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Abstract
Stochastic multi-armed bandit (MAB) mechanisms are widely used in sponsored search auctions, crowdsourcing, online
procurement, etc. Existing stochastic MAB mechanisms with a deterministic payment rule, proposed in the literature,
necessarily suffer a regret of Ω(T 2/3), where T is the number of time steps. This happens because the existing mechanisms
consider the worst case scenario where the means of the agents’ stochastic rewards are separated by a very small amount
that depends on T . We make, and, exploit the crucial observation that in most scenarios, the separation between the agents’
rewards is rarely a function of T . Moreover, in the case that the rewards of the arms are arbitrarily close, the regret contributed
by such sub-optimal arms is minimal. Our idea is to allow the center to indicate the resolution, Δ, with which the agents
must be distinguished. This immediately leads us to introduce the notion of Δ-Regret. Using sponsored search auctions as a
concrete example (the same idea applies for other applications as well), we propose a dominant strategy incentive compatible
(DSIC) and individually rational (IR), deterministic MAB mechanism, based on ideas from the Upper Confidence Bound
(UCB) family of MAB algorithms. Remarkably, the proposed mechanism Δ-UCB achieves a Δ-regret of O(log T ) for
the case of sponsored search auctions. We first establish the results for single slot sponsored search auctions and then
non-trivially extend the results to the case where multiple slots are to be allocated.

Keywords Multi-armed bandit mechanism · DSIC · Deterministic

1 Introduction

Multi-armed bandit (MAB) algorithms [7] are now widely
used to model and solve problems where decisions are
required to be made sequentially at every time step and there
is an exploration - exploitation dilemma. This dilemma
is the tradeoff that the planner faces in deciding whether
to explore arms that may yield higher rewards in the
future or exploit the arms that have already yielded high
rewards in the past. If the rewards are generated from fixed
distributions with unknown parameters, the setting goes by
the name stochastic MAB [7]. Popular algorithms in the
stochastic MAB setting include Upper Confidence Bound
(UCB) based algorithms [2] and Thompson Sampling [1]
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based algorithms. These algorithms incur O(log T ) regret
where T is the total number of time steps. MAB algorithms
are well studied with several variants [8, 9, 22, 23] and
applications [11, 29–31].

When the arms are controlled by strategic agents, we
need to tackle additional challenges. Mechanism design
[26–28] has been applied in this context, leading to
stochastic MAB mechanisms [24]. The design of such
mechanisms requires ideas from online learning as well
as mechanism design, both of which are increasingly
gaining importance in the field of artificial intelligence.
An immediate application of stochastic MAB mechanisms
is in sponsored search auctions (SSA). In SSA, there are
several advertisers who wish to display their ads along
with the search results generated in response to a query
from an internet user. In the standard model, an advertiser
has only one ad to display. We use the terms agent, ad,
and advertiser interchangeably. There are two components
that are of interest to the planner or the search engine,
(1) stochastic component: click through rate (CTR) of the
ads or the probability that a displayed ad receives a click
(2) strategic component: valuation of the agent for every
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click that the agent’s ad receives. The search engine would
seek to allocate a slot to an ad which has the maximum
social welfare (product of click through rate and valuation).
However neither the CTRs nor the valuations of the agents
are known. This calls for a learning algorithm to learn
the stochastic component (CTR) as well as a mechanism
to elicit the strategic component (valuation). This problem
could become much harder as the agents may manipulate
the learning process [4, 19] to gain higher utilities.

For single slot SSA, it is known that any deterministic
MAB mechanism (that is, a MAB mechanism with
a deterministic allocation and payment rule) suffers a
regret [7, 12] of Ω(T 2/3) [4]. Furthermore, there exists
a deterministic MAB mechanism with regret matching
the theoretical lower bound [4] and also satisfies ex-
post truthfulness, the strongest notion of truthfulness (a
posteriori to the clicks). When a more relaxed notion of
truthfulness is targeted (truthfulness in expectation of the
clicks), the regret guarantee improves to O(T 1/2) [3].
Truthfulness in expectation has also been achieved in [16,
17]. The regret can be further improved when randomized
mechanisms are used and in fact the regret in this space
is O(log T ) [3, 21]. However, the high variance that is
inevitable to the payments in randomized mechanisms is
a serious deterrent to the use of randomized mechanisms.
Towards reducing the variance, [15] propose a MAB
mechanism using Thompson sampling [1]. However the

notion of truthfulness achieved is ‘within period DSIC’ and
with high probability. Thus again, only a weaker notion of
truthfulness is achieved compared to ex-post truthfulness.

