
Prioritized planning algorithm for multi-robot collision avoidance
based on artificial untraversable vertex

Haodong Li1 & Tao Zhao1
& Songyi Dian1

Accepted: 27 March 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
This paper presents a method to avoid collisions and deadlocks between mobile robots working collaboratively in a shared
physical environment. Based on the shared knowledge of the robot’s direction and coordinates, we define five conflict types
between robots and propose a new concept named Artificial Untraversable Vertex (AUV) to resolve the potential conflicts. Since
conflict avoidance between robots is typically a real-time process, a heuristic search algorithm D* Lite with fast replanning
characteristics is introduced. Once a robot finds that it may collide with another robot while moving along the preplanned path, a
new conflict-free path can be calculated based on the AUV and D* Lite. The experimental results demonstrate that the proposed
Multi-Robot Path Planning (MRPP) method can effectively avoid collisions and deadlocks between mobile robots.

Keywords Multi-robot path planning . Conflict type . Collision avoidance . D* lite . Artificial untraversable vertex

1 Introduction

Multi-Robot Systems (MRSs) have advantages over single-
robot systems in terms of spatial distribution [1], robustness
[2], scalability [3], and flexibility [4]. During the last decade,
MRS has evolved from an isolated anecdotal laboratory sys-
tem to robust deployment in many fields [5], especially when
a given task requires the cooperation of robot teams, such as
cleaning [6], service [7], space-exploring [8, 9], warehousing
[10], coverage [11], search-and-rescue [12], and military [13].
To date, many research efforts have focused on different re-
search topics related to MRS, including communication tech-
niques [14], vision systems [15], and navigation [16, 17].
Mobile navigation is typically realized through perception,
planning, and control [18]. The objective of perception is to
obtain environmental information around the robot for path
planning, and the objective of control is to make the mobile
robot follow the planned path. Therefore, path planning is a
fundamental problem of MRS, and its objective is to move all
robots working in a shared environment to their respective
goal positions while meeting performance constraints (e.g.,

travel time) and safety constraints (e.g., collision avoidance)
[19]. This paper focuses on a decentralized MRPP approach
whose objective is to avoid potential collisions and deadlocks
[20] with other robots in real-time while minimizing the devi-
ation from the preplanned optimal path.

The collision between robots is a crucial problem in the
path planning and motion control of MRSs and has not re-
ceived sufficient attention. Obstacle and interrobot collision
avoidance directly impact system safety, so it should be the
highest priority among all objectives [21]. A simple method of
avoiding collisions is to treat other moving robots as obstacles,
namely, untraversable vertices [22] in the grid map. However,
as shown in Fig. 1, the method cannot prevent robot 2 (R2)
from planning D3 as the next vertex, which is likely to cause
another collision with robot 1 (R1).

The deadlock between robots is another vital issue in
MRPP since it can degrade system performance or even crash
the system [23]. As shown in Fig. 2, the deadlock between
mobile robots typically occurs when robots block each other
in a way so that none of them can follow its predefined path
without causing a collision.

Moreover, the prioritized planning algorithm typically
plans each robot’s path individually and then combines other
methods or strategies to resolve the conflicts between robots.
The established paths are typically optimal in the grid envi-
ronment, so minimizing the deviation between the modified
path and the initial path helps maintain the path optimality. As
shown in Fig. 3, R1 collides with R2 as it follows the

* Tao Zhao
zhaotaozhaogang@126.com

1 College of Electrical Engineering, Sichuan University,
Chengdu 610065, China

https://doi.org/10.1007/s10489-021-02397-0

/ Published online: 3 May 2021

Applied Intelligence (2022) 52:429–451

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02397-0&domain=pdf
http://orcid.org/0000-0001-5127-5301
mailto:zhaotaozhaogang@126.com

preplanned path and vice versa. A decentralized approach
may make the optimal decision locally to move R1 to vertex
C3 and then head south to reach the target, but it causes un-
necessary deviations if R3 can move diagonally.

The motivation of this research is to solve the challenges
mentioned above in implementing the prioritized MRPP ap-
proach, that is, (1) what is the effect when a robot lies in the
path of another robot, namely, interrobot collision avoidance,
(2) how to move robots when they block each other, namely,
deadlock avoidance, and (3) how to ensure that the actions
taken to avoid collisions and deadlocks with other robots do
not exceed the minimum effort required, that is, to minimize
the deviation between the modified path and preplanned path.
This paper proposes a Multi-Robot D* Lite (MR-D* Lite)
algorithm to solve these problems. The main idea of MR-D*
Lite is to employ the D* Lite algorithm to calculate the initial
path of each robot individually, and then combine the AUV to
modify the path of the robot with a potential collision or dead-
lock risk. The main contributions of this paper can be summa-
rized as follows:

& Many researchers focus on collision avoidance between
robots, but deadlock avoidance and path deviation are
typically not considered simultaneously. This paper de-
fines five types of potential conflicts between mobile ro-
bots and proposes three types of AUVs to resolve the
conflicts. The AUV considers both the position and

direction of robots, thereby solving the conflicts between
robots with a minor or minimum deviation from the
predetermined optimal path.

& The dynamic characteristics of D* Lite are used to address
the conflicts between robots while minimizing the time to
replan a new collision-free and deadlock-free path for each
robot.

The remainder of this paper is organized as follows:
Section 2 introduces the related works, problem definition,
and underlying algorithm. Section 3 provides the proposed
method. The results and the conclusion are presented in
Sections 4 and 5, respectively.

2 Preliminaries

2.1 Related works

MRPP can be characterized into two categories: centralized
and decentralized approaches [25, 26]. The centralized ap-
proach treats the path planning issue as an optimization prob-
lem via a central server, which has comprehensive knowledge
about all robots’ workspace (e.g., a 2D grid map) and intents
(e.g., speed, start position, and goal position). The centralized
approach mainly includes four categories [27]: protocol-based
[28], conflict-based search [29], increasing cost tree search
[30], and A* search expansion [31]. It plans collision-free

E

D

C

B

A

F
1 2 3 4 5 6

R2
R1

R2

R1

Fig. 1 A problematic situation of collision avoidance by treating other
robots as obstacles. The green and the red vertices denote the robot
positions and goal positions, and the arrow denotes the direction of the
robot

R1
R2

R1
R2

E

D

C

B

A

F
1 2 3 4 5 6

R1

R2
R1

R2

E

D

C

B

A

F
1 2 3 4 5 6

R2
R1

R1

R2

E

D

C

B

A

F
1 2 3 4 5 6

(a) (b) (c)

Fig. 2 Illustration of the deadlock
between robots [24]. a The initial
state of robots. b and c The
deadlock condition is
encountered and repeated in-
between (b) and (c) infinitely

R2

R1

R2

R1
E

D

C

B

A

F
1 2 3 4 5 6

R1

Fig. 3 A problematic situation of decentralized methods where the
shortest path is the objective [24]

430 H. Li et al.

paths for all robots simultaneously and can produce globally
optimal plans. However, the time complexity is exponentially
related to the composite configuration space dimensions and
the number of robots. Thus, it is typically applicable to simple
problems that involve two or three robots, and its performance
can be low if tasks/goals are reassigned frequently. Moreover,
the approach relies heavily on a reliable communication net-
work between the central server and robots in practice. Thus,
MRS will breakdown if the central server or communication
network fails. Furthermore, the centralized approach is inap-
plicable when the environment is unknown and unstructured
[32]. In recent years, nature-inspired optimization algorithms
have been applied to various versions of centralized ap-
proaches to address the MRPP optimization problem [21],
which include Particle Swarm Optimization (PSO) [33],
Gravitational Search Algorithms (GSA) [34], firefly optimi-
zation [35], Charged System Search (CSS) [36], Ant Colony
Optimization (ACO) [37], Artificial Bee Colony (ABC) [38],
and Genetic Algorithm (GA) [39]. Most of these algorithms
can find better paths as the number of iterations increases, but
they are computationally expensive.

