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Abstract
Subspace clustering is a technique utilized to find clusters within multiple subspaces. However, most existing methods cannot
obtain an accurate block diagonal clustering structure to improve clustering performance. This drawback exists because
these methods learn the similarity matrix in advance by utilizing a low dimensional matrix obtained directly from the data,
where two unrelated data samples can stay related easily due to the influence of noise. This paper proposes a novel method
based on coupled low-rank representation to tackle the above problem. First, our method constructs a manifold recovery
structure to correct inadequacy in the low-rank representation of data. Then it obtains a clustering projection matrix that
obeys the k-block diagonal property to learn an ideal similarity matrix. This similarity matrix denotes our clustering structure
with a rank constraint on its normalized Laplacian matrix. Therefore, we avoid k-means spectral post-processing of the low
dimensional embedding matrix, unlike most existing methods. Furthermore, we couple our method to allow the clustering
structure to adaptively approximate the low-rank representation so as to find more optimal solutions. Several experiments
on benchmark datasets demonstrate that our method outperforms similar state-of-the-art methods in Accuracy, Normalized
Mutual Information, F-score, Recall, Precision, and Adjusted Rand Index evaluation metrics.

Keywords Low-rank representation · Subspace clustering · Adaptive clustering structure · Block diagonal

1 Introduction

Subspace clustering methods find clusters within multiple
subspaces of unlabeled data. As a result, four major groups
of studies on subspace clustering have persisted over the
years, namely applied statistics [25, 30, 42], factorization
[8, 13, 29, 31, 45], algebraic [32, 33, 35], and spectral
clustering [4, 14, 15, 38, 50]. However, the spectral-type,
which requires constructing a similarity matrix using data’s
low dimensional representation, has become increasingly
popular in the last decade. Thus, low-rank representation
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(LRR) [19] and sparse subspace clustering (SSC) [10]
approaches are known to be efficient in constructing the
similarity matrix [1, 20]. The reason is that both of
them utilize the self-expressiveness property of data to
represent each data sample as a linear combination of others.
Therefore, several studies inspired by SSC and LRR have
surfaced more recently. In [5], Chen et al. proposed a
collaborative representation method using the LRR recovery
technique. In [46], Zhang et al. proposed a hyperspectral
remote sensing image representation method based on SSC.
Other studies, such as [22, 37] presented various subspace
methods, combining LRR and SSC approaches. Similarly,
Shen and Li [28] proposed the NLRR method by combining
LRR and matrix factorization.

Notwithstanding, the above are two-phase methods,
which require post-processing of the similarity matrix via
spectral clustering algorithm [26]. That means the cluster-
ing performance of these methods depends on the accuracy
of the predefined similarity matrix. Regarding this limita-
tion, the studies in [17, 21, 27] proposed methods, which
learn the similarity matrix cooperatively to improve cluster-
ing performance. Even so, these methods obtain similarity
between data samples by assuming that similar samples
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reside near each. Therefore, they often do not perform well
in practical cases when a given data has an arbitrary dis-
tribution. This drawback exists because two data samples
may seem similar by their spatial location yet belong to
different subspaces [39], which means two unrelated data
samples can then reconstruct one another. Although the
methods presented in [23, 40, 41, 49] utilize nonnegative
constraints to encourage the similaritymatrix to be block diago-
nal, they also follow a two-phase procedure to obtain the
clustering structure. So, these methods’ discrimination abil-
ity would degrade when the similarity matrix produced in
the first phase fails to hold an accurate block diagonal shape

To this end, we propose a novel method, which
guarantees an ideal clustering structure through coupled
low-rank representation to enhance clustering performance.
First, our method obtains a manifold recovery structure,
which corrects inadequacy in the low-rank representation
of data using the k-block-diagonal regularizer [23]. This
manifold recovery structure is directly useful for the
subspace clustering task because our method can instantly
find a clustering projection matrix that obeys the k-block
diagonal property by utilizing it. Unlike the common block
diagonal property learned by spectral-based methods, the
k-block diagonal property acquired through the clustering
projection matrix guarantees the within-cluster consistency
and independence between clusters. Hence, our method
finds an ideal similarity matrix that approximates the
clustering projection matrix with a rank constraint on the
normalized Laplacian matrix to ensure that it denotes our
clustering structure with an accurate k number of connected
components. This approach avoids k-means post-processing
of the low dimensional embedding matrix, which is inherent
in spectral clustering algorithms. Additionally, we couple
our method to allow the clustering structure to approximate
the low-rank representation adaptively in order to capture
a more accurate manifold structure of data. Therefore,
the proposed method can achieve better performance in
practice since the cleaner low-rank matrix guarantees a
better clustering structure.

The main contributions are as follows:

1) We propose a new method, which learns an ideal
similarity matrix through a clustering projection matrix.
This approach guarantees more discrimination ability
than existing subspace methods, which learn the
similarity matrix in advance by utilizing a low
dimensional representation obtained directly from
the original data. Besides, our method avoids k-
means spectral post-processing of the low-dimensional
embedding matrix by imposing a rank constraint on
the normalized Laplacian matrix to allow the similarity
matrix to denote our clustering structure explicitly with
k connected components.

2) Furthermore, we couple our method to allow mutual
capturing of the data’s manifold structure by the
clustering structure and the low-rank representation.

3) To evaluate our method, we perform a wide range of
experiments on several benchmark datasets. The results
show that our method outperforms similar state-of-the-
art methods in six evaluation metrics.

The rest of this paper is structured as follows. Section 2
provides the background and a review of the related works.
In Section 3, we present the proposed method. Section 4
demonstrates the effectiveness of the proposed method.
Then, Section 5 gives the conclusion.

2 Background and related work

In this section, we provide the main notations and a review
of the related works.

2.1 Notation

In this paper, we denote matrices with an uppercase letter.
‖ .‖∗ denotes nuclear norm, ‖ .‖1 denotes L1-norm, ‖ .‖F

denotes Frobenius norm, ‖ .‖k denotes k-block diagonal
inducing regularizer, ‖ .‖2,1 denotes L2,1-norm, and Tr(.)
denotes the trace of a square matrix. Furthermore, we denote
the (i, j)th entry of a matrix Z by Zi,j , where i and j

represent the ith row and j th column. Z ≥ 0 implies that
all entries of Z are nonnegative. Diag(Z) denotes a diagonal
matrix whose element is the ith diagonal entry of Z. Then
I denote an identity matrix.

