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Abstract
There are many feature selection algorithms based on mutual information and three-dimensional mutual information
(TDMI) among features and the class label, since these algorithms do not consider TDMI among features, feature selection
performance can be influenced. In view of the problem, this paper investigates feature selection based on TDMI among
features. According to the maximal relevance minimal redundancy criterion, joint mutual information among the class
label and feature set is adopted to describe relevance, and mutual information between feature set is exploited to describe
redundancy. Then, joint mutual information among the class label and feature set as well as mutual information between
feature set is decomposed. In the process of decomposing, TDMI among features is considered and an objective function
is obtained. Finally, a feature selection algorithm based on conditional mutual information for maximal relevance minimal
redundancy (CMI-MRMR) is proposed. To validate the performance, we compare CMI-MRMR with several feature
selection algorithms. Experimental results show that CMI-MRMR can achieve better feature selection performance.

Keywords Maximal relevance minimal redundancy · Conditional mutual information · Mutual information · Feature
selection

1 Introduction

Feature selection [1–5] aims at selecting some informative
features from feature set, which is an important method of
dimensionality reduction and has widespread applications,
such as text processing [6, 7], steganalysis [8, 9], underwater
objects classification [10], network anomaly detection [11],
information retrieval [12], and image classification [13,
14]. Feature selection algorithms are divided into three
categories: filter, embedded, and wrapper methods. Since
classification accuracy of classifier is taken as the metric,
embedded and wrapper methods are time-consuming and
not robust. Filter methods take less time at the cost of
the decline in classification results. It is advisable that the
datasets with high dimensional features be dealt with filter
methods [15].

� Jichang Guo
jcguo@tju.edu.cn

1 School of Electrical and Information Engineering,
Tianjin University, Tianjin 300072, China

The metrics commonly used in filter methods include
consistency, distance and MI. Since MI has the capacity of
measuring linear and non-linear correlation as well as its
invariance under space transformations [16], feature selec-
tion based on MI and TDMI is widely investigated. Mutual
information maximization (MIM) [17] is a basic feature
selection algorithm based on MI. It calculates MI between
the class label and features, and selects some features with
greater values. On the basis of MIM, feature selection
algorithms based on relevance and redundancy are pro-
posed, such as minimum-redundancy maximum-relevance
(mRMR) [18], conditional mutual information (CMI) [19],
and MIFS-CR [20]. These algorithms adopt MI between
features and the class label to describe relevance and exploit
MI between features to describe redundancy. Owing to con-
sidering relevance and redundancy simultaneously, feature
selection performance of these algorithms is improved.

Some feature selection algorithms further consider
TDMI to improve the performance and algorithms based
on TDMI are proposed, such as interaction weight based
feature selection (IWFS) [21], joint mutual information
maximization (JMIM) [22] and maximizing independent
classification information (MRI) [23]. Since these algo-
rithms consider TDMI among features and the class label
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and ignore TDMI among features, their objective functions
might miss some useful information and the performance of
these algorithms is influenced.

Considering the above problem, this paper investigates
feature selection based on TDMI among features. Firstly,
to select the features that provide more useful information,
based on the maximal relevance minimal redundancy
(MRMR) criterion, joint mutual information (JMI) among
the class label and feature set as well as MI between feature
set is employed to describe relevance and redundancy
separately. Then, JMI among the class label and feature set
as well as MI between features is decomposed, and TDMI
among features is adopted. Furthermore, both performance
and computation are considered, and an objective function
is achieved. Finally, a feature selection algorithm based on
CMI is proposed.

The main contributions of this paper are as follows.
(1) The maximal relevance minimal redundancy criterion
is adopted in selecting features. (2) Our algorithm
takes special consideration of three-dimensional mutual
information among features. (3) The proposed algorithm
takes both performance and computation into account.
(4) Our algorithm can achieve better feature selection
performance at the expense of more time-consuming.

The rest of this paper is organized as follows. Section 2
gives the knowledge of mutual information. Related works
are analyzed in Section 3. Section 4 presents the proposed
algorithm. Experimental results and analysis are given in
Section 5. Section 6 is conclusions and future work.