In this work, we observe that the characterization
provided by Babaioff et al. [4] targets the worst case
scenario. In particular, in the lower bound proof of regret
of Ω(T 2/3), they consider an example scenario where the
actual separation, Δ̄, between the expected rewards of the
arms is a function of T . We note that when a similar example
(Δ̄ = T −1) is used with the popular UCB algorithm [2],
the number of pulls of sub-optimal arms could be linear,
even in the non-strategic case. Hence, a dependence of Δ̄ on
T is severely restrictive for the case when the rewards are
stochastic, even when the arms are non-strategic. We make
the observation that Δ̄ is in most situations independent
of T . This motivates our main idea in this paper, which
is to provide the planner an option to specify a parameter
Δ, which is the tolerance or distinguishing level for sub-
optimal arms. The understanding is that any arm that is
within Δ from the best arm will not cause any additional
regret to the planner. For example, the best arm may
yield expected reward of 6.000 while a sub-optimal arm
may yield a very close expected reward of 5.999. The
planner is typically indifferent to such small differences.
Traditional exploration-separated schemes end up spending
a huge number of exploration rounds in order to distinguish
between these two closely separated arms.

Another scenario that the planner might be interested
in is to ensure that over T rounds, the cumulative loss
from choosing sub-optimal arms stays within an overall
factor of τ . To achieve this, the tolerance level Δ could
be set to a value Δ = τ/T . The notion of Δ tolerance
will require an appropriate definition of regret, which
we call Δ-regret. Focussing on Δ-regret instead of the
usual notion of regret helps us to reduce the number of
exploration rounds significantly from O(T 2/3) to O(log T ).
We propose an exploration separated mechanism based

on UCB, which achieves a Δ-regret of O(log T ). This
mechanism can be readily applied in several settings such as
SSA, crowdsourcing, and online procurement. For the rest
of the paper, however, we use SSA as a running example.

Contributions:

(1) We make the crucial observation that in most MAB
scenarios, the separation between the agents’ rewards
is rarely a function of T (the number of time steps).
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Moreover, in the case that the rewards of the arms are
arbitrarily close, the regret contributed by such sub-
optimal arms is negligible. We exploit this observation
to allow the center to specify the resolution, Δ, with
which the agents must be distinguished. We introduce
the notion of Δ-Regret to formalize this regret. The
notion of regret used in state of the art does not permit
a reduction in the number of exploratory rounds of
sub-optimal arms whereas the more flexible notion of
Δ-regret that we introduce supports a reduction in the
number of mandatory pulls of the sub-optimal arms.

(2) Using sponsored search auctions as a concrete example,
we propose a dominant strategy incentive compatible
(DSIC) and individually rational (IR) MAB mecha-
nism with a deterministic allocation and payment rule,
based on ideas from the UCB family of MAB algo-
rithms. The proposed mechanism Δ-UCB achieves a
Δ-regret of O(log T ) for the case of single slot spon-
sored search auctions. The truthfulness achieved by
Δ-UCB is a posteriori to the click realizations and
is the strongest form of truthfulness. This loss of
O(log T ) would not have been possible otherwise if
the traditional notions of regret were used. In partic-
ular the number of exploration rounds in Δ-UCB is
O(log T ) as opposed to the O(T 2/3) rounds which
were mandatory so far for ensuring a truthful, deter-
ministic mechanism. Thus we now enable the planner
to be relieved from this huge number of exploration
rounds. We also show that a lower bound on the
Δ-regret suffered by any mechanism is Ω(log T ).

(3) We non-trivially extend the above results to the
case where multiple slots are to be allocated. Here
again, our mechanism is DSIC, IR, and requires sub-
optimal arms to be explored for only O(log T ) rounds.
Therefore a Δ-regret of O(log T ) is achieved for the
multiple slot scenario as well.

Our results are generic to stochastic MAB mechanisms
and can be applied to other popular applications such as
crowdsourcing and online procurement.

