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Abstract
Ensembling of probabilistic classifiers is a technique that has been widely applied in classification, allowing to build a
new classifier combining a set of base classifiers. Of the different schemes that can be used to construct the ensemble,
we focus on the simple majority vote (MV), which is one of the most popular combiner schemes, being the foundation of
the meta-algorithm bagging. We propose a non-trainable weighted version of the simple majority vote rule that, instead of
assign weights to each base classifier based on their respective estimated accuracies, uses the confidence level CL, which
is the standard measure of the degree of support that each one of the base classifiers gives to its prediction. In the binary
case, we prove that if the number of base classifiers is odd, the accuracy of this scheme is greater than that of the majority
vote. Moreover, through a sensitivity analysis, we show in the multi-class setting that its resilience to the estimation error
of the probabilities assigned by the classifiers to each class is greater than that of the average scheme. We also consider
another simple measure of the degree of support that incorporates additional knowledge of the probability distribution over
the classes, namely the modified confidence level MCL. The usefulness for bagging of the proposed weighted majority vote
based on CL or MCL is checked through a series of experiments with different databases of public access, resulting that
it outperforms the simple majority vote in the sense of a statistically significant improvement regarding two performance
measures: Accuracy and Matthews Correlation Coefficient (MCC), while holding up against the average combiner, which
majority vote does not, being less computationally demanding.
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1 Introduction

1.1 Ensemble of probabilistic classifiers

Classification is one of the main tasks of Supervised
Learning. Given a dataset consisting of information about
objects relating to some attributes that describe them, and to
a categorical output variable (the class to which each object
belongs), with r ≥ 2 different possible classes y1, . . . , yr ,
a classifier is an algorithm that allows to infer the class
of a new object or instance from its known attributes.
Different methodologies are used in Machine Learning to
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learn classifiers from a dataset of solved cases in which
both, the attributes and the class, are consigned for each of
the instances (except missing data). Among them, we are
interested in probabilistic classifiers, which not only predict
the class, but estimate the probability distribution over the
set of classes, being the predicted class that one with the
highest associated probability, that is, the most likely class
that the instance should belong to, following the maximum
a posteriori (MAP) criterium.

Probabilistic classifiers provide a prediction that can be
useful in its own right, and particularly when classifiers are
combined to create ensembles. Ensemble of classifiers (also
known as “combining classifiers”, see [18]) is a technique
that has been widely applied in classification learning, the
idea being to build a new classifier combining a set of base
classifiers, in the hope of improving their behaviour, as it
effectively emerges from different works (see [5, 11, 16, 18,
27]). Obviously, an important research topic in this field is
that of combination schemes: their comparison and how to
choose between them, as well as the type of base classifier
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used to build the ensemble. For example, in [20] the authors
experimentally prove that the ensembles of Naive Bayes
classifiers following different schemes are significantly
better than standard Naive Bayes, and also slightly better
than an ensemble of Naive Bayes and decision tree.

1.2 Bagging

As single decision classifiers can suffer from high variance,
a simple way to address this flaw is to use them in
the context of randomization-based ensemble methods,
by introducing random perturbations into the learning
procedure in order to produce several different classifiers
from a single training set. It is the case of bagging, an
acronym for Bootstrap AGGregatING, as it was introduced
by Breiman in [6]. Indeed, bagging is a meta-classifier used
to reduce the variance of a base classifier by introducing
randomization into its construction through the use of
learning datasets obtained as bootstrap samples of the
original learning set, that is, fits base classifiers, each
on random subsets of the original dataset drawn with
replacement, and then aggregate their individual predictions
making an ensemble out of them by means of the majority
vote combiner scheme. With this procedure we lose the
interpretability of a single simple classifier, but potentially
gain in predictive power.

In many cases, bagging is a simple way to improve
the predictive power of a single model without needing
to change the underlying classifier. The improvement on
it, using the bagging procedure, is obtained for unstable
underlying classifiers, as is the case of a decision tree (see
[6]), which will be the one we will use in our experimental
phase. Paraphrasing Breiman ([6]), we can say that “The
evidence[...] is that bagging can push a good but unstable
procedure a significant step towards optimality. On the
other hand, it can slightly degrade the performance of stable
procedures.”.

Random forest, which are outstanding examples of
probabilistic classifiers, were also introduced by Breiman
in [7], as a variant of bagging in which a randomization of
the input attributes is used when considering candidates to
split internal nodes (see also [26]). In addition, ensemble
of classifiers is also the main idea behind boosting (see for
instance [14] for general description of boosting and [10]
for an application in the field of medicine). A comparison
of the effectiveness of randomization, bagging and boosting
to improve the performance of the decision tree algorithm
C4.5 can be found in [12].

1.3 Combiner schemes

In general, we build M ≥ 2 different base probabilistic
classifiers, C1, . . . , CM , which may or may not correspond

to the bagging meta-algorithm, and then combine their
outputs to construct an ensemble. The final decision of the
ensemble is derived using a combination rule, that can fall
into one of following two groups (see for instance [30]):

i) Hard voting: combination rules that apply to class
labels, as the simple majority vote, which is just by
going with the prediction that appears the most times in
the base classifiers, and is the one used by bagging. The
criterion of the majority vote scheme coincides, in the
binary setting, with the classical Condorcet criterion,
according to which to be the winner a class must win
one-on-one matches with all other classes, that is, must
be preferred to each other class when compared to them
one at a time.

ii) Soft voting: combination rules obtained by polling
the continuous outputs of each base classifier using a
function (average, maximum, minimum, product,... see
[18, 19]) that returns the class label that maximizes
the value of the function applied to the predicted
probabilities, the average being the strongest from a
viewpoint of predictive power. The average combiner
is a natural competitor of the majority vote for bagging,
showing similar results in the experimental phase of [6]
(Section 6.1). Our experimental evidence is different,
however, as we will see in Section 6.3, finding
confirmation that the average scheme outperforms
the majority vote, although at the price of a greater
computational requirement.

The combiner scheme that we will introduce in this work
is halfway between the majority vote and the average, we
will see latter in what sense, so it can be considered a
semi-hard voting scheme.

Other possible grouping of the combination rules is
trainable vs. non-trainable. The simple majority vote and
the average are non-trainable, but their usual weighted
counterpart are trainable, since the weights are determined
through a separate training algorithm, usually as a function
of the estimated accuracies of the base classifiers. Using
non-trainable rules provides simplicity and is less memory
and computationally demanding.

The combiner scheme that we propose is non-trainable
although it is a weighted version of the simple majority
vote, because its weights are obtained just as a measure
of the degree of support that any of the base classifiers
assigns to the class it predicts. As measure of the degree
of support we propose the confidence level CL, which
for each base classifier is the degree of support to its
own choice. But it could also be natural to think about
assigning another alternative measure, namely the modified
confidence level (MCL), which takes into account additional
knowledge of the probability distribution between classes.
The corresponding non-trainable weighted versions of
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the simple majority vote scheme are named in what
follows: CL-MV and MCL-MV, for Confidence Level
(respectively, Modified Confidence Level) based Majority
Vote.

From a heuristic perspective, our contribution consists of
supporting the following hypotheses through experimenta-
tion with different datasets:

• Main hypothesis: using CL-MV (or MCL-MV) instead
of simple majority vote, the obtained scheme signifi-
cantly improves the classifying power of bagging.

• Secondary hypotheses:

– Although there is no clear significant differ-
ence between them, in some cases the MCL-
MV scheme gives better results than CL-MV
(and in some others, the opposite).

– Although bagging with the average rule
outperforms that with the simple majority vote,
the same does not happen with CL-MV nor
MCL-MV, which hold up and do not show
statistically significant differences with the
average, while they are computationally less
demanding.

And from a theoretical perspective, our main contribution
is to obtain two important results on the combiner schemes
comparison:

• In the binary case, we prove that if the number of base
classifiers is odd, the accuracy of CL-MV is greater than
that of the majority vote, if the probability for each base
classifier to give correct label is big enough (Section 3).

• In the general multi-class setting, we perform a
sensitivity analysis (Section 4) showing that under some
reasonable hypothesis, CL-MV is more resilient to

probability estimation errors than both the average and
the product rules.

1.4 Measures of performance comparison

To compare the predictive power of the different combiner
schemes, we will perform a series of experiments using real
datasets following the bagging procedure. We denote by
C = (Cij )i,j=1,...,r a general confusion matrix, with Cij

being the number of instances in the testing dataset that
belong to class j and have been assigned to class i by the
classifier, and we compare the goodness of the ensembles as
classifiers on unseen data in the validation process using two
different performance measures that can be applied both in
the binary and in the multi-class setting:

• Accuracy: this performance measure is one of the most
intuitive and appealing, and is defined from C in this
way:

Accuracy =
∑r

i=1 Cii
∑r

i=1
∑r

j=1 Cij

.

Accuracy ranges between 0 and 1, the latter corresponding
to perfect classification.

• Matthews Correlation Coefficient (MCC): is a more
subtle performance measure, which was first introduced
in the binary case by B.W. Matthews [21] as a
measure of association obtained by discretization of the
Pearson’s correlation coefficient for two binary vectors,
and was generalized in [15] to multi-class classification.
MCC has proven to be more reliable as a metric for
classification than Cohen’s Kappa, which has been used
in many works for a long time (see [9]). Its definition is
as follows:

MCC =

r∑

k,�,m=1
(Ckk C�m − Cmk Ck�)

√
√
√
√

r∑

k=1

((
r∑

�=1
Ck�

)(
r∑

u,v=1, u�=k

Cuv

))√
√
√
√

r∑

k=1

((
r∑

�=1
C�k

)(
r∑

u,v=1, u�=k

Cvu

))

MCC also assumes its theoretical maximum value of 1
when classification is perfect, but ranges between −1 and 1.

In both cases, the larger the metric value, the better the
classifier performance.

1.5 Description of the sections

The remainder of the paper is structured as follows. After
introducing the CL-MV combiner scheme in Section 2,
in Section 3 we compare the accuracies of CL-MV and

the majority vote in the binary case, and in Section 4 we
investigate the sensitivity of the average, product and CL-
MV schemes to probability estimation errors, in the general
multi-class setting. The Modified Confidence Level MCL
is introduced in Section 5 as a degree of support in clas-
sification alternative to the confidence level CL, showing
some properties in Appendix A. Without diving into compu-
tationally demanding experiments, Section 6 describes the
used datasets, the experimental design aimed to compare the
predictive power and the computational complexity of the
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considered combiner schemes for bagging, and the obtained
results (of which some complementary tables are allocated
in Appendix B). We finish with a discussion in Section 7,
and some words by way of conclusion in Section 8.

