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Abstract
In-bed pose estimation has shown value in fields such as hospital patient monitoring, sleep studies, and smart homes. In
this paper, we explore different strategies for detecting body pose from highly ambiguous pressure data, with the aid of
pre-existing pose estimators. We examine the performance of pre-trained pose estimators by using them either directly or
by re-training them on two pressure datasets. We also explore other strategies utilizing a learnable pre-processing domain
adaptation step, which transforms the vague pressure maps to a representation closer to the expected input space of common
purpose pose estimation modules. Accordingly, we used a fully convolutional network with multiple scales to provide the
pose-specific characteristics of the pressure maps to the pre-trained pose estimation module. Our complete analysis of
different approaches shows that the combination of learnable pre-processing module along with re-training pre-existing
image-based pose estimators on the pressure data is able to overcome issues such as highly vague pressure points to achieve
very high pose estimation accuracy.

Keywords Smart beds · Pressure-sensing mattress · Pose estimation · Machine learning

1 Introduction

Sleep studies have recently attracted considerable attention
due to the availability and popularization of sensing and
processing tools for monitoring users with smart bed
technologies. Such technologies play a critical role towards
pervasive and unobtrusive sensing and analysis of people
in smart homes as well as clinical settings, which in turn
can have implications for health, quality of life, and even
security. For example, it has been previously demonstrated
that different sleeping poses can impact certain conditions
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or disorders such as sleep apnea [26], pressure ulcers
[43], and even carpal tunnel syndrome [33, 34]. As
another example, in specialized units, the movements of
hospitalized patients are monitored to detect critical events
and to analyze parameters such as lateralization, movement
range, or the occurrence of pathological patterns [11].
Moreover, patients are usually required to maintain specific
poses after certain surgeries or procedures to obtain better
recovery results. Therefore, long-term in-bed monitoring
and automated detection of poses is of critical interest in
health-care applications [28, 30].

Currently, most in-bed examinations are performed
with manual visual inspections by caretakers or reports
from patients themselves, which are prone to subjective
prognosis and user errors. To address the underlying
problems in subjective and manual inspections, automated
in-bed pose estimation systems are needed in clinical
and smart home settings. A number of different learning-
based approaches have recently been developed to minimize
manual involvement and provide more consistent and
accurate results [1].

Automatic in-bed pose monitoring can be achieved
by Deep Neural Networks (DNN), which provide rich
information using convolutional operations for feature
extraction on different modalities, such as pressure mapping
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sensors [13, 23] or camera-based systems [31]. Camera-
based systems, suffer from a range of implementation
issues when trying to address challenging situations
including blanket occlusions [1], lighting variations [32],
and concerns regarding privacy for in-home and clinical
use. Additionally, accurate visual monitoring may require
advanced sensors such as infrared [31, 44], time-of-
flight [37], and depth cameras [18]. The disadvantages of
pressure-based systems, on the other hand, are the high cost
and need for calibration. Nonetheless, they are not subject to
occlusion or point-of-view problems, complications caused
by lighting variations, and privacy issues. Moreover, textile-
based pressure sensors can be seamlessly embedded into
mattresses to construct unobtrusive smart beds [27].

Recent studies on pressure mapping systems have
generally been limited to coarse posture identification (i.e.
left, right and supine) [12, 16, 35]. Moreover, the notion of
body pose estimation using pressure arrays has rarely been
explored [4, 14, 29]. The limited scope of existing works on
pressure data is mainly due to the lack of extensive datasets
that span the pose and body distributions required to learn
generalized models for pose estimation.

With recent advances in machine and deep learning,
a large number of advanced data-driven pose estimation
methods have been developed [3, 6–8, 21, 22, 24, 39,
45] to be used in a variety of different applications
such as animation, clinical monitoring, human-computer
interaction, and robotics [20, 25, 40]. While these models
have the potential to be used for pressure-based in-bed
pose estimation, they have all been designed and trained
for images with naturally appearing human figures, and
mostly in upright postures. Moreover, weak pressure areas
resulting from supported body parts are perceived as body
occlusions in the pressure maps, which can cause low
fidelity with existing models.