2.2 Related work

Given an unlabeled dataset X = {x1, . . . , xn} ∈ Rd×n

drawn from a union of subspaces, the SSC approach uses
L1-norm regularization to find a sparse representation of
the data samples. However, the L1-norm does not capture a
global data structure since it obtains a sparse representation
independently for each data sample [2]. LRR approach, on
the other hand, captures a global data structure using the
nuclear norm regularization as follows:

minZ,E ‖ Z‖∗ + λ ‖ E‖2,1,
s.t ., X = XZ + E,

(1)

where Z denotes the low-rank representation, X denotes the
self-dictionary, E denotes the error matrix. λ is a parameter
to balance the first and second terms, and the ‖ .‖2,1 norm
used in (1) is very efficient when only a part of the samples
is contaminated by noise. Zi,j can then correctly capture
the data’s local manifold structure when only similar data
samples xi and xj belonging to the same cluster reconstruct
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one another. Therefore, considering its robustness, several
studies inspired by LRR, such as [5, 6, 9, 18, 28, 34, 49],
have been conducted over the years. In [34], Vidal and
Favaro proposed a method, which attempts to find a clean
low-rank matrix by decomposing a data matrix into three
matrices: a noise-free matrix, a corrupted matrix, and an
error matrix. In [28], Shen and Li proposed a method, which
factorizes a nuclear norm regularized matrix to capture
the exact similarity between data samples. In [49], Zheng
et al. proposed a method named SinNLRR, which imposes
a non-negative constraint on the low-rank matrix to ensure
that only similar data samples are connected while unrelated
data samples are not connected. Also presented is a low-
rank local embedding representation (LRLER) method
[9]. LRLER uses local manifold embedding constraint to
enforce a global low-rank representation since most data
often do not hold a linear structure. So, a method named
LRLTSER was introduced together with LRLER to handle
neighborhood aliasing distortion in data. Besides, Lu et al.
[23] introduced the Block Diagonal Representation (BDR)
method, which uses the k-block diagonal regularizer to
encourage a proper low dimensional matrix.

Upon learning the low-dimensional representation of
data, the above methods can directly construct a similarity
matrix. Afterward, a spectral clustering algorithm such as
[26] is applied to obtain the clustering structure. Thus,
it is easily noticeable that the accuracy of the clustering
structure learned in the two-phase process will depend
entirely on the quality of the similarity matrix obtained in
the first phase. Towards this end, many other studies, such
as [21, 27, 40], proposed methods, which learn a similarity
matrix cooperatively in search of an optimum solution.
For example, given an initial similarity matrix A, the
Constrained Laplacian Rank (CLR) [27] can obtain an ideal
similarity matrix S by learning S and A simultaneously.
Similarly, the Extreme Learning Machine (ELM-CLR) [21]
and the Implicit Block Diagonal Low-Rank Representation
(IBDLR) [40] can find an ideal similarity matrix by
adapting it on dual data representations where one data
representation relies on the actual data, and another on
its affine space. Meanwhile, Yang et al. [44] proposed a
model based on a low-rank variation dictionary (LRVD)
to improve performance accuracy. This approach constructs
the dictionary independently using variations of data. In
[47], Zhang et al. presented a method named CMC by
applying nonnegative matrix factorization. CMC mainly
focuses on capturing actual similarity between data samples
even with limited samples.

The proposed method is comparable to IBDLR since
they both apply the same k-block diagonal regularizer
[23] and LRR approaches to solve the subspace segmen-
tation problem. However, our approach can guarantee a
more discriminating ability with explicit block diagonal

clustering structure through coupled LRR without spectral
post-processing procedure. Furthermore, a coupling strat-
egy was used in a previous study in [48], but it relied on
additional k-means post-processing to obtain the clustering
results.

3 The proposedmethod

In this section, we present our proposed method based
on coupled low-rank representation. First, we formulate
the model in Section 3.1. Then propose an efficient
optimization method to solve it in Section 3.2.

3.1 Model formulation

3.1.1 Relationship between data

LRR based methods or any other subspace method would
efficiently find a low dimensional matrix that preserves the
relationship between data samples when underlying data is
clean. Because only similar data samples will reconstruct
one another using the data’s self-expressiveness property.
On the other hand, the self-expressiveness property alone
will not guarantee an accurate low dimensional matrix
when the data is noisy. The reason is that two unrelated
data samples, xi and xj , may be selected to reconstruct
themselves where the singular value Zij is non-zero instead
of 0. Assuming this to be the case, it means the similarity
matrix learned after using the low-dimensional matrix
would be fallible— and the goal of subspace clustering to
partition the data samples into k appropriate clusters will
then be defeated. The ideal is for only similar samples from
the same class to be connected, while the samples from
different classes should not stay together. To this end, we
consider a block diagonal compliant model directly such
that a manifold recovery structure obtained can correct a
possible inadequacy in the low-rank representation of data
as follows:

minZ,E,L ‖ Z‖∗ + λ1 ‖ E‖2,1 + λ2 ‖ L‖k,

s.t ., X=XZ+E, L=(|Z|+|ZT |)/2, Diag(L) = 0, L ≥ 0, (2)

where X ∈ Rd×n represents the self-dictionary. Z ∈ Rn×n

denotes the low-rank representation. L ∈ Rn×n is the
manifold recovery structure. Diag(L) = 0 and L ≥ 0
are non-negative constraints to enforce a diagonal block
structure onL.E ∈ Rd×n is the error matrix whose columns
are encouraged to be zero by ‖ .‖2,1, assuming that the data
corruption is precise. As such, this error matrix is incredibly
efficient since noise, or noise-free element, is generally not
known in advance. Thus, most subspace methods, such as
LRR in (1), usually estimate Z using X. However, when
X is noisy, Z’s estimation becomes biased, which means Z
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cannot effectively capture the similarity between the data
samples. The core idea in (2) attempts to recover the actual
manifold structure from Z through the k-block diagonal
regularizer defined below so that Lij is only 0 for two
unrelated data samples, i and j .

Definition 1 [23] (k-Block Diagonal Regularizer): For
any similarity matrix L ∈ Rn×n the k-block diagonal
regularizer is defined as the sum of the smallest k

eigenvalues of LL, i.e.

