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Abstract
Several studies have shown the excellent performance of deep learning in image segmentation. Usually, this benefits from
a large amount of annotated data. Medical image segmentation is challenging, however, since there is always a scarcity
of annotated data. This study constructs a novel deep network for medical image segmentation, referred to as asymmetric
U-Net generative adversarial networks with multi-discriminators (AU-MultiGAN). Specifically, the asymmetric U-Net is
designed to produce multiple segmentation maps simultaneously and use the dual-dilated blocks in the feature extraction
stage only. Further, the multi-discriminator module is embedded into the asymmetric U-Net structure, which can capture the
available information of samples sufficiently and thereby promote the information transmission of features. A hybrid loss
by the combination of segmentation and discriminator losses is developed, and an adaptive method of selecting the scale
factors is devised for this new loss. More importantly, the convergence of the proposed model is proved mathematically. The
proposed AU-MultiGAN approach is implemented on some standard medical image benchmarks. Experimental results show
that the proposed architecture can be successfully applied to medical image segmentation, and obtain superior performance
in comparison with the state-of-the-art baselines.

Keywords Deep learning · Generative adversarial networks (GAN) · Convolution neural network (CNN) ·
Image segmentation

1 Introduction

Medical image segmentation is one of the most impor-
tant tasks in biological image processing and analysis.
Its purpose is to segment the parts of a medical image
with some special implications and extract related fea-
tures, thereby assisting doctors in diagnosis and pathology
research. Previous approaches to medical image segmenta-
tion were often based on traditional methods, such as sup-
port vector machines (SVMs) [1] and random forests (RF)
[2], which generally demanded manual features in advance
[3, 4]. These traditional methods often create problems in
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terms of efficiency and subjectivity. Naturally, it is nec-
essary to explore advanced segmentation algorithms for
medical images.

In recent years, deep learning, owing to its powerful
and automatic feature extraction capability, has been widely
used in image processing and computer vision, such
as image reconstruction [5, 6], image classification [7],
object detection [8], etc. This technique has also been
extensively employed in image segmentation [9, 10]. A
fully convolutional network (FCN) in [11] was the first
image segmentation approach to perform end-to-end image
segmentation. Subsequently, Badrinarayanan et al. [12]
improved upon FCN to develop a novel architecture named
SegNet. SegNet consists of a 13 layer deep encoder
network, which extracts spatial features from the image. A
corresponding 13 layer deep decoder network upsamples
the feature maps to predict the segmentation masks. And
a series of DeepLap model in [13] performed semantic
segmentation using dilated convolutions and employed the
VGG [14] as a feature extractor to raise the depth of the
network.

Despite these approaches have made tremendous suc-
cesses in image segmentation, a major drawback of the
convolutional neural network (CNN) architectures is that
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they require massive volumes of training data [15–17].
Unfortunately, in the context of medical images, the situ-
ation is always scarcity of labeled images due to the fact
that the annotation process is time-consuming and prone to
errors. Therefore, developing a novel architecture of medi-
cal diagnosis on small samples is of practical significance.

CNN has shown great promise in medical image segmen-
tation recently. This mainly attributes to the development of
U-Net [9]. The structure of U-Net is quite similar to Seg-
Net, comprising an encoder and a decoder network. The
corresponding layers of the encoder and decoder network
are connected by skip connections, which allows efficient
information flow and performs well when sufficiently large
datasets are not available. Simultaneously, in order to avoid
the over-fitting problem caused by the lack of data, the
author also proposes a data enhancement method to expand
the data in the data pre-processing stage.

Subsequently, several modified versions about skip
connections of U-Net have emerged. Drozdzal et al. [18]
employed both long and short skip connections to enhance
the information flow for biomedical image segmentation.
Yu et al. [19] raised a novel combination of residual
connections (ConvNet), which can greatly improve the
segmentation performance of the proposed network by
enhancing the information propagation both locally and
globally. Zhou et al. [20] presented nested U-Net structures
for medical image segmentation by using short-skip and
long-skip connections to link shallow and deep features.
Furthermore, Zhuang et al. [21] fused skip connections and
residual blocks to acquire more information flow paths on
the segmentation task for blood vessels in retinal images.
All the approaches for changing the skip connections
increase information flow. These tricks perform well when
sufficiently large datasets are not available.

Almost all previous works have been designed for a
certain kind of medical image model. However, the objects
of interest are of irregular and different scales in most
cases, which images may originate from various modalities.
Therefore, a network should be robust enough to analyze
objects at different scales. Various deformable modules on
the U-Net have become popular to settle this problem.
Oktay et al. [22] proposed a novel attention gate model
for two large computed tomography abdominal datasets
that automatically learned to focus on target structures
of varying shapes and sizes. Gu et al. [23] devised a
context extractor in a traditional encoder-decoder structure
to capture more high-level information. Moreover, Alom
et al. [24] embedded the recurrent convolution module
into U-Net. Ibtehaz et al. [17] presented an inception-like
block to reconcile the features learned from the image at
different scales. In [25], a large kernel encoder-decoder
network with deep multiple atrous convolution is proposed,
where the use of this network can capture multi-scale

contexts by enlarging the valid receptive field. However,
image segmentation requires dense pixel-level labeling. A
common property across all CNN architectures is that all
label variables are predicted independently from each other
[26].

Generative adversarial network (GAN) can make the
model achieve better results from a distribution perspective
by introducing a discriminator, which solves the problem
of inconsistent distribution between different data domains
[27]. By making the discriminator unable to distinguish
data from two different domains, it indirectly leads them
to belong to the same distribution. In [26], the image
segmentation approach based on GAN has been explored
to reinforce spatial contiguity in the output label maps.
In medical image segmentation, there have been several
types of researches on using U-Net and GAN. These works
usually regard medical image segmentation as the process
of generating segmentation for samples and introduce a
discriminator to fit the generated segmentation distribution
to the real segmentation distribution. Dong et al. [28]
designed a model called U-Net generative adversarial
network (U-Net-GAN), which jointly trained a set of U-
Nets as generators and fully convolutional networks as
discriminators to implement multimodel segmentation. For
segmenting the tumor in breast ultrasound images, Negi
et al. [29] used Residual-Dilated-Attention-Gate-UNet as
the generator, which serves as a segmentation module. Then
the Wasserstein GAN algorithm was employed to stabilize
training. However, these approaches involve iterative
training between the generator and single discriminator.
In fact, it is important for each recovery segmentation in
the decoder to increase information flow from high-level
semantic information in small sample problems.

To solve the above-mentioned problems, we propose
a novel segmentation model for small-sample medical
images, referred to as asymmetric U-Net generative adver-
sarial network with multi-discriminators (AU-MultiGAN).
More specifically, AU-MultiGAN jointly trains an asym-
metric U-Net as generators and multi-discriminators to
implement the medical image segmentation tasks. The nov-
elty of the proposed model architecture is twofold. First,
the construction of the asymmetric U-Net generates mul-
tiple results of different sizes from distinct upsampling
levels. Before upsampling, the features of different receptive
fields are extracted through multiple proposed dual-dilated
block to obtain higher-level semantic information. Second, a
multi-discriminator module is designed for improving sam-
ple utilization and increasing information flow from the
high-level semantic information. The multi-discriminators
by employing a discriminator for each upsampling layer
of generating the segmentation achieve deep supervision.
Furthermore, a hybrid loss is designed for imbalanced sam-
ple issues and an adaptive parameter selection method is
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proposed for this loss. Here, the hybrid loss includes both
discriminator and segmentation losses, in which the seg-
mentation loss consists of FocalLoss [30] and the recon-
struction loss. The discriminator loss adopts the form of
the mean square error. Such a combined loss can pos-
sess various functions, such as dealing with the imbalance
class, matching the generated segmentation with the real
segmentation, and stability training. In addition, we con-
duct a theoretical and experimental analysis of the proposed
method. The experimental results on benchmark datasets
indicate that the proposed AU-MultiGAN can be success-
fully applied to medical image segmentation in small sam-
ple cases and it is more effective than the state-of-the-art
baselines.