2 Relevant work

In the area of MAB mechanisms, a lot of work has been
done in sponsored search auctions. Babaioff et al. [4]
provide a characterization of truthful MAB mechanisms,
wherein the objective is to maximize social welfare. They
introduce the notion of influential rounds. The influential
rounds are the rounds where the parameters of reward
distributions (CTRs) are learnt. One of the characterizations
of truthful deterministic mechanisms is that the allocation
must be exploration separated, that is, in such influential
rounds, the allocation must not depend on the bids of the

agents. The allocation is also required to be point wise
monotone. One of the main results of their paper is that any
truthful, deterministic MAB mechanism incurs a regret of
Ω(T 2/3). In particular, their analysis holds an adversarial
nature, as the sub-optimality between the best and second
best arm is chosen as if by an adversary, to be proportional to
T −1/3. Such a choice ensures a huge regret for any truthful,
deterministic mechanism. They also provide a mechanism
which incurs a matching upper bound regret of O(T 2/3).
Devanur et al. [10] concurrently provide similar bounds on
the regret when the objective is revenue maximization rather
than social welfare maximization.

All the above results pertain to the setting of single
slot auctions where there is a single slot for which the
agents compete. In the generalization of this setting multiple
slots are reserved for ads. This setting is more challenging
as every slot is not identical and some slots are more
prominent than the others. MAB mechanisms have also
been extended to the multiple slot setting [14] in line
with the characterization in [4]. Hence, a similar regret of
O(T 2/3) on the social welfare has been attained here as
well. Similar results are also stated in the characterisation
provided in [32].

MAB mechanisms have also been proposed in the con-
text of crowdsourcing [6]. Some of these mechanisms incur a
regret of O(log T ). This is rendered possible due to the spe-
cific nature of the problem in hand. In particular, Bhat et al.
[5] look at divisible tasks. Jain et al. [20] look at determinis-
tic mechanisms where a block of tasks is allocated to each
agent and provide a weaker notion of truthfulness.

The lower bound of both of social welfare regret as well as
regret in the revenue ofΩ(T 2/3) have influenced subsequent
research to follow similar assumptions and thereby obtain
a similar regret. However, we show in this work that it is
indeed possible to design a deterministic mechanism which
attains logarithmic regret and is also truthful in the dominant
strategy incentive compatible (DSIC) sense [25]. DSIC, of
course, is the most preferred form of truthfulness [26]. This
work opens up the possibility for a planner to move away
from the worst case scenario to a more realistic scenario.
We enable the planner to specify a resolution parameter for
distinguishing the arms, introduce the notion of Δ-regret
and thereafter propose a mechanism that ensures that the
number of exploration rounds and hence the regret suffered
is onlyO(log T ) instead of the expensiveΩ(T 2/3) available
currently in state of the art. We summarize the contrast
between our work and the state of the art in Table 1.

3 Themodel: Single slot SSA

We now describe our SSA setting. For ease of reference, our
notations are provided in Table 2. Let K be the number of
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Table 1 Comparison of our
results with state of the art Babaioff et al. [4] Our work

Loss studied Regret Δ-regret

Additional parameters None Δ: tolerance specified by the planner

Mechanism properties DSIC, deterministic, exploration
separated, O(T 2/3) exploration
rounds

DSIC, deterministic, exploration
separated, O(log T ) exploration
rounds

Upper bound on loss O(T 2/3) O(log T )

Lower bound on loss Ω(T 2/3) Ω(log T )

agents or arms. We denote the set of arms by [K]. Each of
the K arms, when pulled, gives rewards from distributions
with unknown parameters. We assume here, that the form

Table 2 Notations for the single slot SSA setting

Symbol Description

K , [K] No. of agents and agent set

μi CTR of agent i

θi Valuation of agent i for each click

Wi Social welfare when agent i

is allocated

ρi(t) Click realization of agent i at
time t

θmax Maximum valuation over all
agents = maxi θi

bi Bid of agent i

b Bid profile of all agents

b−i Bid profile of all agents except agent i

Ni,t No. of times agent i has been
selected till time t

A(b, ρ, t) Allocation at time t for bid
profile b and click realization ρ

i∗ Agent with maximum social welfare.
Ideally i∗ must be allocated at every
time step

W∗ Social welfare when agent i∗ is
allocated

Δ Input parameter by center to indicate
the level at which the agents must be
distinguished

SΔ Set of agents whose social wel-
fare is less than Δ away from i∗.
These agents do not contribute to
Δ-regret.

