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Abstract
Semantic segmentation is an advanced research topic in computer vision and can be regarded as a fundamental technique for
image understanding and analysis. However, most of the current semantic segmentation networks only focus on segmentation
accuracy while ignoring the requirements for high processing speed and low computational complexity in mobile terminal
fields such as autonomous driving systems, drone applications, and fingerprint recognition systems. Aiming at the problems
that the current semantic segmentation task are facing, it is difficult to meet the actual industrial needs due to its high
computational cost. We propose a joint pyramid attention network (JPANet) for real-time semantic segmentation. First,
we propose a joint feature pyramid (JFP) module, which can combine multiple network stages with learning multi-scale
feature representations with strong semantic information, hence improving pixel classification performance. Second, we
built a spatial detail extraction (SDE) module to capture the shallow network multi-level local features and make up for the
geometric information lost in the down-sampling stage. Finally, we design a bilateral feature fusion (BFF) module, which
properly integrates spatial information and semantic information through a hybrid attention mechanism in spatial dimensions
and channel dimensions, making full use of the correspondence between high-level features and low-level features. We
conducted a series of experiments on two challenging urban road scene datasets (Cityscapes and CamVid) and achieved
excellent results. Among them, the experimental results on the Cityscapes dataset show that for 512× 1024 high-resolution
images, our method achieves 71.62% Mean Intersection over Union (mIoU) with 109.9 frames per second (FPS) on a single
1080Ti GPU.

Keywords Attention mechanism · Encoder-decoder network · Feature pyramid module · Lightweight network ·
Real-time semantic segmentation

1 Introduction

Deep learning is cost-effective in translation invariance and
automatic extraction of the in-depth features of target input.
However, traditional image processing methods require
much cost for this. Therefore, deep learning has been widely
used in many fields of digital image processing. Semantic
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segmentation using deep learning is one of the most popular
research topics. It aims to group pixels according to
different semantics expressed in the image, and has a
wide range of applications in drones, autonomous driving
systems, wearable devices, and medical image analysis
[1–3].

Hitherto, most advanced semantic segmentation net-
works [4–6] use backbone networks with more layers as
the model encoder, which helps to improve the segmen-
tation accuracy of the network. Nevertheless, they ignore
the unique requirements for low storage overhead and high
processing speed of edge devices in industrial produc-
tion. First, a high-precision segmentation network usually
reaches hundreds of layers, which contains many weight
parameters, thus posing a severe challenge to the stor-
age capacity of edge devices. Second, there are two ways
to achieve millisecond-level processing speeds in practical
applications: improve the processor performance or reduce
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the computational complexity of the model. Due to the
influence of manufacturing process, it is not easy to signifi-
cantly improve the processing units like Graphic card or so
on. Therefore, reducing the computational complexity of the
neural network is the most effective method at present.

To reduce the large number of parameters redundancy
in the deep neural network and the model computational
complexity, the main method is to compress the pre-trained
model and transform it into an efficient small model. Recently,
the commonly used compression model methods include
network pruning [7], knowledge distillation [8], and low-
rank approximation [9]. The operation process of network
pruning is first to measure each neuron importance after
training, remove some unimportant neurons, then fine-tune
the network, and finally return to the first step for the next
round of pruning. The low-rank approximation uses several
small-scale matrices to reconstruct a dense matrix, hence it
effectively reduce computation and storage costs. For example,
LRNNet [10] uses singular value decomposition to simplify
non-local networks and reduce the weight matrix parameter.
The basic idea is to perform singular value decomposition
on the weight matrix. Since, the singular vector correspond-
ing to a larger singular value contains more matrix informa-
tion, the first k largest items in the singular value matrix and
the corresponding singular value vector are retained. So we
need to reconstruct a weight matrix similar to the original
matrix. The extraction of knowledge distillation is transfer
learning. Its purpose is to transfer the knowledge learned by
a complex model to a simplified small model through spe-
cific technical means, so that the small model can achieve
similar performance as the large model.

Due to the of the problem that semantic segmentation
networks are difficult to deploy to terminal devices because
of excessive parameters and computational costs in practical
application scenarios. Some researchers use lightweight
image classification models as the backbone network of
real-time semantic segmentation models. Although these
real-time semantic segmentation algorithms [11–13] based
on lightweight backbone networks can obtain deep-level
semantic information, they ignore the impact of the network
shallow geometric details on the segmentation results to
pursue faster inference speed. Therefore, they have not
designed a suitable decoder, resulting in unsatisfactory
segmentation accuracy. So, balancing inference speed,
segmentation accuracy, and network scale are still problems
that researchers need to address.