Compared with centralized approaches, some researchers
have proposed decentralized conflict avoidance strategies,
where each robot takes the observable states (e.g., velocities,
shapes, and positions) of other robots as inputs to make auton-
omous decisions. In contrast to a centralized approach, a
decentralized approach can better respond to unknown or dy-
namic environments and has better reliability, flexibility, adapt-
ability, and fault tolerance [40]. It can be further categorized
into two approaches: the path coordination approach and the
prioritized planning approach. In a path coordination approach,
the robot moves in a coordinated path. If a potential collision is
detected, it changes robot velocity to predefined values or even
stops robots to avoid collision [19]. However, stopping or
slowing down increases the time for the robot to complete the
task. In practice, a widely used decentralized approach for
MRPPs that has proven effective is prioritized planning. The
prioritized planning algorithm assigns a unique priority to each
robot and proceeds sequentially from the robot with the highest
priority to the one with the lowest priority [41]. The prioritized
planning approaches plan the path for each robot individually
and then combine other methods to avoid collisions between
robots, which include Artificial Potential Field (APF) [42], A*
[43], Revised Prioritized Planning (RPP) [44], Safe Interval
Path Planning (SIPP) [45], and Hybrid Path Planning (HPP)
[46]. Nonetheless, the work proposed above typically focuses
on interrobot collision avoidance, but deadlock avoidance and
path deviation are typically not considered simultaneously.

2.2 Problem definition

Wemodel each robot as a point that can move freely in a two-
dimensional space. It is assumed that each robot is equipped

with several sensors by which a robot can build a global map
of the working environment. The robot may find new obsta-
cles or robots when moving, so it also builds a local map to
save dynamic information on the surrounding environment.
Due to the various local information surrounding the robots,
each robot’s grid map may vary slightly. All the maps men-
tioned above are composed of finite vertices, and some of the
vertices are occupied by obstacles. The configuration of ob-
stacles in different vertices may vary in shape, position, and
occupancy level. However, this paper assumes that a vertex is
either unknown, free, or entirely occupied by obstacles. The
occupied vertices of the global and local maps can represent
the shape and location of obstacles. The given start position
and desired goal position of each robot are located in the free
vertex, and MRPP can be defined as finding a finite set of free
vertices to navigate each robot between the start and goal
points without interrobot collisions and deadlocks [47].

Let Nr be the total number of robots in an MRS, Np be the
total number of vertices in a path,ℕr = {1, 2, ..., Nr}, andℕp =
{1, 2, ..., Np}. The path of robots can be denoted as

P ¼ pij
n o

; i ∈ℕr; j ∈ℕp; ð1Þ

where the superscript i denotes the robot number of the MRS,
and the subscript j is the vertex number of the path. We as-
sume that it takes the same time for the robot to move from
one vertex to another. Therefore, an interrobot collision will
occur if∃ x, y ∈ℕr, x ≠ y, j ∈ℕp, such that p

x
j = py j. Moreover,

a deadlock will occur if ∃ i ∈ ℕr, such that ∃ pi j1 = pi j2 = ... =
pi jn, where ∀ n > 1, n ∈ ℕp.

2.3 D* Lite

We use D* Lite as our method’s underlying algorithm. D*
Lite is a well-known goal-directed path planning algorithm
and widely utilized for autonomous mobile robot navigation
[48]. It can reuse the previous path planning information to
replan a path dynamically. This characteristic can be applied
to our method for dynamic collision avoidance between ro-
bots. The following notation is utilized to describe D* Lite: S
is the set of vertices of the graph. Succ(s) ⊆ S is the set of
successors of vertex s ∈ S. Pred(s) ⊆ S is the set of predeces-
sors of vertex s ∈ S. 0 < c(s’, s) <∞ is the cost of moving from
vertex s’ ∈ Pred(s) to vertex s. D* Lite maintains two kinds of
estimates of each vertex’s goal distance: a g-value g(s) and an
rhs-value rhs(s). The rhs-value always satisfies the following
relationship:

rhs sð Þ ¼ 0; if s ¼ sgoal
mins0∈Succ sð Þ g s0ð Þ þ c s; s0ð Þð Þ; otherwise

;

�
ð2Þ

where a vertex is called locally consistent if g(s) = rhs(s); oth-
erwise, it is called locally inconsistent.

431Prioritized planning algorithm for multi-robot collision avoidance based on artificial untraversable vertex

3 Methodology

This section classifies the conflict scenarios into five types
according to the vertex position where the path conflicts.
Before moving to the next vertex, each robot judges whether
it is in any five conflict types with other robots. Then we set
the AUV for the robot in conflict and replan the path.

3.1 Conflict types

Some researchers have defined conflict types for pairs of ro-
bots [49], but some scenarios have not been discussed. In a
discrete gridded environment, a robot can only move to its

neighboring eight vertices, so the vertex where robots collide
(i.e., conflict vertex) must be one of their current vertices and
neighboring vertices. In the following, robot i (Ri) is the
higher priority robot, and robot j (Rj) is the lower priority
robot. According to the position of the conflict vertex, we
classify the conflict scenarios into five types. Let pi c and pj c
be the current positions of Ri and Rj, respectively. As shown
in Fig. 4, if Ri and Rj move diagonally and pi c + 1 = pj c + 1, the
robots are in the Type 1 Conflict Scenario (CST1).

As shown in Fig. 5, if pi c + 1 = pj c and pi c ≠ pj c + 1, the
robots are in the Type 2 Conflict Scenario (CST2).

As shown in Figs. 6, 7, 8, 9, 10, 11, 12 and 13, if pi c = p
j
c + 1,

the robots are in the Type 3 Conflict Scenario (CST3).

Ri

Rj Ri

Rj Rj

Ri Rj

Ri

(a) (b) (c) (d)

Fig. 4 CST1: Robots move
diagonally and their next position
is the conflict vertex (i.e., brown
square)

Ri
Rj

Ri
Rj

Ri Rj
Rj

Ri
Rj
Ri

Rj
Ri Rj Ri

Rj
Ri

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5 CST2: The current position of Rj is the conflict vertex

Ri
Rj

Ri
Rj

Ri Rj Ri
Rj Rj

Ri
Rj

Ri Rj Ri
Rj

Ri

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6 CST3 when Ri moves north

Ri
Rj

Ri Rj Ri
Rj Rj

Ri

Rj
Ri Rj Ri

Rj
Ri Ri

Rj

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 7 CST3 when Ri moves northeast

Ri
Rj Rj

Ri
Rj

Ri Rj Ri
Rj

Ri Ri
Rj

Ri
Rj

Ri Rj

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 8 CST3 when Ri moves east

432 H. Li et al.

As shown in Figs. 14, 15, 16, 17, 18, 19, 20 and 21,
if Ri and Rj are adjacent to each other and pi c + 1 = pj c + 1,

the robots are in the Type 4 Conflict Scenario
(CST4).