μ̂+
i,t UCB index corresponding to μi

at time t

μ̂−
i,t LCB index corresponding to μi

at time t

μ̂i,t Empirical CTR of agent i estimated
from samples up to time t

P t
i Payment charged to agent i if he

is allocated a slot at time t and he
gets a click

of the distributions are known but the parameters of the
distributions are unknown. In SSA, the rewards of the arms
correspond to clicks. The clicks for the advertisements
are assumed to be generated from Bernoulli distributions
with parameters μ1, μ2, . . . , μK where μi is the CTR
or probability that advertisement i receives a click once
observed. The means μ1, . . . , μK are unknown.

A click realization ρ represents the click information of
every agent at all rounds, that is, ρi(t) = 1 if agent i

received a click in round t . In a round t , only the click
information of the allocated agent is revealed after the
completion of the round. Click information of all other
unallocated agents is never known to the planner.

The agents also have their valuations for each click they
receive. We work in the ‘pay per click’ setting where the
agent pays the search engine for each click received. Let
the true valuation of agent i be θi for a click. θi is a private
type of agent i and is never known to the learner. However
the agent is asked to bid his valuation. Let the bid of agent
i be bi . We denote by a vector b = (b1, . . . , bK) the bid
profile of all the agents. The central planner wants to ensure
that the agents bid their true valuations, that is bi must
be equal to θi . Assume that there is a single slot which
must be allocated to one of the K agents. We denote by
Wi the social welfare when agent i is allocated a slot, that
is, Wi = μiθi . The social welfare represents the expected
valuation of agent i per click. If the CTRs of the agents as
well as their valuations were known, the planner would have
selected the arm with the maximum social welfare, that is,
μiθi . However neither μi nor θi is known to the planner.
Assume θmax is the maximum valuation that any agent can
have and is common knowledge. The central agent wants to
allocate a single slot to one of the ads in such a way that the
net social welfare of the allocation is maximized.

A mechanism M = 〈A, P 〉 is a tuple containing
an allocation rule A and a payment rule P . At every
time step or round t , the allocation rule acts on a bid
profile b of the agents as well as click realization ρ and
allocates the slot to one of the K agents, say i. Then
A(b, ρ, t) = i. Alternatively we denote the indicator
variable . The payment rule
P t = (P t

1 , P
t
2 , . . . , P

t
K), where P t

i (b, ρ) is the payment to
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be made by agent i at time t upon receiving a click, when the
bids are b and for click realization ρ. As stated earlier ρi(t)

of the allocated agent alone is observed. Also note that the
allocation as well as payments in each round t only depends
on the click histories till that round.

Let i∗ be the arm with the largest social welfare, that
is, i∗ = argmax

i∈[K]
Wi . We denote the corresponding social

welfare as W∗ = maxi∈[K] Wi . We denote by It the agent
chosen at time t as a shorthand forA(b, ρ, t). For any given
Δ > 0, define the set SΔ = {i ∈ [K] : W∗ − Wi < Δ}. SΔ

denotes the set of all agents separated from the best arm i∗
with a social welfare less than Δ. These arms are therefore
indistinguishable for the center and they contribute zero to
the regret. Note that Δ is a parameter that the center fixes
based on the amount in dollars he is willing to tradeoff for
choosing sub-optimal arms, given he has only a fixed time
horizon T to his disposal. To capture this revised and more
practical notion of regret, we introduce the metric Δ-regret.
Formally,

The center may not want to invest a huge number of
exploration rounds (Ω(T 2/3) in state of the art) to perfectly
distinguish the arms that are arbitrarily close. Many a time,
the planner may instead be willing to allocate arms that are
at most Δ away from the best arm. The center therefore
suffers a regret only when an agent with a social welfare
greater than Δ away from W∗ is chosen. Δ-regret captures
this loss.

The goal of our mechanism is to select agents at every
round t to minimize the Δ-regret.

4 Ourmechanism:Δ-UCB

We are now ready to describe our mechanism Δ-UCB.
The idea in Δ-UCB is to explore all the arms in a round-
robin fashion for a fixed number of rounds. The number
of exploration rounds is fixed based on the desired Δ,
specified by the planner. At the end of exploration, with
high probability, we are guaranteed that the arms not in SΔ

are well separated from the best arm i∗ with respect to their
social welfare estimates. In the exploration rounds, agents
need not pay and these rounds are free.