Based on the above analysis, we design three plug-and-
play modules: Joint Feature Pyramid (JFP) Module, Spatial
Detail Extraction (SDE) Module, and Bilateral Feature
Fusion (BFF) Module. The JFP module is used to extract
rich semantic information in the deep layer of the network to
enhance feature recognition capabilities. The SDE module

is used to extract rich spatial contour information in
the shallow layer of the network. Finally, the feature
information captured by the JFP module in the spatial
and channel dimensions passes through the BFF module
fusion with the spatial contour information captured by the
SDE module. Based on the JFP module, SDE module, and
BFF module, we efficiently construct a real-time semantic
segmentation model called JPANet. It can select different
backbone networks as encoder according to different
scenarios to achieve the trade-off between computing costs,
inference speed, and segmentation accuracy.

In conclusion, our main contributions are as follows:

– We propose a new JFP module to extract strong seman-
tic feature representations in the network, which helps
JPANet accurately obtain high-level semantic infor-
mation of the target object and improve segmentation
accuracy.

– The SDE module for extracting multi-level local
features of the shallow network is proposed. This
module can make up for the geometric information lost
in the down-sampling process, hence, improving the
ability to segment small target objects.

– In view of the information complementary character-
istics of spatial location and high-level semantics in
semantic segmentation tasks, we propose a BFF mod-
ule that captures the self-dependence of each category
of channels and spatial locations in the middle layer of
the network.

– Based on the above three modules, we designed a real-
time semantic segmentation network called JPANet.
JPANet makes full use of the information of high-
level semantics and low-level details and satisfies
the perception of high-level semantic information
of low-level details and the understanding of low-
level details characteristics of high-level semantic
similarity. It solves the problems of the current semantic
segmentation model, that are mainly cannot achieve
high processing speed and low storage overhead due to
its huge parameter amount and computational cost.

– Experiments on the Cityscapes dataset show that even
if a 512 × 1024 high-resolution image is input, JPANet
can still achieve 71.62% mIoU at 109.9 FPS. On the
CamVid dataset with an input resolution of 360 × 480,
JPANet can achieve 67.45% mIoU with 294 FPS.

2 Related work

This section mainly introduces the three parts most relevant
to our work: lightweight backbone network, attention
mechanism, and multi-scale contextual information.
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2.1 Lightweight backbone network

To improve the image and video processing capabilities of
embedded and mobile terminal devices, it is usually neces-
sary to meet the requirements of low power consumption,
low storage, and high real-time. Therefore, the main idea
of designing a lightweight neural network is to design a
more efficient convolution operation mode to reduce the
redundant information in the network.

The basic component of MobileNet [14] is deep sep-
arable convolution, which can be divided into depthwise
convolution and pointwise convolution. Depthwise convolu-
tion uses different convolution kernels for the input feature
channels, and pointwise convolution uses 1 × 1 standard
convolution kernels to perform feature maps upgrading
or reducing dimensionality, restore to the target size. The
depthwise separable convolution formed by the combina-
tion of deepwise convolution and pointwise convolution
has much lower parameters and calculations than standard
convolution, and it will not cause excessive precision loss.
ShuffleNet V2 [15] uses channel split instead of group
convolution in ShuffleNet V1 [16]. Each block end uses
a channel shuffle operation to ensure information flow
between the two branches. It is because of the fact that
ShuffleNet V2 follows the four principles of efficient net-
work design. Therefore ShuffleNet V2 is more advanced
than most lightweight networks in terms of speed and accu-
racy. The traditional concept in lightweight neural network
design process believes that there is redundant feature infor-
mation in neural networks, and it is necessary to avoid
the generation of these highly similar feature information.
GhostNet [17] believes that the strong feature extraction
ability and linear invariance of convolutional neural net-
work are positively related to these rich feature information.
So GhostNet uses a series of cheap linear transformations
to generate an internal map that fully reveals the feature
information.

2.2 Attentionmechanism

The attention mechanism can give different weights to
image pixels to focus on essential areas, results in improving
the network processing capacity. Hence it has been widely
used in many computer vision tasks. The method to realize
the attention mechanism is mainly divided into two steps:
First, calculate the given input feature information attention
to weight probability. Second, extract relevant feature
information based on the attention weight probability.
According to the way the attention weight is applied, the
attention model can be divided into spatial attention model,
channel attention model, mixed attention model, etc.

In the field of image semantic segmentation, CCNet [18]
replaces the traditional non-local operation by Recurrent

Criss-Cross Attention block (RCCA). After passing through
the RCCA module, each pixel can capture its horizontal
and vertical context information, maintaining long-distance
spatial dependence. While significantly reducing the model
space complexity, good results have been obtained on
multiple datasets. To better integrate the information of
spatial detail branches and high-level context branches,
BiSeNet [12] proposed a Feature Fusion Module (FFM).
The FFM converts the feature information into a weight
vector and then re-weights the features. Through this
operation, the global context information can be integrated
without too much computational cost. DANet [19] uses the
position attention module to capture the spatial dependence
between any two positions in the feature map, which
take advantage of encoding context information into
local features. The channel attention module is used to
establish the semantic dependency between each channel
mapping explicitly. SANet [3] introduced an attention
convolution channel to strengthen important features and
weaken unimportant features, and it was making the
feature more directive, thus effectively considering spatial-
channel interdependence. TSNet [20] introduced a self-
attention mechanism in the cross-modal distillation stream,
and then refined the intermediate feature maps of the
depth stream and RGB stream through the cross-modal
distillation stream, to further optimized the segmentation
results.