Ri
Rj Rj

Ri
Rj

Ri Rj Ri

Rj
Ri Ri

Rj
Ri

Rj
Ri Rj

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 9 CST3 when Ri moves southeast

Ri
Rj

Ri
Rj

RiRj Ri
Rj Rj

Ri
Rj

Ri RjRi
Rj

Ri

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 10 CST3 when Ri moves south

Ri
Rj

Rj Ri
Rj

Ri
Rj
Ri

Rj
Ri Ri Rj Ri

Rj
Ri
Rj

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 11 CST3 when Ri moves southwest

RiRj Ri
Rj

Ri
Rj

Ri
Rj

RjRi
Rj

Ri
Rj
Ri

Rj
Ri

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 12 CST3 when Ri moves west

Ri
Rj Rj

Ri
Rj

Ri RjRi
Rj

Ri Ri
Rj

Ri
Rj

RiRj

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 13 CST3 when Ri moves northwest

Ri
Rj

Ri Rj Rj Ri
Rj

Ri

(a) (b) (c) (d)

Fig. 14 CST4 when Ri moves
north

433Prioritized planning algorithm for multi-robot collision avoidance based on artificial untraversable vertex

Ri
Rj

Ri
Rj

Ri Rj Ri Rj

(a) (b) (c) (d)

Fig. 15 CST4 when Ri moves
northeast

Ri
Rj

Ri
Rj

Ri
Rj Rj

Ri

(a) (b) (c) (d)

Fig. 16 CST4 when Ri moves
east

Ri Rj Ri Rj Ri
Rj

Ri
Rj

(a) (b) (c) (d)

Fig. 17 CST4 when Ri moves
southeast

RjRi
Rj

Ri Ri
Rj

RiRj

(a) (b) (c) (d)

Fig. 18 CST4 when Ri moves
south

Ri
Rj

Ri
Rj

Rj Ri Rj Ri

(a) (b) (c) (d)

Fig. 19 CST4 when Ri moves
southwest

Ri
Rj

Rj
Ri

Rj
Ri Ri

Rj

(a) (b) (c) (d)

Fig. 20 CST4 when Ri moves
west

434 H. Li et al.

As shown in Figs. 22, 23, 24, 25, 26, 27, 28 and 29,
if pi c + 1 = pj c + 1, Ri and Rj are not adjacent, and are
not in CST1, then the robots are in the Type 5 Conflict
Scenario (CST5).

3.2 Artificial untraversable vertex

The AUV is the basis for the underlying path planning algo-
rithm to replan the path to avoid collisions and deadlocks. The
number and position of the AUV can be adjusted according to
needs (e.g., the number of vertices occupied by a robot). In
this paper, we assume that each robot occupies a vertex. We
summarized three types of AUVs during the experiment, as
shown in Figs. 30, 31 and 32, which produced a minimum or
slight path deviation and steering angle for collision and dead-
lock avoidance. In Figs. 30-32, according to the coordinate
and direction of robot R, the AUV is set for the original robot
(Ro), which conflicts with R. There are eight cases for each
type of AUV corresponding to the eight moving directions of
R. Figure 30 shows the cases for Type 1 AUV (AUVT1),
which is applied to both higher priority and lower priority
robots. The AUVT1 set for RO is shown in Fig. 30 (a) when

R moves northward and Figs. 30 (b)-(h) correspond to the
other seven moving directions.

Figure 31 presents the eight cases for Type 2 AUV
(AUVT2) applied to the lower priority robots. The AUVT2
set for RO is shown in Fig. 31 (h) when R moves northwest,
and Fig. 31 (a)-(g) correspond to the other seven moving
directions.

Figure 32 shows eight cases for Type 3 AUV (AUVT3),
and it is applied to the lower priority robots. The AUV set for
RO is shown in Fig. 32 (h) when R moves northwest, and
Fig. 32 (a)-(g) corresponds to the other seven moving
directions.

Figures 33, 34, 35, 36 and 37 list the solution for CST1–5.
Robot Ri is the higher priority robot, and robot Rj is the lower
priority robot. The graph is an eight-connected grid whose
edge costs are initially one and change to infinity when the
robot discovers that the vertices cannot be traversed [48]. We
assume that the dynamic environment map range is the 48
vertices in the shadow around the robot. For CST1 in Fig. 4,
we make the higher priority robot Ri continue to move along
its established path, and the lower priority robot Rj bypasses
the brown conflict vertex, that is, pi c + 1 is set as the AUV for
robot Rj. Taking Fig. 4 (a) as an example, we set vertex G4 as

Rj
Ri

Rj
Ri RiRj RiRj

(a) (b) (c) (d)

Fig. 21 CST4 when Ri moves
northwest

Rj

Ri Ri

Rj

Ri

Rj

(a) (b) (c)

Fig. 22 CST5 when Ri moves north

Ri
Rj

Ri Rj Ri
Rj

(a) (b) (c)

Fig. 23 CST5 when Ri moves east

Rj

Ri Ri

Rj

Ri

Rj
(a) (b) (c)

Fig. 24 CST5 when Ri moves south

Rj
Ri RiRj Ri

Rj

(a) (b) (c)

Fig. 25 CST5 when Ri moves west

435Prioritized planning algorithm for multi-robot collision avoidance based on artificial untraversable vertex

Ri

Rj

Ri

Rj

Ri
Rj

Ri Rj
(a) (b) (c) (d)

Fig. 26 CST5 when Ri moves
northeast

Ri Rj Ri
Rj

Ri

Rj Rj

Ri

(a) (b) (c) (d)

Fig. 27 CST5 when Ri moves
southeast

Ri

Rj

Ri

Rj

Ri
Rj

Rj Ri

(a) (b) (c) (d)

Fig. 28 CST5 when Ri moves
southwest

RiRj Ri
Rj

Ri

Rj Rj

Ri

(a) (b) (c) (d)

Fig. 29 CST5 when Ri moves
northwest

R

A
B
C
D

F
G

E

1 4 6 72 3 5

R

A
B
C
D

F
G

E

1 4 6 72 3 5

R
A
B
C
D

F
G

E

1 4 6 72 3 5

R

A
B
C
D

F
G

E

1 4 6 72 3 5

(a) (b) (c) (d)

R

A
B
C
D

F
G

E

1 4 6 72 3 5

R
A
B
C
D

F
G

E

1 4 6 72 3 5

R
A
B
C
D

F
G

E

1 4 6 72 3 5

R

A
B
C
D

F
G

E

1 4 6 72 3 5

(e) (f) (g) (h)

Fig. 30 Illustration of AUVT1.
The vertex with the term R is the
current position of R, and the
arrow signifies its direction. The
black vertex represents the AUV
set for the robot Ro

436 H. Li et al.

the AUV for Rj as shown in Fig. 33, and Rj’s moving direc-
tion changes to the south.

For CST2 in Fig. 5, we make the lower priority robot Rj
continue to move along its established path because its direc-
tion does not conflict with Ri. To make Ri’s modified path not
conflict with Rj’s established path, we considered both Rj’s
position and direction to set the AUV for Ri. Moreover, Rj is
also likely to update its path due to other robots. Thus, we set
the AUV for both Ri and Rj according to AUVT1. Taking Fig.
5 (a) as an example, the AUVs for Ri and Rj are set as shown
in Fig. 34, and Ri’s direction changes to the northwest.

For CST3 in Figs. 6-13, pj c + 1 is occupied by Ri, so Rj
should replan its path, and Ri needs to bypass Rj’s current
vertex. In MR-D* Lite, we replan the path of robots from
the higher priority to the lower priority. Therefore, we set
Rj’s current vertex as the AUV for Ri and set the AUV for
Rj according to AUVT1. Taking Fig. 6 (a) as an example, we
set the AUV as shown in Fig. 35. After the replanning process,

R

A
B
C
D

F
G

E

1 4 6 72 3 5

R

A
B
C
D

F
G

E

1 4 6 72 3 5

R
A
B
C
D

F
G

E

1 4 6 72 3 5

R

A
B
C
D

F
G

E

1 4 6 72 3 5

(a) (b) (c) (d)

R

A
B
C
D

F
G

E

1 4 6 72 3 5

R
A
B
C
D

F
G

E

1 4 6 72 3 5

R
A
B
C
D

F
G

E

1 4 6 72 3 5

R

A
B
C
D

F
G

E

1 4 6 72 3 5

(e) (f) (g) (h)

Fig. 31 Illustration of AUVT2

R

A
B
C
D

F
G

E

1 4 6 72 3 5

R

A
B
C
D

F
G

E

1 4 6 72 3 5

R
A
B
C
D

F
G

E

1 4 6 72 3 5

R

A
B
C
D

F
G

E

1 4 6 72 3 5

(a) (b) (c) (d)

R

A
B
C
D

F
G

E

1 4 6 72 3 5

RA
B
C
D

F
G

E

1 4 6 72 3 5

RA
B
C
D

F
G

E

1 4 6 72 3 5
R

A
B
C
D

F
G

E

1 4 6 72 3 5

(e) (f) (g) (h)

R

A
B
C
D

F
G

E

1 4 6 72 3 5

R

A
B
C
D

F
G

E

1 4 6 72 3 5

R
A
B
C
D

F
G

E

1 4 6 72 3 5

R

A
B
C
D

F
G

E

1 4 6 72 3 5

(a) (b) (c) (d)

R

A
B
C
D

F
G

E

1 4 6 72 3 5

RA
B
C
D

F
G

E

1 4 6 72 3 5

RA
B
C
D

F
G

E

1 4 6 72 3 5
R

A
B
C
D

F
G

E

1 4 6 72 3 5

(e) (f) (g) (h)

Fig. 32 Illustration of AUVT3

Rj

Ri

Rj

RiA

B

C

D
E

F

G

H

I

J
1 2 3 4 5 6 7 8 9 10

Fig. 33 Solution for CST1 (taking Fig. 4 (a) as an example). The vertex
G4 is the AUV for Rj, the black square is the AUV for the robot Rj, the
green and red squares are the robot and goal positions, and the blue and
red arrows are the initial and modified directions

437Prioritized planning algorithm for multi-robot collision avoidance based on artificial untraversable vertex

Ri’s direction changes to the northeast, and Rj’s direction
changes to the southwest.