2 The knowledge of mutual information

Assuming x and y are two discrete random variables.
p(x) and p(y) are the probability of x and y separately.
Information entropy is exploited to measure information and
H(X) is defined by (1):

H(X) = −
∑

x∈X

p(x) logp(x) (1)

Conditional entropy H(Y |X) is the entropy of Y when X

is given and it can be expressed as (2):

H(Y |X) = −
∑

x∈X

∑

y∈Y

p(x, y) logp(y|x) (2)

where p(y|x) is the conditional probability and p(x, y) is
the joint probability.

MI is employed to quantify the information that two
variables share and MI I (X; Y ) is defined as (3):

I (X; Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(3)

Greater MI value suggests more information that the two
variables share. MI has the relationship with information
entropy and conditional entropy as (4).

I (X; Y ) = I (Y ; X) = H(Y)−H(Y |X) = H(X)−H(X|Y )

(4)

TDMI is a supplement of MI and it includes CMI,
JMI and three-way interaction information. CMI is the
reduction in the uncertainty of the other variable due to the
knowledge of another variable when one variable is given.
CMI I (X; Y |Z) is defined by (5):

I (X; Y |Z) =
∑

x∈X

∑

y∈Y

∑

z∈Z

p(x,y, z) log
p(x, y|z)

p(x|z)p(y|z) (5)

JMI is utilized to measure the information that two
variables share with the other variable. JMI I (X, Y ; Z) has
the relationship with I (Y ; Z) and I (X; Z|Y ) as (6).

I (X,Y ;Z) = I (Y ;Z) + I (X;Z|Y ) (6)

Three-way interaction information I (X; Y ; Z) has the
relationship with I (X; Z|Y ) and I (X; Z) as (7) [24].

I (X; Y ; Z) = I (X; Z|Y ) − I (X; Z) (7)

3 Related works

MIM is a basic feature selection algorithm based on MI and
the objective function is presented in (8).

MIM = arg max
fi∈X

[I (c;fi)] (8)

MIM calculates MI between the class label c and each
candidate feature fi , and selects some features with greater
values from the candidate feature set X.

Some feature selection algorithms consider redundancy
between features further and algorithms based on relevance
and redundancy are proposed, such as mutual information
feature selection (MIFS) [25], MIFS-U [26], mRMR,
normalized mutual information feature selection (NMIFS)
[16], CMI and MIFS-CR. These algorithms exploit MI
between candidate features and the class label to describe
relevance, and employ MI between selected features
and candidate features to describe redundancy. Objective
functions are the key of these algorithms. The objective
functions of MIFS and MIFS-U are given below.

MIFS = arg max
fi∈X

⎡

⎣I (c;fi) − β
∑

fs∈S

I (fs ;fi)

⎤

⎦ (9)
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MIFS−U = arg max
fi∈X

⎡

⎣I (c;fi) − β
∑

fs∈S

I (c; fs)

H(fs)
I (fs ;fi)

⎤

⎦

(10)

where β is a parameter, fs is a selected feature and S is the
selected feature set.

Since MIFS and MIFS-U have the problem that β is
uncertain, mRMR adopts the reciprocal of the number of
selected features |S| to replace β and the objective function
is shown in (11).

mRMR = arg max
fi∈X

⎡

⎣I (c;fi) − 1

|S|
∑

fs∈S

I (fs ;fi)

⎤

⎦ (11)

Since mRMR is considered to have bias toward the
features with greater MI values, MI between a candidate
feature and a selected feature is normalized and NMIFS is
proposed. Its objective function is given in (12).

NMIFS = arg max
fi∈X

⎡

⎣I (c; fi) − 1

|S|
∑

fs∈S

I (fi; fs)

min (H (fi) ,H (fs))

⎤

⎦

(12)

CMI and MIFS-CR are proposed, and their objective
functions are shown below.