2 The CL-MV combiner scheme

We build a novel ensemble classifier from M base
classifiers C1, . . . , CM , by introducing a modification of
the simple majority vote scheme, and we name it the
Confidence Level based Majority Vote, CL-MV. This
combiner scheme uses the classifications given by the
base classifiers themselves along with their corresponding
estimated probability distributions, in this way:

If pjk denotes the probability that classifier j assigns to
class k, the predicted class by this classifier following the
maximum a posteriori probability (MAP) criterium, is that
with the largest assigned probability. That is, the predicted
class by the j -th probabilistic classifier is

y∗
j = y� if � = arg max

k=1,...,r
pjk , and CLj = max

k=1,...,r
pjk

is said to be the confidence level of the prediction, which is
interpreted as a degree of support to it. (It is understood that
if the point where the maximum is reached is not unique,
one of them is chosen by a tie-breaking rule.) In general, a
combiner scheme predicts in the following way:

y∗
ensemble = y� with � = arg max

k=1,...,r
gk (1)

for some function gk . Consider the following particular
cases:

1. Majority vote: gk = ∑M
j=1 djk, where djk =

{
1 if y∗

j = yk

0 otherwise.
Weighted majority vote: gk =∑M
j=1 ωj djk, where djk is as in the simple majority

vote, and ωj is the weight assigned to classifier Cj ,
usually obtained from its estimated accuracy (trainable
combiner).

2. Average: gk = 1
M

∑M
j=1 pjk (the Sum combiner is

equivalent, with the same gk but without dividing by
M).

3. Product: gk = ∏M
j=1 pjk

4. Minimum: gk = minj=1,...,M pjk

5. Maximum: gk = maxj=1,...,M pjk

We propose the following non-trainable weighted version
of the majority vote combiner scheme, based on the
confidence level CL as it degree of support:

6. CL-MV: gk = ∑M
j=1 ωj djk , with djk as in the majority

vote and ωj = CLj .

Note that ωj needs no other separate training algorithm
to be learned, making CL-MV a non-trainable combiner
scheme, and that for each classifier, it only uses the
maximum of its probability distribution, unlike the average,
which uses all the values of the probability distribution. Also
note that by definition of djk , gk only depends on the value
of the weight ωj for those j such that djk = 1, that is, when
y∗
j = yk , and we can assume without loss of generality

that otherwise ωj = 0. For that, we introduce the notation
y(k) = {j = 1, . . . , M : y∗

j = yk} for any k = 1, . . . , r ,
and then, with this notation, we can rewrite:

1. Majority vote: gk = # y(k).
Weighted majority vote: gk = ∑

j∈y(k) ωj where ωj

is the weight assigned to classifier Cj by a separate
learning algorithm.

6. CL-MV: gk = ∑
j∈y(k) ωj where ωj = CLj .

(Here and in the sequel, we use the convention that a sum
over an empty set, is zero.)

Remark 1 On the binary case (r = 2), we see in Proposition
1 below that under certain circumstances, CL-MV matches
the average scheme.

Proposition 1 In binary classification (r = 2), suppose
that y∗

CL-MV = yk . Therefore, if # y(k) ≤ M/2, we can
ensure that y∗

Average = yk , that is, CL-MV and the average
schemes give the same prediction.

Before giving the proof, let’s look at two examples in
Table 1, with M = 5 classifiers and r = 2 classes,
where the probabilities pjk are listed: in example a), the
hypothesis and the thesis of Proposition 1 are fulfilled, in
example b), neither the hypothesis nor the thesis are (it is a
counterexample that without the hypothesis, the thesis is no
longer true).

Table 1 Illustrative examples of Proposition 1

Example a) Example b)

Classifier y1 y2 y1 y2

C1 0.55 0.45 0.55 0.45

C2 0.60 0.40 0.60 0.40

C3 0.65 0.35 0.65 0.35

C4 0.05 0.95 0.20 0.80

C5 0.10 0.90 0.15 0.85

Average 0.39 0.61 0.43 0.57

CL-MV 1.80 1.85 1.80 1.65

The sum of the CL-MV weights for each example is the sum of the
probabilities in boldface for each class, which are the confidence levels
CL
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Indeed, example a) in Table 1 shows that y∗
Average =

y2 = y∗
CL-MV and # y(2) = 2 ≤ 5/2, while example b) gives

y∗
Average = y2 and y∗

CL-MV = y1, which is possible since
# y(1) = 3 > 5/2.

Proof of Proposition 1 Without loss of generality we can
assume that y∗

CL-MV = y1. This means that
∑

j∈y(1)

CLj ≥
∑

j∈y(2)

CLj (2)

Moreover, we assume that # y(1) ≤ M/2, which implies
that # y(1) ≤ # y(2) since M = # y(1)+ # y(2). Then, from
(2) we have that
∑

j∈y(1)

(
1 − CLj

) ≤
∑

j∈y(2)

(
1 − CLj

)
(3)

and then, adding term to term (2) and (3), we obtain
∑

j∈y(1)

CLj +
∑

j∈y(2)

(
1 − CLj

) ≥
∑

j∈y(2)

CLj +
∑

j∈y(1)

(
1 − CLj

)
,

that is,
M∑

j=1
pj1 ≥

M∑

j=1
pj2, which implies that y∗

Average =
y1.

(If CL-MV classifies without ties, that is,
∑

j∈y(1) CLj >

∑
j∈y(2) CLj , therefore,

M∑

j=1
pj1 >

M∑

j=1
pj2, that is, the

average scheme does too.)

In words, unlike what happens with the simple majority
vote, which chooses the class with the most votes from
among the base classifiers (for each classifier, the counter
of each class adds 1 if the classifier predicts that class, and
0 otherwise, and the combiner chooses the class with the
highest counter), with the CL-MV combiner scheme, the
counter of each class adds the measure of the degree of
support (CLj ) if the classifier Cj predicts that class, and 0

otherwise. Let us see the toy example in Table 2 below, in
which we have M = 5 classifiers and r = 3 classes, and
the probability distributions provided by each classifier. The
corresponding predictions with any of the base classifiers
and with the non-trainable ensembles are also given.

As can be seen in Table 2, the predictions with the
ensembles are:

y∗
Sum = y∗

Average = y∗
Product = y∗

Minimum = y3,

y∗
Majority = y1, y∗

CL-MV = y∗
Maximum = y2.

The main highlights of the CL-MV combiner scheme are:

1. It is a fusion not of the predictions but of the degree of
support given to the predictions, where this degree of
support is defined from the probability distribution over
the classes assigned by the classifier, as the confidence
level.

2. It is non-trainable, that is, no extra parameters need
to be trained and it is ready to run as soon as the base
classifiers are available.

3. It can provide different predictions both from those
provided by the majority vote and by the average
criteria (see the toy example in Table 2).

4. In the binary case, we found a scenario where it gives
the same prediction as the average (Proposition 1), and
we will show that its accuracy is greater than that of the
majority vote (see Section 3 below).

5. From the point of view of the sensitivity to probability
estimation errors, under some reasonable hypotheses,
CL-MV is more resilient than both the product and the
average schemes (see Section 4 underneath).

The pseudo-code for the algorithm of classification
corresponding to the ensemble given by the novel CL-MV
combiner scheme is Algorithm 1 below, and presents the
benefit of being simple and easy to implement. For the

Table 2 In boldface CL in the probability distributions, and also the maximum of the sum, the average, the product, the minimum and the maximum
of the predicted probabilities, and the maximum of the sum of the weights for both the majority vote and the CL-MV combiners

Distribution Majority vote CL-MV

Classifier y1 y2 y3 y1 y2 y3 y1 y2 y3

C1 0.55 0.00 0.45 1 0 0 0.55 0 0

C2 0.50 0.05 0.45 1 0 0 0.50 0 0

C3 0.50 0.02 0.48 1 0 0 0.50 0 0

C4 0.00 0.85 0.15 0 1 0 0 0.85 0

C5 0.05 0.75 0.20 0 1 0 0 0.75 0

Sum 1.60 1.67 1.73 3 2 0 1.55 1.60 0

Average 0.32 0.334 0.346

Product 0.00 0.00 0.002916

Minimum 0.00 0.00 0.15

Maximum 0.55 0.85 0.48
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sake of completeness, the pseudo-code for the standard
majority vote and the average schemes are also included
as Algorithm 2 and Algorithm 3, respectively. Those for
the product, minimum and maximum combiner schemes are
analogous to Algorithm 3, simply modifying the definition
of gk in line 4 properly, and then omitted.

Remark 2 As we can verify empirically in Section 6.3,
from a computational and saving of storage space point of
view, the majority vote (hard voting) presents the advantage
that once we know the prediction of any of the base
classifiers, y∗

j , we do not need to store any other information
about the probability distributions of the predictions. At
the other extreme, the average scheme (soft voting) needs
to store and use all the values of the distribution, making
it more computationally and storage-demanding. The CL-
MV combiner is halfway between them, using only the
maximum of the distribution. That is why we say that
CL-MV is a semi-hard voting combiner scheme.

3 Accuracy in the binary case

Majority vote is one of the most popular combiner schemes,
if not the most. In Section 4.2 [19], to find out why that is
so, the author studies in deep its accuracy, assuming that

i) the number of classes is r = 2 (binary case),
ii) the number of classifiers M is odd, say M = 2 L + 1

with L ≥ 1,
iii) the base classifiers outputs are independent (this con-

dition may seem unrealistic, but for many applications
it holds, at least approximately),

iv) the probability for each base classifier to give correct
class label is p ∈ (0, 1).

The majority vote will predict an accurate class label if the
simple majority of the base classifiers vote for it, that is,
if at least �M/2 + 1� of them give the correct prediction
(where �x� denotes the integer part or floor of x). Therefore,
the accuracy of the ensemble based on the majority vote
combiner is:

Accmajority =
M∑

�=�M/2�+1

(
M

�

)

p� (1 − p)M−� (4)
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Then, it can be seen (Condorcet Jury Theorem, 1785 [24])
that

a) if p > 0.5, limM→∞ Accmajority = 1 and it is
monotonically increasing,

b) if p = 0.5, Accmajority = 0.5 for all M ,
c) if p < 0.5, limM→∞ Accmajority = 0 and it is

monotonically decreasing.

And this result supports the intuition that we can expect
improvement over the individual accuracy p only if p >

0.5.
In the same scenario, what is the formula for the accuracy

of the ensemble based on CL-MV? This combiner scheme
gives the correct prediction if the number of classifiers that
predict correctly is at least α, with α being the minimum
integer such that

p α > (1 − p) (M − α),

which is equivalent to say that α is the minimum integer
such that α > (1 − p)M . Then, α = �(1 − p)M� + 1, and
in consequence, the accuracy is:

AccCL-MV =
M∑

�=�(1−p) M�+1

(
M

�

)

p� (1 − p)M−� (5)

We can easily prove the next result:

Proposition 2 In the binary case and with an odd number
of base classifiers M , we have that

⎧
⎪⎨

⎪⎩

If p > M+1
2 M

, then AccCL-MV > Accmajority,

If M−1
2 M

≤ p ≤ M+1
2 M

, then AccCL-MV = Accmajority,

If p < M−1
2 M

, then AccCL-MV < Accmajority .