In this paper, we explore the use of pre-existing image-
based pose estimators, namely OpenPose [3] and Cascaded
Pyramid Network (CPN) [7], for in-bed pressure-based pose
estimation, with the goal of detecting keypoint locations
reliably in challenging conditions such as weak pressure
areas. See Fig. 1 (top row) for a few examples of the

pressure data used in this study. To this end, we exploit four
general approaches: i) First, as a baseline, we use the pose
estimators pre-trained on their respective image datasets
without any modification or training with the pressure data;
ii) Next, we manually label body joint locations for the
pressure dataset and re-train the pose estimators from the
previous pipeline on pressure datasets. iii) We propose
a fully-convolutional network called PolishNetU, to learn
a pre-processing step such that the polished outputs are
consistent with the data on which the pose estimators have
been originally trained. PolishNetU is then followed by
the frozen pose estimators (not re-trained or modified for
pressure data). iv) Finally, we re-train the entire pipeline
iii (consisting of PolishNetU and a pose estimator) on the
labeled pressure data. Our analysis shows that method (ii)
and (iv) perform superior compared to other approaches,
followed by solution (iii), which achieves significantly
better results compared to the mere use of a pose recognition
model directly on the inputs (pipeline (i)). In addition,
we show that while most pose estimation models require
large datasets for training, PolishNetU is capable of
generalizing when trained on a dataset with a limited
number of subjects. In summary, our contributions are as
follows:

• We explore the notion of using existing pose recogni-
tion networks for in-bed pose estimation using pressure
data and improve upon the previous studies.

• We propose PolishNetU, a deep UNet-style neural
network for taking pressure images and transforming
them into an embedding close to real human figures
captured in images.

• We compare and provide comprehensive insights into
several strategies for using pre-existing pose estimators
namely OpenPose and CPN for pressure-based pose
estimation.

• Finally, we conclude that fine-tuning pre-existing pose
estimators along with using PolishNetU as a pre-
processing domain adaptation step can perform pose
recognition very effectively with a detection rate of over
99%.

Fig. 1 Some examples of
pressure-based in-bed pose
estimation are presented. The
top row shows the input pressure
maps recorded using a mattress
with embedded sensors, while
the bottom row presents the
estimated poses using an
end-to-end method consisting of
our proposed PolishNetU
network with OpenPose

2120 V. Davoodnia et al.



2 Related work

Generally, in-bed pose estimation methods can be divided
into two main categories based on the input modality:
camera-based and pressure-based. The former are a
group of techniques that make use of different types
of cameras such as infrared, range, or normal digital
cameras, while the latter use a matrix of pressure sensors.
While our work focuses on pressure data, we review both
approaches in this section for completeness and providing
a complete picture of solutions used for in-bed pose
estimation.

2.1 Camera-based pose estimation

These methods suffer from occlusion and lighting variation
conditions. As a result, one of the main focuses of these
approaches is to address such problems. For example,
[32] proposed a novel recording method, called Infrared
Selective (IRS) image acquisition, to address the problem
of lighting variations caused by the daylight cycle. Then
an n-end Histogram of Oriented Gradients (HOG) feature
extraction followed by a Support Vector Machine (SVM)
classifier was used to align the orientation such that
the rectified images were consistent with common pose
detection methods. Finally, a few layers of a convolutional
pose machine were fine-tuned on the in-bed dataset.
Their pose rectification and estimation blocks assume no
occlusion, for example by a blanket, and use an on-demand
trigger to reduce the high computational cost of the pipeline.
In another camera-based work, [41] developed a video-
based monitoring approach to estimate human pose in
conditions with occluded body parts. The proposed method
comprised two main blocks: a weak human model and a
modified pose matching algorithm. First, in order to reduce
the search space of poses, a weak human model was used
to quickly generate soft estimates of obscured upper body
parts. The obscured parts were then detected using edge
information in multiple stages. Next, an enhanced human
pose matching algorithm was introduced to address the
problem of weak image features and obstruction noise. This
was used as a subsequent fine-tuned block to be optimized
in the constrained space.

End-to-end deep learning methods have also been
explored for in-bed camera-based pose estimation. Achilles
et al. [1] trained a deep model to infer body pose from
RGB-D data, while the ground truth was provided by a
synchronized optical motion capture system. The model
was constructed by a convolutional neural network (CNN)
followed by a recurrent neural network (RNN) to capture the
temporal consistency. Since it was impossible to track the
markers while occluded by a blanket, the RGB-D data were

augmented with a virtual blanket to simulate the conditions
where body parts were occluded.

In [5], a semi-automatic approach was proposed for
upper-body pose estimation using RGB video data. The
video data were normalized in a pre-processing step using
contrast-limited adaptive histogram equalization, making
the processed data invariant to lighting variations. Then,
a CNN model was trained on the subsequent data for
each subject outputting 7 heatmaps for 7 upper-body joint
locations. Finally, a Kalman filter was applied as a post-
processing step to refine the predicted joint trajectories and
achieve a more temporally consistent estimation.

2.2 Pressure-based pose estimation

Pressure-based approaches have recently attracted attention
as they avoid some of the problems that camera-based
systems suffer from, for example, occlusion, lighting
variations, and subject privacy. In [35], subject classification
was performed with pressure data in three standard postures,
namely supine, right side, and left side. Eighteen statistical
features were extracted from the pressure distributions in
each frame of each posture and fed to a dense network.
Hidden layers were pre-trained by incorporating restricted
Boltzmann machines into the deep belief network to find the
proper initial weights.