CMI = arg max
fi∈X

⎡

⎣I (c;fi) − H(fi |c)
H(fi)

∑

fs∈S

I (c; fs)I (fs ;fi)

H(fs)H(c)

⎤

⎦

(13)

MIFS−CR = arg max
fi∈X

⎡

⎣I (c; fi) − 1

2

∑

fs∈S

(
I (c; fs)

H(fs)
+ I (c; fi)

H(fi )

)
I (fs ; fi)

⎤

⎦

(14)

Furthermore, considering that mRMR has the problem
that the feature with the maximum difference is not
always the feature with minimal redundancy maximal
relevance, a method of equal interval division is adopted
to process the case where the objective function of
mRMR is not accurate. Finally an algorithm based on
equal interval division and minimal-redundancy-maximal-
relevance (EID-mRMR) [27] is proposed. Since relevance
and redundancy are both considered, these algorithms based
on relevance and redundancy can achieve better feature
selection performance.

There are some feature selection algorithms based on
TDMI, such as dynamic weighting-based feature selection
(DWFS) [28], IWFS, conditional mutual information

maximization (CMIM) [29], JMI [30], maximal conditional
mutual information (MCMI) [31] and MRI. DWFS and
IWFS belong to the same category, and they utilize
symmetrical uncertainty that normalizes MI to describe
relevance.

JMI, CMIM, MCMI, and MRI fall into a different
category, and they have different objective functions. Except
for the four algorithms above, the kind of algorithms
include conditional informative feature extraction (CIFE)
[32], JMIM, CFR [33], and Dynamic Change of Selected
Feature with the class (DCSF) [34], and their objective
functions are presented below.

JMI = arg max
fi∈X

⎡

⎣I (c;fi) − 1

|S|
∑

fs∈S

I (fs ;fi) + 1

|S|
∑

fs∈S

I (fs ;fi |c)
⎤

⎦

(15)

CMIM = arg max
fi∈X

[
min
fs∈S

(I (c; fi |fs))

]
(16)

MCMI = arg max
fi∈X

[
max
fs∈S

(I (c; fi |fs))

]
(17)

MRI = arg max
fi∈X

⎡

⎣I (c;fi) +
∑

fs∈S

I (c;fi |fs) +
∑

fs∈S

I (c;fs |fi)

⎤

⎦

(18)

CIFE = arg max
fi∈X

⎡

⎣I (c;fi) −
∑

fs∈S

I (fs ;fi) +
∑

fs∈S

I (fs ;fi |c)
⎤

⎦

(19)

JMIM = arg max
fi∈X

[
min
fs∈S

(I (fi, fs; c))

]
(20)

CFR = arg max
fi∈X

⎡

⎣
∑

fs∈S

I (c;fi |fs) +
∑

fs∈S

I (c;fs ;fi)

⎤

⎦

(21)

In (15)–(21), since TDMI among features is not
employed, feature selection effectiveness of these algo-
rithms can be affected.

4 The proposed algorithm

This section decomposes JMI among feature set and the
class label as well as MI between feature set and attains an
objective function. Then, based on the objective function,
the proposed algorithm is presented.
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4.1 The proposed objective function

The aim of some existing feature selection algorithms based
on MI and TDMI is to select the feature set that have
maximum MI with the class label, and these algorithms
only consider relevant information satisfying the maximum.
However, selecting a candidate feature fi introduces not
only relevant information, but also redundant information.
To introduce maximal relevant and minimal redundant
information, we formulate this issue as (22).

arg max
fi∈X

[I (S,fi ;c) − I (S;fi)] (22)

where S is the selected feature set and X is the candidate
feature set. The total of relevant information that is
introduced is I (S,fi ;c) and that of redundant information
is I (S;fi). The greater the difference between relevant and
redundant information, the more informative the candidate
feature is. Adopting (22) can ensure that maximal relevant
and minimal redundant information is introduced, thus
guaranteeing feature selection effectiveness of selected
features. I (S,fi ;c) satisfies (23).

I (S,fi ;c) = I (S;c) + I (fi ;c|S) (23)

I (fi ;c|S) satisfies (24).
I (fi ;c|S) = I (c;fi) − I (S;c) + I (S;c|fi) (24)

Equation (25) is derived by adding (23) to (24).

I (S,fi ;c) = I (c;fi) + I (S;c|fi) (25)

By combining (25) with (22), (26) is obtained.

arg max
fi∈X

[I (c;fi) + I (S;c|fi) − I (S;fi)] (26)

I (S;c|fi) satisfies (27).

I (S;c|fi) = 1

|S|
∑

fs∈S

I (fs ;c|fi) (27)

By combining (25) with (27), (28) is derived.