In particular, since (M + 1)/(2M) > 1/2, Proposition
2 implies that if p > (M + 1)/(2M), CL-MV strictly
improves accuracy with respect to the majority vote
combiner scheme, and by the Condorcet Jury Theorem,
AccCL-MV is monotonically increasing and

lim
M→∞ AccCL-MV = 1 .

Proof By (4) and (5) we see that AccCL-MV > Accmajority

if and only if

�M/2� ≥ �(1 − p)M� + 1 ⇔ �(1 − p)M� ≤ L − 1 ⇔ (1 − p)M < L ⇔ p >
M + 1

2 M
.

On the other hand, AccCL-MV < Accmajority if and only if

�M/2�+1 ≤ �(1 − p) M� ⇔ (1−p) M ≥ L+1 ⇔ p <
M − 1

2 M
.

Otherwise, the accuracies are equal.

4 Error sensitivity

In this section we investigate the sensitivity of the product,
the average (equivalently, the sum) and the CL-MV
combiner schemes to probability estimation errors, by
following the approach of [18].

Assume for a while that probabilities pjk for j =
1, . . . ,M , k = 1, . . . , r are not computed correctly, rather
they suffer from an estimation error. Denote by p̂jk the
obtained estimates of the probabilities, which are those used
by the combination rules to obtain their predictions. As the
model of additive errors is the most popular error model in
statistics, we assume that the estimation error is additive,
that is, for any j and k,

p̂jk = pjk + εjk ,

where errors εjk are small (in absolute value). In particular,
we assume that errors do not affect the individual prediction
of any base classifier (y∗

j is not affected by errors). In other
words, we assume that for any j = 1, . . . , M ,

arg max
k=1,...,r

pjk = arg max
k=1,...,r

p̂jk . (6)

This implies that y(k) is also unaffected by the probability
estimation errors.

We are concerned about the effect that those probability
estimation errors will have on the predictions obtained by
the ensembles following the different combination rules. By
(1), now y∗

ensemble = y� with � = arg maxk=1,...,r ĝk , where
ĝk denotes the estimate of function gk obtained substituting
probabilities pjk by their estimates p̂jk . In what follows,
we concentrate on the product, the average and the CL-MV
combiner schemes.

a. The product scheme: gk =
M∏

j=1
pjk .

Following [18], we can write

ĝk =
M∏

j=1

p̂jk =
M∏

j=1

(pjk + εjk) =
⎛

⎝
M∏

j=1

pjk

⎞

⎠
M∏

i=1

(

1 + εik

pik

)

≈
⎛

⎝
M∏

j=1

pjk

⎞

⎠

(

1 +
M∑

i=1

εik

pik

)

= gk

(

1 +
M∑

i=1

εik

pik

)

,

where we have made a linear approximation (we neglect
higher order terms since the errors εjk are small and
therefore, the product of two or more of them is of a
very small order). That is, if the probabilities pjk are
affected by the additive estimation errors εjk , then gk is

affected by a multiplicative error Ψ
prod
k , where

Ψ
prod
k = 1 +

M∑

i=1

εik

pik

.
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b. The average scheme: gk = 1
M

M∑

j=1
pjk .

Following [18] again,

ĝk = 1

M

M∑

j=1

p̂jk = 1

M

M∑

j=1

(pjk + εjk) =
⎛

⎝ 1

M

M∑

j=1

pjk

⎞

⎠

(

1 +
∑M

i=1 εik
∑M

i=1 pik

)

= gk

(

1 +
∑M

i=1 εik
∑M

i=1 pik

)

.

In this case, if the probabilities pjk are affected by
the additive estimation errors εjk , then gk is affected by
a multiplicative error Ψ aver

k , where

Ψ aver
k = 1 +

∑M
i=1 εik

∑M
i=1 pik

.

c. The CL-MV scheme: gk = ∑

j∈y(k)

CLj (assume that k is

such that y(k) �= ∅), where CLj = max
�=1,...,r

pj�.

Therefore,

ĝk =
∑

j∈y(k)

ĈLj =
∑

j∈y(k)

max
�=1,...,r

p̂j� =
∑

j∈y(k)

max
�=1,...,r

(
pj� + εj�

)
.

(7)

We make the following assumption:

(H1) for all k = 1, . . . , r, k = arg max
�=1,...,r

εj� for all j ∈ y(k),

that is, εjk = max
�=1,...,r

εj�. In words, for each classifier

the error is maximum when predicting the highest
probability. Under (H1) we have that for any j ∈ y(k),

max
�=1,...,r

(
pj� + εj�

) = CLj + εjk .

Then, substituting into (7), we have that under (H1),

ĝk =
∑

j∈y(k)

(
CLj + εjk

) =
⎛

⎝
∑

j∈y(k)

CLj

⎞

⎠

(

1 +
∑

i∈y(k) εik
∑

i∈y(k) CLi

)

= gk

(

1 +
∑

i∈y(k) εik
∑

i∈y(k) CLi

)

.

Then, if the probabilities pjk are affected by the
additive estimation errors εjk , function gk is affected by
a multiplicative error Ψ CL-MV

k , with

Ψ CL-MV
k = 1 +

∑
i∈y(k) εik

∑
i∈y(k) CLi

= 1 +
∑

i∈y(k) εik
∑

i∈y(k) pik

. (8)

Now we can compare the error factors to see which
combiner scheme is more resilient to probability estimation

errors, and prove the following result (Proposition 3 below).
First, we introduce a hypothesis:

(H2)for all k = 1, . . . , r,
∑

j∈y(k)

εjk

∑

j /∈y(k)

p̂jk ≤
∑

j /∈y(k)

εjk

∑

j∈y(k)

p̂jk .

The rationale for this assumption is that fixed k, for the
classifiers Cj with j in y(k), k is the most probable class,
and then

∑
j∈y(k) p̂jk is likely to be sufficiently greater

than
∑

j /∈y(k) p̂jk to compensate that
∑

j /∈y(k) εjk could be
less than

∑
j∈y(k) εjk , since the errors are assumed to be

small. This is precisely the situation that we will see, as
an illustration, for the example in Table 2 (see Table 3
underneath). Proposition 3 states that the average rule is
much less affected by the probability estimation errors
than the product rule, and that under reasonable conditions,
the CL-MV rule is still less affected by errors than
the average.

Proposition 3 With the previous notations, for any k =
1, . . . , r ,

a) If
∑M

i=1 p̂ik ≥ 1 + ∑M
i=1 εik , then Ψ aver

k ≤ Ψ
prod
k .

b) If
∑

i∈y(k) p̂ik ≥ 1 + ∑
i∈y(k) εik , then Ψ CL-MV

k ≤
Ψ

prod
k .

c) Under (H2), Ψ CL-MV
k ≤ Ψ aver

k .

Proof The proof of the statement a) can be found in
Section 6 [18], but we reproduce it here for the sake of
completeness. Indeed, as pik ≤ 1, each error εik is amplified
in Ψ

prod
k by dividing it into pik , while for the average, the

errors are not amplified, in such a way that

Ψ
prod
k =1+

M∑

i=1

εik

pik

≥ 1+
M∑

i=1

εik ≥1+
∑M

i=1 εik
∑M

i=1 pik

= Ψ aver
k ,

where the second inequality is due to the fact that we
are assuming that

∑M
i=1 p̂ik ≥ 1 + ∑M

i=1 εik , which is
equivalent to

∑M
i=1 pik ≥ 1. This assumption is likely to

happen for the most probable class(es).
The proof of b) is similar for k such that

∑
i∈y(k) p̂ik ≥

1 + ∑
i∈y(k) εik , which is equivalent to

∑
i∈y(k) pik ≥ 1:

Ψ
prod
k = 1+

M∑

i=1

εik

pik

≥ 1+
∑

i∈y(k)

εik ≥ 1+
∑

i∈y(k) εik
∑

i∈y(k) pik

= Ψ CL-MV
k .

To see that statement c) holds, we only have to prove that
for any k = 1, . . . , r verifying (H2),
∑

i∈y(k) εik
∑

i∈y(k) pik

≤
∑M

i=1 εik
∑M

i=1 pik

. (9)
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Indeed, this holds since

(9) ⇔
∑

i∈y(k)

εik

⎛

⎝
∑

i∈y(k)

pik +
∑

i /∈y(k)

pik

⎞

⎠

≤
∑

i∈y(k)

pik

⎛

⎝
∑

i∈y(k)

εik +
∑

i /∈y(k)

εik

⎞

⎠

⇔
∑

i∈y(k)

εik

∑

i /∈y(k)

pik ≤
∑

i∈y(k)

pik

∑

i /∈y(k)

εik

⇔
∑

i∈y(k)

εik

∑

i /∈y(k)

(p̂ik−εik)≤
∑

i∈y(k)

(p̂ik−εik)
∑

i /∈y(k)

εik

⇔
∑

i∈y(k)

εik

∑

i /∈y(k)

p̂ik ≤
∑

i∈y(k)

p̂ik

∑

i /∈y(k)

εik,

which exactly is (H2).

To illustrate hypotheses made to establish Proposition 3,
we will return to the toy example in Table 2 in Table 3
beneath.

Observe that in Table 3 some of the estimation errors are
negative. Indeed, as for the true probabilities

∑r
k=1 pjk = 1

for any j = 1, . . . , M , and we also assume that the same
happens for the predicted probabilities,

∑r
k=1 p̂jk = 1, we

have that necessarily, the sum of the prediction errors for
any classifier must be zero, that is,

∑r
k=1 εjk = 0. In other

words, the sum of the prediction errors by row in Table 3
must be 0. Although we will not give the details, we can
see that for δ < 1 big enough and ε > 0 small enough, for
instance,

δ > 0.20 and ε < 0.08 ,

all assumptions are met:

0) The basic assumption that pjk = p̂jk − εjk ∈ [0, 1].
i) Assumption (6).

ii)
∑M

i=1 p̂ik ≥ 1 + ∑M
i=1 εik for any k = 1, 2, 3.

iii)
∑

i∈y(k) p̂ik ≥ 1 + ∑
i∈y(k) εik for for k = 1, 2

(y(3) = ∅ and then the condition does not make sense
for k = 3).

Table 3 Predicted probabilities p̂jk and estimation errors εjk in
brackets, for the example in Table 2, where ε > 0 is small, and
δ ∈ (0, 1)

Estimated probability p̂jk (error εjk)

Classifier y1 y2 y3

C1 0.55 (ε) 0.00 (−δ ε) 0.45 (−(1 − δ) ε)

C2 0.50 (ε) 0.05 (δ ε) 0.45 (−(1 + δ) ε)

C3 0.50 (ε) 0.02 (δ ε/2) 0.48 (−(1 + δ/2) ε)

C4 0.00 (−δ ε/2) 0.85 (ε) 0.15 (−(1 − δ/2) ε)

C5 0.05 (δ ε) 0.75 (ε) 0.20 (−(1 + δ) ε)

In boldface the confidence levels CL

iv) Hypotheses (H1) and (H2).