2.3 Multi-scale feature fusion

The latest progress made by real-time semantic segmen-
tation networks mainly comes from merging multi-scale
context information to improve the model feature expres-
sion ability. The so-called multi-scale is to sample images
with different granularities. The deep layer of the semantic
segmentation network based on deep learning can repre-
sent powerful semantic information, but the resolution of
the feature map is low, and the spatial detail information is
scarce, which is suitable for processing large target objects.
On the other hand, the shallow receptive field of the net-
work is relatively small, the ability to express spatial detail
information is strong, and the corresponding semantic fea-
tures are less, which is suitable for processing small target
objects. Therefore, fusing the deep and shallow features of
the network is beneficial to enhance the model segmentation
ability.

There are two common multi-scale feature fusion
methods: the first is to use parallel multi-branch networks,
such as the DeepLab series [21–23] of Atrous Spatial
pyramid pooling (ASPP) module and PSPNet [24] Pyramid
Pooling Module (PPM). The second is the skip connection
structure. This fusing multi-scale feature is very common in
image segmentation tasks, such as FCN [25], UNet [26].
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3 Joint pyramid attention network

Figure 1 shows the overall architecture of JPANet. Then we
will introduce our proposed SDE module, JFP module, and
BFF module.

3.1 Spatial detail extractionmodule

The current real-time semantic segmentation algorithm
mainly uses convolution factorization and continuous down-
sampling to reduce the calculation cost and improve
the inference speed. However, the image spatial position
information will gradually be lost in the process of
multiple downsampling, causing irreversible adverse effects
on small objects in the image. The dilated convolution
[27] can increase the receptive field of the model without
reducing the image resolution, and captures the surrounding
and local features of the pixel. Although this method
effectively extracts high-level semantic information, it does
not consider how to extract spatial detail information.

Due to the shallow high-resolution images of the network
contain rich location information, while the deep low-
resolution images lack spatial information. To solve this
problem, we propose an SDE module to extract the image
spatial features in the first three stages of the backbone
network. As shown in Fig. 1, the module is composed of
three down-sampling units, where each down-sampling unit
is composed of a standard convolution with a step of 2 and
maximum pooling in parallel. The input resolution of each
downsampling unit isH×W×Cin, and the output resolution

is H
2 × W

2 × Cout , where H and W represent the height
and width of the input image, Cin is the number of input
channels, and Cout is the number of output channels. The
number of channels through the maximum pooling is Cin,
and the number of channels through the step convolution is
Cout − Cin. For the 1/2 resolution image, we downsample
twice. For the 1/4 resolution image, we downsample once.
Then perform the residual connection (Note: the 1/x
resolution images mentioned in this article are relative to
the original input image). This construction method not only
integrate the location information between different layers
in the backbone network, but also strengthens the flow of
spatial information of the image between the network layers.
Moreover, it improves the perception of the shallow location
information of the high-level semantic information.

3.2 Joint feature pyramidmodule

Recently most real-time semantic segmentation model
based on lightweight backbone networks usually only use
simple decoders to obtain higher inference speed, which
results in the segmentation accuracy of the models often
not satisfactory. Therefore, we have carefully design the
JFP module to capture multi-scale feature information and
produce better segmentation performance in the decoder
part.

Since 1/8 resolution pixels are four times more than
1/16 resolution, 16 times more than 1/32 resolution. When
performing the same convolution operation, the compu-
tational cost of 1/8 resolution is four times that of 1/16

Fig. 1 The detailed structure of JPANet. JFP is a joint feature pyramid module, SDE is a spatial detail extraction module, BFF is a bilateral feature
fusion module, and SegHead represents a segmentation head. In SegHead, Ci is 128, Cm is 128, and Co is 20. ⊕ denotes the element-level addition
of the feature map
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resolution and 16 times that of 1/32 resolution. Although the
multi-scale context information extraction on the 1/8 resolu-
tion image can greatly improve accuracy, it will also greatly
increase the model computational cost. Even if extract-
ing multi-scale context information from an image with
1/32 resolution can greatly improve the computational effi-
ciency, it will also reduce the accuracy. To achieve the best
trade-off between segmentation accuracy and segmentation
efficiency, our proposed JFP module is performed on the
features of 1/16 resolution.