‖ L‖k =
n∑

i=n−k+1

λi(LL), (3)

where LL = Diag(L1) − L is the Laplacian matrix of
L. λi(LL) is ith eigenvalue of LL in the descending order.
This k-block diagonal regularizer performs two functions:
First, it encouragesL to be block-diagonal with nonnegative
constraints mentioned above. Secondly, it ensures that there
is k exact number of connected blocks in L.

3.1.2 Clustering Structure with constrained Laplacian rank

Ideally, an optimal L by (2) denotes the similarity matrix of
existing methods, made possible by L = (|Z| + |ZT |)/2.
On the contrary, our method obtains the similarity matrix
through a clustering projection matrix to guarantee more
discrimination capability. Thus, considering that L has an
inherent Laplacian structure LL by definition in (3), the
clustering projection matrix is obtained directly from it in
the following way:

T r(HT LH),

s.t ., HT H = I
(4)

Apparently, H is similar to the primary output of a
spectral clustering algorithm in the two-phase methods.
Nonetheless, let us consider that the k-block diagonal
regularization on L may not guarantee an exactly k-block
diagonal structure as suggested in [40]. Then it is easy
to see that the constraint HT H = I only enforces the
common block diagonal property on H . That also means
HT H = I can only guarantee within-cluster consistency
without considering overlapping between clusters. To
mitigate against this problem, we observe that the binary
matrix HHT obeys the k-block-diagonal property by itself,
which hints that HHT can guarantee both the within-cluster
consistency and independence between clusters. As a result,
an ideal similarity matrix S = {sT

i , . . . , sT
n } ∈ Rn×n

is redefined, which is not only approximate to HHT but
denotes our clustering structure with rank(Ls) = n − k

through the following theorem.
Theorem 1: if S is non-negative, the multiplicity k of

the zero eigenvalue of the graph Laplacian Ls corresponds
to the number of connected components in the graph
associated with S.

Theorem 1 implies that if rank(Ls) = n − k, then S

becomes an ideal similarity matrix from which the data
samples can be partitioned into k clusters explicitly without
spectral post-processing of S. The proof of Theorem 1 can
be found in [7, 36].

Hence, we have the following formulation:

min
L,H,S

‖ S − HHT ‖2F + λ3T r(HT LH),

s.t ., HT H = I , S1 = 1, S ≥ 0, rank(Ls) = n − k, (5)

where S1 = 1 ensures that each data sample can only
belong to one cluster, then LS = DS − S denotes
the normalized Laplacian matrix because DS ∈ Rn×n

represents the diagonal matrix whose ith entry
∑

j Si,j = 1.

Besides, HHT denotes the clustering projection matrix,
where (HHT )ij is 1 if hi = hj and 0 otherwise. In other
words, (HHT )ij = 1 indicates that xi and xj belongs to the
same cluster.

3.1.3 Coupled low rank representation

Achieving the objective of (5) may still be challenging since
the manifold structure is pre-captured analogously to the
two-phase methods such as SinNLRR [49], BDR [23], and
IBDLR [40]. Thus, the idea of dynamic approximation is
introduced into our model using the coupling term ‖ S −
Z‖2F to allow for joint capturing of the data’s manifold
structure by both S and Z. I.e., ‖ S − Z‖2F → 0 as much
as possible, leading to the problem of coupled low-rank
representation and subspace clustering:

minZ,H,L,S,E ‖ Z‖∗ + λ2 ‖ L‖k + λ4 ‖ S − HHT ‖2F+λ3T r(HT LH) + λ5 ‖ S − Z‖2F + λ1 ‖ E‖2,1,
s.t ., X = XZ + E, L = (|Z| + |ZT |)/2, Diag(L) = 0, L ≥ 0,

HT H = I , S1 = 1, S ≥ 0, rank(Ls) = n − k,

. (6)

where parameters λ1, λ2, λ3, λ4, and λ5 controls the
tradeoff between the terms, respectively.

The goal of the above objective function is to make a
perfect subspace segmentation more possible by simulta-
neously learning S and Z. Therefore, our method uses the
coupling term ‖ S−Z‖2F to measure the effect of the k-block
diagonal representation on S. Because once the obtained Z

varies largely to S, it indicates that Z is not clean enough.
In that case, our method finds a cleaner Z that captures a
more accurate manifold structure of the data so that S can
then also capture a better manifold structure correspond-
ingly. Besides, this term allows S and Z subproblems to be
strongly convex, making convergence analysis very easy.

3.2 Optimization

We propose an efficient optimization method based on
Augmented Lagrange Multiplier (ALM) [16] to solve (6).
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First, (6) is not easily solvable because of the non-convex
nature of ‖ L‖k . So, following Ky Fan’s theorem [12], ‖ L‖k

is reformulated as a convex problem in the following way:

‖ L‖k = minW(LL, W),

s.t ., 0 ≤ W ≤ I, T r(W) = k,
(7)

By substituting (7) in place of ‖ L‖k , we rewrite (6) as:

minZ,W,H,L,S,E ‖ Z‖∗ + λ2(Diag(L1) − L, W) + λ4 ‖ S − HHT ‖2F+λ3T r(HT LH) + λ5 ‖ S − Z‖2F + λ1 ‖ E‖2,1,
s.t ., X = XZ + E, L = (|Z| + |ZT |)/2, Diag(L) = 0, L ≥ 0,

HT H = I , S1 = 1, S ≥ 0, rank(Ls) = n − k,

0 ≤ W ≤ I, T r(W) = k,

.

(8)

Equation 8 may still be hard to solve because rank(Ls) =
n − k is not linear. Resolving this problem, we denote the
i-th smallest eigenvalue of Ls as θi(Ls). Then given a large
enough λ6, (8) is the same as:

minZ,W,H,L,S,E ‖ Z‖∗ + λ2(Diag(L1) − L, W) + λ4 ‖ S − HHT ‖2F
+λ3T r(HT LH) + λ5 ‖ S − Z‖2F + λ6

k∑
i=1

θi(Ls) + λ1 ‖ E‖2,1,
s.t ., X = XZ + E, L = (|Z| + |ZT |)/2, Diag(L) = 0, L ≥ 0,

HT H = I , S1 = 1, S ≥ 0,
0 ≤ W ≤ I, T r(W) = k,

.