In [17], a generative inference approach was proposed
similar to [38]. However, pressure data were used as the
input modality, and the body was simulated using a less
sophisticated human body model. The pipeline included
two main blocks. First, the patient orientation was detected
and then the coarse body posture was classified using
a k-nearest-neighbor classifier by comparing the query
pressure distribution to the labeled training data. In the
second step, a cylindrical 3D human body model was
used in a generative inference approach to synthesize
pressure distributions. The body model parameters (shape
and pose) were iteratively optimized using Powell’s method,
minimizing the sum of squared distances between the
synthetic pressure distribution and observed distribution.

In a more recent study, [10] proposed PressureNet, a
pressure-based 3D pose and shape reconstruction network,
which was trained on synthetic data and tested on real
pressure images. Their method consisted of two modules,
first, to encode shape, pose, and global transformation
from the gender and pressure data, and second, for
reconstructing the 3D model and consequently estimating
the pressure images from first module’s input pose
information. By incorporating pose information loss for the
first module and heatmap loss for the second, they were
able to achieve a 3D pose recognition error of less than
75mm.

2121Estimating pose from pressure data for smart beds with deep image-based pose estimators



3Methodology

3.1 Problem setup

Our goal is to explore possible approaches for in-bed pose
estimation using pre-existing pose recognition networks.
Our problem can be formulated as desiring a set of 14
keypoints, indicating different limb positions, by taking an
input pressure image and passing it through a deep neural
network. In this paper, we analyze a set of different solutions
where pose estimation is achieved by utilizing off-the-shelf
pose estimators. To this end, the explored networks may
include a learnable pre-processing network (PolishNetU),
which aims to edit the pressure images to prepare them
for pose identification. In the PolishNetU model, the latent
features are learned through the multi-scale architecture of
the U-Net style network. On the encoder part of PolishNetU,
the latent features of each step are pooled with the previous
blocks to be used to generate a polished and pre-processed
image in the decoder part. The polished image is then passed
to a pose estimation block, which locates the position of
different joints. As mentioned in Section 1 (Introduction),
we consider OpenPose and CPN for pose estimation. These
methods are from a family of convolutional pose machines
[42], where they use a VGG and a ResNet backbone as
feature extractors respectively, and their goal is to find the
keypoints by estimating the probability of the existence
of the limb in the image. As a result, both CPN and
OpenPose generate 14 heatmaps, each corresponding to
one limb position. Furthermore, OpenPose incorporates
additional 28 output channels called Part Affinity Fields
(PAF) corresponding to the connection of the adjacent limbs
and their difference in position. See Fig. 2 for an overview
of the explored approaches.

3.2 Solutions

We consider 4 possible solutions: (i) first, the off-the-shelf
pose estimators can be used without any further training
or addition of additional modules; (ii) the pose estimation
networks can be re-trained on the pressure data; (iii) a
domain adaptation network can be designed and trained to
pre-process the vague input pressure maps to then be used
with the frozen pose estimators; and (iv) the entire pipeline
consisting of the domain adaptation network and the pose
estimator can be re-trained end-to-end with the pressure
data. Following we describe the details of each of these
possible solutions.

Frozen pose estimators utilized directly on the pressure
images. Let I ∈ R

W×H×3 be the unpolished input pressure
data. Our objective would then be to estimate a set of
keypoints K̂ = Q(I ; θQ), where Q is the approximated
function by the pre-existing pose recognition networks

and θQ is its pre-trained parameters. In this scenario, the
pre-trained parameters θQ are optimized on the original
image-pose dataset that the pose estimator has been trained
on.

Re-training Pose Estimators is the second possible
solution which is built upon the previous one by adding the
objective of optimizing θQ on the pressure data such that Q
closely estimates the keypoints K . We define the objective
as:

max
θP

J (K̂, K), (1)

where J is defined as a function of similarity between
the predicted and ground truth keypoints. Accordingly, We
define two loss functions with a heatmap term and a PAF
term. The heatmap term, Eheatmap is defined as:

Eheatmap = 1

KHW

K∑

k=1

H∑

i=1

W∑

j=1

Vk

∥∥Ck − C′
k

∥∥2
2 , (2)

where Ck and C′
k are the corresponding ground-truth and

predicted heatmaps for keypoint k, K = 14 is the number of
visible keypoints, and Vk is 1 if the Kth limb is visible and
0 if it’s not. Next, the PAF term, EPAF , is defined as:

EPAF = 1

LHW

L∑

l=1

H∑

i=1

W∑

j=1

Vl

∥∥Fl − F ′
l

∥∥2
2 , (3)

where Fl and F ′
l are the corresponding ground-truth and

predicted PAFs for limb l, L = 28 is the number of
connections between the limbs in y or x axis, and Vl is 1
if both limbs producing the lth connection are visible and 0
otherwise. The final objective would then be optimized by
minimizing the sum of the two loss functions.