In Fig. 2a, we use 3 × 3 standard convolution to process
feature maps with 1/8 resolution and 1/16 resolution. It is
just because the 1/32 resolution image has more channels,
standard convolution will increase many parameters, so
we use the depthwise separable convolution to process the
1/32 resolution image. Then the 1/8 resolution image is
downsampled to 1/16 resolution using maximum pooling,
and the high-level semantic feature map of 1/32 resolution
is bilinearly upsampled to 1/16 resolution. Finally the
channels are concatenated to obtain fa .

Figure 2b is the feature pyramid structure using the split-
transform-concatenate operation. First, channel shuffle is
carried out for fa , and it is divided into four parts. The
feature map after division is f i

a , i ∈ {1, 2, 3, 4}. The number
of channels for f i

a is C/4, where C is the number of
channels for fa . Then f i

a is parallelized through 3 × 3
dilated convolution, and its specific operation is defined as
follows:

F i
a =

{
D(f i

a ), i = 1,

D(F i−1
a + f i

a ), i = 2, 3, 4.
(1)

Where D represents dilated convolution, and F i
a represents

the output of the i-th dilated convolution. Finally, concate-
nate F i

a, i ∈ {1, 2, 3, 4} and fa in the channel dimension to
obtain fb.

As shown in Fig. 2c, fb contains many channels, and
the direct use of standard convolution will bring more
parameters, which will bring a heavy computational burden
to edge devices with limited computing resources.

The formula for calculating the parameters of the
unbiased depthwise separable convolution is:

Kh × Kw × Ci + Ci × Co (2)

Among them, Kh and Kw are the height and width of the
convolution kernel, Ci is the number of input channels,
and Co is the number of output channels. The parameter
calculation formula for standard unbiased convolution is:

Kh × Kw × Ci × Co (3)

It is not difficult to find that when Co is much larger than
Kh × Kw, the parameter amount of the depthwise separable
convolution is only 1/(Kh × Kw) times that of the standard
convolution. Therefore, we use 3 × 3 depth separable
convolution for fb to obtain a new feature representation fc,
which can reduce the parameter amount of this link by about
nine times.

3.3 Bilateral feature fusionmodule

In the backbone network, shallow features receptive field
is small, contains rich geometric details, and is suitable for
processing small targets. Deep features have a large recep-
tive field and strong semantic information representation

Fig. 2 Joint feature pyramid module structure
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ability, suitable for processing large objects. The purpose
of feature fusion is to merge the different features extracted
from the image into a more discriminative feature. It can
fuse the most differentiated information among different
features and eliminate redundant information generated by
the correlation between different features. Therefore, fus-
ing features of different scales in semantic segmentation
has become an important means to improve the accuracy of
segmentation.

The most classic feature fusion method currently uses
channel concatenation and element-level addition, but
these two methods ignore the spatial dependence and
channel dependence between pixels, leading to sub-optimal
segmentation results. Therefore, we propose the BFF
module (as shown in Fig. 3), which uses a channel attention
mechanism and spatial attention mechanism to enhance the
global correlation between feature information in parallel.

First, we concatenate the geometric detail features
generated by the SDE module and the deep semantic
features generated by the JFP module. Then use standard
convolution to balance the scale of the feature information
to get the feature map. Next, the feature map is equally
divided into m1 and m2.

Second, we use a similar operation to CBAM [28]. The
above branch uses adaptive average pooling and adaptive
maximum pooling to obtain feature vectors f C×1×1

Avg and

f C×1×1
Max , then calculates the weight vector V C×1×1

channel , and

finally uses V C×1×1
channel to re-weight the features m1 to obtain

f1. The specific operation is defined as follows:

V C×1×1
channel = σ(F (Avg(m1)) + F(Max(m1))) (4)

f1 = V C×1×1
channel × m1 (5)

Here σ(·) represents the sigmoid activation function, Avg

is the adaptive global average pooling, Max is the adaptive
global maximum pooling, and F is the combination
function, which includes two 1 × 1 convolutions and
Parametric Rectified Linear Unit (PReLU).

Third, for the following branches, we use adaptive global
average pooling and adaptive global maximum pooling in
the channel dimension to obtain m2 spatial information
S1×H×W

Avg and S1×H×W
Max . Then usage concatenation, standard

convolution, and the activation function to get a two-
dimensional spatial attention map M1×H×W

spatial . At last we use

M1×H×W
spatial to re-weight the features m2 to obtain f2. The

specific operation is defined as follows:

M1×H×W
spatial = σ(conv(concat (Avg(m2), Max(m2)))) (6)

f2 = M1×H×W
spatial × m2 (7)

Here σ(·) stands for sigmoid activation function, conv

stands for standard convolution, and concat stands for
channel concatenation.