(9)

where θi(Ls) ≥ 0 since Ls is positive semidefinite matrix.
Thus, when λ6 is large enough,

∑k
i=1 θi(Ls) = 0 to

satisfy the constraint rank(Ls) = n − k. According to Ky
Fan’s theorem, we know that

∑k
i=1 θi(Ls) is equivalent to

minimizing T r(FT LsF ) subject to FT F = I , so we get:

minZ,W,H,L,S,E ‖ Z‖∗ + λ2(Diag(L1) − L, W) + λ4 ‖ S − HHT ‖2F+λ3T r(HT LH) + λ5 ‖ S − Z‖2F + λ6T r(FT LsF ) + λ1 ‖ E‖2,1,
s.t ., X = XZ + E, L = (|Z| + |ZT |)/2, Diag(L) = 0, L ≥ 0,

HT H = I , S1 = 1, S ≥ 0, F T F = I,

0 ≤ W ≤ I, T r(W) = k,

.

(10)

where F is a low dimensional embedding matrix the same as
H . Except that, S has an inherent k-block diagonal structure
already by approximating HHT . As such, λ6 doesn’t need
tuning like the other parameters [27]. It may only turn low
or high when the number of connected components is larger
or smaller than k.

Moreover, we take a clue from [49] by introducing an
intermediate term J to relax (10) further as follows:

minZ,W,H,L,S,E ‖ J‖∗ + λ2(Diag(L1)−L, W) + λ4 ‖ S − HHT ‖2F+λ3T r(HT LH) + λ5 ‖ S − Z‖2F + λ6T r(F T LsF ) + λ1 ‖ E‖2,1,
s.t ., X = XZ + E,L = (|Z| + |ZT |)/2,Diag(L) = 0, L ≥ 0,

J = Z,HT H = I , S1 = 1, S ≥ 0, F T F = I,

0 ≤ W ≤ I, T r(W) = k.
.

(11)

The Lagrangian function of (11) is given below:

L =‖ J‖∗ + λ2(Diag(L1) − L, W) + λ4 ‖ S − HHT ‖2F+λ3T r(HT LH) + λ5 ‖ S − Z‖2F + λ6T r(FT LsF ) + λ1 ‖ E‖2,1
+T r[MT

1 (X − XZ − E)] + T r[MT
2 (J − Z)]

+μ
2 (‖ X − XZ − E‖2F + ‖ J − Z‖2F ),

(12)

M1, M2 are Lagrange multipliers. Now, we divide (12)
into several subproblems by denoting each variable as
a subproblem. By doing so, we remove the terms not
connected to each subproblem to obtain an optimal solution
by fixing others as follows:

J subproblem:

minJ
1
μ

‖ J‖∗ + 1
2 ‖ J − (Z + M2

μ
)‖2F . (13)

Then, denoting the singular value thresholding [3] of Sμ[M]
as UHμ[�]V T the optimal solution of (13) is given as:

J = S1/μ[Z + M2
μ

].
Hμ[�] = min(0, � + μ) + max(0, � − μ).

(14)

W subproblem:

minwλ2(Diag(L1) − L, W),

s.t ., 0 ≤ W ≤ I, T r(W) = k.
(15)

Similar to [40] we can obtain a close form solution for W

as follows:

W = UUT , (16)

where U ∈ Rn×k holds the k connected components
corresponding to the k eigen vectors associated with k

smallest eigen values of LL.

H subproblem:

minH λ4 ‖ S − HHT ‖2F + λ3T r(HT LH),

s.t ., HT H = I .
(17)

Since (17) is unique for different i, we rewrite it as:

minH T r(HT (L + 2λ4S)H),

s.t ., HT H = I .
(18)

Therefore, the optimal H in (18) is derived by the
k eigenvectors of the corresponding topmost k highest
eigenvalues of (L + 2λ4S).

Z subproblem:

minZλ5 ‖ S − Z‖2F + T r[MT
1 (X − XZ − E)] + T r[MT

2 (Z − J )]
+μ

2 (‖ X − XZ − E‖2F + ‖ J − Z‖2F ).

(19)

By setting the derivative ∂
∂Z

= 0, we obtain:

Z = [( 2
μ

+ 1)I + XT X]−1((XT X − X′ ∗ E + J )

+(2λ5S + XT M1 − M2)/μ).
(20)
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S subproblem:

minSλ4 ‖ S − HHT ‖2F + λ5 ‖ S − Z‖2F + λ6T r(FT LsF ),

s.t ., S1 = 1, S ≥ 0, F T F = I .

(21)

Equation (21) can be rewriting it as:

minS ‖ S − (λ4HHT + λ5Z)‖2F + λ6T r(FT LsF ),

minS ‖ S‖2F − 2〈λ4HHT + λ5Z, S〉 + λ6T r(FT LsF ),

s.t ., S1 = 1, S ≥ 0, F T F = I .

(22)

Then, denoting 2(λ4HHT + λ5Z) by G, we obtain the
following:

minS ‖ S‖2F − T r(GST ) + λ6T r(FT LsF ),

s.t ., S1 = 1, S ≥ 0, F T F = I .
(23)

Same as (4), the optimal solution of F in (23) contains
eigenvectors of the corresponding k smallest eigenvalue of
LS . Upon that, we rewrite (23) as:

minSj
(λ6 ‖ fi − fj‖22 − gij )sij + sT

j sj ,

s.t ., sj ≥ 0, 1T sj = 1.
(24)

Then, denoting λ6 ‖ fi − fj‖22 − gij as qij , (24) is
simplified as:

minSj

1
2 ‖ sj + qj

2 ‖22,
s.t ., sj ≥ 0, 1T sj = 1.

(25)

Similar to Eq. 30 in [27], we obtain sj as follows:

sj = (− qj

2 + η1
)
+ . (26)

L subproblem:

minLλ3T r(HT LH) + λ2(Diag(L1) − L, W),

s.t ., L = (|Z| + |ZT |)/2, Diag(L) = 0, L ≥ 0.
(27)

The optimal solution L is:

L = 1
2 ‖ λ3(HHT ) + λ2[Diag(W) ∗ 1T − W ]‖2 (28)

Furthermore, by denoting A = λ3(HHT ) +
λ2[Diag(W) ∗ 1T − W)], Â = A − diag(diag(A)), we
rewrite (28) as follows:

L = [ (Â + ÂT )/2 ]+. (29)

E subproblem:

E = minE
λ1
μ

‖ E‖2,1 + 1
2 ‖ E −

(
X − XZ + Y1

μ

)
‖2F .