Image space representation learning is the next
possible solution. Here, our goal is to implement a learnable
pre-processing step that receives the pressure data I as
inputs and synthesizes colored images close to a pre-trained
pose estimation network’s learnt data. Therefore, the output
data from the learner should lie on the data manifold
by which the pose estimation module was trained. This
learnable pre-processing step, which we call PolishNetU,
converts the pressure data to polished images that better
resemble human figures as expected by common pose
estimation models.

Lets define I ′ ∈ R
W×H×3 as the output of our

PolishNetU P, in other words I ′ = P(I ; θP) and K̂ =
Q(I ′; θQ), where P is the pre-processing function, and
θP is its set of trainable parameters. Using the Eheatmap

and EPAF , a pre-trained pose estimation module can force
PolishNetU to synthesize entirely new images. To prevent
pose deviations, we also added a third term, pixel loss, to
the objective function. This term acts as a regularizer, which
penalizes the distance between the input pressure maps and
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the synthesized polished images, which we defined as:

Epixel = 1

HW

H∑

i=1

W∑

j=1

∥∥I − I ′∥∥2
2 . (4)

Finally, we optimize θP using the objective function:

E(θP) =λheatmapEheatmap + λPAF EPAF

+ λpixelEpixel ,
(5)

where we chose λheatmap = λPAF and adjusted λpixel to
achieve the optimum representations. It is important to note
that the pixel loss weight λpixel has a large impact on the
representations, where large values can result in PolishNetU
producing outputs overly similar to the unpolished inputs.
In contrast, smaller values caused the heatmap and PAF
losses to overlook this regularizer, resulting in significant
deviations from the input images, generating non-human
like images. Therefore in this setup, we first train the
network by setting a high value for λpixel , and then slowly
decrease its weight to enable our networks to focus on
reconstructing weak pressure points after stabilizing.

End-to-end re-training of PolishNetU and pose esti-
mators are the final possible solution. Since PolishNetU
is acting as the pre-processing step, it is intuitive that the
main pose estimation network would have a large impact
on the performance. Therefore, after learning the real image
representations I ′ by training the PolishNetU, we move
on to optimizing θQ by using the same objective function.
Additionally, we can also choose to fine-tune PolishNetU
alongside our pose estimation network, which we refer to as
fine-tuned PolishNetU in the future sections.

4 Experiments and results

4.1 Data preparation

We use two different datasets to train and test our pressure-
based pose estimation approach, PmatData [35] available in
the PhysioNet repository [15] and HRL-ROS dataset [9].
These datasets are briefly described as follows:

PmatData Ostadabbas et al. [35] was recorded by a
force sensitive pressure mapping mattresses. Each mattress
contained 2048 sensors spread on a 32 by 64 grid with each
sensor being 25.4 mm apart. The recording was performed
with a frequency of 1 Hz for a pressure range of 0 − 100
mmHg. Data were recorded from 13 healthy subjects in
8 standard postures and 9 further sub-postures, for a total
of 17 unique pose classes. Subjects were within a height
range of 169 − 186 cm, a weight range of 63 − 100
Kg, and an age range of 19 − 34 years. We developed
and utilized a tool in MATLAB for annotating the body

part keypoints in 18256 data samples. The annotating
procedure was carried out by two researchers and then
cross-checked to ensure consistency. To perform very
rigorous evaluation experiments, we employ a leave-some-
subjects-out validation strategy, training the network on 9
subjects and testing it on the remaining 4.

HRL-ROS Clever et al. [9] was collected for kinematic-based
3D pose recognition using a configurable bed embedded
with pressure sensors and motion capture cameras. The bed
was equipped with an array of 27 × 64 sensors distributed
28.6 mm apart. A total of 17 subjects were asked to lie or
sit in different postures and move a body limb in a specific
path, while their limb position was being tracked using
motion capture cameras. Subjects were within a height
range of 160 − 185 cm, a weight range of 45.8 − 94.3
Kg, and an age range of 19 − 32 years. For our purposes
we use the data from all of the subjects in all 13 lying
postures, resulting in a total of 39095 pressure maps. Similar
to PmatData, we leave the last 4 subjects for testing while
keeping the rest for training.