The main contributions of this study can be summarised
as follows.

– A multi-discriminator deep network, which mainly
embeds the multi-discriminator modules into the
asymmetric U-Net in order to utilize the information
of samples sufficiently and thereby enhance the
information flow of features, is devised to overcome the
small sample issue in image segmentation tasks.

– A hybrid loss is proposed that integrates discriminator
loss with segmentation loss. This new hybrid loss
can not only balance the intra-classes of samples
but also keep consistent with the generated and real
segmentation maps. Further, an adaptive selection
method on the scale factors for this hybrid loss is
designed.

– The theoretical convergence of the proposed method is
discussed and analyzed rigorously.

The remainder of this paper is organised as follows.
Section 2 lists some notations that are used throughout
the text. Section 3 details the AU-MultiGAN. Experimental
results are presented and analysed in Section 4. The
conclusion of the study is provided in Section 5, and the
mathematical proofs of the convergence of the proposed
model are presented in the final Appendix.

2 Notations

This section lists some notations used in this study. Let
Rm×n be the set of real numbers with m × n dimensions.
For a matrix, X ∈ Rm×n, we denote its elements as
xij (i = 1, 2, . . . , m, j = 1, 2, . . . , n) and call φ1(x) =

1
1+e−x (x ∈ R) as the logistic sigmoidal function and

φ2(xij ) = exij
∑

i,j exij
(xij ∈ R) as the softmax function.

σ(x) = max(0, x)(x ∈ R) denotes as the rectified linear
unit (ReLU).

We use ψ(·) to represent max pooling, τ(·) to denote
a random neuron discard operation (dropout), and ξ(·) to
express pixelshuffle [31]. Moreover, [X, Y ] represents a
concatenation operator for X and Y ; pY i

, pX , and pgi

are the distributions of label, sample, and the generated
segmentation, respectively; pY i

(·) and pgi
(·) represents the

probability density functions of pY i
and pgi

, respectively,
where i is the discriminator index.

For readability, all the above-mentioned symbols are
listed in Table 1.

3Method

In this section, we first explain the architecture of the
proposed network, then describe the training strategy, and
finally analyse the convergence for the proposed algorithm.

3.1 Architectural design

The proposed network includes two major parts: a asymmetric
U-Net and a multi-discriminator module, as shown in
Fig. 1. The asymmetric U-Net is regarded as a generator
for segmentation problems, containing a dual-dilated block,
bottleneck block, decoder block, and classifier block.
In contrast to the U-Net, the main differences in the
asymmetric U-Net are reflected in two aspects. One
aspect is that a dual-dilated block is designed for each

Table 1 Some notations used in the paper

Notations Description Notations Description

Rm×n The set of real number with m × n dimensions σ ReLU max(0, x)

X m × n matrix xij The elements of matrix X

φ1 The logistic sigmoidal function 1
1+e−x φ2

exij
∑

i,j exij

ψ Max pooling ξ Pixelshuffle

τ Dropout [X, Y ] The concatenation operator for X and Y

pY i
The distribution of label pgi

Generated segmentation

pX Sample βi The module β in level i of proposed network

pY i
(·) The probability density function of pY i

pgi
(·) The probability density function of pgi
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Fig. 1 Schematic diagram of
AU-MultiGAN

Dual-Dilated Block
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Real/Fake ?

Discriminator

max pooling pixelshuffle

average pooling + softmax
convolution with kernel size +

batchnorm + ReLU

convolution with kernel size and

dilated rate 2 + batchnorm + ReLU

convolution with kernel size +

batchnorm + ReLU + dropout

convolution with kernel size and

strides 2 + batchnorm + ReLU
convolution with kernel size

skip connections

convolutional layer in the encoder. The other is that all level
classifier blocks are followed by segmented images for each
up-sampling feature extraction stage of the decoder. The
multi-discriminator corresponds to the multi-level output of
the asymmetric U-Net, and the multiple discriminators are
uniform in structure. The description of the architecture is
given in Sections 3.2 and 3.3 in further detail.

3.2 Asymmetric U-net

Segmentation tasks can be regarded as a generation of
segmented images. The asymmetric U-Net is a generator
and employs the dual-dilated blocks in the feature extraction
stage to obtain more abundant information, whereas just
one convolution branch is used in the process of generating
segmentation maps. Concretely, let X ∈ Rm×n be the input
of the asymmetric U-Net. The image that is segmented
at the ith level in the asymmetric U-Net is denoted by
Gi(X; θi)(i = 1, 2 . . . , k), where θi is the parameter of
generator Gi . For simplicity, we often omit θi and write
Gi(X; θi) as Gi(X) or Y ′

i . Specifically, we can write Gi(X)

as a matrix form,
(
g

(i)
js

)

mi×ni

, where g
(i)
js represents the

pixel of Gi(X) at coordinates (j, s). In addition, mi =
m/(2i−1) and ni = n/(2i−1) denote the length and width of
Gi(X), respectively. Further, Gi(X) can be computed as

Gi(X) = Ci(Hi(B(Fk(. . . (F1(X)) . . .)))), (1)

where B(·) is the bottleneck block, and Fi(·), Hi(·), and
Ci(·)(i = 1, 2, . . . , k) represent the dual-dilated, decoder,
and classifier blocks in the ith level, respectively. Details of
these blocks are provided as follows.

1) Dual-Dilated Block. First, the features are extracted
from different receptive fields by using two branches
of 3 × 3 convolutions with different dilated rates. The
dilated rate is set to 1 and 2. The operation is equivalent

to adopting a 3×3 convolution and a 5×5 convolution
with fewer parameters. Subsequently, we use a 3 × 3
convolution to further extract features and fuse the
distinct features. The encoder in the proposed network
consists of k dual-dilated blocks. For each Fi(i =
1, 2, . . . , k), we employ max pooling for the output
features from Fi−1 in advance, as the input features, F̄ i ,
are expected to be at different scales. Let

F̄ i = ψ(Fi(F̄ i−1)), i = 1, 2, . . . , k (2)

Then, F̄ i−1 is the input feature of Fi(·); in particular,
F̄ 0 = X and F̂ i = Fi(F̄ i−1) are the output features of
Fi(·). This strategy can provide abundant information
for the discriminator at the lower level.

2) Bottleneck Block. The function of the bottleneck block
is to process the lower-level features in the asymmetric
U-Net. Only τ(·) is expanded in relation to a dual-
dilated block. The remarkable role of this additional
operation is to avoid over-fitting. From the block, the
high-level features, O, are specifically obtained for
sample X.