5 Themodified confidence level (MCL)

Although CL quantifies the uncertainty associated with
class prediction and it is the usual measure of degree of
support, it suffers from a shortcoming. Indeed, information
provided by CL is very valuable but it could be insufficient
to compare predictions made by classifiers in the multi-
class setting. Suffice a toy example as argument. Imagine
that we are in the 3-class setting and for two classifiers, the
probability distributions associated to their predictions are,
respectively:

(0.6, 0.4, 0.0) and (0.2, 0.6, 0.2) .

For the first classifier, the predicted class will be y1,
with a confidence level of CL= 0.6, while the second
classifier will provide y2, with the same confidence level.
Can we choose objectively between them? Prediction with
the second classifier seems more “reliable” (in the intuitive
sense of being more dependable). Then, if we had to choose,
intuitively we would choose y2 as class prediction, that
is, we will prefer classification provided by the second
classifier.

To formalize this intuition, since CL has proven
unable to distinguish between the two predictions in
the example, we will introduce a modification that can
do it, and we name it the Modified Confidence Level
(MCL). Then, MCL could also be used alternatively to
CL in order to compare and choose among predictions
made by different classifiers, and therefore to construct
a combiner scheme that we name MCL-MV, which is
like the already introduced CL-MV but substituting CL
by MCL.

The Modified Confidence Level MCL is formally
introduced as follows: consider a classifier that produces
a r-dimensional vector (p1, . . . , pr) where pk is the
probability the classifier adjudges to class yk (pk ≥ 0 for all
k = 1, . . . , r and

∑r
k=1 pk = 1). Then, the class predicted

by the classifier is
y∗ =y� if � = arg max

k=1,...,r
pk , with confidence level CL= max

k=1,...,r
pk .

Definition 1 In this setting, the Modified Confidence Level
(MCL) is defined by:

(10)

where Δ = CL − C̃L is the margin of confidence, being
C̃L = max

k=1,...,r : yk �=y∗ pk the second maximum.

Justification: Note that CL+(1−CL)Δ = (1−Δ) CL+
Δ. Formula (10) is obtained by searching for a weighted

3661A semi-hard voting combiner scheme



sum of CL and Δ with respective weights f (Δ) and 1, that
is, MCL = f (Δ) CL + Δ, such that

i) f is a linear function, that is, f (Δ) = a Δ + b,
ii) If CL = C̃L (⇒ Δ = 0), then MCL = CL,

iii) If CL = 1 (⇒ Δ = 1), then MCL = 1,
iv) CL ≤ MCL ≤ 1 .

Indeed, by i) and ii), we obtain that b = 1, and then, by using
iii) we have that a = −1, giving that f (Δ) = 1 − Δ. As by
definition, 0 ≤ C̃L ≤ CL ≤ 1, we have that Δ ∈ [0, 1] and
then iv) holds. More specifically, MCL verifies:

0 <
1

r
≤ CL ≤ MCL ≤ 1

(see Appendix A for this and other properties of MCL).
Intuitively, we have introduced MCL as a modification

of CL by adding a non-negative term Δ multiplied by
1−CL, and it can be interpreted as a degree of support,
different from CL, to the prediction y∗ given by the clas-
sifier. The idea is that this new measure incorporates more
information than CL about how reliable the prediction is.
This definition is motivated by the fact that when there are
more than one class with a high probability (that is, when
C̃L is close to CL), it seems reasonable to assume that we
have less conviction when choosing the class with the high-
est probability, so to associate a degree of support with the
prediction, we reward when it is done with a wide margin
between the first and second candidates, and penalize otherwise.

For instance, a similar situation has already been
considered in [17], where the second maximum is taken into
account on the conditional probability distribution obtained
from a Property Performance Bayesian Network, in order to
select candidates that allow to find out the Virtual Machine
with the minimal resource cost.

We can observe a parallelism between the MCL-MV
combiner scheme and the uncertainty sampling method
in the Active Learning setting (see [25]). Indeed, MCL-
MV prefers the prediction of a base classifier which

is less uncertain on how to label, uncertainty being
measured through the margin of confidence. The higher the
confidence margin with which the model predicts, the lower
its uncertainty, then the more preferable the base classifier
prediction will be.

Remark 3 Note that MCL coincides with CL if Δ = 0, and
also that if MCL is a monotonically non-decreasing function
of CL, therefore, y∗

MCL-MV = y∗
CL-MV. By Proposition 4

below, we have then that CL-MV and MCL-MV schemes
are equivalent combiners in the binary case, in the sense that
they provide the same predictions.

Proposition 4 In binary classification (r = 2), MCL is a
monotonically increasing function of CL.

Proof Increase in the binary case is consequence of the fact
that MCL as function of x =CL is

f (x) = −2 x2 + 4 x − 1

which is an increasing function of x in the interval where
CL lives, [0.5, 1]. Indeed, if we denote CL by x, C̃L is then
1 − x, and therefore

MCL = CL + (1 − CL)Δ = CL + (1 − CL) (CL − C̃L)

= x + (1 − x) (x − (1 − x)) = −2 x2 + 4 x − 1,

and f ′(x) = −4 (x − 1) > 0 if x < 1, which means that
f (x) is strictly increasing, while f ′(x) = 0 if x = 1, case
in which CL = MCL = 1.

And what happens in the multi-class context? Although
in the toy example of Table 2, CL-MV gives the same
prediction as MCL-CV, as can be seen in Table 4 below, it
doesn’t have to be.

Indeed, in this example, y∗
CL-MV = y∗

MCL-MV = y2,
that match. However, this might not be the case, as we can
see in this other toy example, from Table 5 in which, with
respect to the toy example in Table 4, only the probability
distribution corresponding to classifier C4 changes.

Table 4 Enlargement of the first toy example in Table 2

Distribution CL-MV MCL-MV

Classifier y1 y2 y3 y1 y2 y3 y1 y2 y3

C1 0.55 0.00 0.45 0.55 0 0 0.5950 0 0

C2 0.50 0.05 0.45 0.50 0 0 0.5250 0 0

C3 0.50 0.02 0.48 0.50 0 0 0.5100 0 0

C4 0.00 0.85 0.15 0 0.85 0 0 0.9550 0

C5 0.05 0.75 0.20 0 0.75 0 0 0.8875 0

Sum 1.55 1.60 0 1.6300 1.8425 0

In boldface CL in the probability distributions, the maximum of the sum of weights both for the CL-MV and the MCL-MV combiners
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Table 5 Second toy example

Distribution Majority vote CL-MV MCL-MV

Classifier y1 y2 y3 y1 y2 y3 y1 y2 y3 y1 y2 y3

C1 0.55 0.00 0.45 1 0 0 0.55 0 0 0.5950 0 0

C2 0.50 0.05 0.45 1 0 0 0.50 0 0 0.5250 0 0

C3 0.50 0.02 0.48 1 0 0 0.50 0 0 0.5100 0 0

C4 0.15 0.65 0.20 0 1 0 0 0.65 0 0 0.8075 0

C5 0.05 0.75 0.20 0 1 0 0 0.75 0 0 0.8875 0

Sum 1.75 1.47 1.78 3 2 0 1.55 1.40 0 1.6300 1.6950 0

Average 0.350 0.294 0.356

Product 0.00103125 0.00 0.003888

Minimum 0.05 0.00 0.20

Maximum 0.55 0.75 0.48

In boldface CL in the probability distributions, the maximum of the sum, the average, the product, the minimum and the maximum of the predicted
probabilities, and the maximum of the sum of weights both for the majority vote, the CL-MV and the MCL-MV combiners

In this second toy example, the predictions are:

y∗
Sum = y∗

Average = y∗
Product = y∗

Minimum = y3,

y∗
Majority = y∗

CL-MV = y1, y∗
MCL-MV = y∗

Maximum = y2,

and we can observe that CL-MV and MCL-MV provide
different predictions.

6 Experimentation

It is worth mentioning here that “there is no single best
classifier and that classifiers applied to different problems
and trained by different algorithms perform differently”
([19]). For that, given the sources of variation which are
imponderable when comparing classifiers, we follow the
advice of [19], Section 1.4, and carry out the experiments
with multiple training and validation sets, and with multiple
runs, and perform statistical tests of hypotheses to compare
Accuracy and MCC as behaviour metrics. More specifically,
the experiments were carried out using different datasets
to which we apply the bagging procedure, and we have
validated and compared the obtained classifiers using
the k-fold cross-validation procedure. Each experiment is
repeated N = 10 times with different random seeds for the
separation into the k folds of any dataset.

As decision trees are considered to be easy to implement
state-of-the-art classifiers, their use is widely spread, and
the cluster point of the methodology we introduce here does
not lie in the type of base classifier used to ensemble, we
decided to bag decision trees (through the C4.5 algorithm,
using the function J48 provided by the R library RWeka1).

1https://CRAN.R-project.org/package=RWeka

Note that in order to evaluate the predictive capacity of
the ensembles, it is desirable that the base classifiers from
which they are built have a not very high predictive power,
which is achieved with decision trees.

First, we compare CL-MV and MCL-MV against the
simple majority vote, and among them. Secondly, we
compare CL-MV and MCL-MV against the usual average
which has better behaviour than the majority vote and is
computationally more demanding, and finally we compare
them against the decision tree generated from the whole
training dataset without bagging.

6.1 The datasets

Some datasets from small to moderate size have been
considered in the experiments of this section, without
claiming to be exhaustive. All the datasets are public
and have been obtained from repositories of free access
and proven prestige, such as the UCI machine learning
repository [13] and Kaggle Inc2. See Table 6 for a brief list
of the datasets and a summary of their main characteristics.

6.2 Experimental design

The experiments have been implemented by using program-
ming with R language [22], with fixed seed for reproducibi-
lity purposes. The details are as follows: to avoid possible
biases, the procedure is repeated N = 10 runs, with differ-
ent seeds in the process of randomly splitting the dataset D

into folds, and in any run the same strategy was used, which
we break down into the following steps:

2http://www.kaggle.com
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Table 6 datasets used in the experimentation phase

Name Source # Cases # Attr. Marginal class distribution

Balance scale UCI 625 4 0.46, 0.46, 0.08

Contraceptive method UCI 1473 9 0.43, 0.35, 0.22

Horse colic UCI 366 26 0.62, 0.24, 0.14

Car evaluation UCI 1728 6 0.70, 0.22, 0.04, 0.04

Crime propensity [4] Kaggle 463 23 0.30, 0.32, 0.38

Waveform UCI 5000 21 0.33, 0.33, 0.33

Students alcohol [8] Kaggle 1044 26 0.38, 0.23, 0.19, 0.13, 0.07

Students’ API [2, 3] Kaggle 480 16 0.44, 0.30, 0.26

Cardiotocography UCI 2126 22 0.78, 0.14, 0.08

Yeast UCI 1483 8 0.312, 0.003, 0.024, 0.030, 0.034, 0.110, 0.164, 0.289, 0.014, 0.020

Image segmentation UCI 2310 19 0.143, 0.143, 0.143, 0.143, 0.143, 0.143, 0.143

Red wine quality UCI 1599 11 0.01, 0.03, 0.43, 0.40, 0.12, 0.01

Ecoli UCI 336 7 0.43, 0.23, 0.15, 0.10, 0.06, 0.02, 0.01, 0.01

Website phishing [1] UCI 1353 9 0.52, 0.08, 0.40

Vehicle silhouettes Kaggle 846 18 0.26, 0.25, 0.26, 0.24

Step 1: preparation of the training/validation sets.
For all the datasets we perform 10-fold cross-

validation to evaluate the considered ensemble methods
for bagging, as well as the decision tree algorithm
C4.5 generated from the complete training dataset,
denoted by DT in what follows. For that, we split the
whole dataset D into 10 subsets or folds of length
approximately equal, say V1, . . . , V10. For each � =
1, . . . , 10, let denote by T� the complementary of V� in
D.
Step 2: learning DT.