4.2 Pre-processing

First, we remove the noise caused by occasional malfunc-
tioning pressure sensors. These artifacts usually occur when
certain individual sensors become subject to pressure values
outside the calibrated voltage range. To clean up the pres-
sure values, we use a 3×3×3 spatio-temporal median filter.
We tune the filter size by evaluating the pose estimation per-
formance of a frozen OpenPose on the PmatData dataset,
showing that larger filter sizes do not improve the perfor-
mance. Following previous studies [12–14], we also remove
the first 3 frames of each sequence, which in some cases
are transition frames where pressure maps are not clear. We
identified the frames and cross-checked them visually to
remove the outliers using the histogram of the dataset based
on the average pressure of each image.

The input pressure maps are provided in the form of
W × H × 1 arrays. However, most existing pose estimation
methods have been trained on color images. As a result
in order to utilize existing frameworks for our goal of
estimating poses from pressure data, the pressure maps
need to be converted to color images. Consequently, we
convert the pressure maps to color images using a colormap.
To this end, we need to select a colormap with high
compatibility with the pose estimation network, and in
general, with natural images containing human figures.
Our investigations show that the choice of colormap can
play a considerable role in the performance. We investigate
38 different colormaps and evaluate the error rates when
PolishNetU is excluded from the pipeline and only the
frozen OpenPose model is used. Figure 3 shows the
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Fig. 4 AP over different thresholds is demonstrated for each body part from PmatData dataset

performance over different colormaps and illustrates the
estimated pose accuracy for different body parts for 4
sample colormaps from the distribution, namely HSV, Jet,
Copper, and Viridis. Eventually, as shown in Fig. 3, Viridis
exhibits the best color mapping characteristics. The pose
estimation evaluation method is presented in Section 4.4.

4.3 Implementation details

4.3.1 PolishNetU

Polishing the colorized pressure maps and converting
them to images consistent with the pose estimation
module is done by a feed-forward network P called
PolishNetU. Our proposed network is a variation of U-
Net, consisting of a combination of encoders and decoders,
including fully convolutional and deconvolutional layers,
respectively. Given the colorized pressure data, a series of
8 encoder blocks of Conv-BatchNorm-LeakyReLu with a
stride of 2 are exploited to encode the input to a data
manifold, capturing pressure properties that incorporate
pose information. The polished image space is then
achieved by concatenating the residuals from the encoders
with UpSample-DeConv-BatchNorm-LeakyReLu on the
encoded latent space. Finally, using a tanh activation

function, the last layer provides a polished image, which
is compatible with the pose estimation module conditioned
on the given pressure input. We use BatchNorm for faster
and more reliable training, and upsampling layers instead
of a deconvolution layer with a stride of 2 to avoid the
deconvolution checkerboard artifact.

4.3.2 Pose estimationmodule

To train PolishNetU, we utilize OpenPose [3] or CPN [7]
as our pose identification module. OpenPose is a well-
known network developed for real-time pose estimation
first, by which has been recently extended to support face
landmark detection and hand gesture detection as well. On
the other hand, CPN is a more recent and powerful pose
recognition method which was able to achieve state-of-the-
art in many of the pose recognition challenges. The authors
of OpenPose defined heatmap and Part Affinity Fields
(PAF) outputs which we utilize to define our pose estimation
objectives. Each heatmap provides a 2D distribution of the
belief that a keypoint is located on each pixel. Additionally,
PAF is defined as a 2D vector field for each limb, where
each 2D vector encodes both position and the orientation
of the limb. Over the past few years, several versions of
this network have been published, mostly with changes in
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Table 1 The AP5 values are presented for different methods on PmatData

H LS RS LE RE LW RW LH RH LK RK LA RA

Re-trained OpenPose+PolishNetU 99.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8

Re-trained OpenPose 91.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Frozen OpenPose+PolishNetU 92.2 90.1 45.7 80.8 88.5 52.5 43.2 48.1 36.9 80.2 98.6 100.0 96.0

Frozen OpenPose 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Re-trained CPN+PolishNetU 99.6 99.5 99.5 99.5 99.6 99.4 99.4 99.6 99.5 99.6 99.6 99.5 99.5

Re-trained CPN 98.7 99.3 99.4 99.3 99.3 98.9 99.1 99.5 99.5 99.4 99.3 99.1 98.8

Frozen CPN+PolishNetU 100.0 72.3 44.3 82.0 78.5 41.6 14.4 48.6 67.7 88.9 100.0 82.9 85.4

Frozen CPN 0.0 0.0 0.0 0.0 3.3 4.7 0.0 0.0 0.0 7.9 31.3 23.1 4.4

the final blocks for face and hand landmark detection and
trade-offs between memory usage, performance, and speed.
For our work, we choose the original version published in
2016 that includes 7 stages for refining the heatmaps and
PAFs. We use the exact design parameters of the original
OpenPose model. In our pipeline, neither OpenPose,
nor CPN, do not use any non-linear activation functions,
therefore vanishing gradients is not an issue. Furthermore,
we neglect the loss for non-visible parts, eyes, and ears due
to the nature of our pressure data. Consequently, we end
up with 14 heatmaps for the head, neck, shoulders, elbows,
wrists, ankles, knees, and the hip, as well as 28 PAFs
connecting the body parts to be used in our cost functions.