I (S,fi ;c) = I (c;fi) +
1

|S|
∑

fs∈S

I (fs ;c|fi) (28)

I (S;fi) satisfies (29).

I (S;fi ) = 1

|S|
∑

fs∈S

I (fi ;fs)+ 1

|S| |S − 1|
∑

fs∈S

∑

fj ∈S,fj �=fs

I
(
fj ;fi |fs

)

(29)

Since it is quite time-consuming to calculate the second
part of (29), we replace (29) by (30).

1

|S|
∑

fs∈S

I (fi ;fs) + 1

|S| |S − 1|
∑

fs∈S

∑

fj ∈S,fj �=fs

I
(
fj ;fs |fi

)

(30)

By combining (28) and (30), (31) is obtained.

arg max
fi∈X

⎡

⎣I (c;fi) − 1

|S|
∑

fs∈S

I (fi ;fs) +
1

|S|
∑

fs∈S

I (fs ;c|fi)

− 1

|S| |S − 1|
∑

fs∈S

∑

fj ∈S,fj �=fs

I
(
fj ;fs |fi

)
⎤

⎦ (31)

Figure 1 gives a brief description of the determination of
(31). Equation (31) considers not only MI between featu-
res and the class label, CMI among features and the class
label as well as MI between features, but also CMI among
features, while the objective functions of other feature selec-
tion algorithms do not consider TDMI among features. Com-
pared with the objective functions of other algorithms, (31)
contains more useful information and selecting the feature
satisfying (31) can guarantee that maximal relevant and
minimal redundant information is obtained. To guarantee
introducing maximal relevant and minimal redundant
information, (31) is taken as an objective function.

4.2 Algorithmic implementation

Based on (31), a feature selection algorithm based on CMI
for MRMR (CMI-MRMR) is proposed and the flow chart is
presented in Fig. 2.

max[I(S, fi; c)-I(S; fi)]

I(S, fi; c) is 

decomposed.

I(S; fi) is 

decomposed.

(28) is

attained.

(29) is

achieved.

(31) is

obtained.

(29) is 

replaced by 

(30).

Fig. 1 Determination of (31)
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Begin

End

Initialization, set X
the set of all features 

and S the empty set.

Calculate mutual 

information I (fi; c)

between c and the 

features in X.

Take out the feature fk
with the maximum 

I (fk; c) from X and

put it into S.

The number of the

features in S is no greater 

than N
N

  Calculate (32), and 

take out the feature fl
satisfying (32) from 

X and put it into S.

  Calculate (31), and take 

out the feature fm  that 

satisfies (31) from X
and put it into S.

Y

Fig. 2 Flow chart of CMI-MRMR

In Fig. 2, we first initialize X and S. Then, we calculate
MI between features and the class label, and select the
feature with maximum. We calculate (32) that does not have
the fourth part of (31) and select the feature satisfying the
condition. Following that, we calculate (31) and select the
feature that meets the requirement until a specified number
of features are selected.

arg max
fi∈X

⎡

⎣I (c;fi) − 1

|S|
∑

fs∈S

I (fi ;fs) +
1

|S|
∑

fs∈S

I (fs ;c|fi)

⎤

⎦

(32)

The pseudo-code of CMI-MRMR is shown in Algorithm 1.

CMI-MRMR consists of three parts. The first part (lines
1-6), S and X are initialized. Then, MI between the class
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Table 1 Description of the datasets

Datasets Instances Features Classes Types Sources

Musk 476 166 2 Continuous UCI

Mfeat fac 2000 216 10 Continuous UCI

Mfeat pix 2000 240 10 Discrete UCI

Semeion 1593 256 10 Discrete UCI

USPS 9298 256 10 Continuous ASU

lung discrete 73 325 7 Discrete ASU

Isolet 1560 617 26 Continuous ASU

COIL20 1440 1024 20 Continuous ASU

warpAR10P 130 2400 10 Continuous ASU

lung 203 3312 5 Continuous ASU

gisette 7000 5000 2 Continuous ASU

Carcinom 174 9182 11 Continuous ASU

pixraw10P 100 10000 10 Continuous ASU

arcene 200 10000 2 Continuous ASU

orlraws10P 100 10304 10 Continuous ASU

CLL SUB 111 111 11340 3 Continuous ASU

Table 2 Classification accuracy (%) of selected features with J48

Datasets CMI-MRMR mRMR IWFS JMIM MCMI MRI CFR DCSF

Musk 80.56±0.73 80.43±0.44 80.31±1.18 78.58±0.86 78.08±0.56 78.73±0.77 78.81±0.71 80.24±0.74