For each � = 1, . . . , 10, we use fold V� as validation
set for the DT model constructed from T� as training set,
from which we learn the decision tree algorithm C4.5.
Then, for each � we obtain the corresponding confusion
matrix.
Step 3: bagging.

For each fold � = 1, . . . , 10, and fixed a number
of bags NBags (we have considered three possibilities:
NBags = 5, 10, 100), we first choose from T� as
many samples drawn at random with replacement,
of length the number of cases in T�, as NBags,
and denote them by T B1, . . . , T BNBags. Then, for
each j = 1, . . . , NBags, we learn the decision tree
algorithm C4.5 with T Bj as training dataset, and
from them the ensembles using the combiner schemes:
simple majority vote, CL-MV, MCL-MV and average.
Note that all of them have been built using the
same base classifiers. Maximum, minimum and product
combiners have also been considered although they
show a very poor behaviour. Since the other four
combiner schemes (majority vote, CL-MV, MCL-MV
and average) clearly outweigh them in all the settings

with the two considered metrics (accuracy and MCC),
we have not included the details to lighten the section
devoted to the Results (Section 6.3).

Further step: Validation For each run n = 1, . . . , N , and
for each fold � = 1, . . . , 10, we validate the ensembles
of classifiers used for bagging with the validation set V�,
obtaining the corresponding confusion matrices. From these
matrices, and the matrices obtained for the DT classifier, we
compute Accuracy and MCC metrics. In addition, for each
model and for n = 1, . . . , N , we compute the averages
over � = 1, . . . , 10 of Accuracy and MCC. So, finally,
we have a vector of length N for each model, metric
and dataset, which forms a statistical sample of size N

that we use for carry on the comparison between models
using the appropriate statistical tests of hypotheses: pairwise
Student’s t-tests or Wilcoxon signed-rank tests [28], its
non-parametric counterpart, in case of lack of normality
(after applying the Shapiro-Wilk test for normality [23]
to discriminate whether we should apply a parametric or
non-parametric methodology).

6.3 Results

The outcomes of the comparisons are in Tables 13 and
14 (Appendix B), where only significant results have
been recorded. As usual, superscript ∗ denotes statistical
significance at 5%, ∗∗ at 1% and ∗∗∗ at 1�, and · denotes
weak significance at 10%. The alternative hypothesis, which
is accepted for small p-values, is that reported in the
table; for example, “MCL-MV > majority” indicates
that bagging procedure with the MCL-MV scheme is
better than that with the simple majority vote in the
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Table 7 Comparison summary of the predictive power: MCL-MV and CL-MV vs. majority vote

NBags MCL-MV > major. MCL-MV < major. p-value CL-MV > major. CL-MV < major. p-value

100 Contraceptive Cardiotoc. 0.15625 Cardiotoc. Ecoli 0.15625

Car eval. Car eval.

Waveform Waveform

Students alco. Students alco.

10 Balance scale 0.003906∗∗ Balance scale 0.003906∗∗

Car eval. Car eval.

Students alco. Students alco.

Cardiotoc. Cardiotoc.

Yeast Yeast

Crime Crime

Horse colic Horse colic

Vehicle Vehicle

5 Balance scale 0.0078125∗∗ Balance scale 0.0078125∗∗

Contraceptive Contraceptive

Waveform Waveform

Students alco. Students alco.

Image seg. Image seg.

Red wine Red wine

Ecoli Ecoli

Significative p-values are in favour that MCL-MV and CL-MV > majority vote

sense that the mean (or median, as appropriate) of any
of the metrics is statistically significantly greater (the p-
value of the corresponding statistical test is < 0.1), the
accompanying p-value being the measure of statistical
significance.

To facilitate interpretation of the results, a summary of
Tables 13 and 14 is given in separate Tables: 7, 8 and
9, where p-values are one-sided exact Binomial p-values,

which are obtained as follows: for example, in Table 7
below, the comparison between MCL-MV and majority
vote with NBags = 100 shows 4 datasets in favor of
the first, and 1 in favor of the second, that is, of the 5
datasets for which there are significant differences between
MCL-MV and majority vote, 4 are in favor of MCL-
MV, resulting in a one-sided exact p-value of P(B(n =
5, p = 0.5) = 4 ) = (5

4

) × 0.55 = 0.15625 , what

Table 8 Comparison summary of the predictive power: MCL-MV and CL-MV vs. average

NBags MCL-MV > average MCL-MV < average p-value CL-MV > average CL-MV < average p-value

100 Balance scale Car eval. 0.2734375 Balance scale Car eval. 0.24609375

Contraceptive Students alco. Contraceptive Students alco.

Website phishing Cardiotoc. Waveform Red wine

Red wine Cardiotoc Vehicle

Website phishing

10 Students’ API Car eval. 0.234375 Cardiotoc. Car eval. 0.375

Website phishing Students alco. Website phishing Students alco.

Image seg.

Vehicle

5 Cardiotoc. Car eval. 0.3125 Cardiotoc. Car eval. 0.21875

Crime Waveform Crime Waveform

Website phishing Students alco. Website phishing Students alco.

Yeast

Image seg.
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Table 9 Comparison summary of the predictive power: average vs. majority vote, and MCL-MV vs. CL-MV

NBags average > majority average < majority p-value MCL-MV > CL-MV MCL-MV < CL-MV p-value

100 Car eval. Balance scale 0.234375 Balance Car eval. 0.3125

Students alco. Website phishing Ecoli Students alco.

Red wine Cardiotoc.

Horse colic

10 Balance scale 0.0078125∗∗ 0.0625·

Car eval. Car eval.

Students alco. Students alco.

Yeast Image seg.

Ecoli Vehicle

Crime

Vehicle

5 Balance scale Cardiotoc. 0.026855∗ Balance Car eval. 0.234375

Contraceptive Website phishing Yeast Students’ API

Car eval. Image seg.

Waveform Ecoli

Students alco.

Yeast

Image seg.

Red wine

Ecoli

Significative p-values are in favour that average > majority vote, and (slightly) in favour that CL-MV > MCL-MV

would be the probability of obtaining such a result if
there were really no differences between the two combiner
schemes.

We observe that the main hypothesis (that CL-MV and
MCL-MV outperform the majority vote) is supported by
results in Table 7, while Table 9 gives support to secondary
hypothesis that in some cases MCL-MV shows better
predictive power than CL-MV, while in others, the opposite,
and Tables 8 and 9 sustain the secondary hypothesis that
although the average rule outperforms the majority vote, it
does not outperform CL-MV or MCL-MV.

Note that results corresponding to the comparison against
DT are not recorded since for most of the datasets
considered in this work, bagging with both combiner
schemes CL-MV, MCL-MV, majority vote or average, are
significantly better than DT, as expected.

Also note that we have used 5, 10 and 100 bootstrap
replicates of the training datasets for bagging because it
seemed reasonable to try a low number, a high number,
and a middle number. We observe that for most data bases,
increasing this number improves the predictive behavior
of the classifiers obtained by bagging (see Table 16 in
Appendix B, where we record the average over the runs
of the averages over the folds for both Accuracy and
MCC metrics), and also that the differences between them
decrease.

Finally, to address the issue of the computational
complexity, measured by the amount of time required to
run the algorithm, we have measured running times of
R code for all performed computations corresponding to
bagging with the different combiner schemes (see Table 15
in Appendix B, whose information is summarized in

Table 10 Comparison summary of the running times: average vs. majority vote

NBags average > majority vote average < majority vote p-value

100 14 0 6.10352 × 10−5∗∗∗

10 14 0 6.10352 × 10−5∗∗∗

5 13 0 1.22070 × 10−4∗∗∗

Significative p-values are in favour that times of average are greater than that of majority vote
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Table 11 Comparison summary of the running times: MCL-MV and CL-MV vs. average

NBags aver. > MCL-MV aver. < MCL-MV p-value aver. > CL-MV aver. < CL-MV p-value

100 8 0 0.003906∗∗ 10 2 0.016113∗

10 12 0 2.44 × 10−4∗∗∗ 14 0 6.104 × 10−5∗∗∗

5 13 0 1.221 × 10−4∗∗∗ 13 0 1.221 × 10−4∗∗∗

Significative p-values are in favour that times of average are greater than that of MCL-MV and that of CL-MV

Tables 10, 11 and 12 below where, as for Tables 7-9, p-
values are one-sided exact Binomial p-values). For that, we
use functions tic and toc of the library tictoc3 to measure
the run time of a chunk of code by taking the difference
between the time at the start and at the end (elapsed times).

The results of these tables indicate that in terms of
running times, bagging with the simple majority vote is less
computationally demanding than with CL-MV or MCL-
MV, which in turn is less computationally demanding
than with the average combiner scheme, confirming the
remaining part of the secondary hypotheses.

7 Discussion

“No free lunch” theorems (see [29]) tell us that for any
algorithm, its performance being high in one context will
be compensated for being low in a different one. Applied
to ensembles of probabilistic classifiers, different combiner
schemes are known to perform differently on different
datasets, and therefore choosing an appropriate combiner
scheme in each particular case is a major problem. To
address this question, it is essential to understand the way in
which classifier ensembles are combined.

In this paper we have used a common theoretical
framework to ensemble multi-class probabilistic classifiers
(see (1)), of which the most popular combiner schemes are
a particular case. We have focused on the consideration
of class-conscious combiner schemes, for which function
gk is defined from probabilities assigned by the different
base classifiers to class k, {pjk, j = 1, . . . , M}, and/or
the predictions of these classifiers, {y∗

j , j = 1, . . . , M}.
Out of our scope are the class-indifferent combiners, such
as the decision templates (see [19]), which use the set of
all the probabilities {pj�, j = 1, . . . , M, � = 1, . . . , r}
(named there as “decision profile” DP) to define gk . A
difference between the former and the latter is that the
class-conscious combiners are idempotent, that is, applied
to M copies of the same classifier, give the same decision
than that of the classifier; however, this is not the case
for decision templates, which can give a different decision.