For CST4 in Figs. 14-21, we make the higher priority robot
Ri continue to move along its established path. However, to
prevent Ri’s modified path (Ri is likely to update the path due
to other robots in MRS) from conflicting with Rj’s current
vertex, we set Rj’s current vertex as the AUV for Ri. Then,

we set the AUV for Rj according to AUVT1. That is, the
solution for CST3 is the same as that for CST4. Taking
Fig. 18 (a) as an example, the AUV is set as shown in
Fig. 36, and Rj’s direction changes to the northwest.

For CST5 in Fig. 22-29, we make Ri continue to move
along its established path and set the AUV for Rj according
to AUVT2. Taking Fig. 22 (a) as an example, corresponding

Ri
Rj

Ri

Rj

A

B

C

D
E

F

G

H

I

J
1 2 3 4 5 6 7 8 9 10

Ri
Rj

Ri

Rj

A

B

C

D
E

F

G

H

I

J
1 2 3 4 5 6 7 8 9 10

(a) (b)

Fig. 34 Solution for CST2
(Taking Fig. 5 (a) as an example).
a The AUV for Ri. b The AUV
for Rj

Rj

Ri
Rj

RiA

B

C

D
E

F

G

H

I

J

1 2 3 4 5 6 7 8 9 10

Rj

Ri
Rj

RiA

B

C

D
E

F

G

H

I

J
1 2 3 4 5 6 7 8 9 10

(a) (b)

Fig. 35 Solution for CST3
(Taking Fig. 6 (a) as an example).
a The AUV for Ri. b The AUV
for Rj

Rj Ri

Ri Rj

A

B

C

D
E

F

G

H

I

J
1 2 3 4 5 6 7 8 9 10

Rj Ri

Ri Rj

A

B

C

D
E

F

G

H

I

J
1 2 3 4 5 6 7 8 9 10

(a) (b)

Fig. 36 Solution for CST4
(Taking Fig. 18 (a) as an exam-
ple). a The AUV for Ri. b The
AUV for Rj

438 H. Li et al.

to Fig. 31 (a), the AUV for Rj is set as shown in Fig. 37 (a),
and Rj’s direction changes to south. Note that all AUVs are
cleared after the robot moves to the next vertex. Therefore,
after the robots in Fig. 37 (a) move one step and reach the
position in Fig. 37 (b), all the AUVs for Rj have disappeared.
Then, the path is replanned again, and Rj’s direction changes
to the original southeast.

The method mentioned above can solve conflicts between
any two robots, but there is a problem of crowding between
robots for the MRS with three or more robots. For example, if
the robots in Fig. 38 (a) reach the position in Fig. 38 (b), then it
is challenging to replan a collision-free path for each robot.

AUVT3 is employed to address this problem, as shown in
Fig. 39.

If the vertices pi c + 1 and p
j
c + 1 are adjacent to each other,

we set the AUV for the lower priority robot according to
AUVT3. With Fig. 38 (a) as an example, the AUV for the
robots is set as shown in Fig. 39. In Fig. 38 (a), the lower
priority robot R2 detects that p2 c + 1 is adjacent to p1 c + 1.
Thus, corresponding to Fig. 32 (f), we set the AUV for R2
as shown in Fig. 39 (a), and its direction changes to the west
after replanning the path. In Fig. 39 (a), the lower priority
robot R3 detects that p3 c + 1 is adjacent to p1 c + 1. We set
the AUV for R3 as shown in Fig. 39 (b), and its direction

Rj

Ri

Ri

Rj

A

B

C

D
E

F

G

H

I

J
1 2 3 4 5 6 7 8 9 10

Rj Ri

Ri

Rj

A

B

C

D
E

F

G

H

I

J

1 2 3 4 5 6 7 8 9 10

(a) (b)

Fig. 37 Solution for CST5
(Taking Fig. 22 (a) as an exam-
ple). a The AUV for Rj. b The
robots after moving one step

R2

R3

R4

R1

R3

R2

R1

R4A

B

C

D
E

F

G

H

I

J

1 2 3 4 5 6 7 8 9 10

R2

R3

R4
R1

R3
R2

R1

R4A

B

C

D
E

F

G

H

I

J
1 2 3 4 5 6 7 8 9 10

(a) (b)

Fig. 38 A problematic situation
for the MRS of three or more
robots. a Initial positions of
robots. b Robots crowded
together

R2

R3

R4

R1

R3

R2

R1

R4A

B

C

D
E

F

G

H

I

J
1 2 3 4 5 6 7 8 9 10

R2

R3

R4

R1

R3

R2

R1

R4A

B

C

D
E

F

G

H

I

J
1 2 3 4 5 6 7 8 9 10

R2

R3

R4

R1

R3

R2

R1

R4A

B

C

D
E

F

G

H

I

J

1 2 3 4 5 6 7 8 9 10

(a) b)((c)

Fig. 39 Solution for crowding
between robots (with Fig. 38 (a)
as an example). a The AUV for
R2. b The AUV for R3. (c) The
AUV for R4

439Prioritized planning algorithm for multi-robot collision avoidance based on artificial untraversable vertex

changes to the northeast. In Fig. 39 (b), the lower priority
robot R4 detects that p4 c + 1 is adjacent to t p

1
c + 1. We estab-

lish the AUV for R4 as shown in Fig. 39 (c), and its direction
changes to the north.

In summary, the method of setting the AUV for robots is as
follows:

& For the CST1 in Fig. 4, we set the conflict vertex as the
AUV for Rj.

& For CST2 in Fig. 5, we set the AUV for Ri and Rj accord-
ing to AUVT1.

& For CST3 and CST4 in Figs. 6-21, we set pj c as the AUV
for Ri and set the AUV for Rj according to AUVT1.

& For CST5 in Figs. 22-29, we set the AUV for Rj according
to AUVT2.

& If pi c + 1 and pj c + 1 are adjacent to each other, we set the
AUV for Rj according to AUVT3.

& If pi c and p
j
c are adjacent to each other, we set p

i
c and p

j
c

as the AUVs for each other.