(30)

Algorithm 1 outlines the complete solution of our
method.

3.3 Complexity analysis

Our method’s complexity depends on three key compo-
nents: matrix multiplication required to solve Z and E

subproblems, matrix inversion required to solve Z subprob-
lem, and eigendecomposition required to solve W , H , and
S subproblems. For each matrix multiplication, the inverse
of a matrix, and eigendecomposition, the time complexity
is O(n3). But notice that the Z subproblem needs more
than one multiplication. So, it takes (k + 1)O(n3), which
may be problematic in large-scale datasets. In that case,
one can perform inverse and multiplication operations using
a graphics processing unit (GPU) device or apply large-
scale techniques such as Accelerated LRR [11] to speed
up our method. Besides, (25) takes O(n) since it requires
Euclidean projection onto simplex space. Overall, each
iteration’s time complexity is O(3n3 + (k + 1)n3 + n).

4 Experiments

In this section, we demonstrate the effectiveness of our
method. To begin with experiment settings, we describe
six benchmark datasets, nine state-of-the-art compared
methods, and six standard metrics utilized to evaluate our
proposed method. We then present the experimental results
with analysis in Section 4.2.
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Fig. 1 Example images of Yale
and COIL-20 datasets

4.1 Experiment settings

4.1.1 Data set

To assess our method’s performance, we conduct
widespread experiments on six benchmark datasets,
namely UCI Digits, USPS, ORL, Yale, COIL-20, and
Caltech101-07 datasets.

– UCI digits1: dataset has 2000 data samples of handwrit-
ten digits from 0 to 9. Each data sample has 240 features
or pixels that describe each digit.

– USPS2: dataset has 1854 data samples of handwritten
digits from 0 to 9, where 256 features describe each
digit.

– ORL3: dataset comprises 400 images of 40 different
subjects. Each subject contains 10 distinct images
taken under various conditions such as lights, facial
expressions (smiling or not smiling), and facial details
(with glasses or without glasses). Besides, each image
has 1024 features to describe it.

– Yale4: dataset contains 165 gray-scale images of 15
individuals with 6750 Gabor features for each image.
I.e., every individual contributes 11 images taken with
different facial settings such as glasses, without glasses,
happy mood, sad mood, and sleepy mood.

– COIL-205: dataset contains 20 classes with a total
of 1440 images. For each class, there are 72
images, which corresponds to 1024 features per
image.

– Caltech101-076: dataset covers 101 classes of images.
However, we selected the commonly used seven

1https://archive.ics.uci.edu/ml/datasets/
Optical+Recognition+of+Handwritten+Digits
2https://www.kaggle.com/bistaumanga/usps-dataset
3http://cam-orl.co.uk/facedatabase.html
4http://vision.ucsd.edu/content/yale-face-database
5https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
6http://www.vision.caltech.edu/archive.html

classes and obtained 1474 images with 1984 HOG
features.

Table 1 gives a summary of the datasets, while Fig. 1
provides a pictorial view of Yale and COIL-20 datasets.

4.1.2 Comparedmethods

We compare our method with nine state-of-the-art subspace
clustering methods: LRR [19], SSC [10], CASS [22], S3C
[17], ELM-CLR [21], SinNLRR [49], BDR [23], IBDLR
[40], and FGNSC [43]. Most of these methods were selected
for comparison because they use a similar approach as
our proposed method. For example, IBDLR, SinNLRR,
CASS, and our proposed method uses LRR’s nuclear
norm regularization approach to find a low dimensional
representation of data.

Therefore, each method’s parameters are tuned following
the corresponding literature to achieve the best clustering
performance. Accordingly, we give a brief description of the
different methods below.

– LRR [19]: This method uses the nuclear norm to pursue
a low-rank matrix of data from which it obtains a
similarity matrix.

– SSC [10]: This method finds a sparse representation of
data independently using the L1 norm.

– CASS [22]: This method encodes the grouping effect of
LRR and the sparsity nature of SSC.

– S3C [17]: This method extends SSC by learning a
similarity matrix and data segmentation simultaneously.

– ELM-CLR [21]: This method obtains a similar-
ity matrix adaptively through dual data represen-
tations. One representation is based on the actual
data, while another relies on the data’s affine
space.

– SinNLRR [49]: This method uses nonnegative con-
straints to ensure that similar data samples are con-
nected while unrelated data samples are not connected.

– BDR [23]: This method employs the k-block diagonal
regularizer to encourage a block diagonal similarity
matrix.
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Table 1 Summary of the datasets

Dataset Samples Features Clusters

UCI-digits 2000 240 10

USPS 1854 256 10

ORL 400 1024 40

Yale 165 6750 15

COIL-20 1440 1024 20

Caltech101-07 1474 1984 7

– IBDLR [40]: This method also uses the k-block
diagonal regularizer by BDR to find a proper similarity
matrix. Besides, it adapts the similarity on dual data
representations similar to ELM-CLR.

– FGNSC [43]: This method makes use of post-
processing technique to optimize both sparsity and
connectivity of self-representation simultaneously to
find good neighbors.

Note that all the compared methods except ELM-CLR
apply a spectral clustering algorithm on the learned sim-
ilarity matrix to obtain a clustering structure. Meanwhile,
ELM-CLR can obtain a cluster structure explicitly with a
rank constraint on the similarity matrix’s Laplacian matrix,
the same as our proposed method. Furthermore, we adopt
the best value from [0.001, 0.01, 0.1, ..., 1000] using a grid
search strategy for our tunable parameters. Hence, to ensure

no generalization loss, we perform each experiment ten
times and report the mean and the standard deviation of the
clustering performance.

4.1.3 Evaluation metrics

Six conventional metrics, namely Accuracy (ACC), Nor-
malized Mutual Information (NMI), F-score, Recall, Preci-
sion, and Adjusted Rand index (AR), are used to evaluate
the clustering performance of each method. These metrics
capture different aspects whose values are directly proport-
ional to the clustering performance. For example, ACCmea-
sures the percentage of correctly clustered data samples in
the learned clustering structure compared with the ground
truth labels. NMI refers to the amount of information that
one can extract from shared random variables. F-score is
a measure of an experiment’s accuracy calculated from the
experiment’s Precision and Recall values. AR computes a
similarity measure between two clusterings by considering
all data samples’ pairs and counting pairs assigned in the
same or different clusters of the learned clustering structure
and ground truth labels.