Further on, for all the remaining rounds, the best arm as
per the UCB estimate of social welfare is chosen. However
in the exploitation rounds, the chosen agent pays an amount
for each click he receives. The amount to be paid by the

agent is fixed based on variant of the well known Vickrey
Clark Grove (VCG) scheme [33] known as weighted VCG
[28]. Note that no learning takes place in these rounds and
the UCB, LCB indices do not change thereafter. We present
our mechanism in Algorithm 1.

4.1 Properties ofΔ-UCB

Next we discuss the properties satisfied by Δ-UCB
regarding truthfulness and regret. Before that, we state a
few useful definitions which will help in understanding the
notion of truthfulness.

At any time step, every agent obtains some utility by
participating in the mechanism. This utility is a function
of his bid, valuation, bids of other agents and his click
realization. LetΘi denote the space of bids of agent i. b−i =
(b1, . . . , bi−1, bi+1, . . . , bK) is the bid profile containing
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bids of all agents except agent i. Let Θ−i denote the space
of bids of all agents other than agent i. Therefore Θ−i =
Θ1 × . . . , ×Θi−1 × Θi+1 × . . . × ΘK . We denote by
ui(bi, b−i , ρ, t; θi) the utility to agent i at time t when his
bid is bi , his valuation is θi , the bid profile of the remaining
agents is b−i and the click realization is ρ. All agents are
assumed to be rational and are interested in maximizing
their own utilities.

In our setting the utility to an agent i is computed as,

ui(bi , b−i , ρ, t; θi) = (θi − P t
i (b, ρ))Ai (bi , b−i , ρ, t)ρi(t) (2)

The idea behind the computation of the utility is as
follows. If an agent i does not receive an allocation (that is,
Ai (bi, b−i , ρ, t) = 0), his utility is also zero. He gets a non-
zero utility only if he receives an allocation. If he receives
an allocation and also a click (ρi(t) = 1), then his utility
is the difference between his valuation for the click and the
amount he has to pay to the search engine (θi − P t

i (b, ρ)).
If he does not receive a click (ρi(t) = 0), his utility is zero.

Definition 1 Dominant Strategy Incentive Compatible (DSIC)
[4]: A mechanism M = 〈A, P 〉 is said to be dominant
strategy incentive compatible if ∀i ∈ [K], ∀bi ∈ Θi , ∀b−i ∈
Θ−i , ∀ρ, ∀t, ui(θi, b−i , ρ, t; θi) ≥ ui(bi, b−i , ρ, t; θi).

Note that in the above definition, the truthfulness is
demanded a posteriori to even the click realization [14].
Hence it is the strongest notion of truthfulness. Examples
for weaker forms of truthfulness include those which take
expectation over click realizations.

Definition 2 Individually Rational (IR): A mechanism
M = 〈A, P 〉 is said to be individually rational if ∀i ∈ [K],
∀b−i ∈ Θ−i , ∀ρ, ∀t, ui(θi, b−i , ρ, t; θi) ≥ 0.

Theorem 1 Δ-UCB mechanism is dominant strategy
incentive compatible (DSIC) and individually rational (IR).

Proof We analyze the scenarios where an agent i bids his
true valuation and receives an allocation and also when he
does not. We show that in both these scenarios, bidding
his true valuation θi is indeed a best response strategy. We
only need to consider the exploitation rounds because in the
exploration rounds, every agent is allocated a fixed number
of rounds independent of his bids and these rounds are also
free for agents.

Case 1: Ai (θi , b−i , ρ, t) = 1
This implies that when the agent bids his

true valuation, he gets an allocation. Therefore
μ̂+

i,t θi > μ̂+
l,t bl for all the other agents

l. In particular, let agent j be such that
j = argmax

l∈[K]\{i}
μ̂+

l,t bl . The amount to be paid by

agent i is P t
i (θi, b−i , ρ) = μ̂+

j,t bj /μ̂
+
i,t . If he

receives a click then ui(θi, b−i , ρ, t; θi) = θi −
μ̂+

j,t bj /μ̂
+
i,t > 0.