Fig. 3 Feature fusion module
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Finally, the feature maps generated by the channel atten-
tion path and the spatial attention path are concatenated, and
then the residual connection is made with the feature map
m.

As channel attention pays attention to what it is, spatial
attention pays attention to where it is. The BFF module
uses a hybrid attention mechanism based on the above
two. Therefore, the BFF module achieves a more effective
fusion of information with complementary geometric spatial
details and high-level semantic information.

4 Experiments

This section uses JPANet to perform performance evalua-
tion experiments on two representative urban road datasets,
Cityscapes and CamVid. First, introduce two datasets and
implementation details and then analyze each component
effectiveness in JPANet. Finally, compare JPANet with
the current state-of-the-art real-time semantic segmentation
model in terms of Mean Intersection over Union (mIoU),
giga-floating point operations (GFLOPs), and parameters
(Params).

4.1 Datasets

4.1.1 Cityscapes

Cityscapes is a large dataset for semantic understanding of
urban street scenes, with a resolution of up to 1024× 2048.
It contains 5000 finely labeled pictures, of which 2975 are
used for training, 500 are used for validation, and 1525
are used for testing. It also contains about 20,000 coarse
labeled pictures, which can be used to pre-train the model.
Cityscapes have 30 types of labeled objects, while only 19
types are used for semantic segmentation. Since it contains
many semantically similar categories (for example, Car and
Bus, Motorcycle and Bicycle), it poses a huge challenge to
real-time semantic segmentation.

4.1.2 CamVid

CamVid is another well-known dataset for understanding
complex road scenes in cities. It contains 701 high-
resolution pictures extracted from video sequences. In
an image with a resolution of 720 × 960, there are 11
categories for semantic segmentation. According to the
previous division method [29, 30], 367 pictures are used
for training, 101 pictures are used for validation, and 233
pictures are used for testing.

4.2 The experimental details

4.2.1 The experiment platform

We have performed our experiment using system with
AMD R5 3600 @ 3.6GHz, NVIDIA GeForce GTX 1080Ti
GPU, and 16GB RAM. The software environment speci-
fication we used during our experiment is PyTorch1.5.0,
CUDA10.1, cudnn7.6.5.

4.2.2 The experimental details

In order to make full use of GPU memory, we use Apex
mixed precision developed by NVIDIA to accelerate model
training. The Adam optimizer is used to train the model,
and the weight decay is set to 2 × 10−4. Following the
methods in [1] and [11], we also adopt the “poly” learning
rate adjustment strategy:

lr = init lr × (1 − epoch

max epoch
)power (8)

Here init lr represents the initial learning rate, and
max epoch is the maximum number of iterations. We set
max epoch to 450 and power to 0.9. While we were doing
experiment on the Cityscapes dataset, init lr is 5 × 10−4

and batchsize is 10. Moreover for doing experiment on the
CamVid dataset, init lr is 1 × 10−3 and batchsize is 32.

With reference to ENet [29] and SegNet [30], we use
category weights to improve the problem of category
imbalance in the CamVid dataset, which is defined as:

Wclass = 1

ln(c + pclass)
(9)

Here c is an additional hyperparameter, we set it to 1.10,
pclass represents each category probability.

We adopted random horizontal flipping, mean subtrac-
tion, and multi-scale methods for the input image during
training for data augmentation strategies. The multi-scale
include {0.75, 1.0, 1.25, 1.5, 1.75, 2.0}. In the process of
training, validation, and testing, we adjusted the resolution
of the input images of Cityscapes and CamVid to 512×1024
and 360× 480 respectively. To further improve the segmen-
tation performance of the model, we also adopted the online
hard example mining algorithm [31] on the Cityscapes
dataset.

The auxiliary loss function only needs a very low
computational cost to improve the feature expression of
model ability in the training stage and removed in the
forward inference process of model. In addition to obtain
the loss function loss1 at the end of JPANet, we also
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Table 1 Choice of weight coefficient of loss function

λ1 λ2 mIoU(%)

0 0 69.74

0.2 0.4 70.80

0.4 0.6 71.62

0.6 0.8 71.27

0.8 1 70.96

obtain two auxiliary functions loss2 and loss3 at the end
of the backbone network and the end of the JFP module
respectively. Therefore, the loss function in the training
stage is:

loss = loss1 + λ1 · loss2 + λ2 · loss3 (10)

Here λ is the weight of auxiliary loss. As shown in
Table 1, when λ1 is 0.4 and λ2 is 0.6, the best results are
obtained, which is 1.88% higher than when the auxiliary
loss function is not used.

4.3 Ablation studies

In this section, we conducted a series of ablation
experiments to prove the JPANet model effectiveness and
its three components. All ablation experiments are done on
the Cityscapes dataset, where mIoU results on the test set.