3.3 Multi-robot D* lite

We now use D* Lite and AUV to develop our MR-D* Lite,
whose pseudocode is shown in Fig. 40. The definitions of
symbols used in the pseudocode are summarized in Table 1.
Similar to the D * Lite algorithm, MR-D* Lite maintains two
kinds of estimates of the goal distance of each vertex: a g-
value g(i, s) and an rhs-value rhs(i, s), where i denotes the
robot number of the MRS. The rhs-value always satisfies the
following relationship:

rhs i; sð Þ ¼ 0; if s ¼ sgoal
mins ∈Succ sð Þ g i; sð Þ þ c i; s; sð Þð Þ; otherwise

�
;

ð3Þ

Table 1 Symbol definitions for MR-D* Lite

Symbol Meaning

Nr Number of robots

S Set of vertices of the graph

sstart(i) Start vertex of Ri

sgoal(i) Goal vertex of Ri

h(sstart(i), s) Distance between vertex s and sstart(i).

km(i) Key modifier of Ri

Ui Priority queue of Ri

g(i, s), rhs(i, s) Estimates of the goal distance from s to sgoal(i)
Succ(s) Set of successors of the vertex s

Pred(s) Set of predecessors of the vertex s

c(i, s’, s) Cost of moving Ri from the vertex s’ to s ∈ Succ(s’)

Algorithm MR-D* Lite
procedure CalcKey(i, s)
{01} return [min(g(i, s), rhs(i, s)) + h(sstart(i), s) + km(i); min(g(i, s), rhs(i, s))];
procedure Initialize(i)
{02}
{03} km(i) = 0;
{04} for all s S, rhs(i, s) = g(i, s) =
{05} rhs(i, sgoal(i)) = 0;
{06} U.Insert(i, sgoal(i), CalcKey(i, sgoal(i)));
procedure UpdateVertex(i, u)
{07} if (u sgoal(i)), rhs(i, u) = mins Succ(u)(c i, u, s g(i, s
{08} if (u Ui), U.Remove(u);
{09} if (g(i, u) rhs(i, u)), U.Insert(i, u, CalcKey(i, u));
procedure ComputeShortestPath(i)
{10} while (U.TopKey(i) < CalcKey(i, sstart(i)) OR rhs(i, sstart(i)) g(i, sstart(i)))
{11} kold = U.TopKey(i);
{12} u = U.Pop(i);
{13} if (kold < CalcKey(i, u))
{14} U.Insert(i, u, CalcKey(i, u));
{15} else if (g(u) > rhs(u))
{16} g(i, u) = rhs(i, u);
{17} for all s Pred (u), UpdateVertex(i, s);
{18} else
{19} g(i, u) =
{20} for all s Pred (u) {u}, UpdateVertex(i, s);
procedure ScanGraph(i)
{21} Scan graph(i) for changed edge costs;
{22} if any edge costs changed
{23} If km(i) has not changed when UpdatePath(i) is called
{24} km(i) = km(i) + h(slast(i), sstart(i));
{25} slast(i) = sstart(i);
{26} for all directed edges (i, u, v) with changed edge costs
{27} Update the edge cost c(i, u, v);
{28} UpdateVertex(i, u);
{29} ComputeShortestPath(i);
procedure UpdatePath(i)
{30} Clear all untraversable vertices;
{31} ScanGraph(i);
{32} if i > 1
{33} for j = 1 : i
{34} snext(i) = arg min s Succ() (c(i, sstart(i), s g(i, s ;
{35} snext(j) = arg min s Succ() (c(j, sstart(j), s g(j, s ;
{36} if CST1(Ri, Rj)
{37} Set snext(j) as the AUV for Ri;
{38} else if CST2(Ri, Rj) OR CST3(Ri, Rj) OR CST4(Ri, Rj)
{39} Set the AUV for Ri according to AUVT1;
{40} else if CST5(Ri, Rj)
{41} Set the AUV for Ri according to AUVT2;
{42} else if snext(i) is adjacent to snext(j)
{43} Set the AUV for Ri according to AUVT3;
{44} if sstart(i) is adjacent to sstart(j)
{45} Set sstart(j) as the AUV for Ri;
{46} ScanGraph(i);
{47} if i < N
{48} for j = i + 1 : N
{49} snext(i) = arg min s Succ() (c(i, sstart(i), s g(i, s
{50} snext(j) = arg min s Succ() (c(j, sstart(j), s g(j, s
{51} if CST2(Ri, Rj)
{52} Set the AUV for Ri according to AUVT1;
{53} else if sstart(i) is adjacent to sstart(j)
{54} Set sstart(j) as the AUV for Ri;
{55} ScanGraph(i);
procedure Main()
{56} for i = 1 : N
{57} slast(i) = sstart(i);
{58} Initialize(i);
{59} ComputeShortestPath(i);
{60} while (sstart(1) sgoal(1) OR sstart(2) sgoal(2) ... OR sstart(N) sgoal(N))
{61} for i = 1 : N
{62} if (sstart(i) sgoal(i))
{63} UpdatePath(i);
{64} for i = 1 : N
{65} /* if (g(sstart(i)) = then there is no known path */
{66} sstart(i) = arg min s Succ() (c(i, sstart(i), s g(i, s
{67} Move to sstart(i);

 = ;iU

()start is
()start js

()start is

()start is
()start js

Fig. 40 The pseudocode for MR-D* Lite

440 H. Li et al.

where a vertex is called locally consistent for Ri if g(i, s) = rhs(i,
s); otherwise, it is called locally inconsistent. The distance be-
tween vertex s and sstart(i) uses the Chebyshev distance:

h sstart ið Þ; s
� � ¼ max xsstart ið Þ−xs

���
���; ysstart ið Þ−ys
���

���
� �

; ð4Þ

where xs and ys symbolize the x-coordinate and y-coordinate of
vertex s, respectively.

The functions CalcKey(), Initialize(), UpdateVertex(), and
ComputeShortestPath() in D* Lite remain unchanged to plan
the initial paths and modify them when potential conflicts are
detected and the environmental information changes. However,
the function Main() needs to be extended, and the functions
UpdatePath() and ScanGraph() are introduced to address the
collisions and deadlocks between different robots. The main
function Main() first calls Initialize(i) to initialize the search
problem for each robot {58}. (Numbers in curly brackets refer
to line numbers in the pseudocode.) Initialize(i) sets the initial
g-values of all vertices of Ri to infinity and sets their rhs-values
according to Eq. (3) {04–05}. Note that in an actual implemen-
tation, Initialize(i) only needs to initialize a vertex when Ri
encounters it during the search [50]. MR-D* Lite then com-
putes the shortest path from the current vertex of Ri to the goal
vertex {59}. After robots have calculated their initial paths
{56–59}, they move forward along their respective paths. As
the robot moves to the target vertex, MR-D* Lite uses the
function UpdatePath(i) to monitor potential conflicts and up-
date the path to achieve collision and deadlock avoidance {63}.
UpdatePath(i) clears the AUV set for Ri previously and updates
Ri’s path by ScanGraph(i) {30–31}. It sets the AUV for Ri and
updates the path according to the type of conflict {32–55}. A
robot first monitors potential conflict with higher priority robots
and executes the corresponding strategy {32–46}. Then, the
robot monitors potential conflicts with lower priority robots
and executes the corresponding strategy {47–55}. Finally, all
robots have a collision-free and deadlock-free path, and each
robot updates sstart(i) to reflect the current vertex of the robot and
makes one transition along the path {64–67}.

In the pseudocode, we have included a comment on how
the robot can detect there is no path {65} but do not prescribe
what it should do in this case. For the goal-directed navigation
problem in unknown static terrain, if there is no path because
of obstacles, the robot should stop and announce there is no
path [50]. However, if a robot cannot find the path due to the
AUV (e.g., robots are in a narrow passage or corner), then it
should stop moving temporarily and wait for the next iteration
to update the path.

Figure 41 displays a general flowchart of a robot Ri in the
MRS that is executed in the implementation. The robots first
plan their initial paths without considering other robots. Then,
the conflict avoidance strategy between robots is implemented
when the robot moves along its original path. Before robot Ri
moves to the next vertex, it checks whether there is a conflict

with the other robots in order of priority from high to low. If
there is a conflict, MR-D* Lite sets the AUV for Ri and then
replans its path. After all other robots are checked, robot Ri
moves one step and then repeats the procedure until it even-
tually reaches the goal coordinates.