Mfeat fac 85.74±0.19 85.12±0.24 84.33±0.34 85.15±0.36 82.42±0.19 85.50±0.36 85.11±0.39 85.22±0.25

Mfeat pix 74.42±0.34 73.25±0.31 71.55±0.37 73.62±0.41 64.48±0.46 73.58±0.38 73.70±0.29 74.25±0.38

Semeion 65.24±0.42 62.88±0.35 60.98±0.59 65.36±0.27 58.64±0.25 63.82±0.26 64.16±0.21 66.82±0.46

USPS 83.46±0.09 81.34±0.12 81.69±0.13 81.16±0.09 72.80±0.05 80.98±0.10 81.00±0.09 84.28±0.13

lung discrete 45.81±2.89 46.13±3.15 43.91±3.76 45.65±3.38 43.79±1.22 40.57±3.56 40.90±3.60 40.36±1.41

Isolet 68.38±0.57 66.30±0.52 63.71±0.62 64.26±0.40 53.54±0.28 67.15±0.49 67.14±0.49 68.86±0.35

COIL20 89.41±0.29 88.50±0.50 86.53±0.36 88.12±0.35 83.79±0.34 87.72±0.39 86.98±0.47 86.70±0.37

warpAR10P 68.33±1.96 67.83±1.92 58.67±1.47 66.81±1.76 65.91±2.39 67.30±1.60 66.89±1.81 64.94±1.64

lung 89.75±0.71 88.81±0.89 86.16±1.69 88.65±1.30 87.62±0.87 89.43±1.02 88.69±1.06 86.86±1.29

gisette 92.57±0.07 92.01±0.10 92.06±0.21 91.23±0.12 92.38±0.07 92.86±0.07 92.84±0.08 93.37±0.08

Carcinom 71.20±0.81 71.45±1.35 63.21±1.66 69.14±2.67 69.87±1.35 68.61±1.77 67.67±1.88 64.81±2.12

pixraw10P 93.01±1.20 92.83±1.80 89.46±2.83 91.33±2.43 91.59±1.54 89.37±1.46 89.25±2.71 88.62±2.18

arcene 77.45±2.37 76.96±2.17 78.00±1.85 72.60±1.51 73.82±1.96 72.43±1.61 72.51±1.37 74.25±1.07

orlraws10P 75.99±2.18 74.77±2.60 72.30±4.85 74.18±4.60 70.18±2.88 75.62±4.02 75.92±3.51 75.11±2.43

CLL SUB 111 66.84±3.31 67.74±3.17 65.51±3.01 66.84±2.55 67.20±2.95 65.24±3.27 64.16±2.93 64.37±2.46

Avg. 76.76 76.02 73.65 75.17 72.26 74.93 74.73 74.94

W/T/L – 8/8/0 12/4/0 12/4/0 15/1/0 10/5/1 14/1/1 9/3/4
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Table 3 Classification accuracy (%) of selected features with IB1

Datasets CMI-MRMR mRMR IWFS JMIM MCMI MRI CFR DCSF

Musk 82.02±0.52 81.90±0.51 82.23±0.57 79.85±0.49 79.32±0.55 80.03±0.79 80.07±0.84 81.74±0.53

Mfeat fac 92.16±0.10 91.55±0.14 91.43±0.17 91.43±0.11 88.34±0.19 91.71±0.13 91.47±0.14 91.79±0.14

Mfeat pix 77.75±0.24 73.77±0.18 69.93±0.40 76.00±0.45 59.93±0.55 75.89±0.14 76.39±0.21 79.23±0.31

Semeion 62.46±0.35 58.89±0.25 57.40±0.51 62.35±0.41 52.49±0.21 60.15±0.26 60.72±0.36 65.50±0.39