4.3.1 Ablation experiments on different lightweight
backbone networks

In the down-sampling process, the ability of the network
to extract features and realize model translation invariance,
rotation invariance, and scale invariance is crucial for
real-time semantic segmentation. In order to explore the
impact of different lightweight backbone networks on
the comprehensive performance of JPANet, we use three
different lightweight backbone networks ShuffleNet [14],
MobileNet [16], GhostNet [17] to construct JPANet-S,
JPANet-M and JPANet-G. The experimental results in
Table 2 show that although JPANet-S has the lowest number
of parameters and the fastest inference speed under the
same input resolution, its segmentation accuracy is the
lowest among the three networks, i.e., only 66.69%. From

Table 2 Evaluate the impact of different lightweight backbone
networks on our model

Backbone Input Size Params(M) GFLOPs FPS mIoU(%)

JPANet-S 512 × 1024 2.30 12.37 172.4 66.69

JPANet-M 512 × 1024 3.05 12.49 93.5 69.61

JPANet-G 512 × 1024 3.49 10.89 109.9 71.62

Table 3 Evaluate the impact of different dilation rates on the
Cityscapes test set

Dilated rate mIoU(%)

1, 2, 4, 8 70.27

1, 2, 5, 9 71.62

1, 3, 6, 9 71.37

1, 6, 12, 18 71.41

Table 2, we can also see that the parameter amount of
JPANet-G (JPANet) is only 0.44M higher than JPANet-M,
but the computational complexity of JPANet-G is 12.81%
lower than JPANet-M, and the inference speed is 17.54%
higher. At the same time, the segmentation accuracy has also
increased by 2.01%. It can be seen that the comprehensive
performance of JPANet-G is the best among the above
three networks, so we choose GhostNet as our lightweight
backbone network in subsequent experiments.

4.3.2 Ablation experiment for dilated rate

We used four different dilated rates in the JFP module to
obtain the image multi-scale information, namely {1, 2,
5, 9}. To verify this dilated sequence validity, we set up
three other dilated sequence schemes in the JFP module
for comparison. As shown in Table 3, when using the {1,
2, 5, 9} dilated sequence, JPANet reached 71.62% mIoU
in the Cityscapes test set. When we change the dilated
sequence to {1, 2, 4, 8}, the performance drops by 1.35%,
which shows the necessity of increasing the dilated rate in
the JFP module. When the dilated sequence continues to
increase, the model performance drops by about 0.2%, so
we conclude that when the dilated sequence {1, 2, 5, 9} is
used, the model achieves the optimal result.

4.3.3 Ablation experiment on each component

In this section of the experiment, we use different
combinations of the JFP module, SDE module, and BFF
module to verify each module impact on segmentation
performance. As shown in Table 4, when only the
lightweight backbone network is used, and the modules we

Table 4 Evaluate the impact of different components on the
Cityscapes test set

Backbone JFP SDE BFF mIoU(%)

√
60.90√ √
66.89√ √ √
70.20√ √ √
68.34√ √ √ √
71.10
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propose are not used, the backbone network only achieves
60.90% mIoU. When the JFP module is connected behind
the backbone network, the model segmentation accuracy
is improved by 5.99%. This is because the backbone
network directly performs 32 times upsampling, and the
high-level semantic information lacks the perception of
low-level spatial information, resulting in unsatisfactory
segmentation of category boundaries. The JFP module
integrates the features of three different stages. The network
high-level semantic information has a certain perception
of the image geometric information. So, the segmentation
effect is obviously increased. It can be seen from the last
two rows of Table 4 that when only the SDE module and the
BFF module are used, and the JFP module is not used, the
segmentation accuracy of the model is only 68.34%. After
using the JFP module, the accuracy of the model increased
by 2.76%. Suppose only the element-level addition method
is used to fuse the deep semantic information extracted by
the JFP module and the shallow detail information extracted
by the SDE module. In that case, the model segmentation
accuracy is only 70.20%. If the BFF module establishes the
pixel channel and position dependency for feature fusion,
the model segmentation performance increases by 70.20%
to 71.10%.

4.3.4 Ablation experiment on different context modules

Context modules such as ASPP [23], PPM [24] and their
variant modules are widely used to capture feature repre-
sentations of different scales in the network. To explore the
effectiveness of the JFP module relative to other context
modules, we used ASPP module, PPMmodule, JPUmodule
[32] to replace the JFP module in JPANet, thus construct-
ing three heterogeneous JPANet variant networks. It can be
seen from Table 5 that the three JPANet heterogeneous net-
works constructed using ASPP, PPM, and JPU modules not
only decrease the segmentation accuracy by 0.48%, 1.02%,
and 0.84% respectively, but also increase the number of
parameters by 96.27%, 54.44%, and 51.28%. The compu-
tational complexity of the three heterogeneous networks
composed of ASPP, PPM, and JPU modules is 10.74%,

Table 5 Evaluate the impact of different context modules on the
Cityscapes test set

Method Params(M) GFLOPs FPS mIoU(%)

ASPP [23] 6.85 12.06 103.1 70.07

PPM [24] 5.39 11.13 109.9 69.53

JPU [32] 5.28 18.05 85.5 69.71

JFP 3.49 10.89 109.9 70.55

Bold entries highlight that our method achieves better results than
other methods for the same metrics

2.20%, and 65.74% higher than that of JPANet using
JFPmodules. It can be seen that the JFPmodule we proposed
can achieve higher performance at a lower computational
cost, which proves the effectiveness of the JFP module.