3.4 Example

We now step through the example of Fig. 1 to show the
operation of MR-D* Lite. Figure 42 (a) and (b) show the
heuristics of R1’s and R2’s traversable cells, which ap-
proximate the distance from a cell to the start cell with the
maximum absolute differences of the x and y coordinates
of both cells. Figure 42 (c)-(l) shows the g-values and rhs-
values of the traversable cells. The start cells of R1 and
R2 are C1 and E2, and the goal cells are C5 and A2. The
cell with a bold border is the current cell of the robot.
Figure 42 (c) and (d) show the values after the first call
Initialize(1) and Initialize(2). Figure 42 (e) and (f) show
the values after the first call ComputeShortestPath(1) and
ComputeShortestPath(2). The robot follows the path from
the start to the goal cell by always moving from the cur-
rent vertex s, starting at the start cell, to any successor that

Y

Start

Ri moves one step

Ri is

at the goal

vertex

Ri stops moving

End

Initial path based

on D* Lite

N

Set the AUV for Ri

Replan Ri’s path

There are

Unchecked

robots

Ri is conflicting

with Rh

Y

N

Y

N

Fig. 41 Path planning of a robot (Ri) in MRS, where Rh indicates the
robot with the highest priority among the unchecked robots

441Prioritized planning algorithm for multi-robot collision avoidance based on artificial untraversable vertex

minimizes c(s, s’) + g(s’) (i.e., the rhs-value in Fig. 42)
until the goal cell is reached. Thus, as shown in Fig. 42
(e) and (f), the original path of R1 is C1 – C2 – C3 – C4 –
C5, and the original path of R2 is E2 – D2 – C2 – B2 –
A2. Therefore, the robots are likely to collide at C2. After
the first call UpdatePath(1) and UpdatePath(2), R1’s path
remains unchanged, but R2’s path changes, as shown in

Fig. 42 (h). Each robot then follows the path from its
current cell to the goal cell. Therefore, R1 moves the first
step to C2, and R2 moves the first step to D2. Before the
robots move the second step, MR-D* Lite calls
UpdatePath(1) and UpdatePath(2) again, and the previous
AUVs are cleared. The path of the robot after the first
replanning no longer conflicts. However, the vertices

Fig. 42 Operation of MR-D* Lite. (a) The heuristics of R1’s traversable
cells. b The heuristics of R2’s traversable cells. c Initialization of R1. d
Initialization of R2. e R1’s original path. f R2’s original path. g R1’s path
after the first call UpdatePath(1). h R2’s path after the first call

UpdatePath(2). i R1’s path after the second call UpdatePath(1). j R2’s
path after the second call UpdatePath(2). k R1’s path after the third call
UpdatePath(1). l R2’s path after the third call UpdatePath(2)

442 H. Li et al.

where the robots are located are set as each other’s AUV,
as shown in Fig. 42 (i) and (j), because they are adjacent.
The paths of robots remain unchanged, and R1 and R2
move to C3 and C1, respectively. Before the robots move
the third step, MR-D* Lite calls UpdatePath(1) and
UpdatePath(2) for the third time. The previous AUVs
are cleared, and no new AUVs are set. Each robot follows
its remaining path from the current cell to the goal cell
without observing other conflicts or obstacles and thus
without changing the g-values and rhs-values.

4 Experimental results

We tested MR-D* Lite in experiments run on a Xeon E5
computer at 2.10 GHz with 16 Gb of RAM. The priority of
the robots is R1 > R2 > R3 > R4 > R5. We assume that each
robot occupies a vertex in the grid map, and it takes the same
time for a robot to move from the current vertex to the next
vertex. As shown in Fig. 43, the green and red squares are the
start vertex and goal vertex of a robot, and the red and green
lines are the trajectories of R1 and R2, respectively. The

Fig. 42 (continued)

443Prioritized planning algorithm for multi-robot collision avoidance based on artificial untraversable vertex

yellow square is the vertex where the trajectories overlap. The
experimental results in Fig. 43 correspond to the four cases of
CST1 in Fig. 4.

The experimental results in Fig. 44 correspond to the eight
cases of CST2 in Fig. 5. Note that in some cases, becauseMR-
D* Lite gives robots the ability to deal with potential conflict
scenarios in advance (taking Fig. 44 (a) as an example), the
robot does not reach the position in Fig. 5 (a).

For CST3, CST4, and CST5, many scenarios correspond to
the eight moving directions of the higher priority robot. Due to
symmetry, we only list the experimental results when the
higher priority robot R1 moves north and northeast, where
the simulation results in Figs. 45 and 46 correspond to CST3
in Figs. 6 and 7, the results in Figs. 47 and 48 correspond to
CST4 in Figs. 14 and 15, and the results in Figs. 49 and 50

correspond to CST5 in Figs. 22 and 26. The simulation results
in Figs. 43, 44, 45, 46, 47, 48, 49 and 50 show that MR-D*
Lite can successfully resolve the conflict scenario mentioned
in Section 3.

Experiments are conducted withmore robots to validate the
flexibility of the proposed algorithm. Figure 51 shows the
conflict avoidance trajectories of the three robots, that is, R1
(red line), R2 (green line), and R3 (blue line).

Figure 52 shows the conflict avoidance trajectories of four
robots, that is, R1 (red line), R2 (green line), R3 (blue line),
and R4 (white line), where Fig. 52 (a) is the experimental
result of the scenario shown in Fig. 38 (a).

Figure 53 shows the conflict avoidance trajectories of five
robots: R1 (red line), R2 (green line), R3 (blue line), R4 (white
line), and R5 (magenta line). The experimental results in Figs.

01
9

8
7

6
5

4
3

2
1 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1 1 2 3 4 5 6 7 8 9 10

(a) (b) (c) (d)

01
9

8
7

6
5

4
3

2
1 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1 1 2 3 4 5 6 7 8 9 10

(e) (f) (g) (h)

Fig. 44 Experiment results of CST2

01
9

8
7

6
5

4
3

2
1 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1 1 2 3 4 5 6 7 8 9 10

(a) (b) (c) (d)

Fig. 43 Experiment results of CST1

444 H. Li et al.

51-53 show thatMR-D* Lite can successfully avoid collisions
with obstacles and other robots. Figures 51 (a), 52 (a), and 53
(a) show that the algorithm can solve the problem of many
robots being concentrated at a single choke vertex.

We compare MR-D* Lite against three other MRPP algo-
rithms: FIS, APF, and HPP [46]. As shown in Fig. 54, the
experimental environment is a two-dimensional space of
100 × 100 rectangle, where the term Si denotes the start

01
9

8
7

6
5

4
3

2
1 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

1 2 3 4 5 6 7 8 9 10

(a) (b) (c d)

01
9

8
7

6
5

4
3

2
1

1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

1 2 3 4 5 6 7 8 9 10
01

9
8

7
6

5
4

3
2

1
1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

1 2 3 4 5 6 7 8 9 10

(e) (f) (g

()

() h)

Fig. 45 Experiment results of CST3 when R1 moves north

01
9

8
7

6
5

4
3

2
1 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

(a) (b) (c) (d)

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

(e) (f) (g) (h)

Fig. 46 Experiment results of CST3 when R1 moves northeast

445Prioritized planning algorithm for multi-robot collision avoidance based on artificial untraversable vertex

position of Ri and Gi denotes the target position. Table 2 lists
the coordinates of the start position and goal position of
robots.

The performance of the experimental results is first ana-
lyzed in terms of trajectory distance, by which we can mini-
mize energy and time consumption. The MR-D* Lite

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10
(a) (b) (c) (d)

Fig. 47 Experiment results of CST4 when R1 moves north

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

(a) (b) (c) (d)

Fig. 48 Experiment results of CST4 when R1 moves northeast

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

(a) (b) (c)

Fig. 49 Experiment results of
CST5 when R1 moves north

01
9

8
7

6
5

4
3

2
1 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

01
9

8
7

6
5

4
3

2
1

 1 2 3 4 5 6 7 8 9 10

(a) (b) (c) (d)

Fig. 50 Experiment results of CST5 when R1 moves northeast

446 H. Li et al.

(a b)

(c

()

() d)

Fig. 51 Collision avoidance
trajectories of three robots

)b()a(

)d()c(

Fig. 52 Collision avoidance
trajectories of four robots

447Prioritized planning algorithm for multi-robot collision avoidance based on artificial untraversable vertex

(a b)

(c

()

() d)

Fig. 53 Collision avoidance
trajectories of five robots

G1

S1

S2
G2

S3G3

S4

G4

S5

G5

G1

S1

S2
G2

S3G3

S4

G4

S5

G5

(a) (b)

G1

S1

S2
G2

S3G3

S4

G4

S5

G5

G1

S1

S2
G2

S3G3

S4

G4

S5

G5

(c) (d)

Fig. 54 Trajectories of five robots
under different algorithms. aMR-
D* Lite. b FIS. c APF. d HPP

448 H. Li et al.

algorithm first plans a globally optimal path for each robot and
modifies the established path when a potential conflict be-
tween the robots is detected. The robots using the other three
algorithms plan their paths while moving according to the
surrounding environment’s information. Therefore, the robots
using MR-D* Lite can typically generate a shorter trajectory,
which is reflected in Table 3.