USPS 84.81±0.08 82.41±0.06 82.22±0.30 82.15±0.11 67.90±0.07 82.16±0.14 82.26±0.11 87.90±0.11

lung discrete 71.57±2.48 70.67±2.04 64.11±2.38 70.15±2.08 65.27±2.40 71.75±2.09 70.85±1.76 71.75±2.52

Isolet 71.90±0.67 70.06±0.38 66.53±0.32 67.55±0.46 55.27±0.48 70.80±0.56 70.94±0.60 74.15±0.49

COIL20 95.78±0.12 95.45±0.12 95.46±0.15 95.49±0.13 91.66±0.28 95.93±0.07 95.83±0.16 95.73±0.13

warpAR10P 77.45±1.36 77.15±1.08 69.81±1.74 79.68±1.75 77.91±1.29 77.58±1.14 76.60±1.37 73.46±1.21

lung 92.80±0.31 92.81±0.28 89.37±0.90 92.03±0.63 90.41±0.82 92.66±0.52 92.78±0.38 91.78±0.89

gisette 91.74±0.10 91.30±0.14 91.19±0.17 90.28±0.12 91.50±0.05 92.71±0.06 92.57±0.05 93.05±0.09

Carcinom 82.13±1.10 81.36±1.08 76.30±1.25 81.02±1.34 80.50±1.29 81.45±1.06 81.27±1.19 81.20±1.20

pixraw10P 96.26±0.45 96.34±0.70 86.07±2.02 94.51±1.01 91.34±1.34 94.26±0.95 93.98±0.95 92.68±0.98

arcene 81.47±1.57 81.09±1.05 80.99±1.32 79.91±1.20 78.60±1.21 79.89±1.39 79.71±1.41 81.04±1.12

orlraws10P 90.64±1.20 91.11±1.48 82.36±2.17 90.62±1.87 85.86±1.67 89.89±1.59 89.40±1.17 88.56±1.57

CLL SUB 111 72.38±1.93 71.94±1.59 66.00±2.12 68.77±2.63 68.25±1.81 71.89±2.13 70.89±1.98 69.60±2.38

Avg. 82.71 81.74 78.21 81.36 76.53 81.80 81.61 82.45

W/T/L – 8/8/0 14/2/0 13/2/1 15/1/0 9/5/2 12/3/1 8/3/5

Table 4 Classification accuracy (%) of selected features with Naive Bayes

Datasets CMI-MRMR mRMR IWFS JMIM MCMI MRI CFR DCSF

Musk 79.06±0.58 79.29±0.41 77.29±0.82 77.87±0.60 75.87±1.03 78.48±0.52 78.46±0.56 78.88±0.38

Mfeat fac 89.61±0.12 88.43±0.20 87.08±0.24 87.86±0.19 82.70±0.16 88.49±0.20 88.22±0.19 89.41±0.14

Mfeat pix 81.40±0.17 79.14±0.18 72.68±0.40 79.36±0.24 65.88±0.39 79.05±0.21 79.01±0.13 81.32±0.14

Semeion 65.95±0.15 63.52±0.13 54.67±0.38 64.82±0.14 57.50±0.25 64.35±0.18 64.64±0.16 68.35±0.21

USPS 81.72±0.07 79.81±0.06 74.38±0.07 75.23±0.10 60.38±0.09 76.00±0.15 75.93±0.12 82.41±0.07

lung discrete 75.81±1.51 73.56±1.90 71.46±2.10 74.45±2.00 68.76±2.16 75.67±1.56 74.79±2.29 76.55±2.23

Isolet 70.67±0.33 67.21±0.43 68.68±0.35 64.69±0.27 50.82±0.46 70.04±0.44 70.25±0.39 73.68±0.33

COIL20 93.74±0.18 92.00±0.20 90.71±0.18 91.70±0.32 81.84±0.81 93.27±0.25 92.69±0.42 92.69±0.39

warpAR10P 70.69±1.13 69.97±1.29 67.14±1.95 66.64±1.71 64.08±1.59 69.04±1.72 68.74±1.58 71.29±1.75

lung 93.26±0.29 92.72±0.56 91.05±0.66 92.32±0.61 88.70±1.20 92.88±0.74 92.76±0.79 92.34±1.15

gisette 88.65±0.06 88.28±0.03 86.18±0.23 86.03±0.05 84.98±0.04 87.60±0.03 87.46±0.04 89.51±0.06