3) Decoder Block. To correspond with the encoder, the
decoder adopts k decoder blocks as well. In parallel,
the features in the decoder block require dissimilar
scales because the input features Zi for each Hi(i =
1, 2, . . . , k) are the concatenation of H̄ i+1 and F̂ i , i.e.,

Zi = [H̄ i+1, F̂ i], i = 1, . . . , k, (3)

where

H̄ i = ξ(Hi(Zi ))(i = 2, 3, . . . , k) and H̄ k+1 = ξ(O)

(4)

denote the upsampling features through pixelshuffle for
the output from Hi . Consequently, for the given features
H̄ i+1(i = 1, . . . , k), the first phase in Hi(·) involves
putting the upsampling results from a low level and the
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shallow features in the same level dual-dilated block
together according to (3). Next, two convolutional
layers are exploited to handle the features from the
concatenate maps:

Hi(Zi ) = σ(W 2
Hi

∗σ(W 1
Hi

∗Zi+b1
Hi

)+b2
Hi

), i = 1, . . . , k,

(5)

where W
j
Hi

(j = 1, 2) expresses a 3 × 3 convolution
kernel with a dilated rate of 1 in module Hi . The
decoder block is designed for processing high-abstract
features and restoring the size of the image.

4) Classifier Block. The classifier block aims to obtain
segmented images. To this end, we apply a sigmoidal
function φ1 after two convolutional layers to limit the
value between 0 and 1, described as

Ci(C̄i ) = φ1(σ (W 2
Ci

∗ σ(W 1
Ci

∗ C̄i + b1
Ci

) + b2
Ci

)),

where W 1
Ci

and W 2
Ci

denote the 3 × 3 convolution
kernel and the 1 × 1 convolution kernel with a
dilated rate of 1 in modules Ci(i = 1, ..., k),
respectively; C̄i = Hi(Zi ); the output of Ci(·)(i =
1, . . . , k) can be regarded as a segmented image defined
by (1).

3.3 Multi-discriminator mechanism

The asymmetric U-Net is a generator for producing multi-
scale segmentation and the decoder contributes k outputs in
different scales, as mentioned earlier. Accordingly, k dis-
criminators are used to train k tasks of the generator. The
role of the discriminator is to receive the segmentation
generated from the asymmetric U-Net and correspond-
ingly output a confidence value. Here, Di(Gi(X);βi)(i =
1, 2 . . . , k) denotes the confidence value of the ith segmen-
tation Gi(X), where βi is the parameter of discriminator
Di . For simplicity, we omit βi and write Di(Gi(X);βi)

as Di(Gi(X)). The confidence value represents the prob-
ability that the input segmentation is a real segmentation
label. For segmentation tasks, it is natural that the gen-
erated segmentation is expected to be similar to the real
segmentation label, and it is similar for the generative
tasks. Therefore, it is feasible to transfer generative ideas
to segmentation tasks. In applications, the structures of all
discriminators Di(i = 1, . . . , k) is the same. Specifically,
five 4 × 4 convolutions are followed by average pooling
and the softmax function φ2(·). Here, the softmax function
is used to produce confidence values in the discriminators.

A schematic diagram of the dual-dilated block is shown
in Fig. 1.

3.4 Hybrid loss and its adaptive scale factor selection

This subsection firstly describes two different losses, the
segmentation loss and the discriminator loss, and then builds
a combination loss for the proposed AU-MultiGAN model.

1) Segmentation Loss. An intuitive idea for the segmenta-
tion task is to minimize the pixel-wise loss between the
inputs and the segmented ones, which can be modelled
as

Lseg(Gi) = LFL(Gi) + Lre(Gi), (6)

where

LFL(Gi) = EX∼p
X

∑

j,s

[−α(1 − g
(i)
js )γ ] log(g

(i)
js ), (7)

Lre(Gi) = EX∼p
X
[‖Y i − Gi(X)‖1]. (8)

Here, Y i (i = 1, 2, . . . , k) denotes the real segmented
image; LFL(Gi) is referred to as FocalLoss, dealing
with the imbalance classes; 0 ≤ α ≤ 1 and γ ≥
0 are hyperparameters. In particular, if γ = 1 and
α = 1, then LFL(Gi) is the binary cross-entropy loss.
When α = 0, the segmentation loss only contains
the reconstruction loss Lre(Gi), which ensures that
the generated segmentation Gi(X) ends up matching
closely with Y i . Segmentation loss guides the generator
to realize a segmentation task.

2) Discriminator Loss. It is well known that the loss (8)
may lead to the missing of high-frequency information
and blur segmentation results. To generate more
realistic results, a least square-based GAN loss is
introduced, defined as

LGAN(Gi, Di) = EY i∼p
Y i

[
1

2
(Di(Y i ) − 1)2

]

+EX∼p
X

[
1

2
D2

i (Gi(X))

]

. (9)

3) Hybrid Loss. The objective function for the proposed
AU-MultiGAN is obtained by combining the segmen-
tation loss (6) and the discriminator loss (9):

L(Gi, Di) = LGAN(Gi, Di)+λ1LFL(Gi)+λ2Lre(Gi),

(10)
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where i = 1, 2, . . . , k, and λ1, λ2 > 0 are scale factors.
In the following discussion, the key is the optimisation
of the hybrid loss:

min
Gi,Di

L(Gi, Di). (11)

We adopt the alternate iteration method to solve this
problem. Firstly, we optimize discriminator Di for a
fixed Gi , i.e.

D∗
i = arg min

Di

LGAN(Gi, Di), (12)

and then, we optimize generator Gi for a fixed D∗
i :

G∗
i = arg min

Gi

LGAN(Gi, D
∗
i )+λ1LFL(Gi)+λ2Lre(Gi).

(13)

4) Adaptive Scale Factor Selection. To solve the
optimisation problem (13) with scale factor λ1 and
λ2, the conventional method is to set the parameter
values by using manual empirical selection. This
manual selection method is always inefficient. Once
the selection is inappropriate, it may yield poor results.
Hence, we design an adaptive method to select the scale
factors. Denote L(Gi, λ1, λ2) = LGAN(Gi, D

∗
i ) +

λ1LFL(Gi) + λ2Lre(Gi). Then, the function must
be optimised as a conditional extremum problem.
Fortunately, it can be converted to a Lagrange duality
problem [32]:

max
λ1,λ2>0

min
Gi

L(Gi, λ1, λ2). (14)

Consequently, following (13), the method of gradient
ascent can be adopted to update the scale factors λ1 and
λ2:

where η is the learning rate and is a fixed constant
selected empirically, which is discussed in Section 4.1;

the partial derivatives can be written as
∂L(G∗

i ,λ1,λ2)

∂λ1
=

LFL(G∗
i ) and

∂L(G∗
i ,λ1,λ2)

∂λ2
= Lre(G

∗
i ).

Overall, the whole training process of AU-MultiGAN is
listed in Algorithm 1.

3.5 Theoretical analysis

This subsection gives the convergence analysis for the
proposed method. The main theoretical result is summarised
in Theorem 1, and its proof is provided in the Appendix. As
a preparation for the analysis, two lemmas are given. Their
mathematical proofs are also provided in the Appendix.
Specifically, the optimal discriminator Di for any given
generator Gi is considered in Lemma 1, and Lemma 2
indicates that when the discriminator loss achieves the value
1
4 , pgi

= pY i
holds for all i(i = 1, 2, . . . , k).