4.3.5 Ablation experiment on different feature fusion
methods

Feature fusion is a commonly used method in semantic
segmentation, which can compensate for the serious loss of
high-level feature space information and low-level feature
semantic categories with poor prediction results. Given the
complementary characteristics between high-level features
and low-level features, the most common approach is to
use simple channel concatenation, pixel-wise addition, and
other methods to fuse these two types of information.
To verify our proposed BFF module effectiveness, we
use different feature fusion methods to replace the BFF
module and then compare it. As shown in Table 6, the
accuracy obtained by using the BFF module is 0.96%
higher than the concatenation method, the computational
complexity is almost reduced by 1/4, and the parameters
are only 0.12M more. This is because the concatenation
method merges high-level semantic information and low-
level spatial information on the channel, and does not
consider the interdependence of pixels in the channel and
spatial position. So, its segmentation results in inferior
effects as the BFF module. Since, the BFF module focuses
on the internal correlation information between pixels from
the channel and spatial position dimensions, FFM only
focuses on the channel dimensions between pixels and
ignores pixel positions relationship. Therefore, it can be
seen from Table 6 that the parameters of the BFF module,
and the FFM module are almost the same, but the mIoU
obtained by the BBF module is 1.44% higher than that of
the FFM module.

4.4 Performance comparison analysis

Our proposed JPANet has achieved very good results on
the two challenging urban road scene datasets, Cityscapes

Table 6 Evaluate the impact of different feature fusion methods on the
Cityscapes test set

Method Params(M) GFLOPs FPS mIoU(%)

Add 3.20 8.47 117.6 70.20

Concatenation 3.37 14.22 97.1 70.14

FFM [12] 3.45 9.88 107.5 69.66

CBAM [28] 3.64 12.1 106.4 70.72

BFF 3.49 10.89 109.9 71.10

Bold entries highlight that our method achieves better results than
other methods for the same metrics
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Table 7 Comparison of segmentation performance between the most advanced methods on the Cityscapes test set

FPS

Method Input Size Pretrain Params(M) GFLOPs Others GPU 1080Ti GPU mIoU(%)

SQ [33] 1024 × 2048 ImageNet – 270 16.7 – 59.8
ESPNet [34] 512 × 1024 No 0.36 – 112.9 – 60.3
NDNet45-FCN5-LF [35] 512 × 1024 No 1.1 8.4 111.1 – 61.6
EFSNet [36] 512 × 1024 No 0.17 – 107 – 61.9
ThunderNet [37] 512 × 1024 No 4.7 – 96.2 – 64.0
ADSCNet [38] 512 × 1024 No – 8.2 – 76.9 67.5
LiteSeg [11] 360 × 640 ImageNet 4.38 4.9 – 161 67.8
RPNet [39] 512 × 1024 No 1.89 20.71 – 123 67.9
ERFNet [40] 512 × 1024 No 2.1 – 83 – 68.0
BiSeNet [12] 1024 × 2048 ImageNet 5.8 14.8 105.8 – 68.4
DSNet [41] 512 × 1024 ImageNet 11.9 – – 68 69.1
AGLNet [42] 512 × 1024 No 1.12 13.88 – 52 70.1
ICNet [43] 1024 × 2048 Coarse 26.5 28.3 30.3 – 70.6
DFANet [4] 1024 × 1024 ImageNet 7.8 3.4 100 – 71.3
MSFNet [44] 512 × 1024 ImageNet – 24.2 117 – 71.3

JPANet(Ours) 512 × 1024 ImageNet 3.49 10.9 – 109.9 71.62

“-” means that the original paper did not give corresponding data. Because different models use different GPUs when measuring inference speed,
we divide the GPU for inference speed measurement into GTX 1080Ti and other types of GPUs based on the JPANet experimental platform

Fig. 4 Visual comparisons in terms of the cityscapes validation set. From left to right are input images, ground truth, segmentation outputs from
ESPNet, LiteSeg, and our JPANet
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and CamVid. This section compares the segmentation
accuracy, model parameters, and computational complexity
with the most advanced models on Cityscapes and CamVid,
respectively. We did not use any testing techniques in the
evaluation process, such as multi-crop test and multi-scale
test.