Carcinom 80.44±0.76 79.26±0.79 76.31±1.70 79.22±1.02 78.13±1.31 79.90±1.10 79.66±1.08 80.16±1.21

pixraw10P 97.33±0.65 97.05±0.57 86.50±1.55 95.90±0.46 89.57±1.62 97.22±0.53 96.91±0.73 95.23±0.82

arcene 73.51±1.30 72.66±1.30 72.50±1.27 69.76±0.54 69.25±1.40 70.24±0.68 70.38±0.65 74.52±1.05

orlraws10P 92.27±1.28 90.85±1.01 78.12±2.83 89.97±1.21 77.88±1.33 92.06±1.62 90.89±1.77 90.53±1.66

CLL SUB 111 76.48±2.15 76.31±2.15 70.95±2.66 73.37±2.23 70.95±3.14 75.12±1.80 75.27±2.46 73.05±2.64

Avg. 81.91 80.63 76.61 79.32 72.96 80.59 80.38 81.87

W/T/L – 13/3/0 16/0/0 16/0/0 16/0/0 13/3/0 14/2/0 7/4/5

1442 X. Gu et al.



Fig. 3 Average performance comparisons of algorithms with the three classifiers

label and features is calculated, and the feature fk is
selected; in the second part (lines 7-12), I (fi ;fs) and
I (fs ;c|fi) are calculated. Then, (32) is calculated and the
feature fl that satisfies the condition is selected from X;
in the third part (lines 13-25), I

(
fj ;fs |fi

)
, I (fs ;c|fi), and

I (fi ;fs) are calculated. Then, (31) is calculated and the
feature fm meeting the requirement is selected. Following
the above steps, the process ends when the number of
selected features is N .

5 Experimental results

To validate the performance of CMI-MRMR, mRMR,
IWFS, JMIM, MCMI, MRI, CFR, and DCSF are compared.

5.1 The datasets and experimental settings

The datasets in Table 1 are from UCI machine learning
repository [35] and Arizona State University (ASU) feature
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Table 5 Classification accuracy (%) of the optimal features selected by CMI-MRMR and all features