4.3.3 Pipeline

The pipeline is implemented using TensorFlow on an
NVIDIA Titan XP GPU. We use an Adam optimizer at the
training stage with a learning rate of 10−3, which is decayed
with a rate of 0.95 for every 1000 update iterations. The
pipeline is trained for 40 epochs with a batch size of 16.
λPAF and λheatmap are both set to 1 while λpixel is changed
from 1 to 0.01 during training to first stabilize the model,
and then allow it to interpolate the vivid body limbs without
pixel loss penalty.

4.4 Performance evaluation

After obtaining the output heatmaps in the form of Wh ×
Hh × 14, we smooth them using a Gaussian kernel
of 3 × 3 across the spatial dimensions to reduce prediction
noise in the output. Then, we perform a flip-test to reduce
the model’s bias to left and right directions by obtaining
the output from the original input and its flipped version
and then averaging them. Finally, we take the location of
the maximum of each channel as our predicted keypoints,
obtaining a 14 × 3 array containing the location and
prediction scores of the body limbs.

To evaluate the performance of our pipeline on the
annotated data, we use the Average Precision (AP), a
measure of joint localization accuracy at 5% error margin,
similar to the intersection-over-union (IoU) threshold in
object detection research [19, 46, 47]. First, we sort the
predictions by their scores. Then we measure the distances
between the predicted and ground-truth keypoints. If this
distance is below a threshold, we consider the prediction
a true-positive. Finally, we calculate AP by measuring the
area under the precision and recall curves. The threshold is
defined as a fraction, here 5%, of the person’s size, where
the size is defined as the distance between the person’s
left shoulder and right hip [2]. In our implementation, the

Table 2 The AP5 values are presented for different methods on HRL-ROS

H LS RS LE RE LW RW LH RH LK RK LA RA

Re-trained OpenPose+PolishNetU 98.7 99.8 99.7 99.5 97.7 97.0 97.3 99.5 99.5 98.1 98.9 99.2 98.1

Re-trained OpenPose 98.8 99.7 99.4 99.3 97.4 97.1 96.0 99.5 99.5 98.2 98.7 99.2 98.4

Frozen OpenPose+PolishNetU 80.8 89.6 44.9 73.6 81.6 79.1 88.6 89.3 85.3 38.9 32.8 36.7 63.4

Frozen OpenPose 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Re-trained CPN+PolishNetU 92.4 95.3 95.2 94.9 95.1 94.9 94.9 95.6 95.6 95.1 95.0 95.3 95.4

Re-trained CPN 96.4 98.5 98.6 98.5 98.4 97.9 97.7 98.6 98.6 98.4 98.4 98.5 98.4

Frozen CPN+PolishNetU 48.4 94.8 86.9 52.1 86.1 98.1 100.0 97.3 77.4 79.0 100.0 94.4 85.7

Frozen CPN 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.2 0.0 12.8
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Fig. 6 We provide examples of the performance of the explored archi-
tectures for estimating pose from input colorized pressure maps. Here,
we show the raw pressure data (first row), colorized pressure data
and ground truth keypoints (second row), frozen OpenPose predictions
on colorized images (third row), PolishNetU with frozen OpenPose
predictions on polished images (fourth row), and PolishNetU with
re-trained OpenPose estimations on polished images (fifth row). We

removed the predictions that were too far from the actual ground-truth
for better presentation. The addition of PolishNetU to the frozen Open-
Pose causes a boost in pose estimation performance, while re-trained
OpenPose with PolishNetU makes slightly more detailed predictions.
Furthermore, polished images inherit a better visual fidelity of human
body limbs

Fig. 7 Illustration of examples
from PmatData where
PolishNetU has reconstructed
weak body parts. Specifically
note the arms, knees, and the
head
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Table 3 The AP5 (%) - MPJPE (mm) values are presented for two datasets over all possible solutions