Lemma 1 For a fixed Gi , the optimal discriminator Di is

D∗
i = pY i

(Y i )

pY i
(Y i ) + pgi

(Y i )
(16)

for all i = 1, 2, . . . , k.

Lemma 2 For all i = 1, 2, . . . , k, pgi
= pY i

if and only if

the discriminator loss achieves value 1
4 .

Theorem 1 Assume that Gi and Di have sufficient
capacity. If at each step of Algorithm 1, the discriminator
loss reaches value 1

4 , and pgi
is updated to improve the

criterion

EY i∼p
Y i

[
1

2
(D∗

i (Y i ) − 1)2
]

+EY ′
i∼pgi

[
1

2
D∗2

i (Y ′
i )

]

, (17)

for all i = 1, 2, . . . , k, then pgi
converges to pY i

.
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4 Experiments

In this section, a series of experiments are conducted to
illustrate the performance of the AU-MultiGAN for small-
sample medical image segmentation task. The experiments
are carried out in a Python 3.6 environment running on a
double NVIDIA GTX 1080 GPU and an Intel(R), Xeon(R)
W-2123 CPU @ 3.60 GHz with 64 GB main memory.

4.1 Experiments setup

Datasets We choose the different medical imaging modali-
ties to evaluate the proposed segmentation framework. The
datasets are compiled from six databases: ISBI2009 [33],
ISBI2012 [34, 35], ISBI2014 [36, 37], DRIVE [38], ISIC
[39, 40], and CVC-ClinicDB [41]. These datasets contain
various types of medical images, such as cell data, digital
eye masks, dermoscopy image and endoscopy image. Mean-
while, these datasets can also be classified into different
types of medical images segmentation tasks, such like cell
contour segmentation, cell nuclei segmentation, organiza-
tional segmentation in several different situations and retinal
vessel detection. In these six datasets, there is an under-
lying commonality for four datasets (ISBI2009, ISBI2012,
ISBI2014, and DRIVE) is that the amount of annotated data
is small. In order to test and verify the proposed method can
be applied to many types of medical images, we randomly
select a subset of other two datasets according to the scale
of ISBI2012 as new mini-batch datasets in our experiment.
To sum up, the details of each dataset are listed in Table 2.

Evaluation Four indices, including dice coefficient (Dice),
intersection over union (IoU), accuracy, and sensitivity, are
adopted to comprehensively assess the performance of the

segmentation. The detail definitions can be described as
follows.

– The Dice [42] between two binary pixels can be written
as

Dice = 2
∑m,n

i,j ŷij yij
∑m,n

i,j ŷ2
ij + ∑m,n

i,j y2
ij

, (18)

where ŷij and yij denote the pixels of the predicted
binary segmented image and the ground truth binary
map at coordinates (i, j), respectively.

– A similarity measure related to Dice referred to as the
IoU [43] can be defined as

IoU =
∑m,n

i,j ŷij yij
∑m,n

i,j ŷ2
ij + ∑m,n

i,j y2
ij − ∑m,n

i,j ŷij yij

. (19)

– The accuracy (Acc) describes the proportion of
correctly classified samples to the total number of
samples and can be represented as

Acc = T P + T N

T P + T N + FP + FN
, (20)

where T P , T N , FP and FN are the number of
true positives, true negatives, false positives and false
negatives, respectively.

– The sensitivity (Sen) also called recall calculates the
proportion of positives (TP) that are correctly predicted
to all positives in the true label image. This metric can
be written as

Sen = T P

T P + FN
. (21)

It is worth mentioning that in the binary image
segmentation problem, the Sen metric only considers the
proportion of the generated segmentation map that is

Table 2 Image segmentation datasets used in the experiments

Dataset Images Input size Modality Segmentation task

DRIVE 40 480 × 512 Retina blood vessela Retinal vessel detection

ISBI2009 97 256 × 256 Fluorescence microscopyb Organizational segmentation

ISBI2012 30 256 × 256 Electron microscopyc Cell contour segmentation

ISBI2014 16 256 × 256 Electron microscopyd Cell nuclei segmentation

ISIC (small) 30 384 × 512 Dermoscopye Organizational segmentation

CVC-ClinicDB (small) 30 256 × 192 Endoscopyf Organizational segmentation

ahttps://drive.grand-challenge.org/
bhttps://metarabbit.wordpress.com/2013/09/11/nuclear-segmentation-in-microscope-cell-images/
chttp://brainiac2.mit.edu/isbi challenge/
dhttps://cs.adelaide.edu.au/∼carneiro/isbi14 challenge/dataset.html
ehttps://challenge2018.isic-archive.com/
fhttp://www.cvc.uab.es/CVC-Colon/index.php/databases/
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Table 3 The effectiveness of different methods on the ISBI2009

Method Sen(%) Acc(%) Dice(%) IoU(%)

SVM 87.0393 ± 9.8339 86.9861 ± 1.9753 74.5218 ± 6.4906 59.4572 ± 10.8662

RF 94.9879 ± 0.0104 93.7949 ± 0.0287 86.3585 ± 0.0697 75.9930 ± 0.1680

U-Net 91.0421 ± 0.0021 97.1333 ± 0.0020 94.1552 ± 0.3072 90.0799 ± 0.3732

Unet++ 94.4628 ± 0.0614 97.7075 ± 0.0561 95.7605 ± 0.2429 91.9275 ± 0.7691

LadderNet 90.9953 ± 0.2254 95.8987 ± 0.2361 92.0341 ± 1.9388 85.5846 ± 0.0280

Attention U-Net 94.1523 ± 0.3412 97.6124 ± 0.1907 95.2568 ± 0.6614 91.2092 ± 1.4424

R2U-Net 96.1461 ± 0.2304 97.4231 ± 0.2297 94.4617 ± 0.5645 89.5773 ± 1.7483

CE-Net 92.2508 ± 0.0053 97.0112 ± 0.0043 94.0018 ± 0.0091 88.6982 ± 0.0309

MultiResUnet 94.8939 ± 0.5401 97.5798 ± 0.2104 94.6682 ± 2.6850 90.5479 ± 2.9552

Ours 98.8662 ± 0.0012 99.1551 ± 0.0010 97.6750 ± 0.0054 95.4697 ± 0.0195

correctly predicted in the real segmentation map. Even
if there are many noises or outliers in the generated
segmentation map, it does not affect the value of this
metric. The main reason is that these noises or outliers
are always false positives (FP), which is not included in
the denominator part of the formula (21). Therefore, it is
generally unreasonable. In contrast, Acc, Dice, and IoU
have fully considered the true and the false prediction in
the real segmentation map. Based on theses analyses, we
mainly focus on the three indices Acc, Dice, and IoU when
comparing with other methods. The index Sen is given as a
reference item.

Implementation details All methods are implemented
without data augmentation. The 5-fold cross-validation is
adopted in all the experiments. Furthermore, the learnable
weight parameters of the asymmetric U-Net and the multi-
discriminator are optimised by using the adaptive moment
estimation (Adam) method with a learning rate of 4 × 10−3.
Also, we set the hyperparameters α = 0.25, γ = 1, and
k = 2, respectively. A discussion of these parameters is
presented concretely in Section 4.3.