4.2 Result and analysis

We present the clustering performance of different algo-
rithms on six benchmark datasets in Tables 1, 2, 3 and 4.

Table 2 Clustering performance of different algorithms on handwritten digits

Dataset Methods ACC NMI F-score Recall Precision AR

UCI Digits SSC 66.40±0.00 68.37±0.01 58.82±0.03 71.37±0.02 50.02±0.03 53.36±0.03

LRR 55.10±0.00 51.48±0.00 52.80±0.00 68.67±0.00 41.55±0.00 40.80±0.00

CASS 72.14±3.95 66.70±1.45 63.20±1.95 66.22±1.73 60.46±2.49 58.92±2.21

S3C 66.15±0.00 67.67±0.00 58.24±0.00 70.92±0.00 49.41±0.00 52.69±0.00

ELM-CLR 87.92±6.02 82.87±3.06 81.03±4.89 82.15±3.22 80.02±6.41 78.89±5.52

SinNLRR 87.00±0.00 79.40±0.00 77.80±0.00 78.22±0.00 77.38±0.00 75.33±0.00

BDR 81.73±0.02 83.99±0.04 80.93±0.10 86.38±0.04 76.12±0.09 78.67±0.11

IBDLR 77.85±0.05 76.59±0.14 73.63±0.12 76.67±0.12 70.82±0.12 70.58±0.13

FGNSC 89.51±0.97 93.37±1.08 86.24±1.68 84.46±2.06 89.00±1.81 81.57±1.74

Ours 97.25±0.00 93.86±0.00 94.52±0.00 94.64±0.00 94.40±0.00 93.91±0.00

USPS SSC 53.16±1.18 56.28±0.21 47.28±1.22 60.25±2.19 38.91±0.72 39.40±1.32

LRR 66.61±0.00 64.08±0.00 52.93±0.00 60.56±0.00 47.01±0.00 46.47±0.00

CASS 53.88±0.04 64.19±0.08 54.57±0.05 58.99±0.08 50.77±0.03 48.66±0.06

S3C 53.46±0.15 56.23±0.05 47.68±0.08 60.96±0.09 39.15±0.07 39.83±0.09

ELM-CLR 65.20±3.38 69.78±1.73 62.68±4.64 67.31±1.50 58.81±4.64 57.84±3.35

SinNLRR 71.95±0.00 69.77±0.00 66.21±0.00 66.08±0.00 66.34±0.00 62.16±0.00

BDR 69.45±003 64.96±0.00 62.81±0.00 61.14±0.00 64.59±0.00 58.49±0.00

IBDLR 71.31±0.16 67.07±0.17 64.33±0.18 63.94±0.19 64.73±0.17 60.08±0.20

FGNSC 73.53±0.46 68.80±0.36 68.50±0.22 67.61±0.24 69.41±0.13 63.60±0.09

Ours 81.39±0.00 80.14±0.00 77.65±0.00 80.66±0.00 74.86±0.00 74.86±0.00
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Table 3 Clustering performance of different algorithms on face images

Dataset Methods ACC NMI F-score Recall Precision AR

ORL SSC 60.15±1.72 78.82±1.15 48.25±2.63 57.47±2.06 41.67±3.23 46.86±2.73
LRR 48.00±0.00 58.68±0.00 33.99±0.00 38.28±0.00 30.89±0.00 31.14±0.00
CASS 61.25±2.60 77.39±1.39 48.70±2.78 52.06±2.77 45.75±2.83 47.43±2.85
S3C 62.30±1.75 79.63±0.75 50.71±1.44 59.36±1.87 44.28±1.50 49.40±1.48
ELM-CLR 65.35±0.16 79.60±0.19 44.61±0.39 64.94±0.23 25.45±0.33 35.46±0.41
SinNLRR 53.65±1.91 72.94±0.80 40.01±1.69 42.37±1.67 37.90±1.76 38.54±1.73
BDR 68.30±0.18 82.31±1.32 58.07±0.69 61.83±1.21 54.75±0.82 57.05±1.06
IBDLR 65.83±0.66 79.82±0.87 52.40±1.92 55.37±1.94 49.74±2.05 51.24±1.98
FGNSC 60.52±2.02 78.55±0.90 49.16±2.22 55.28±1.57 44.36±3.17 47.85±2.32
Ours 69.25±0.00 84.25±0.00 59.16±0.00 62.17±0.00 56.43±0.00 58.17±0.00

Yale SSC 65.58±0.80 69.12±0.91 49.68±1.45 51.84±1.47 47.69±1.46 46.27±1.55
LRR 31.52±0.00 39.95±0.00 18.98±0.00 28.48±0.00 14.23±0.00 11.81±0.00
CASS 50.06±1.68 53.65±1.43 33.37±1.82 34.24±1.83 32.54±1.84 28.92±1.95
S3C 66.67±2.07 70.50±1.33 50.51±3.06 55.03±1.60 46.66±4.62 47.00±3.50
ELM-CLR 66.03±1.02 67.23±1.22 48.87±1.83 53.88±1.21 44.75±2.43 45.21±2.03
SinNLRR 44.24±1.33 51.47±1.16 29.16±1.25 30.33±1.08 28.09±1.25 24.37±1.26
BDR 65.36±1.31 63.15±0.99 48.41±1.67 50.36±1.63 46.63±1.70 44.20±1.80
IBDLR 69.90±0.57 69.83±0.57 54.02±0.64 54.99±0.70 53.08±0.58 50.98±0.68
FGNSC 63.82±3.71 64.90±2.19 47.92±2.68 49.31±2.75 46.61±2.63 44.44±2.85
Ours 72.12±0.00 73.61±0.00 58.38±0.00 62.91±0.00 54.46±0.00 55.47±0.00

In each table, the values in bold symbolize the best perfor-
mance.