Pose Estimator Model PolishNetU Dataset

Fine-tuning PmatData HRL-ROS

Frozen OpenPose – 0.0 – 429.2 0.0 – 279.5

OpenPose [3] Frozen OpenPose+PolishNetU – 78.1 – 29.7 77.4 – 36.6

Re–trained OpenPose – 99.8 – 15.1 98.4 – 16.3

Re–trained OpenPose+PolishNetU No 99.6 – 15.3 98.6 – 16.2

Re–trained OpenPose+PolishNetU Yes 99.9 – 14.8 98.7 – 16.1

Frozen CPN – 0.5 – 557.0 0.0 – 208.9

CPN [7] Frozen CPN+PolishNetU – 71.8 – 78.1 85.6 – 39.2

Re–trained CPN – 99.4 – 20.6 98.0 – 14.4

Re–trained CPN+PolishNetU No 95.9 – 28.8 95.9 – 18.4

Re–trained CPN+PolishNetU Yes 99.6 – 18.4 96.4 – 16.7

average 5% threshold is equal to approximately 1.2 pixels
or 32 mm considering the size of the input pressure images.
Moreover, we also provide another evaluation metric used
in pose estimation studies called mean-per-joint-position
error (MPJPE) of the predictions [4, 9, 36]. MPJPE is
measured by averaging the body joint prediction errors in
mm, calculated in euclidean space.

We analyze the aforementioned solutions by compar-
ing them based on AP , plotted against normalized dis-
tances (defined by threshold × torso length) for different
body parts in Figs. 4 and 5 for PmatData and HRL-ROS
datasets. We omitted the frozen pose estimators without Pol-
ishNetU since they showed poor detection rates on both
datasets. In contrast, the highest performance in both fig-
ures belongs to the models in which the pose estimation
network is re-trained, where the combination of PolishNetU
and OpenPose is slightly better than the rest, especially for
PmatData dataset. Finally, solutions utilizing PolishNetU
and frozen pose recognition networks show a weaker per-
formance at 5% threshold compared to the others, but they
also reach above 98% detection rate after the 10% thresh-
old (50mm) for all of the body parts. It is also shown that
the wrists, ankles, and the head are the most challenging
body parts, where models containing OpenPose perform
better than CPN. A more in-depth comparison of the AP 5
for our selected models are presented in Tables 1 and 2

Table 4 The number of parameters used in the models and their
backbone feature extractors are presented

Model Parameters BackBone

OpenPose 52.3M Resnet50

CPN 46.0M VGG16

PolishNetU 13.6M UNet

PolishNet 436K HourGlass

for PmatData and HRL-ROS, respectively. We refrained from
comparing AP 10 of our models since in most cases they
achieved near perfect accuracy, making the comparisons unin-
formative. It can be seen that the frozen pose estimators alone
are not able to correctly identify poses without PolishNetU.

Several examples depicting the performance of Polish-
NetU are presented in Fig. 6, comparing 3 of our explored
models. Frozen OpenPose is rarely able to predict the cor-
rect pose, thus being unreliable. It also miss-identifies the
left and right sides of the human body since it was trained
on real images that were mostly captured when facing the
front of human subjects, as opposed to pressure data that
records the image from the backside. As presented in the
fourth row, PolishNetU with the frozen OpenPose pipeline
has accurately identified the poses for vague input pressure
maps while only miss-identifying very blurry areas such as

Fig. 8 Statistical analysis of 10 repetitions of our experiments on
re-trained pose estimators with and without PolishNetU (fine-tuned)
is illustrated, showing that significant improvement is made by
PolishNetU in 3 out of the 4 scenarios
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wrists. Finally, the re-trained OpenPose with PolishNetU,
illustrated in the fifth row, has made the best pose estima-
tions among other methods, able to identify invisible limbs
correctly.

Since PolishNetU was trained to synthesize images
compatible with the image space by which OpenPose
was trained, the polished outputs inherit less noise and
show a higher resemblance to common standing human
poses from behind. See Fig. 7. Notice that PolishNetU has
reconstructed and connected the limbs and weak pressure
areas that are not clearly visible in the colorized pressure
maps. We have highlighted some of these reconstructed
regions in Fig. 7. Moreover, in some instances (e.g. last
column of Fig. 7), PolishNetU has even attempted to
interestingly synthesize outfits for the subjects in order to
make the output images look more natural and consistent
with the input image space of the pose estimator.

Finally, we perform an ablation study on the explored
models in Table 3. We see that the frozen pose estimators
without PolishNetU achieve very poor estimation results,
where the addition of PolishNetU boosts their performance
by a significant amount. Moreover, we observe that re-
training the pose estimator block has a higher impact on the
performance compared to the previous approach, reducing
the MPJPE on both datasets to less than half. Finally,
while comparing OpenPose with CPN, we observe that
OpenPose outperforms CPN on both datasets based on the
AP 5 metric, which can be because of reasons such as the
number of parameters or their features extractor backbones
(see Table 4). In contrast, CPN performs better for the
HRL-ROS dataset based on the MPJPE criteria.