4.2 Comparison results

In this subsection, we compare the proposed method with
seven methods based on the U-Net architecture as the
baseline models, including U-Net [9], Unet++ [20], CE-
Net [23], LadderNet [21], R2U-Net [24], Attention U-
Net [22], and MultiResUnet [17]. Simultaneously, two
traditional methods, SVM [1] and RF [2], are also used in
this paper. Next, we will analyze the experimental results
from both quantisation and vision.

The quantitative results for different datasets are listed
in Tables 3, 4, 5, 6, 7 and 8. Bold represents the best per-
formance. It can be observed that the proposed method has
a great improvement on the Dice, IoU, and Acc for almost
all types of datasets when comparing with other methods,
although it is not the best performance on the index Sen.
But this is reasonable as explained in Section 4.1. Specially,
for ISBI2009, ISBI2012, ISBI2014, DRIVE, and CVC-
ClinicDB(small), the proposed method achieves the best
performances on the Dice, IoU, and Acc over all the baseline
models. Further, for ISIC(small) dataset, the effectiveness
of the proposed AU-MultiGAN method surpasses those of

Table 4 The effectiveness of different methods on the ISBI2012

Method Sen(%) Acc(%) Dice(%) IoU(%)

SVM 49.8983 ± 397.2313 79.5333 ± 3.9409 88.6679 ± 0.2824 79.6469 ± 0.7369

RF 59.5372 ± 2.9798 86.2458 ± 0.0409 91.3377 ± 0.0048 84.0566 ± 0.0138

U-Net 90.7071 ± 0.0324 87.9354 ± 0.0357 92.8368 ± 0.3052 86.6740 ± 0.8967

Unet++ 91.6146 ± 0.0143 90.8084 ± 0.0124 93.9688 ± 0.2174 88.6465 ± 0.6798

LadderNet 95.2380 ± 0.0025 90.2888 ± 0.0013 93.8664 ± 0.0442 88.4516 ± 0.1392

Attention U-Net 94.3214 ± 0.0022 90.1131 ± 0.0021 93.7055 ± 0.0596 88.1820 ± 0.1718

R2U-Net 96.4009 ± 0.0198 90.0257 ± 0.0212 93.2589 ± 0.1453 87.3972 ± 0.4360

CE-Net 93.9183 ± 0.0053 90.2682 ± 0.0044 93.8656 ± 0.0662 88.4520 ± 0.2045

MultiResUnet 94.2747 ± 0.0034 90.0523 ± 0.0033 93.4554 ± 0.0376 87.7331 ± 0.1178

Ours 96.7074 ± 0.0133 94.9392 ± 0.0165 95.1314 ± 0.0428 90.7281 ± 0.1404
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Table 5 The effectiveness of different methods on the ISBI2014

Method Sen(%) Acc(%) Dice(%) IoU(%)

SVM 43.6242 ± 0.9453 98.7000 ± 0.0704 58.7660 ± 8.0891 41.6654 ± 7.8531

RF 99.6613 ± 0.0157 99.0417 ± 0.0160 74.4123 ± 8.8632 59.3405 ± 14.1639

U-Net 64.2248 ± 0.0221 99.0075 ± 0.0259 70.3776 ± 1.6603 54.4548 ± 2.1660

Unet++ 64.6362 ± 0.0255 99.3102 ± 0.0287 77.1738 ± 0.7480 63.0308 ± 1.2586

LadderNet 79.1710 ± 0.0211 99.4174 ± 0.0289 79.1248 ± 1.0990 65.7082 ± 1.9227

Attention U-Net 74.2248 ± 0.0214 99.3575 ± 0.0266 78.7765 ± 1.0274 65.0959 ± 1.7670

R2U-Net 83.1930 ± 0.0316 99.4765 ± 0.0322 85.2426 ± 3.1881 74.4710 ± 7.0570

CE-Net 69.7540 ± 0.0376 99.3556 ± 0.0378 79.7766 ± 0.7561 66.4709 ± 1.4315

MultiResUnet 79.1831 ± 0.2301 99.4263 ± 0.0011 79.1696 ± 6.9267 65.7778 ± 13.1382

Ours 95.4894 ± 0.0023 99.8548 ± 0.0010 87.5352 ± 0.3273 77.9360 ± 0.7037

Table 6 The effectiveness of different methods on the DRIVE

Method Sen(%) Acc(%) Dice(%) IoU(%)

SVM 25.7824 ± 1.1102 91.1600 ± 1.1307 48.0032 ± 11.3300 31.6460 ± 8.4280

RF 37.8543 ± 0.1035 93.6950 ± 0.0926 56.6126 ± 2.8500 39.5019 ± 2.7741

U-Net 61.3522 ± 0.3146 95.2815 ± 0.3226 69.3849 ± 0.1229 53.1825 ± 0.1693

Unet++ 74.0815 ± 0.2306 96.0579 ± 0.2239 76.1274 ± 0.0178 61.4999 ± 0.0309

LadderNet 60.4607 ± 0.0401 95.5301 ± 0.0339 70.0946 ± 0.0659 54.0112 ± 0.0914

Attention U-Net 72.8634 ± 0.3319 96.1265 ± 0.3127 77.1398 ± 0.0244 62.8265 ± 0.0430

R2U-Net 58.8284 ± 0.4123 95.2693 ± 0.3786 68.1106 ± 1.7839 52.0015 ± 2.1230

CE-Net 77.3591 ± 0.7798 95.6206 ± 0.7315 70.5756 ± 0.2766 54.6102 ± 0.3845

MultiResUnet 75.5403 ± 1.1938 94.1571 ± 1.6532 65.4252 ± 30.4548 49.7060 ± 31.8315

Ours 74.8853 ± 0.0228 96.2081 ± 0.0193 78.5965 ± 0.1187 64.8962 ± 0.1451

Table 7 The effectiveness of different methods on the CVC-ClinicDB(small)

Method Sen(%) Acc(%) Dice(%) IoU(%)

SVM 28.3722 ± 255.0145 79.9018 ± 75.2226 44.7483 ± 5.8467 28.8542 ± 3.9968

RF 34.2975 ± 0.1609 80.8078 ± 0.2513 52.4319 ± 3.7327 35.5540 ± 3.1792

U-Net 86.3685 ± 0.0943 89.2632 ± 0.0088 81.9984 ± 12.9208 70.1967 ± 20.3121

Unet++ 77.5476 ± 0.2620 90.7097 ± 0.0099 83.9432 ± 8.6908 74.2916 ± 14.7084

LadderNet 64.2563 ± 0.3570 89.0171 ± 0.0653 77.0148 ± 52.6166 64.7222 ± 63.3766

Attention U-Net 87.7648 ± 0.2818 91.2043 ± 0.0709 85.7505 ± 20.2002 75.8469 ± 29.7161

R2U-Net 76.8619 ± 1.4909 90.5436 ± 0.1160 83.3855 ± 26.6117 73.6234 ± 18.8510

CE-Net 89.3081 ± 0.1145 91.1891 ± 0.0391 85.5977 ± 4.7637 75.3646 ± 4.3133

MultiResUnet 81.3246 ± 0.0939 91.1840 ± 0.0158 85.0758 ± 3.7045 74.9459 ± 8.3660

Ours 85.4425 ± 0.2853 91.2479 ± 0.0571 85.8079 ± 2.3763 76.8933 ± 2.9567
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Table 8 The effectiveness of different methods on the ISIC(small)