4.4.1 Comprehensive performance comparison on the
cityscapes dataset

It can be observed from Table 7, that the inference
speed of JPANet is comparable to the current state-of-
the-art methods, but our model is simpler and more
efficient, ensuring comparability in terms of parameters,
computational complexity, and accuracy. The results on the
Cityscapes test set show that our method achieves 71.62%
mIoU with an FPS of 109.9. Below we will compare with
JPANet latest method in terms of inference speed and
segmentation accuracy.

Compared with BiSeNet, which has somehow same
inference speed to ours. BiSeNet has 5.8M parameters,
while JPANet only has 3.49M, which is 40% lower than
BiSeNet. The computational complexity of BiSeNet is
14.8G, and JPANet is 26% lower than it, only 10.9G.
Simultaneously, the segmentation accuracy of JPANet is
3.22% higher than BiSeNet, reaching a staggering 71.62%,
which is a very considerable performance gain. Compared
with our MSFNet in segmentation accuracy. Although,
the accuracy of MSFNet is only 0.32% lower than
ours, its computational cost is extremely expensive, and
its computational complexity is as high as 24.2G. The

Table 9 Comprehensive performance comparison on the CamVid test
set

Method Input Size Params(M) FPS mIoU(%)

ENet [29] 360 × 480 0.36 227 51.3

SegNet [30] 360 × 480 29.5 46 55.6

FSSNet [46] 360 × 480 0.2 179 58.6

EFSNet [36] 360 × 480 0.17 332 61.1

ERFNet [40] 360 × 480 2.06 164 63.7

DFANet [4] 720 × 960 7.8 120 64.7

RPNet [39] 360 × 480 1.89 149 64.8

BiSeNet [12] 720 × 960 5.8 – 65.6

SwiftNet [13] 720 × 960 12.9 – 65.7

EDANet [47] 360 × 480 0.68 163 66.4

DABNet [48] 360 × 480 0.81 117 66.4

ICNet [43] 720 × 960 26.5 27.8 67.1

JPANet-S 360 × 480 2.30 434 63.80

JPANet-M 360 × 480 3.05 256 68.29

JPANet-G 360 × 480 3.49 294 67.45
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computational complexity of our JPANet is 55% lower than
it. This huge performance improvement is more favorable to
deploy our method on edge devices with limited computing
resources.

Figure 4 is the JPANet visualization result on the
Cityscapes validation set. To facilitate comparison, we use
white boxes in Fig. 4 to mark areas where segmentation
errors are more obvious in ESPNet and LiteSeg. For
example: In the first row of Fig. 4, ESPNet and LiteSeg
have obvious mis-segmentation for the car in the white box,
while JPANet segmentation is almost perfect. In the second
row, LiteSeg and JPANet divide the boundary between
vegetation and road, while ESPNet divides the vegetable
boundary into terrain.

We can see from Table 8 that JPANet achieved the highest
scores in 18 of the 19 classification categories. It is because,
JPANet emphasizes the importance of shallow spatial
information, the improvement of JPANet on small object
samples is the most obvious. For example, the JPANet

accuracy on the traffic light and traffic sign are 24.6% and
19.8% higher than ESPNet, respectively. Besides, JPANet
also pays attention to extracting multi-scale semantic
information. Thus JPANet also improves the segmentation
results of large targets to a certain extent. For example, the
accuracy of JPANet on sidewalk and car is 1.7%, and 1.2%
higher than the state-of-the-art ERFNet, respectively.

4.4.2 Comprehensive performance comparison
on the CamVid dataset

We show in Table 9 the comparative data of JPANet
composed of three different lightweight backbone networks
and other models on the camvid test set. JPANet can not
only achieve 67.45% mIoU but also obtain 294 FPS when
we input 360 × 480 low-resolution images. The data in
Table 9 once again proves the effectiveness of the JPANet
model. Figure 5 shows the visual comparison effect of
JPANet on the CamVid test set.

Fig. 5 Visual comparisons in terms of the CamVid test set. From left to right are input images, ground truth, segmentation outputs from SegNet,
ENet, ERFNet, and our JPANet
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5 Conclusion

We proposed a JPANet based on the JFP module, the
SDE module, and the BFF module for real-time seman-
tic segmentation in urban scenes. Among them, the JFP
module effectively captures deep semantic information at
different scales by combining three different stages of the
deep network to obtain a more accurate representation
of feature information. The SDE module uses the shal-
low dense texture information and position information of
the network to capture multi-level spatial detail informa-
tion. Finally, we used the BFF module to fuse the high-
level semantic features and low-level spatial features with
information complementarity by establishing the depen-
dency of the feature information in the channel dimension
and the location dimension. Our experimental results on
two datasets show that JPANet has achieved the best per-
formance on two extremely challenging and complex urban
road scene datasets (Cityscapes and CamVid).
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