The addition of PolishNetU (fine-tuned) to re-trained
pose estimators achieves the best results by a small, yet
statistically significant margin. We use a non-parametric
t-test on 10 different repetitions of our experiments
with random initialization to compare the retrained pose
estimators to the retrained pose estimators with PolishNetU
(fined-tuned), and achieve p < 0.05, showing that the
improvements caused by PolishNetU (fine-tuned) are
statistically significant. We illustrate this experimental
analysis in Fig. 8, showing the positive impact of
PolishNetU in 3 out of the 4 cases. Furthermore, Fig. 8

highlights the effectiveness of OpenPose compared to CPN,
achieving better performance on both datasets.

4.5 Discussion and comparison

Although the field of in-bed pose estimation has attracted
a considerable amount of recent works, most of the prior
works on pressure datasets do not use a unified evaluation
method and datasets, making comparisons challenging. We
evaluate the solutions based on 2D MPJPE and AP 5,
which corresponds to 1.2 pixels or a 32 mm threshold for
correct prediction. We show the effectiveness of PolishNetU
by demonstrating the pose estimation performance of pre-
existing pose estimators combined with it. Specifically, we
show that PolishNetU with a frozen OpenPose achieves
near-perfect pose estimation with AP5 values of 99.9% and
98.7%, and MPJPE of 14.8 and 16.1 mm, while PolishNetU
with a frozen OpenPose performs with AP5 of 78.1% and
85.6%, and MPJPE of 29.7 and 39.2 mm on PmatData and
HRL-ROS datasets respectively.

Table 5 compares the results of other works with our
best configuration, which is the combination of PolishNetU
and the re-trained OpenPose, achieving an AP 5 of 99.9%.
Moreover, we show that on the PmatData dataset, we
are able to obtain PCK@25 of 100%, outperforming
previous works [14]. In another study [9], a kinematic-
based convolutional neural network was used for 3D joint
prediction on HRL-ROS dataset, achieving MPJPE of 73.5
mm. Although their model has the advantage of 3D joint
prediction, several of our explored solutions containing a re-
trained pose estimator or the PolishNetU are able to achieve
a more accurate prediction in 2D space. In a more recent
study [10], the same authors were able to obtain MPJPE of
111.8 mm on a different dataset by training a model called
PressureNet on synthetic data and testing it on real images.
In another study [4], in-bed pressure data were collected
from 6 subjects, reporting an MPJPE of 68 mm using a
deep fully convolutional pose estimation model. Lastly, [5]
used a camera-based approach on 3 subjects. They reported
an average accuracy, at 15 pixels threshold, of 80.5% and
91.6% using a frozen OpenPose and a combination of
Kalman filter with a pose estimation network, respectively.

Table 5 A comparison of our best results (PolishNetU+Re-trained OpenPose) with other works

Ref Dataset Evaluation AP5 MPJPE (mm) PCK25 (%)

[9] HRL-ROS Leave 1 Out N/A 73.5a N/A

[14] PmatData Leave 1 Out N/A N/A 95.8

Ours HRL-ROS Leave 4 Out 98.0 16.1 100

Ours PmatData Leave 4 Out 99.9 14.8 100

aDenotes the performance of 3D pose estimation
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Although in some cases our explored methods and datasets
are different, we were able to obtain higher performances
on a much more larger and complex data space.

5 Conclusions and future work

In-bed pressure data can provide valuable information for
the estimation of a user’s pose, which is of high value for
clinical and smart home monitoring. However, pressure-
based pose estimation deals with a number of challenges,
including the lack of large annotated datasets and proper
fine-tuned frameworks. Additionally, pressure data impose
some inherent limitations such as weak pressure areas
caused by supported or raised body parts. In this paper,
we explored several end-to-end models for performing
pose estimation with in-bed pressure maps, including direct
use of off-the-shelf models and re-training them for our
purpose. As a part of our analysis, we exploited the novel
idea of learning a domain adaptation fully convolutional
network, PolishNetU, which generates images as robust
representations that work well for common pre-trained
pose estimation models, in this case, OpenPose and CPN.
This method utilized a compound objective function which
integrates the pose identification loss, reconstructing lost
body parts caused by weak pressure points, and a pixel
loss penalizing large deviations from the original pressure
maps. The explored pipelines showed effective performance
on highly unclear pressure data. Our evaluation results
demonstrated that while re-training the pre-existing pose
estimation models have the most impact on performance, if
they are kept frozen, PolishNetU can boost the performance
significantly as well. Given the performance of PolishNetU
with two different pose estimators and on two datasets, we
believe this model can be used as a pre-trained block prior
to other pose estimation networks for identifying pose from
pressure data.

For future work we aim to propose a modified objective
function making use of pose priors as a constraint,
preventing the model from outputting unlikely poses.
Moreover, we aim to investigate the use of generative
adversarial networks and integrate a discriminator in our
model, which we anticipate, may enhance the reconstruction
of weak pressure areas.
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