Method Sen(%) Acc(%) Dice(%) IoU(%)

SVM 97.7707 ± 2.2295 94.2875 ± 0.1060 88.9775 ± 1.1507 80.1604 ± 2.9734

RF 98.3949 ± 0.0010 95.3000 ± 0.1225 90.8312 ± 0.2879 83.2070 ± 0.8142

U-Net 87.4052 ± 0.0127 96.9820 ± 0.0141 94.0334 ± 0.7591 89.0805 ± 2.3496

Unet++ 92.9950 ± 0.0111 96.9028 ± 0.0051 93.9671 ± 1.5560 89.1188 ± 4.9427

LadderNet 84.6721 ± 0.0054 95.1094 ± 0.0059 91.6466 ± 1.0944 85.1468 ± 2.8768

Attention U-Net 85.9732 ± 0.0216 94.9678 ± 0.0319 91.0932 ± 0.5476 84.2856 ± 1.1908

R2U-Net 78.0633 ± 0.0277 96.1950 ± 0.0292 92.8048 ± 2.3718 86.9698 ± 6.2732

CE-Net 86.6122 ± 0.0274 95.0386 ± 0.0225 91.4771 ± 4.3291 84.5272 ± 12.1439

MultiResUnet 91.6595 ± 0.1209 97.4704 ± 0.1114 94.8670 ± 1.7577 90.4979 ± 5.0583

Ours 90.8895 ± 0.0013 97.3184 ± 0.0024 94.4686 ± 1.5205 89.7871 ± 2.8238

the existing methods except for MultiResUnet according to
Table 8. One possible reason for failure is that the parameter
number of MultiResUnet are more larger than our frame-
work. This is generally unfair. To this end, we reduce the
parameter number for MultiResUnet to a situation similar
to the proposed method. The related results are recorded
in Table 9. Obviously, the proposed AU-MultiGAN method
can obtain the improvement with roughly 0.75%, 1.1%, and
2.1% for Dice, IoU, and Acc in comparison with MultiRe-
sUnet with the same magnitude. These good performances
largely benefit from the fact that the proposed multi-
discriminator module and the use of dual-dilated block can
guide the generator to capture more favorable information
and thereby improve the segmentation performance. To sum
up, the above-mentioned analyses indicate the superiority of
the proposed method.

Moreover, from the view of visual effects, we present
segmentation results of some representative images for
these different datasets. The corresponding visual images
are displayed in Figs. 2, 3, 4, 5, 6 and 7. It can be observed
that our method performs well on various modalities of
datasets. For example, Fig. 2 shows the result of ISBI2009,
where some images of this dataset are with bright objects
that are almost indistinguishable from the actual nuclei.
Specially, the input image is polluted by small particles
that are not actual cell nuclei. But the AU-MultiGAN
method can segment the images reliably and acquire perfect
segmentation in the regions of interest in comparison with

other approaches. Similarly, we can see that the proposed
method have obtain clearer boundaries or textures compared
with other methods from Figs. 3–5, corresponding to the
datasets ISBI2012, ISBI2014 and DRIVE, respectively.
Moreover, for the ISIC and CVC-ClinicDB datasets, the
segmentation tasks in Figs. 6 and 7 are more difficult.
It seems that all the baselines have unsatisfactory results.
However, most regions of the proposed framework are
segmented accurately when comparing with other methods,
although it still has few wrong segmentation part. These
effective visual results are likely to depend on the proposed
multi-discriminator module and dual-dilated block, which
contribute to produce useful features in the deep model.

In summary, the proposed method can achieve superior
performance in comparison with the baselines from both
quantitative and visual results.

4.3 Discussion

1) The impact of hyperparameters α and γ . Adaptive
selecting the scale factors α and γ is generally a
challenging work. Here, we take the ISBI2012 dataset
as an example. Table 10 depicts the effects of different
values of α and γ in a relatively wide. As can be seen,
the best results are in the case of α = 0.25 and γ = 1.
Consequently, we set them empirically.

2) Choice of the discriminators number k. We will dis-
cuss the influence of different number of discriminators

Table 9 The effects of MultiResUnet(small) and AU-MultiGAN with the similar parameter number on the ISIC(small)

Method Parameters Sen(%) Acc(%) Dice(%) IoU(%)

MultiResUnet(samll) 4,413,212 92.2344 ± 0.2409 95.2134 ± 0.2113 93.7192 ± 2.5669 88.6647 ± 6.2637

AU-MultiGAN 4,249,156 90.8895 ± 0.0013 97.3184 ± 0.0024 94.4686 ± 1.5205 89.7871 ± 2.8238
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Fig. 2 Segmented images of different methods on ISBI2009. a Input image, b ground truth, c SVM, d RF, e U-Net, f Unet++, g LadderNet, h
Attention U-Net, i R2U-Net, j CE-Net, k MultiResUnet, and l AU-MultiGAN

k to determine the sizes in the overall network. To this
end, we complete a set of comparative experiments with
k = {1, 2, 3, 4} on the ISBI2012 dataset, as shown in
Table 11. It is easy to see that the performance of our
framework is optimal when k = 2. Consequently, we
select this value empirically.

3) Effectiveness of the multi-discriminator mechanism
and the dual-dilated block. We consider the influence
of the multi-discriminator mechanism and the dual-
dilated block. To this end, some comparison experi-
ments are carried out, taking the ISBI2012 dataset as

an example. The baselines include four cases, i.e. only
the asymmetric U-Net called MultiUnet, only the sin-
gle discriminator model referred to as SingleGAN, the
single-scale U-Net with a multi-discriminator named
UGAN, and the proposed AU-MultiGAN. The results
are presented in Table 12. Clearly, we can see that
the multi-discriminator mechanism is effective when
compared with SingleGAN and MultiUnet. Further, the
dual-dilated block of the proposed method is also use-
ful in comparison with UGAN, which use a single-scale
block. These demonstrate that the multi-discriminator

Fig. 3 Segmented images of different methods on ISBI2012. a Input image, b ground truth, c SVM, d RF, e U-Net, f Unet++, g LadderNet, h
Attention U-Net, i R2U-Net, j CE-Net, k MultiResUnet, and l AU-MultiGAN
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Fig. 4 Segmented images of different methods on ISBI2014. a Input image, b ground truth, c SVM, d RF, e U-Net, f Unet++, g LadderNet, h
Attention U-Net, i R2U-Net, j CE-Net, k MultiResUnet, and l AU-MultiGAN

and dual-dilated block are of importance in the pro-
posed method.

4) Ablation study of the hybrid loss. We discuss the
effectiveness of the proposed hybrid loss through
three groups of experiments on the ISBI2012 dataset
as an example. The first one only consider the
discriminator loss LGAN denoted by AU-MultiGAN
(LGAN). The second case embeds the Focal Loss
into the discriminator loss LGAN, referred to as
AU-MultiGAN(LGAN + λ1LFL). The last one is the
proposed method. The corresponding results are listed
in Table 13. It can be seen that the proposed method
outperforms than other two cases. This verifies the

effectiveness of the hybrid loss and may balance the
intra-classes of samples so that keeping consistent with
the generated and real segmentation maps.