One of the goals of MRPP is to ensure that any action
taken to avoid a collision with another robot in real-time
does not adversely affect the optimal planned route be-
yond the minimum extra effort required to avoid the
collision [51]. Thus, the performance of the experimental
results is analyzed in terms of the path deviation. Table 4
lists the robot’s path deviation under different algo-
rithms, which is the trajectory distance minus the linear
distance between the initial position and the target posi-
tion. In MR-D* Lite, the method to resolve conflicts
between robots is replanning the path based on the
AUV. The other three algorithms mainly resolve con-
flicts by generating a repulsive force between robots.

Therefore, as shown in Table 4, the other three methods
may produce more unnecessary detours.

Table 5 lists the computational time of different algorithms
to solve the conflicts between robots. MR-D* Lite avoids
interrobot collisions and deadlocks by bypassing the AUV,
and other algorithms need to make the robot escape the
predefined danger zone to address the problem. The AUV
contains up to 11 vertices, and the danger zone may contain
a large number of vertices. Therefore, MR-D* Lite takes less
time for robots to resolve conflicts.

5 Conclusions

This paper introduces a multi-robot version of a well-known
single-robot path planning algorithm D* Lite. The proposed
method resolves collisions and deadlocks between multiple
robots while maintaining the robustness and real-time perfor-
mance of the D* Lite algorithm. Thus, MR-D* Lite can toler-
ate inaccuracies in a map and fast replan a conflict-free path.

Table 2 Initial and target position
of robots R1 R2 R3 R4 R5

Initial position (78, 50) (10, 35) (60, 35) (95, 84) (40, 20)

Target position (78, 80) (50, 35) (20, 35) (43, 32) (10, 50)

Table 3 Trajectory distance
under different algorithms R1 R2 R3 R4 R5

MR-D* Lite 30.0000 40.0000 40.8284 74.1249 43.0122

FIS 30.8691 40.8184 40.9980 79.5884 48.6552

APF 33.8221 40.5776 40.9603 80.9528 43.5109

HPP 33.5611 40.4810 40.8907 81.2056 44.9653

Table 4 Path deviation under
different algorithms R1 R2 R3 R4 R5

MR-D* Lite 0.0000 0.0000 0.8284 0.5858 0.5858

FIS 0.8691 0.8184 0.9980 6.0493 6.2288

APF 3.8221 0.5776 0.9603 7.4137 1.0845

HPP 3.5611 0.4810 0.8907 7.6665 2.5389

Table 5 Time consumption of
resolving conflicts, in seconds (s) Algorithm MR-D* Lite FIS APF HPP

Time 0.0051 9.079612 0.3361 10.67061

449Prioritized planning algorithm for multi-robot collision avoidance based on artificial untraversable vertex

The experimental results show that MR-D* Lite outperforms
the remaining three algorithms in path deviation and
replanning time. However, in this paper, the conflict is not
detected until it almost happens, so sometimes the robot needs
a large steering angle to avoid the collision. In the future,
further efforts are needed to solve the problem.

Authors’ contributions The study is conceived and designed byHaodong
Li. The first draft of the manuscript was written by Haodong Li and Tao
Zhao, and revised by Tao Zhao and Songyi Dian. All authors read and
approved the final manuscript.

Funding This work is supported by the Sichuan Science and Technology
Program (2020YFG0115) and Chengdu Science and Technology
Program (2019-YF05-00958-SN).

Data availability All data, models generated or used during the study are
available from the corresponding author by request.

Code availability All codes generated or used during the study are avail-
able from the corresponding author by request.

Declarations

Conflict of interest The authors have no conflicts of interest to declare
that are relevant to the content of this article.

References

1. Chopra S, Notarstefano G, Rice M, Egerstedt M (2017) A distrib-
uted version of the hungarian method for multirobot assignment.
IEEE Trans Robot 33(4):932–947

2. Feng Z, Sun C, Hu G (2016) Robust connectivity preserving ren-
dezvous of multirobot systems under unknown dynamics and dis-
turbances. IEEE Trans Control Netw Syst 4(4):725–735

3. Rizk Y, Awad M, Tunstel EW (2019) Cooperative heterogeneous
multi-robot systems: a survey. ACM Comput Surv 52(2):1–31

4. Roldán JJ, Garcia-Aunon P, Garzón M, De León J, Del Cerro J,
Barrientos A (2016) Heterogeneous multi-robot system for map-
ping environmental variables of greenhouses. Sensors 16(7):1018

5. Das PK, Jena PK (2020) Multi-robot path planning using improved
particle swarm optimization algorithm through novel evolutionary
operators. Appl Soft Comput 106312

6. Nath A, Arun AR, Niyogi R (2019) A distributed approach for road
clearance with multi-robot in urban search and rescue environment.
Int J Intell Robot Appl 3(4):392–406

7. Di Nuovo A, Broz F, Wang N, Belpaeme T, Cangelosi A, Jones R,
Dario P (2018) The multi-modal interface of robot-era multi-robot
services tailored for the elderly. Intell Serv Robot 11(1):109–126

8. Nagavarapu SC, Vachhani L, Sinha A (2016) Multi-robot graph
exploration and map building with collision avoidance: a
decentralized approach. J Intell Robot Syst 83(3):503–523

9. Dai X, Jiang L, Zhao Y (2016) Cooperative exploration based on
supervisory control of multi-robot systems. Appl Intell 45(1):18–29

10. Li Z, Barenji AV, Jiang J, Zhong RY, Xu G (2020) A mechanism
for scheduling multi robot intelligent warehouse system face with
dynamic demand. J Intell Manuf 31(2):469–480

11. Viet HH, Dang VH, Choi S, Chung TC (2015) BoB: an
online coverage approach for multi-robot systems. Appl
Intell 42(2):157–173

12. Liu Y, Nejat G (2016) Multirobot cooperative learning for semiau-
tonomous control in urban search and rescue applications. J Field
Robot 33(4):512–536

13. Gans NR, Rogers JG (2021) Cooperative multirobot systems for
military applications. Curr Robot Rep:1–7

14. Kantaros Y, Zavlanos MM (2016) Global planning for multi-robot
communication networks in complex environments. IEEE Trans
Robot 32(5):1045–1061

15. Schuster MJ, Schmid K, Brand C, Beetz M (2019) Distributed
stereo vision-based 6D localization and mapping for multi-robot
teams. J Field Robot 36(2):305–332

16. Serpen G, Dou C (2015) Automated robotic parking systems: real-
time, concurrent andmulti-robot path planning in dynamic environ-
ments. Appl Intell 42(2):231–251

17. Fazlollahtabar H, Hassanli S (2018) Hybrid cost and time path
planning for multiple autonomous guided vehicles. Appl Intell
48(2):482–498

18. Paden B,ČápM, Yong SZ, Yershov D, Frazzoli E (2016) A survey
of motion planning and control techniques for self-driving urban
vehicles. IEEE Trans Intell Vehic 1(1):33–55

19. Deplano D, Franceschelli M, Ware S, Rong S, Giua A (2020) A
discrete event formulation for multi-robot collision avoidance on
pre-planned trajectories. IEEE Access 8:92637–92646