3https://CRAN.R-project.org/package=tictoc

This characteristic of decision templates, whose predictive
capacity may be better or worse than that of a class-
conscious combiner, is difficult to justify from the point
of view of intuition and applications: In a team whose
members fully agree and make the same decision, how to
explain that the team as a whole makes a different decision
than its members?

As many empirical studies have shown that simpler class-
conscious combiner schemes often work remarkably well
([18]), we concentrate on this category and only consider
non-trainable rules, which do not need a separate training
algorithm to find weights for the base classifiers, usually
as a function of their estimated accuracies. We distinguish
between hard and soft voting. Majority vote is a hard-
voting scheme (based in the label outputs of the classifiers),
perhaps the oldest and simpler strategy for decision making
in a group, which is still the most common today.

From among the soft-voting combiner schemes polling
the continuous outputs of the base classifiers to reach a
decision, we consider the most popular choices: average,
product, minimum and maximum. The minimum is the most
pessimistic choice: a class is supported by the ensemble
with a certain degree if all the classifiers members of the
ensemble give a support of at least as much as this degree to
that class, while at the other extreme, the maximum rule is
the most optimistic, since a support degree is assigned by the
ensemble to a class if at least one of the members supports
that class with this degree; the average is an intermediate
case between pessimism and optimism, and in general
it is preferred. Besides, the product and the minimum
combiners are oversensitive to probabilities close to zero:
the presence of such probabilities for a given class has the
effect of veto on that particular class regardless of how
large the probabilities assigned by the other classifiers to
this class might be, which, in general, prevents against their
use.

The introduction in this paper of a novel class-conscious
non-trainable combiner scheme named CL-MV (and its
counterpart MCL-MV), which is halfway between the
majority vote and the average schemes, defined as a
weighted version of the former by using the confidence
levels as weights, seemed natural and convenient, since non-
trainable rules are simpler, well behaved and have lower
computing needs. Indeed, with its simple definition, this
combiner achieves greater accuracy than the majority vote in
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Table 12 Comparison summary of the running times: MCL-MV and CL-MV vs. majority

NBags MCL-MV > maj. MCL-MV < maj. p-value CL-MV > maj. CL-MV < maj. p-value

100 14 0 6.104 × 10−5∗∗∗ 14 0 6.104 × 10−5∗∗∗

10 8 1 0.03125∗ 8 0 0.003906∗∗

5 2 3 0.3125 3 3 0.3125

Significative p-values are in favour that times of majority vote are less than that of MCL-MV and that of CL-MV

the binary case, and at the same time, in plausible scenarios,
it is more resilient to probability estimation errors than both
the average and the product schemes, hence it is preferable
when probabilities assigned by classifiers to the classes are
not computed correctly but they suffer from an estimation
error.

Furthermore, comparing those combiner schemes
through experimentation, we show by bagging that both
CL-MV and MCL-MV are competitive with the average,
being less computationally demanding, and outperform the
rest of considered combiners, including the majority vote,
so they are a good alternative to consider when making the
choice of a combiner scheme.

8 Conclusions

The majority vote is an elementary combiner scheme that
together with the average, it is still the most used in practice
today to ensemble probabilistic classifiers. In this work
we have introduced a non-trainable weighted version of
the simple majority vote combiner scheme, CL-MV, that
uses the confidence level that each base classifier gives to
its prediction as weight (instead of use weights based on
the accuracies of the base classifiers, what corresponds to
a trainable weighted majority vote scheme), and can be
thought as a semi-hard voting combiner scheme, halfway
between the majority vote (hard voting) and the average
(soft voting) combiners. From a theoretical point of view,
we have proved the following results, which could be a
plausible explanation of its good performance observed in
the experimentation phase:

• In the binary case, CL-MV is more accurate than the
majority vote scheme.

• In the multi-class setting, under reasonable hypotheses,
both the average rule and the CL-MV are more resilient
to estimation errors than the product rule, being CL-MV
even more resilient than the average rule.

That is, CL-MV is a semi-hard voting rule that improves
the accuracy of the hard voting and the resilience to

estimation errors of the considered soft voting combiner
schemes.

We also introduce another simple measure of the degree
of support that each base classifier gives to its prediction,
alternative to CL in the multi-class setting, and we name
it MCL (by Modified Confidence Level), which embodies
more information than the usual CL since it incorporates
some knowledge about the information involved in the
probability distribution over the classes. More specifically,
MCL is based on the difference between the maximum and
the second maximum of the probability distribution.

The results of our experiments, using fifteen datasets
from the UCI machine learning repository, are very encour-
aging since with the meta-algorithm bagging, we have
given heuristic support to the hypotheses that we had
raised at the beginning of the work, reaching the following state-
ments, with both accuracy and MCC as performance metrics:

• MCL-MV and CL-MV give similar performance
results, and each of them is better for some of the
databases used in our experimental work.

• Both MCL-MV and CL-MV improve the classifying
power of the simple majority vote.

• With both MCL-MV and CL-MV, bagging outperforms
the base classifiers (each a single decision tree
algorithm C4.5).

• Bagging with the average rule outperforms that with
the simple majority vote, but it is equivalent to use
MCL-MV or CL-MV.

Moreover, we also evaluate the computational complex-
ity of the algorithms, reaching the conclusion that time
complexity is higher for bagging using the average, and
lower for the majority vote, positioning MCL-MV and
CL-MV combiners at an intermediate point.

Therefore, we can say from the experimental evidence
that both CL-MV and MCL-MV are combiner schemes
preferable for bagging to the simple majority vote (the
usual) and also to the average (its natural competitor),
conclusion that is in line with the theoretical results that
have been proved.
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Appendix A: Properties of MCL

Proposition 5 For r ≥ 2,

a)

1

r
≤ CL ≤ MCL ≤ CL + (1 − CL)

r CL − 1

r − 1
≤ 1 .

b) If r > 2, fixed C̃L, MCL is an increasing function of
CL, while fixed CL it is a straight line of non-positive
slope as function of C̃L, then decreasing. Moreover, if
C̃L ≤ 1/r ,

CL ≤ CL + (1 − CL)
r CL − 1

r
≤ MCL

Proof a) The first inequality is evident by definition of
CL. Second inequality is obvious, being strict except if
CL= 1 or C̃L =CL. Third inequality is due to the fact
that

C̃L ≥ 1 − CL

r − 1
,

which is obvious by definition of C̃L, since a total
probability of 1 − CL is divided among the r − 1 non-
maximum values, from which C̃L is defined, in turn, as the
maximum.

Finally, we prove that CL+(1−CL) r CL−1
r−1 ≤ 1. Indeed,

simple algebraic manipulations show that this inequality is
equivalent to (1 − CL)2 ≥ 0 , what is obviously fulfilled.
This inequality is strict except if CL= 1.

b) Fixed C̃L, MCL as function of x = CL is g(x) =
−x2 + (2 + C̃L) x − C̃L, which is strictly increasing
since its first derivative is g′(x) = −2 x + (2 + C̃L),
which is > 0 for 0 < x ≤ 1. On the other hand,
fixed CL, as function of z = C̃L MCL is h(z) =
−(1 − CL) z + CL + (1 − CL) CL .

Corollary 1 For r ≥ 2,

CL = 1 ⇐⇒ MCL = 1

Proof By definition of MCL, if CL= 1 then MCL=CL= 1.
The reverse implication is also true. Indeed, MCL= 1

implies by Proposition 5 a) that

CL + (1 − CL)
r CL − 1

r − 1
= 1 ,

which is equivalent to (1−CL)2 = 0, implying CL = 1.

Appendix B: Complementary tables

Table 13 Comparison between MCL-MV, CL-MV, majority vote and average combiner schemes, with the different choices for the number of
bags in bagging, attending to Accuracy and MCC, for different datasets

dataset NBags

100 10 5

Balance scale Acc. MCL-MV > CL-MV (0.0046∗∗) MCL-MV > CL-MV (0.088·)
MCL-MV > average (0.0054∗∗)

CL-MV > average (0.063·)
MCL-MV > majority (0.0025∗∗) MCL-MV > majority (0.011∗)

CL-MV > majority (0.00012∗∗∗) CL-MV > majority (0.0049∗∗)

majority > average (0.063·) average > majority (0.0039∗∗) average > majority (0.019∗)

MCC MCL-MV > CL-MV (0.0029∗∗)

MCL-MV > average (0.002∗∗)

CL-MV > average (0.042∗)

MCL-MV > majority (0.0032∗∗) MCL-MV > majority (0.0098∗∗)

CL-MV > majority (0.00017∗∗∗) CL-MV > majority (0.0068∗∗)

majority > average (0.053·) average > majority (0.0039∗∗) average > majority (0.024∗)

Contraceptive Acc. MCL-MV > average (0.046∗)

CL-MV > average (0.049∗)

MCL-MV > majority (0.069·) MCL-MV > majority (0.051·)
CL-MV > majority (0.097·)
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Table 13 (continued)

dataset NBags

100 10 5

MCC MCL-MV > average (0.046∗)

CL-MV > average (0.049∗)

MCL-MV > majority (0.069·) MCL-MV > majority (0.017∗)

CL-MV > majority (0.039∗)

average > majority (0.063·)

Horse colic Acc. MCL-MV > majority (0.064·)
CL-MV > majority (0.052·)

MCC MCL-MV > majority (0.066·)
CL-MV > majority (0.057·)

average > majority (0.091·)

Car eval. Acc. CL-MV > MCL-MV (0.071·) CL-MV > MCL-MV (0.049∗) CL-MV > MCL-MV (0.096·)
average > MCL-MV (0.0016∗∗) average > MCL-MV (0.00084∗∗∗) average > MCL-MV (0.00069∗∗∗)

average > CL-MV (0.0056∗∗) average > CL-MV (0.004∗∗) average > CL-MV (0.00019∗∗∗)

MCL-MV > majority (0.067·) MCL-MV > majority (0.0053∗∗)

CL-MV > majority (0.0095∗∗) CL-MV > majority (0.00021∗∗∗)

average > majority (0.00054∗∗∗) average > majority (7.7 × 10−6∗∗∗) average > majority (0.0027∗∗)

MCC CL-MV > MCL-MV (0.078·) CL-MV > MCL-MV (0.065·) CL-MV > MCL-MV (0.077·)
average > MCL-MV (0.002∗∗) average > MCL-MV (0.002∗∗) average > MCL-MV (0.00087∗∗∗)

average > CL-MV (0.0098∗∗) average > CL-MV (0.014∗) average > CL-MV (0.00032∗∗∗)

MCL-MV > majority (0.019∗)

CL-MV > majority (0.019∗) CL-MV > majority (0.00098∗∗∗)

average > majority (0.0049∗∗) average > majority (0.00098∗∗∗) average > majority (0.0031∗∗)

Crime Acc. MCL-MV > average > (0.053·)
CL-MV > average (0.053·)

MCL-MV > majority (0.04∗)