5) Convergence of AU-MultiGAN. In Fig. 8, we plot
the curves of the segmentation loss in each epoch on
the first four datasets in Table 2. It can be seen that
for all cases, the proposed model attains convergence
quickly. This can be attributed to the synergy between
the multi-discriminator mechanism and batch normal-
isation. These imply that the proposed AU-MultiGAN
method are likely to obtain superior results in fewer
training epochs and are consistent with the theoretical
results.

Fig. 5 Segmented images of different methods on DRIVE. a Input image, b ground truth, c SVM, d RF, e U-Net, f Unet++, g LadderNet, h
Attention U-Net, i R2U-Net, j CE-Net, k MultiResUnet, and l AU-MultiGAN
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Fig. 6 Segmented images of different methods on CVC-ClinicDB(small). a Input image, b ground truth, c SVM, d RF, e U-Net, f Unet++, g
LadderNet, h Attention U-Net, i R2U-Net, j CE-Net, k MultiResUnet, and l AU-MultiGAN

Fig. 7 Segmented images of different methods on ISIC(small). a Input image, b ground truth, c SVM, d RF, e U-Net, f Unet++, g LadderNet, h
Attention U-Net, i R2U-Net, j CE-Net, k MultiResUnet, and l AU-MultiGAN

Table 10 Results on different scale factors for the ISBI2012 dataset

α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

γ = 0 94.8267 ± 0.0214 95.0773 ± 0.0069 94.9994 ± 0.1538 94.9994 ± 0.1538 94.6308 ± 0.0611

γ = 1 94.8308 ± 0.0768 95.1314 ± 0.0428 94.9045 ± 0.0799 94.6978 ± 0.0437 94.8244 ± 0.0354

γ = 2 94.9313 ± 0.0142 95.0532 ± 0.0688 94.9869 ± 0.1140 93.1068 ± 0.1046 94.8652 ± 0.0468

γ = 3 94.9000 ± 0.0721 95.0828 ± 0.0205 94.8006 ± 0.0154 94.9894 ± 0.0542 94.9899 ± 0.0072
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Table 11 AU-MultiGAN with
various k values for the
ISBI2012 dataset

k Parameters Dice(%) IoU(%)

1 1,341,410 94.9610 ± 0.2225 90.4131 ± 0.7053

2 4,249,156 95.1314 ± 0.0428 90.7281 ± 0.1404

3 13,795,110 94.9443 ± 0.0679 90.3861 ± 0.2164

4 49,888,520 94.9308 ± 0.0405 90.3613 ± 0.1331

Table 12 Effectiveness of the
multi-discriminator mechanism
and the dual-dilated block

Method Parameters Dice(%) IoU(%)

MultiUnet 2,862,722 95.0370 ± 0.0408 90.5572 ± 0.1306

SingleGAN 3,555,939 94.9241 ± 0.0621 90.3430 ± 0.2022

UGAN 2,532,100 95.0595 ± 0.0256 90.5884 ± 0.0843

AU-MultiGAN 4,249,156 95.1314 ± 0.0428 90.7281 ± 0.1404

Table 13 Ablation study of the
hybrid loss Method Dice(%) IoU(%)

AU-MultiGAN(LGAN) 68.6179 ± 156.8310 53.6859 ± 229.5927

AU-MultiGAN(LGAN + λ1LFL) 93.0980 ± 0.0612 87.1012 ± 0.1809

AU-MultiGAN(LGAN + λ1LFL + λ2Lre) 95.1314 ± 0.0428 90.7281 ± 0.1404

Fig. 8 Convergence analysis of the proposed method for the former four datasets. a ISBI2012. b SBI2014. c ISBI2009. d DRIVE
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Table 14 The model sizes of the proposed method and all the baselines

Model U-Net Unet++ LadderNet Attention U-Net
Parameters 7,784,577 9,045,668 14,155,041 34,877,421

Model R2U-Net CE-Net MultiResUnet Ours
Parameters 6,214,209 38,969,176 7,251,322 4,249,156

6) Analysis of model size. We give the parameters for
different methods. The results are recorded in Table 14.
As can be seen, the parameter number of the proposed
method is smaller than all the baselines, demonstrating
that the proposed method is a lightweight framework.

5 Conclusion

We present a novel method based on GAN for medical
image segmentation with small samples by designing mul-
tiple adversarial networks, referred to as AU-MultiGAN.
This framework mainly contains an asymmetric U-Net
module and a multi-discriminator module. The former is
designed to produce multiple segmentation maps. Further,
the multi-discriminator module is embedded into the asym-
metric U-Net structure, capturing the available information
of samples sufficiently and thereby promote the informa-
tion transmission. Also, a hybrid loss is developed and an
adaptive method of selecting the scale factors is designed.
Simultaneously, the convergence of the proposed method
is proved mathematically. Experimental results demonstrate
that the effectiveness of proposed method surpasses the
existing baselines.

There is scope for further research in this task. For example,
it is feasible to introduce a more sophisticated architecture
that can adapt to few-shot segmentation. In addition, to
extend our work for the selection of hyperparameters, meta-
learning [44] may be a viable approach.

Appendix A

A.1 Proof of Lemma 1

For a given generator Gi , the training criterion for the
sub-discriminator Di(i = 1, 2, . . . , k) is to minimize the
discriminator loss, LGAN(Gi, Di). Let

LGAN(Gi, Di)

= EY i∼p
Y i

[
1

2
(Di(Y i ) − 1)2

]

+ EX∼p
X

[
1

2
D2

i (Gi(X))

]

= EY i∼p
Y i

[1

2
(Di(Y i ) − 1)2] + EY ′

i∼pgi

[
1

2
D2

i (Y
′
i )

]

= 1

2

∫

Y i

pY i
(Y i )(Di(Y i ) − 1)2 + pgi

(Y i )D
2
i (Y i )dY i . (22)

By the formula in (22), the optimisation problem of the
sub-discriminator can be transformed into a least squares
problem:

min
Di

(Di(Y i ) − 1)2pY i
(Y i ) + D2

i (Y i )pgi
(Y i ). (23)

It achieves the minimum at
p

Y i
(Y i )

p
Y i

(Y i )+pgi
(Y i )

(i = 1, 2, . . . , k)

in [0, 1]. This completes the proof.

A.2 Proof of Lemma 2

For all i(i = 1, 2, . . . , k), if the relation pgi
= pY i

is

satisfied, then D∗
i = 1

2 is calculated by (16). Hence,

min
Di

LGAN(Gi, Di)

= EY i∼p
Y i

[1

2
(D∗

i (Y i ) − 1)2] + EX∼p
X
[1

2
D∗2

i (Gi(X))]

= EY i∼p
Y i
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2
(D∗

i (Y i ) − 1)2] + EY ′
i∼pgi

[1

2
D∗2

i (Y ′
i )]

= 1

4
. (24)

To see that 1
4 is the best possible value of

min
Di

LGAN(Gi, Di), reached only for pgi
= pY i

, we observe

min
Di

LGAN(Gi, Di)

= EY i∼p
Y i
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2
(D∗

i (Y i ) − 1)2] + EX∼p
X
[1

2
D∗2

i (Gi(X))]

= EY i∼p
Y i
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2
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2
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= 1

2

∫

Y i

[pY i
(Y i )(D

∗
i (Y i ) − 1)2 + pgi

(Y i )D
∗2
i (Y i )]dY i ,

(25)

where the relationship between D∗2
i (Y i ), the label distribu-

tion pY i
and the generated segmentation distribution pgi

are
obtained in Lemma 1. Here, we introduce this relationship
into the above formula.