Table 2 shows the clustering performance of different
methods on UCI Digits and USPS handwritten datasets. It
is easy to see that our method achieves the best cluster-
ing performance in all evaluation metrics. Also, FGNSC

achieves better performance than others, followed closely
by ELM-CLR, which may be due to the adaptive nature
of learning the similarity matrix. On the contrary, the
S3C method has the worst performance than SinNLRR
and CASS, which obtains a similarity matrix uncoopera-
tively. Arguably, SinNLRR may benefit from nonnegative

Table 4 Clustering performance of different algorithms on object images

Dataset Methods ACC NMI F-score Recall Precision AR

COIL-20 SSC 74.67±0.03 87.55±0.03 71.53±0.05 85.83±0.08 61.31±0.06 69.79±0.06
LRR 65.21±0.00 74.41±0.00 52.06±0.00 68.80±0.00 41.87±0.00 48.93±0.00
CASS 60.17±1.63 70.66±0.73 53.05±1.48 57.37±1.83 49.34±1.30 50.42±1.55
S3C 75.47±1.68 87.89±0.64 72.54±2.01 85.72±0.53 62.96±3.39 70.88±2.16
ELM-CLR 85.67±0.16 93.00±0.23 83.23±0.39 92.38±0.99 75.10±0.41 82.27±0.42
SinNLRR 68.75±0.00 79.81±0.02 63.55±0.03 70.67±0.02 57.73±0.04 61.45±0.03
BDR 85.75±0.45 93.06±0.38 83.14±0.27 91.09±0.08 75.44±0.42 82.31±0.29
IBDLR 84.58±0.59 91.84±0.56 80.86±0.69 88.96±1.30 73.10±0.13 76.56±0.70
FGNSC 85.91±1.06 93.71±1.51 83.57±1.40 94.31±1.20 73.54±1.11 82.87±1.02
Ours 87.22±0.00 94.07±0.00 84.97±0.00 96.86±0.00 75.68±0.00 84.09±0.00

Caltech101-07 SSC 60.70±0.03 45.44±0.05 56.22±0.05 46.72±0.02 70.56±0.13 36.81±0.09
LRR 77.00±0.00 60.94±0.00 76.84±0.00 70.12±0.00 84.99±0.00 59.46±0.00
CASS 66.42±0.00 47.88±0.00 61.84±0.00 55.54±0.00 69.76±0.00 42.03±0.00
S3C 61.13±0.32 49.31±0.72 58.31±0.38 46.35±0.47 78.69±3.03 41.60±1.18
ELM-CLR 62.75±5.99 59.79±2.95 71.19±4.96 58.67±5.19 92.11±3.78 59.49±5.87
SinNLRR 44.30±0.00 43.22±0.00 49.55±0.00 36.93±0.00 75.28±0.00 32.40±0.00
BDR 71.06±0.06 55.18±0.12 75.28±0.23 67.13±0.04 83.79±0.03 53.46±0.04
IBDLR 61.94±0.03 47.52±0.00 59.71±0.01 44.01±0.01 77.20±0.01 40.68±0.05
FGNSC 64.76±0.27 49.23±0.30 60.38±0.28 56.50±0.20 63.82±0.43 42.86±0.33
Ours 82.77±0.00 61.46±0.00 79.13±0.00 77.73±0.00 88.35±0.00 60.39±0.00
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Fig. 2 Visualization of similarity matrices of different methods
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Fig. 3 Performance comparison
of different methods w.r.t. ACC
on USPS and Caltech-07
datasets with 10% and 20%
levels of noise
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constraints imposed on the low-rank matrix, which seems
useful for relatively low dimensional UCI Digits and USPS
datasets. Moreover, CASS combines the grouping effect of
LRR and SSC’s sparsity nature to enhance its performance.
S3C, on the other hand, appears limited by the L1-norm
low dimensional matrix, which does not capture the data’s
global structure.

Notwithstanding, UCI Digits’ results clearly show that
our method outperforms FGNSC by over 9.44%, 0.49%,
8.28%, 10.18%, 5.4%, and 12.34% in ACC, NMI, F-
score, Recall, Precision, and AR evaluation metrics,
respectively. Furthermore, FGNSC, SinNLRR, and IBDLR
have comparable performances on the USPS dataset, better
than the rest methods. Still, our method consistently
outperforms these methods in all evaluation metrics on
this dataset. Table 3 tabulates the clustering performance
on ORL and Yale face image datasets. Thus, our method
maintains the best performance on Yale dataset with
72.12%, 73.61%, 58.38%, 62.91%, 54.46%, and 55.47%,
in ACC, NMI, F-score, Recall, Precision, and AR,
respectively. Similarly, on ORL dataset, our method has

better performance in all metrics except Recall. This
performance is only slightly higher than that of BDR by
0.95%, 1.94%, 1.09%, 0.34%, 1.68%, 1.12%, in ACC, NMI,
F-score, Recall, Precision, and AR, respectively, perhaps
because BDR also applies the k block diagonal regularizer.
Additionally, ELM-CLR outperforms S3C by 2.62% and
13.58% just in ACC and Recall evaluation metrics,
respectively. In contrast, S3C outperforms ELM-CLR in
all evaluation metrics on the Yale dataset. Nevertheless,
the standard deviation indicates that ELM-CLR is more
stable than S3C on face image clustering. Moreover, ELM-
CLR and S3C have better performances than SSC, LRR,
CASS, SinNLRR, and FGNSC in most evaluation metrics
to demonstrate adaptive similarity matrix’s effectiveness.
Furthermore, our method outperforms ELM-CLR in ACC
by over 3% on ORL datasets even as the nonlinear data
structure of ORL favors ELM-CLR since it learns the
similarity matrix on the actual data and the affine space
of the data simultaneously. That being the case, Fig. 2
provides a visual comparison of similarity matrices of
the different methods to demonstrate more superiority
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Fig. 4 Visualization of the clustering performance of our method w.r.t. ACC and NMI evaluation metrics by fixing other parameters and
varying-parameters λ4 and λ5 on UCI Digits dataset, ORL dataset, and COIL-20 dataset
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of our proposed method on ORL dataset. Thus, we can
see that most methods, including CASS, IBDLR, and
FGNSC, obtained similarity matrices with much density,
which means the clusters in these matrices are not
independent.

On the other hand, Fig. 2 shows that the similarity matrix
obtained by our proposed method has exactly k connected
components, which means that our method can capture an
accurate block diagonal property. We can also observe that
the similarity matrix S and the low-rank matrix Z of our
proposed method are very close, confirming our coupled
learning effectiveness.

