data.

4.5 Anti-disturbance of DFBEC

Additionally, the anti-disturbance ability of DFBEC based on
asynchronous optimization is analyzed by using the 45 time-
series datasets, under the disturbance of that 20% of the attri-
bute data are randomly changed within the range of the attri-
bute value. The experimental results are shown in Fig. 14.

After introducing noise into the attribute data, the classifi-
cation accuracy for some time-series datasets decrease slight-
ly, with an average decline of 0.012, which shows that
DFBEC with the maximum smoothing parameter configura-
tion has good anti-disturbance performance based on asyn-
chronous optimization, and a similar conclusion can be drawn
based on synchronous optimization.

5 Conclusions and future work

In this paper, we develop the DFBEC which is suitable for small
sample time-series data by combining estimation of the multivar-
iate Gaussian kernel function with a diagonal smoothing param-
eter matrix; the classification accuracy criterion of time-series
progressiveness; the construction of smoothing parameter con-
figuration tree (or forest) and classifier selection and averaging.

The smoothing parameters that shape the curve (or surface) of
a Gaussian function have direct impact on the performance of a

Fig. 12 The influence of smoothing parameter changes on classification accuracy. a The influence of temporal synchronous changes, b The influence of
temporal asynchronous changes
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classifier. The smaller the value of the smoothing parameter and
the steeper the density curve is, the better the fit between the
classifier and data achieves, but the worse the generalization

ability appears; and vice versa. To establish a small sample
time-series data classifier, two problems must be solved: one is
to make the classifier fit data well, and the other is to avoid data

Fig. 13 The influence of the minimum and maximum smoothing parameter configurations on classification accuracy. a The influence of synchronous
optimizations, b The influence of asynchronous optimization

Table 2 Comparison of
classification accuracies under the
maximum and minimum
smoothing parameter
configurations

Problems under the maximum configuration vs. under the
minimum configuration

Comparison of classification accuracies > = < Total

In synchronous optimization 23 15 7 45

In asynchronous optimization 39 3 3 45

Total 62 18 10 90
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overfitting. The latter is the more difficult problem to solve. In
our research, multivariate Gaussian kernel function is used to
estimate attribute joint density, and the smoothing parameters
are optimized based on the configured tree (or forest), enabling
the DFBEC to fit the data most advantageously. On the premise
of maintaining the accuracy of classification, overfitting is re-
duced by taking the maximum value of the smoothing parameter
configuration, thus improving the generalization ability of
DFBEC. By combining classifier selection and averaging results,
the generalization of DFBEC is further improved.

The experimental results based on the UCI and Wind
datasets show that the DFBEC is more accurate with good
anti-disturbance ability in the turning point classifications with
small sample time-series data compared with the other nine
commonly used classifiers. However, the DFBEC is limited in
that it is only suitable for the classification of small time-series
data.We propose further work to expandDFBEC by adjusting
the classification accuracy criterion from completely cumula-
tive accurate into partially accurate, and thus make it more
suitable for general time-series data classification.
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