1

2

∫
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(Y i )p
2
gi

(Y i )

(pY i
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(Y i ))2
+

pgi
(Y i )p

2
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(pY i
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(Y i ))2

]

dY i

= 1
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+ 1

8

∫
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(Y i )pgi
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Y i
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= 1

4
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8
χ2(pY i

+ pgi
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), (26)

where χ2 is the Pearson χ2 divergence and χ2(pY i+pgi
‖2pY i

) denotes the simplified representation of
∫
Y i

[
(2p

Y i
(Y i )−(p

Y i
(Y i )+pgi

(Y i )))
2

p
Y i

(Y i )+pgi
(Y i )

]

dY i . Thus, the results of
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(26) achieve the value 1
4 when pY i

and pgi
are equal. We

have shown that LGAN = 1
4 and that the only solution

is pgi
= pY i

. Thus, the asymmetric U-Net can perfectly
replicate the distribution of the real segmented image. This
completes the proof.

A.3 Proof of Theorem 1

Consider LGAN(Gi, Di) = V(pgi
, Di) as a function of pgi

,
as done in the above criterion (17), in which V(pgi

, Di) is
the criterion. Note that V(pgi

, Di) is convex on pgi
. The

inf-derivatives of an infimum of convex functions are the
derivative of the function at the point where the minimum is
attained. This is equivalent to computing a gradient descent
update for pgi

at the optimal Di , given the corresponding
Gi . From [45], infDi

LGAN(Gi, Di) is convex on pgi
.

Moreover, infDi
LGAN(Gi, Di) takes the value 1

4 as proven
in Lemma 2; therefore, with sufficiently small updates of
pgi

, pgi
converges to pY i

(i = 1, 2, . . . , k). This completes
the proof.
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A, Gambardella LM, Schmidhuber J, Laptev D, Dwivedi S,
Buhmann JM et al (2015) Crowdsourcing the creation of image
segmentation algorithms for connectomics. Front Neuroanat
9:142. https://doi.org/10.3389/fnana.2015.00142

35. Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A,
Pulokas J, Tomancak P, Hartenstein V (2010) An integrated
micro-and macroarchitectural analysis of the Drosophila brain by
computer-assisted serial section electron microscopy. PLoS Biol
8(10):1000502. https://doi.org/10.1371/journal.pbio.1000502

36. Lu Z, Carneiro G, Bradley AP, Ushizima D, Nosrati MS, Bianchi
AG, Carneiro CM, Hamarneh G (2016) Evaluation of three algo-
rithms for the segmentation of overlapping cervical cells. IEEE
J Biomed Health Inform 21(2):441–450. https://doi.org/10.1109/
JBHI.2016.2519686

37. Lu Z, Carneiro G, Bradley AP (2015) An improved joint
optimization of multiple level set functions for the segmentation of
overlapping cervical cells. IEEE Trans Image Process 24(4):1261–
1272. https://doi.org/10.1109/TIP.2015.2389619

38. Staal JJ, Abramoff M, Niemeijer M, Viergever M, van Ginneken
B (2004) Drive: digital retinal images for vessel extraction. IEEE
Trans Med Imaging 23(4):501–509

39. Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA,
Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H et al (2018)
Skin lesion analysis toward melanoma detection: A challenge at
the 2017 international symposium on biomedical imaging (ISBI),
hosted by the international skin imaging collaboration (ISIC). In:
Proceedings of IEEE 15th international symposium on biomedical
imaging, pp 168–172. https://doi.org/10.1109/ISBI.2018.8363547

40. Tschandl P, Rosendahl C, Kittler H (2018) The ham10000 dataset,
a large collection of multi-source dermatoscopic images of com-
mon pigmented skin lesions. Scientific Data 5(1):1–9. https://doi.
org/10.1038/sdata.2018.161

41. Bernal J, Sánchez FJ, Fernández-Esparrach G, Gil D, Rodrı́guez
C, Vilariño F (2015) Wm-dova maps for accurate polyp
highlighting in colonoscopy: Validation vs. saliency maps from
physicians. Computerized Medical Imaging and Graphics 43:99–
111. https://doi.org/10.1016/j.compmedimag.2015.02.007

42. Fausto M, Nassir N, Seyed-Ahmad A (2016) V-Net: fully convo-
lutional neural networks for volumetric medical image segmen-
tation. In: Proceedings of 2016 fourth international conference
on 3D vision. IEEE, pp 565–571. https://doi.org/10.1109/3DV.
2016.79

43. Hassan T, Akram MU, Werghi N, Nazir N (2020) Rag-fw: A
hybrid convolutional framework for the automated extraction of
retinal lesions and lesion-influenced grading of human retinal
pathology. IEEE J Biomed Health Inform 24(99):1–1. https://doi.
org/10.36227/techrxiv.11877879.v1

44. Shu J, Xie Q, Yi L, Zhao Q, Zhou S, Xu Z, Meng D (2019) Meta-
weight-net: learning an explicit mapping for sample weighting.
In: Advances in neural information processing systems, pp 1919–
1930

45. Boyd S, Boyd SP, Vandenberghe L (2004) Convex optimization.
Cambridge University Press, Cambridge

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Yi Wang received the B.Sc.
degree in mathematics and
applied mathematics from
Leshan Normal University,
Leshan, China, in 2018. She
is currently pursuing the
M.Sc. degree in the College
of Sciences, China Jiliang
University, Hangzhou, China.
Her research interests include
deep learning and image
processing.

1108



A novel multi-discriminator deep network for image segmentation

HailiangYe received the B.Sc.
and M.Sc. degree in applied
mathematics from China Jiliang
University, Hangzhou, China,
in 2012 and 2015, respectively.
In 2019, he received the Ph.D.
degree in computational math-
ematics from Huazhong Uni-
versity of Science and Tech-
nology, Wuhan, China. He is
currently a lecturer of the Col-
lege of Sciences, China Jiliang
University, Hangzhou, China.
His research interests include
deep learning, pattern recogni-
tion, and image processing.

Feilong Cao received the
Ph.D. degree in Applied Mathe-
matics from Xi’an Jiaotong
University, China in 2003. He
was a Research Fellow with
the Center of Basic Sciences,
Xi’an Jiaotong University,
China, from 2003 to 2004.
From 2004 to 2006, he was
a Post-Doctoral Research
Fellow with the School of
Aerospace, Xi’an Jiaotong
University, China. He is
currently a Professor of the
College of Sciences, China
Jiliang University, Hangzhou,

China. He has authored or co-authored over 230 scientific papers
in refereed journals. His current research interests include neural
networks, pattern recognition, and approximation theory.

1109


	A novel multi-discriminator deep network for image segmentation
	Abstract
	Introduction
	Notations
	Method
	Architectural design
	Asymmetric U-net
	Multi-discriminator mechanism
	Hybrid loss and its adaptive scale factor selection
	Theoretical analysis

	Experiments
	Experiments setup
	Datasets
	Evaluation
	Implementation details


	Comparison results
	Discussion

	Conclusion
	Appendix  A
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2
	A.3 Proof of Theorem 1
	References