Table 4 compares our method with six state-of-the-art
methods using COIL-20 and Caltech101-07 object datasets.
On COIL-20 dataset, our method outperforms FGNSC,
BDR, and ELM-CLR only slightly in NMI, F-score, and
Precision, and AR, respectively. Whereas it performs better
than its closest competitor, LRR, by over 5%, 2%, 7%, and
3% in ACC, F-score, Recall, and Precision, respectively, on
Caltech 101-07 dataset. We note that ELM-CLR achieves
better performance than our method by 3.76% in Precision,
which perhaps is due to significant class imbalance in this
dataset. However, ELM-CLR fails to maintain the same
performance in other metrics. For example, our method
outperforms ELM-CLR by over 20% and 19% in ACC and
Recall, respectively. Besides, excluding SinNLRR and SSC,
it is easily noticeable that the other methods also perform
better than ELM-CLR and S3C methods.

Additionally, Fig. 3 shows the robustness of our method
against noise on USPS and Caltech-07 datasets. We use
random noise following uniform distribution between -
0.5 and 0.5, similar to ELM-CLR [21], to perform this
experiment. In particular, we adopt two experimental
settings in each dataset. Firstly, 10% of the original pixels
of sample images are replaced with random values in the
range above. Then, 20% in the second case. Thus, one
may observe that all methods have degrading performance,

increasing the noise level. However, our proposed method is
generally more robust against noise when compared to the
other methods.

4.2.1 Parameter analysis

Figure 4 shows our proposed method’s clustering perfor-
mance by varying λ4 and λ5 while fixing other on UCI
digits, ORL, and COIL-20 datasets. Note that λ6 does not
need tuning like the other parameters because a similar
approach in [21, 27] is followed to obtain its best value in
a heuristic way to accelerate the process. Initially, we set
λ6=1 and automatically multiply it by two or divide it by
two in each iteration when the number of connected compo-
nents is smaller or larger than k. It is easy to see from Fig. 4
that our proposed method is relatively stable on all datasets
by varying λ4 and λ5 in a range of [0.001,0.01,0.1,1].
Therefore, our proposed method can ensure good cluster-
ing performance by finding a suitable combination of both
parameters.

4.2.2 Computational runtime analysis

Here we investigate the computational time of different
methods on all six datasets. Specifically, we ran each
method using MATLAB 2016b installed on Windows 10
CORE i5 computer system to perform this experiment.
Accordingly, Table 5 displays the computational time
obtained by different methods. Notice that the computation
time is excessively high for most methods, which performs
k-means spectral post-processing of the low dimensional
embedding matrix, such as CASS, S3C, and SinNLRR.
However, it is not surprising to see that CASS has a much
higher computational time than LRR and SSC since it
combines both approaches to learn the similarity matrix.
Besides, IBDLR has three times more computation time
than the similar BDR method in most datasets— the reason

Table 5 The computational runtime (in seconds) of different methods on six benchmark datasets

Dataset UCI digits USPS ORL Yale COIL-20 Caltech101-07

SSC 131.71 115.87 35.68 360.04 170.07 381.12

LRR 50.90 75.45 19.68 15.33 638.21 851.61

CASS 2.24e+03 2.05e+03 282.71 32.28 1.27e+04 2.75e+04

S3C 446.72 1.24e+03 75.73 908.52 233.12 1.02e+03

ELM-CLR 45.15 44.09 1.58 0.74 13.98 23.77

SinNLRR 2.24e+04 6.26e+04 3.89 4.81 62.69 3.30e+03

BDR 125.23 44.65 8.76 1.12 238.83 199.26

IBDLR 511.80 425.11 27.26 6.61 401.64 338.39

FGNSC 87.27 83.67 1.99 0.42 130.94 206.51

Ours 61.65 56.31 1.75 1.09 26.45 34.26

542



Coupled low rank representation and subspace clustering

is not far-fetched because IBDLR learns a similarity matrix
on dual data representations. We can also observe that our
method has comparable computational time with ELM-
CLR since both methods obtain the clustering structure
explicitly without k-means spectral post-processing step.
Thus, both methods converge very quickly, making their
computational time much lesser than others. Nonetheless,
when one considers that our method has six subproblems
to update in each iteration as against a few by ELM-
CLR, it may then be seen that our proposed method has
a relatively good computational time in all six datasets

4.2.3 Convergence analysis

According to Liu et al. [19] and Luo et al. [24], the
convergence of the inexact Augmented Lagrange Multiplier
(ALM) method with more than three sub-problems is still
not easy to theoretically prove. As a result, the relative error
of the term ‖ S−Z‖2F is computed to illustrate our method’s
convergence behavior using Figs. 5 and 6. As expected,
one may see from Fig. 6 that the difference between the
clustering structure and the low-rank representation reduces
by each iteration step before convergence because our

Fig. 5 Visualization of the
clustering performance of our
method at different stages of
iterations
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Fig. 6 Visualization of the convergence behavior of our coupled
method (‖ S − Z‖2F ) at different stages of iterations

method learns cleaner low-rank representation in successive
iteration circles. Therefore, Fig. 5 shows that our method
converges within ten iterations on all six benchmark
datasets, which means it is very stable.

5 Conclusion

This paper proposed a novel method that guarantees better
clustering performance through coupled low-rank represen-
tation. To achieve that, we considered the practical case
where a given data may have arbitrarily distribution, in
which two unrelated samples are likely to reconstruct them-
selves. Therefore, we learned a manifold recovery structure
to correct any incorrectness in the data’s low-rank rep-
resentation. Then we obtained an ideal similarity matrix
through this manifold structure differently from existing
subspace clustering methods, which construct the simi-
larity matrix by utilizing the low-dimensional represen-
tation acquired directly from original data. Furthermore,
we ignored k-means spectral post-processing of the low-
dimensional embedding matrix by imposing a rank con-
straint on the similarity matrix’s Laplacian matrix to obtain
the clustering structure explicitly. Besides, we found that
our proposed method can learn a more accurate clus-
tering structure by incorporating the clustering structure
into the low-rank representation. Comprehensive experi-
ments on six benchmark datasets show that our method
outperforms similar state-of-the-art methods in Accuracy,
Normalized Mutual Information, F-score, Recall, Preci-
sion, and Adjusted Rand Index evaluation metrics. In future
work, we will extend our proposed method to Multi-view
learning.
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