20. Zhou Y, Hu H, Liu Y, Ding Z (2017) Collision and deadlock
avoidance in multirobot systems: a distributed approach. IEEE
Trans Syst Man Cyber Syst 47(7):1712–1726

21. Tran VP, Garratt MA, Petersen IR (2020) Switching formation
strategy with the directed dynamic topology for collision avoidance
of a multi-robot system in uncertain environments. IET Control
Theory & Applications 14(18):2948–2959

22. Oral T, Polat F (2015) MOD* lite: an incremental path planning
algorithm taking care of multiple objectives. IEEE Trans Cybern
46(1):245–257

23. Zhou Y, Hu H, Liu Y, Lin SW, Ding ZH (2020) A distributed
method to avoid higher-order deadlocks in multi-robot systems.
Automatica 112:108706

24. Liu F, Narayanan A (2011) Real time replanning based on a* for
collision avoidance in multi-robot systems, In 2011 8th
International Conference on Ubiquitous Robots and Ambient
Intelligence (URAI), pp. 473–479

25. Precup RE, Voisan EI, Petriu EM, Tomescu ML, David RC,
Szedlak-Stinean AI, Roman RC (2020) Grey wolf optimizer-
based approaches to path planning and fuzzy logic-based tracking
control for mobile robots. Int J Comput Commun Control 15(3)

26. Wei C, Hindriks KV, Jonker CM (2016) Altruistic coordination for
multi-robot cooperative pathfinding. Appl Intell 44(2):269–281

27. Chen L, Zhao Y, Zhao H, Zheng B (2021) Non-communication
decentralized multi-robot collision avoidance in grid map
workspace with double deep Q-network. Sensors 21(3):841

28. Yu J, LaValle SM (2016) Optimal multirobot path planning on
graphs: complete algorithms and effective heuristics. IEEE Trans
Robot 32(5):1163–1177

29. Sharon G, Stern R, Felner A, Sturtevant NR (2015) Conflict-based
search for optimal multi-agent pathfinding. Artif Intell 219:40–66

30. Sharon G, Stern R, Goldenberg M, Felner A (2013) The increasing
cost tree search for optimal multi-agent pathfinding. Artif Intell
195:470–495

31. Wagner G, Choset H (2015) Subdimensional expansion for
multirobot path planning. Artif Intell 219:1–24

32. Long P, Fan T, Liao X, Liu W, Zhang H, Pan J (2018) Towards
optimally decentralized multi-robot collision avoidance via deep
reinforcement learning, In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 6252–6259

450 H. Li et al.

33. He W, Qi X, Liu L (2021) A novel hybrid particle swarm optimi-
zation for multi-UAV cooperate path planning. Appl Intell:1–15

34. Das PK, Behera HS, Jena PK, Panigrahi BK (2016) Multi-
robot path planning in a dynamic environment using improved
gravitational search algorithm. J Electric Syst Inform Technol
3(2):295–313

35. Hidalgo-Paniagua A, Vega-Rodríguez MA, Ferruz J, Pavón N
(2017) Solving the multi-objective path planning problem in
mobile robotics with a firefly-based approach. Soft Comput
21(4):949–964

36. Precup RE, Petriu EM, Radae MB, Voisan EI, Dragan F (2015)
Adaptive charged system search approach to path planning for mul-
tiple mobile robots. IFAC-PapersOnLine 48(10):294–299

37. Zhang Y, Zhnag YN, Liu XD (2019) Path planning of multiple
industrial mobile robots based on ant colony algorithm, In
Proceedings of 2019 16th International Computer Conference
on Wavelet Active Media Technology and Information
Processing, pp. 406–409

38. Contreras-Cruz MA, Lopez-Perez JJ, Ayala-Ramirez V (2017)
Distributed path planning for multi-robot teams based on artificial
bee colony, In Proceedings of 2017 IEEE Congress on
Evolutionary Computation (CEC), pp. 541–548

39. Jose K, Pratihar DK (2016) Task allocation and collision-free path
planning of centralized multi-robots system for industrial plant in-
spection using heuristic methods. Robot Auton Syst 80:34–42

40. Park H, Hutchinson SA (2017) Fault-tolerant rendezvous of
multirobot systems. IEEE Trans Robot 33(3):565–582

41. Dewangan RK, Shukla A, Godfrey WW (2017) Survey on priori-
tized multi robot path planning, In 2017 IEEE international confer-
ence on smart technologies and management for computing, com-
munication, controls, energy and materials (ICSTM), pp. 423–428)

42. Matoui F, Boussaid B, Abdelkrim MN (2019) Distributed path
planning of a multi-robot system based on the neighborhood artifi-
cial potential field approach. Simulation 95(7):637–657

43. Ma X, Jiao Z, Wang Z, Panagou D (2016) Decentralized prioritized
motion planning for multiple autonomous uavs in 3d polygonal
obstacle environments, In 2016 International Conference on
Unmanned Aircraft Systems (ICUAS), pp. 292–300

44. ČápM, Novák P, Kleiner A, SeleckýM (2015) Prioritized planning
algorithms for trajectory coordination of multiple mobile robots.
IEEE Trans Autom Sci Eng 12(3):835–849

45. Yakovlev K, Andreychuk A (2017) Any-angle pathfinding for
multiple agents based on SIPP algorithm. Proceedings of the
International Conference on Automated Planning and
Scheduling 27(1)

46. Zhao T, Li H, Dian S (2020) Multi-robot path planning based on
improved artificial potential field and fuzzy inference system. J
Intell Fuzzy Syst 39(5):7621–7637

47. Nazarahari M, Khanmirza E, Doostie S (2019) Multi-objective
multi-robot path planning in continuous environment using an en-
hanced genetic algorithm. Expert Syst Appl 115:106–120

48. Reyes NH, Barczak AL, Susnjak T, Jordan A (2017) Fast and
smooth replanning for navigation in partially unknown terrain: the
hybrid fuzzy-D* lite algorithm. In: Robot intelligence technology
and applications 4. Pp. 31–41

49. Liu F, Narayanan A (2014) Collision avoidance and swarm robotic
group formation. International Journal of Advanced Computer
Science 4(2):64–70

50. Koenig S, Likhachev M (2005) Fast replanning for navigation in
unknown terrain. IEEE Trans Robot 21(3):354–363

51. Han SD, Yu J (2020) Ddm: fast near-optimal multi-robot path plan-
ning using diversified-path and optimal sub-problem solution data-
base heuristics. IEEE Robot Autom Lett 5(2):1350–1357

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Haodong Li received his B.S. degree from Zhengzhou University in
2019. Now he is pursuing the M.S. degree in control engineering from
Sichuan University, China. His research interests include fuzzy control,
path planning, and their applications.

Tao Zhao received his B.S. degree in mathematics and applied mathe-
matics and Ph.D. degree in systems engineering from Southwest Jiaotong
University, Chengdu, China, in 2010 and 2015, respectively. He is cur-
rently an associate professor in the College of Electrical Engineering,
Sichuan University. His current research interests include type-2 fuzzy
set theory and system design, rough sets, and intelligent control.

Songyi Dian received his Bachelor and MS degrees of Control
Engineering from Sichuan University, China in 1996 and 2002, respec-
tively. He received his Ph.D degree in Nanomechanics Engineering from
Tohoku University, Japan in 2009. He is currently a professor in the
College of Electrical Engineering, Sichuan University. His current re-
search interests include advanced control methods and intelligent signal
processing, power-electronics system and its control, motion control and
robotic control.

451Prioritized planning algorithm for multi-robot collision avoidance based on artificial untraversable vertex

	Prioritized planning algorithm for multi-robot collision avoidance based on artificial untraversable vertex
	Abstract
	Introduction
	Preliminaries
	Related works
	Problem definition
	D* Lite

	Methodology
	Conflict types
	Artificial untraversable vertex
	Multi-robot D* lite
	Example

	Experimental results
	Conclusions
	References