CL-MV > majority (0.04∗)

average > majority (0.044∗)

MCC MCL-MV > average > (0.057·)
CL-MV > average (0.057·)

MCL-MV > majority (0.035∗)

CL-MV > majority (0.035∗)

average > majority (0.038∗)

Waveform Acc. average > MCL-MV (0.0065∗∗)

CL-MV > average (0.096·) average > CL-MV (0.026∗)

MCL-MV > majority (0.0094∗∗) MCL-MV > majority (0.046∗)

CL-MV > majority (0.093·) CL-MV > majority (0.052·)
average > majority (0.0012∗∗)

MCC average > MCL-MV (0.0063∗∗)

CL-MV > average (0.096·) average > CL-MV (0.025∗)

MCL-MV > majority (0.0098∗∗) MCL-MV > majority (0.044∗)

CL-MV > majority (0.093·) CL-MV > majority (0.05·)
average > majority (0.0011∗∗)

Students alco. Acc. CL-MV > MCL-MV (0.00014∗∗∗) CL-MV > MCL-MV (0.00019∗∗∗)

average > MCL-MV (9.2 × 10−5∗∗∗) average > MCL-MV (2.0 × 10−5∗∗∗) average > MCL-MV (0.0015∗∗)
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Table 13 (continued)

dataset NBags

100 10 5

average > CL-MV (0.00026∗∗∗) average > CL-MV (0.00022∗∗∗) average > CL-MV (0.0019∗∗)

MCL-MV > majority (0.0059∗∗) MCL-MV > majority (1.6 × 10−5∗∗∗) MCL-MV > majority (0.00065∗∗∗)

CL-MV > majority (9.5 × 10−5∗∗∗) CL-MV > majority (3.1 × 10−7∗∗∗) CL-MV > majority (0.00027∗∗∗)

average > majority (7.6 × 10−5∗∗∗) average > majority (2.0 × 10−7∗∗∗) average > majority (2.5 × 10−5∗∗∗)

MCC CL-MV > MCL-MV (0.00018∗∗∗) CL-MV > MCL-MV (0.00013∗∗∗)

average > MCL-MV (0.00012∗∗∗∗) average > MCL-MV (2.6 × 10−5∗∗∗∗) average > MCL-MV (0.00074∗∗∗)

average > CL-MV (0.00034∗∗∗) average > CL-MV (0.00027∗∗∗) average > CL-MV (0.0012∗∗)

MCL-MV > majority (0.0072∗∗) MCL-MV > majority (1.5 × 10−5∗∗∗) MCL-MV > majority (0.00056∗∗∗)

CL-MV > majority (0.00011∗∗∗) CL-MV > majority (3.2 × 10−7∗∗∗) CL-MV > majority (0.00022∗∗∗)

average > majority (9.1 × 10−5∗∗∗) average > majority (2.8 × 10−7∗∗∗) average > majority (2.1 × 10−5∗∗∗)

Students’ API Acc. CL-MV > MCL-MV (0.074·)
MCL-MV > average (0.033∗)

MCC CL-MV > MCL-MV (0.05·)
MCL-MV > average (0.022∗)

Cardiotoc. Acc. CL-MV > MCL-MV (0.0029∗∗)

average > MCL-MV (0.062·) MCL-MV > average (0.026∗)

CL-MV > average (0.00098∗∗∗) CL-MV > average (0.084·) CL-MV > average (0.0052∗∗)

majority > MCL-MV (0.029∗) MCL-MV > majority (0.053·)
CL-MV > majority (0.00098∗∗∗) CL-MV > majority (0.032∗)

majority > average (0.037∗)

MCC CL-MV > MCL-MV (7.9 × 10−5∗∗∗)

average > MCL-MV (0.07·) MCL-MV > average (0.021∗)

CL-MV > average (7.6 × 10−5∗∗∗)

majority > MCL-MV (0.029∗) MCL-MV > majority (0.064·)
CL-MV > majority (5.7 × 10−5∗∗∗) CL-MV > majority (0.04∗)

Only statistically significant differences have been recorded, with the corresponding one-sided p-value

Table 14 Continuation of Table 13

dataset NBags

100 10 5

Yeast Acc. MCL-MV > CL-MV (0.097·)
average > CL-MV (0.093·)

MCL-MV > majority (0.0017∗∗)

CL-MV > majority (0.0078∗∗)

average > majority (0.0037∗∗) average > majority (0.0082∗∗)

MCC average > CL-MV (0.098·)
MCL-MV > majority (0.0019∗∗)

CL-MV > majority (0.0084∗∗)

average > majority (0.0041∗∗) average > majority (0.097·)

Image seg. Acc. CL-MV > MCL-MV (0.018∗) MCL-MV > CL-MV (0.036∗)

average > MCL-MV (0.084·)
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Table 14 (continued)

dataset NBags

100 10 5

average > CL-MV (0.068·)
MCL-MV > majority (0.029∗)

CL-MV > majority (0.048∗)

average > majority (0.016∗)

MCC CL-MV > MCL-MV (0.019∗) MCL-MV > CL-MV (0.03∗)

average > MCL-MV (0.088·)
MCL-MV > majority (0.032∗)

CL-MV > majority (0.042∗)

average > majority (0.032∗)

Red wine Acc. average > MCL-MV (0.04∗)

average > CL-MV (0.028∗)

MCL-MV > majority (0.04∗)

CL-MV > majority (0.053·)
average > majority (0.039∗) average > majority (0.023∗)

MCC average > MCL-MV (0.035∗)

average > CL-MV (0.024∗)

MCL-MV > majority (0.046∗)

CL-MV > majority (0.058·)
average > majority (0.036∗) average > majority (0.027∗)

Ecoli Acc. MCL-MV > CL-MV (0.084·) MCL-MV > CL-MV (0.099·)
MCL-MV > majority (0.025∗)

majority > CL-MV (0.078·) CL-MV > majority (0.0089∗∗)

average > majority (0.016∗)

MCC MCL-MV > majority (0.013∗)

CL-MV > majority (0.0048∗∗)

average > majority (0.097·) average > majority (0.012∗)

Website Acc. MCL-MV > average (0.03∗) MCL-MV > average (0.097·) MCL-MV > average (0.021∗)

CL-MV > average (0.068·) CL-MV > average (0.007∗∗) CL-MV > average (0.024∗)

majority > average (0.029∗) majority > average (0.028∗)

MCC MCL-MV > average (0.049∗) MCL-MV > average (0.093·) MCL-MV > average (0.024∗)

CL-MV > average (0.062·) CL-MV > average (0.0087∗∗) CL-MV > average (0.027∗)

majority > average (0.062·) majority > average (0.03∗)

Vehicle Acc. CL-MV > MCL-MV (0.036∗)

average > MCL-MV(0.075·)
MCL-MV > majority (0.08·)
CL-MV > majority (0.041∗)

average > majority (0.041∗)

MCC CL-MV > MCL-MV (0.014∗)

average > CL-MV(0.097·)
MCL-MV > majority (0.08·)
CL-MV > majority (0.042∗)

average > majority (0.042∗)
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Table 15 Comparison between MCL-MV, CL-MV, majority vote and average combiner schemes, with the different choices for the number of
bags in bagging, attending to the mean running times

dataset NBags

100 10 5

Balance scale MCL-MV < CL-MV (0.097·)
MCL-MV < average (0.002∗∗) MCL-MV < average (0.00098∗∗∗) MCL-MV < average (0.0029∗∗)

CL-MV < average (0.00098∗∗∗) CL-MV < average (0.019∗)

majority < MCL-MV(0.00098∗∗∗) majority < MCL-MV (0.053·)
majority < CL-MV(0.00098∗∗∗)

majority < average (0.00098∗∗∗) majority < average (0.0029∗∗) majority < average (0.00098∗∗∗)

Contraceptive CL-MV < MCL-MV (0.053·)
MCL-MV < average (0.065·) MCL-MV < average (0.00098∗∗∗) MCL-MV < average (0.00098∗∗∗)

CL-MV < average (0.024·) CL-MV < average (0.00098∗∗∗) CL-MV < average (0.00098∗∗∗)

majority < MCL-MV(0.0029∗∗) majority < MCL-MV (0.041∗)

majority < CL-MV(0.002∗∗) majority < CL-MV (0.097·)
majority < average (0.00098∗∗∗) majority < average (0.00098∗∗∗) majority < average (0.00098∗∗∗)

Horse colic MCL-MV < average (0.0029∗∗)

CL-MV < average (0.08·) CL-MV < average (0.033∗) CL-MV < average (0.0029∗∗)

majority < MCL-MV(0.042∗) majority < MCL-MV (0.053·)
majority < CL-MV(0.019∗) majority < CL-MV (0.028∗)

majority < average (0.0072∗∗) majority < average (0.0029∗∗) majority < average (0.0029∗∗)

Car eval. MCL-MV < average (0.00098∗∗∗) MCL-MV < average (0.00098∗∗∗) MCL-MV < average (0.0029∗∗)

CL-MV < average (0.00098∗∗∗) CL-MV < average (0.00098∗∗∗) CL-MV < average (0.0029∗∗)

majority < MCL-MV(0.00098∗∗∗) majority < MCL-MV (0.024∗)

majority < CL-MV(0.00098∗∗∗) majority < CL-MV (0.032∗) majority < CL-MV (0.062·)
majority < average (0.00098∗∗∗) majority < average (0.00098∗∗∗) majority < average (0.00098∗∗∗)

Crime MCL-MV < CL-MV (0.021∗)

MCL-MV < average (0.00098∗∗∗) MCL-MV < average (0.0029∗∗)

CL-MV < average (0.0029∗∗) CL-MV < average (0.0046∗∗)

majority < MCL-MV(0.0029∗∗)

majority < CL-MV(0.0029∗∗)

majority < average (0.00098∗∗∗) majority < average (0.0029∗∗) majority < average (0.0029∗∗)

Waveform MCL-MV < average (0.00098∗∗∗) MCL-MV < average (0.00098∗∗∗) MCL-MV < average (0.00098∗∗∗)

CL-MV < average (0.042∗) CL-MV < average (0.00098∗∗∗) CL-MV < average (0.00098∗∗∗)

majority < MCL-MV(0.042∗) majority < MCL-MV (0.00098∗∗∗)

majority < CL-MV(0.026∗) majority < CL-MV (0.0029∗∗) majority < CL-MV (0.026∗)

majority < average (0.002∗∗) majority < average (0.00098∗∗∗) majority < average (0.00098∗∗∗)

Students alco. MCL-MV < average (0.065·) MCL-MV < average (0.00098∗∗∗) MCL-MV < average (0.0046∗∗)

CL-MV < average (0.065·) CL-MV < average (0.00098∗∗∗) CL-MV < average (0.00098∗∗∗)

majority < MCL-MV(0.00098∗∗∗) majority < MCL-MV (0.084·)
majority < CL-MV(0.002∗∗) majority < CL-MV (0.07·)
majority < average (0.00098∗∗∗) majority < average (0.00098∗∗∗) majority < average (0.00098∗∗∗)