Datasets J48 IB1 Naive Bayes

CMI-MRMR All features CMI-MRMR All features CMI-MRMR All features

Musk 83.37 82.94 84.90 85.35 82.32 81.84

Mfeat fac 88.83 88.74 96.41 95.96 93.78 93.13

Mfeat pix 78.38 78.50 91.28 95.93 88.48 93.46

Semeion 71.89 75.81 78.71 91.48 75.76 85.46

USPS 88.02 89.37 93.38 97.32 85.29 85.11

lung discrete 48.07 43.86 81.09 82.70 84.14 88.80

Isolet 75.06 79.19 81.44 90.15 78.47 89.62

COIL20 92.40 93.43 99.67 99.90 98.28 98.35

warpAR10P 71.85 70.54 82.54 49.23 76.54 78.23

lung 90.57 92.10 94.33 94.20 94.63 95.96

gisette 94.10 93.94 94.22 96.16 89.61 90.85

Carcinom 75.63 75.49 89.22 85.36 88.79 90.11

pixraw10P 94.30 92.90 98.30 98.80 98.70 97.80

arcene 79.60 74.45 84.95 85.95 75.70 67.25

orlraws10P 78.30 69.00 95.00 93.70 96.80 97.70

CLL SUB 111 68.92 61.11 75.48 63.70 81.09 74.07

Avg. 79.96 78.84 88.81 87.87 86.77 87.98

Table 6 The number of the optimal features selected by CMI-MRMR and all features

Datasets CMI-MRMR All features

J48 IB1 Naive Bayes

Musk 40 44 49 166

Mfeat fac 50 41 33 216

Mfeat pix 47 50 49 240

Semeion 50 50 50 256

USPS 50 50 34 256

lung discrete 14 48 50 325

Isolet 50 50 50 617

COIL20 33 50 50 1024

warpAR10P 46 49 46 2400

lung 47 42 50 3312

gisette 41 34 39 5000

Carcinom 34 50 50 9182

pixraw10P 24 50 19 10000

arcene 22 40 49 10000

orlraws10P 30 50 49 10304

CLL SUB 111 25 50 46 11340

Avg. 37.69 46.75 44.56 4039.88
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selection datasets [36]. For all the datasets, N is set to 50.
Minimum description length discretization method [37] is
exploited to transform the numerical features into discrete
ones. Three popular classifiers, J48, IB1, and Naive Bayes
are employed and their parameters are set to Waikato
environment for knowledge analysis (WEKA)’s [38] default
values. ASU feature selection software package [39] is
utilized.

5.2 Experimental results and analysis

To reduce the influence of randomness on the final results,
ten times of 10-fold cross-validation are employed, and
the mean value and standard deviation of ten results are
taken as the final results. Classification accuracy of features
selected by these algorithms with J48, IB1 and Naive
Bayes is presented in Tables 2–4. To determine whether the
effectiveness of experimental results is significant, a one-
sided paired t-test at 5% significance level is performed,
and the number of the datasets that CMI-MRMR performs
better than/equal to/worse than other algorithms is shown in
Win/Tie/Loss (W/T/L). Average performance of algorithms
with the three classifiers is given in Fig. 3. Furthermore, the
optimal top several features from 1 to 50 selected by CMI-
MRMR is compared with all features, and the comparison
result with three classifiers is shown in Tables 5 and 6.

As shown in Table 2, the Avg. values show that
mRMR, JMIM and CMI-MRMR achieve better results. For
the W/T/L values, the number of datasets that mRMR,
DCSF and CMI-MRMR can obtain better feature selection
performace.

In Table 3, mRMR, DCSF and CMI-MRMR obtain
greater Avg. and W/T/L values with IB1. In comparison
with Table 2, CMI-MRMR outperforms mRMR, IWFS and
MCMI with more performance gain in the Avg. values and it
achieves more advantages than IWFS in the W/T/L values.

The Avg. and W/T/L values in Table 4 show that
mRMR, MRI, DCSF and CMI-MRMR obtain better feature
selection effectiveness. Compared with Tables 2 and 3, in
terms of the Avg. values, CMI-MRMR has more advantage
than mRMR, IWFS, JMIM, and MCMI. For the W/T/L
values, CMI-MRMR can obtain better performance gain
than other algorithms except DCSF.

As shown in Fig. 3, CMI-MRMR achieves better feature
selection effectiveness in the majority of datasets, while
other algorithms cannot obtain the desired results in some
datasets. We take mRMR and CFR as examples, mRMR
cannot handle well in lung discrete and orlraws10P. CFR
does not achieve the desired feature selection performance
in lung discrete and arcene.

As shown in Tables 5 and 6, the Avg. values show
that the optimal features selected by CMI-MRMR obtain
higher accuracy than all features. In comparison with

these datasets, the number of the datasets that the features
selected by CMI-MRMR perform better than all features
is 8 with J48, 4 with IB1, and 5 with Naive Bayes.
Overall, although CMI-MRMR only selects the top 50
features, it can have fairly good performance with all
features.

6 Conclusions and future work

This paper investigates feature selection based on TDMI
among features and proposes a feature selection algorithm
named CMI-MRMR. To verify the performance, we apply
it to three classifiers, four UCI datasets, and twelve ASU
datasets, and compare results with those from several
algorithms based on MI and TDMI. Experimental results
validate that CMI-MRMR can achieve better feature
selection effectiveness. Furthermore, the optimal feature set
selected by CMI-MRMR are compared with all features,
the comparison results show that CMI-MRMR can achieve
fairly good performance with all features in the majority of
datasets, even better than all features in some datasets.

Considering that CMI-MRMR can achieve better feature
selection performance, it can be applied in many fields,
such as text processing, underwater objects recognition and
classification, network anomaly detection, gene expression,
and image classification. Classification accuracy of the top
optimal several features from 1 to 50 selected by CMI-
MRMR is compared with all features, since classification
results of the top optimal several features are worse than all
features in some datasets, the determination of the number
of selected features will be investigated in the next stage.
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