Students’ API CL-MV < MCL-MV (0.021∗)

MCL-MV < average (0.00098∗∗∗) MCL-MV < average (0.0045∗∗)

CL-MV < average (0.00098∗∗∗) CL-MV < average (0.004∗∗)
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Table 15 (continued)

dataset NBags

100 10 5

majority < MCL-MV(0.0098∗∗) majority < MCL-MV (0.053·)
majority < CL-MV(0.0068∗∗) majority < CL-MV (0.062·)
majority < average (0.002∗∗) majority < average (0.0029∗∗) majority < average (0.0029∗∗)

Cardiotoc. average < CL-MV (0.096·) CL-MV < average (0.042∗)

majority < MCL-MV(0.00098∗∗∗)

majority < CL-MV(0.0029∗∗)

majority < average (0.00098∗∗∗) majority < average (0.0068∗∗)

Yeast MCL-MV < average (0.00098∗∗∗) MCL-MV < average (0.00098∗∗∗) MCL-MV < average (0.00098∗∗∗)

CL-MV < average (0.00098∗∗∗) CL-MV < average (0.00098∗∗∗) CL-MV < average (0.00098∗∗∗)

majority < MCL-MV(0.0029∗∗) MCL-MV < majority (0.016∗) MCL-MV < majority (0.084·)
majority < CL-MV(0.00098∗∗∗) CL-MV < majority (0.0049∗∗)

majority < average (0.0029∗∗) majority < average (0.00098∗∗∗) majority < average (0.00098∗∗∗)

Image seg. MCL-MV < CL-MV (0.038∗)

MCL-MV < average (0.00098∗∗∗) MCL-MV < average (0.00098∗∗∗) MCL-MV < average (0.00098∗∗∗)

CL-MV < average (0.00098∗∗∗) CL-MV < average (0.00098∗∗∗) CL-MV < average (0.00098∗∗∗)

majority < MCL-MV(0.00098∗∗∗) MCL-MV < majority (0.057·)
majority < CL-MV(0.0049∗∗) CL-MV < majority (0.054·)
majority < average (0.00098∗∗∗) majority < average (0.00098∗∗∗) majority < average (0.00098∗∗∗)

Red wine MCL-MV < CL-MV (0.032∗)

MCL-MV < average (0.00098∗∗∗) MCL-MV < average (0.00098∗∗∗) MCL-MV < average (0.00098∗∗∗)

CL-MV < average (0.0029∗∗) CL-MV < average (0.00098∗∗∗) CL-MV < average (0.00098∗∗∗)

majority < MCL-MV(0.0049∗∗)

majority < CL-MV(0.00098∗∗∗) CL-MV < majority (0.049∗)

majority < average (0.0029∗∗) majority < average (0.00098∗∗∗) majority < average (0.00098∗∗∗)

Ecoli average < CL-MV (0.065·)
MCL-MV < majority (0.062·)

majority < CL-MV(0.065·) majority < CL-MV(0.062·)

Website MCL-MV < CL-MV (0.062·) CL-MV < MCL-MV (0.046∗)

MCL-MV < average (0.00098∗∗∗) MCL-MV < average (0.00098∗∗∗)

CL-MV < average (0.097·) CL-MV < average (0.002∗∗) CL-MV < average (0.004∗∗)

majority < MCL-MV(0.002∗∗) majority < MCL-MV(0.0029∗∗) majority < MCL-MV(0.026∗)

majority < CL-MV(0.002∗∗) majority < CL-MV(0.038∗)

majority < average (0.00098∗∗∗) majority < average (0.00098∗∗∗) majority < average (0.00098∗∗∗)

Vehicle MCL-MV < average (0.0039∗∗) MCL-MV < average (0.00098∗∗∗)

CL-MV < average (0.00098∗∗∗) CL-MV < average (0.00098∗∗∗) CL-MV < average (0.00098∗∗∗)

majority < MCL-MV(0.0029∗∗)

majority < CL-MV(0.00098∗∗∗)

majority < average (0.00098∗∗∗) majority < average (0.00098∗∗∗) majority < average (0.0029∗∗)

Only statistically significant differences have been recorded, with the corresponding one-sided p-value
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Table 16 Average over the runs of the averages over the folds, for the metrics Accuracy and MCC, with the different combiner ensembles used
for bagging purpose, for all the datasets

dataset Combiner Accuracy MCC

NBags=100 NBags=10 NBags=5 NBags=100 NBags=10 NBags=5

Balance scale Average 0.7740154 0.7513288 0.7288445 0.5883788 0.5487738 0.5072420

Majority vote 0.7780356 0.7440587 0.7201709 0.5965023 0.5363291 0.4935601

CL-MV 0.7769186 0.7527805 0.7258931 0.5941668 0.5515474 0.5029486

MCL-MV 0.7794752 0.7514901 0.7272075 0.5988784 0.5492955 0.5051069

Contraceptive Average 0.5353973 0.5254163 0.5193388 0.2774085 0.2611231 0.2537991

Majority vote 0.5359469 0.5255374 0.5165075 0.2782439 0.2616225 0.2485659

CL-MV 0.5367578 0.5244531 0.5188639 0.2796619 0.2598304 0.2534177

MCL-MV 0.5369673 0.5250639 0.5192748 0.2798230 0.2605874 0.2539472

Horse colic Average 0.7175397 0.7028571 0.6853175 0.4604409 0.4324652 0.4074338

Majority vote 0.7164683 0.6977778 0.6857937 0.4554709 0.4223913 0.4074721

CL-MV 0.7167460 0.7033730 0.6876984 0.4581209 0.4337365 0.4113487

MCL-MV 0.7164683 0.7033730 0.6874603 0.4578716 0.4338120 0.4112308

Car eval. Average 0.9374716 0.9325426 0.9291912 0.8680035 0.8552277 0.8480259

Majority vote 0.9340491 0.9284806 0.9246111 0.8591384 0.8470087 0.8382690

CL-MV 0.9354974 0.9309884 0.9247300 0.8619095 0.8520468 0.8386320

MCL-MV 0.9345724 0.9302274 0.9241460 0.8601390 0.8504922 0.8372627

Crime Average 0.9665040 0.9667081 0.9653904 0.9496098 0.9499838 0.9479535

Majority vote 0.9667214 0.9651863 0.9660293 0.9499501 0.9476783 0.9489973

CL-MV 0.9665040 0.9664907 0.9662467 0.9496098 0.9496911 0.9492570

MCL-MV 0.9665040 0.9664907 0.9662467 0.9496098 0.9496911 0.9492570

Waveform Average 0.8364200 0.8206000 0.8041600 0.7550795 0.7311470 0.7064618

Majority vote 0.8362600 0.8203400 0.8033400 0.7548421 0.7307600 0.7052240

CL-MV 0.8365600 0.8205400 0.8037400 0.7552898 0.7310510 0.7058331

MCL-MV 0.8366600 0.8207400 0.8037200 0.7554365 0.7313542 0.7058048

Students alco. Average 0.735260 0.6791667 0.6195513 0.6429574 0.5653656 0.4838058

Majority vote 0.7190954 0.6524501 0.5973291 0.6206685 0.5276119 0.4519976

CL-MV 0.7278134 0.6695833 0.6121724 0.6328053 0.5520377 0.4731271

MCL-MV 0.7216845 0.6652849 0.6118803 0.6243004 0.5458373 0.4725444

Students’ API Average 0.7750000 0.7660417 0.7500000 0.6533812 0.6385312 0.6150958

Majority vote 0.7741667 0.7650000 0.7506250 0.6520287 0.6371588 0.6166304

CL-MV 0.7739583 0.7670833 0.7500000 0.6516134 0.6400713 0.6158577

MCL-MV 0.7733333 0.7677083 0.7493750 0.6508280 0.6410259 0.6149154

Cardiotoc. Average 0.9327064 0.9410728 0.9374823 0.8107983 0.8352823 0.8268416

Majority vote 0.9324273 0.9405016 0.9380011 0.8101460 0.8337865 0.8282892

CL-MV 0.8518415 0.8518415 0.8518415 0.7964556 0.7964556 0.7964556

MCL-MV 0.9320512 0.9412602 0.9378609 0.8090851 0.8356427 0.8279561

Yeast Average 0.6186299 0.5989162 0.5752443 0.5054024 0.4795878 0.4490664

Majority vote 0.6184325 0.5950783 0.5726848 0.5053746 0.4747339 0.4460183

CL-MV 0.6186352 0.5980446 0.5734835 0.5055393 0.4787068 0.4468311

MCL-MV 0.6184974 0.5985824 0.5743633 0.5054534 0.4793597 0.4478329
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Table 16 (continued)

dataset Combiner Accuracy MCC

NBags=100 NBags=10 NBags=5 NBags=100 NBags=10 NBags=5

Image seg. Average 0.9699134 0.9669697 0.9642857 0.9649614 0.9615164 0.9584254

Majority vote 0.9699567 0.9671429 0.9634199 0.9650143 0.9617162 0.9574192

CL-MV 0.9698268 0.9669697 0.9640693 0.9648596 0.9615169 0.9581705

MCL-MV 0.9699567 0.9667965 0.9642424 0.9650121 0.9613172 0.9583763

Red wine Average 0.6932615 0.6681390 0.6473372 0.5071194 0.4689767 0.4367043

Majority vote 0.6915173 0.6670339 0.6426797 0.5041135 0.4674161 0.4297496

CL-MV 0.6918250 0.6675767 0.6465656 0.5046150 0.4681904 0.4357777

MCL-MV 0.7917060 0.6676426 0.6467475 0.5043858 0.4682266 0.4359762

Ecoli Average 0.8527040 0.8442424 0.8342657 0.7977340 0.7857791 0.7718838

Majority vote 0.8527972 0.8403963 0.8274359 0.7978752 0.7803340 0.7629759

CL-MV 0.8518415 0.8419580 0.8329371 0.7633132 0.7825715 0.7701328

MCL-MV 0.8524476 0.8427273 0.8319814 0.7972553 0.7834106 0.7689298

Website Average 0.9076151 0.9015507 0.9011836 0.8374854 0.8263294 0.8252411

Majority vote 0.9085733 0.9024412 0.9029630 0.8390778 0.8276560 0.8285420

CL-MV 0.9082770 0.9028035 0.9031095 0.8386970 0.8285752 0.8288027

MCL-MV 0.9084976 0.9024364 0.9031836 0.8390036 0.8279560 0.8289320

Vehicle Average 0.7432857 0.7427857 0.7338175 0.6603490 0.6592262 0.6471487

Majority vote 0.7429206 0.7400952 0.7327381 0.6598246 0.6556408 0.6457060

CL-MV 0.7422381 0.7430238 0.7337143 0.6588553 0.6595597 0.6471186

MCL-MV 0.7427143 0.7419444 0.7333571 0.6595494 0.6581548 0.6466841
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