Overbid: If agent i bids a value bi > θi , he con-
tinues to receive an allocation and his payment
is still the same, P t

i (bi, b−i , ρ) = μ̂+
j,t bj /μ̂

+
i,t .

Therefore his utility continues to be
ui(bi, b−i , ρ, t; θi) = θi − μ̂+

j,t bj /μ̂
+
i,t =

ui(θi, b−i , ρ, t; θi). Therefore he does not
benefit from an overbid.

Underbid: Suppose agent i bids a value bi < θi .

Case a: If bi is such that μ̂+
i,t bi < μ̂+

j,t bj ,
the he fails to get an allocation as
A(bi, b−i , ρ, t) = j �= i. Then the util-
ity to agent i is ui(bi, b−i , ρ, t; θi) =
0 < ui(θi, b−i , ρ, t; θi). Therefore he
clearly loses his utility by such an
underbid.

Case b: Suppose bi is such that μ̂+
i,t θi >

μ̂+
i,t bi > μ̂+

j,t bj . That is agent i

bids in such a way that he wins
the allocation even with an under-
bid. Then, if he gets a click, the
amount he must pay to the center is
P t

i (bi, b−i , ρ) = μ̂+
j,t bj /μ̂

+
i,t . There-

fore his utility ui(bi, b−i , ρ, t; θi) =
θi − μ̂+

j,t bj /μ̂
+
i,t = ui(θi, b−i , ρ, t; θi).

He obtains the same utility as a truthful
bid and there is no benefit from such an
underbid.

Case 2: Ai (θi , b−i , ρ, t) = 0
This implies that when the agent bids his true

valuation, he does not get an allocation. Suppose
agent j wins the allocation. A(θi, b−i , ρ, t) = j

and μ̂+
i,t θi < μ̂+

j,t bj .

Truthful bid: Since agent i does not win an
allocation with a truthful bid, his utility
ui(θi, b−i , ρ, t; θi) = 0

Overbid: Suppose agent i bids in such a way
that bi > θi . We have two sub-cases here.

Case a: If bi is such that μ̂+
i,t θi <

μ̂+
j,t bj < μ̂+

i,t bi , then agent
i wins the allocation. So,
Ai (bi, b−i , ρ, t) = 1. If he gets a
click, he now has to make a payment
P t

i (bi, b−i , ρ) = μ̂+
j,t bj /μ̂

+
i,t . Now

his utility ui(bi, b−i , ρ, t; θi) =
θi − μ̂+

j,t bj /μ̂
+
i,t < 0. And in

particular ui(bi, b−i , ρ, t; θi) <
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ui(θi, b−i , ρ, t; θi) = 0. Therefore,
such an overbid is clearly disadvanta-
geous compared to a truthful bid.

Case b: Suppose μ̂+
i,t θi < μ̂+

i,t bi < μ̂+
j,t bj .

The overbid by agent i is not suf-
ficient to make him win the alloca-
tion and agent j wins the allocation,
A(bi, b−i , ρ, t) = j . The utility of
agent i, ui(bi, b−i , ρ, t; θi) = 0 =
ui(θi, b−i , ρ, t; θi). Therefore there
is no advantage for agent i by this
case of overbid.

Underbid: If agent i bids in such a way that
bi < θi , he continues to lose the allocation
and therefore his utility,ui(bi, b−i , ρ, t; θi) =
0 = ui(θi, b−i , ρ, t; θi). Since, the utility by
an underbid remains the same as a truthful bid,
there is clearly no advantage in underbidding.

All the above cases show that our mechanism is DSIC a
posteriori to the click realizations. Also, in each of the above
cases, note that the utility of an agent i, ui(θi, b−i , ρ, t) ≥
0. Therefore, by truthful bidding he never gets a negative
utility. This proves that our mechanism is individually
rational.

We next discuss the regret incurred by Δ-UCB. We note
that the regret analysis we provide differs in spirit from
the worst case analysis in [4]. The number of exploration
rounds in [4] is required to be Ω(T 2/3) since the separation
between the best and second best arm is fixed in an
adversarial manner in their analysis. Our analysis does not
resort to any adversarial arguments.

In order to prove our Δ-regret results, we will first need
to prove several other lemmas.

Lemma 1 Social Welfare UCB index: For an agent i, we
define the social welfare UCB indices for agent i as,

̂W+
i,t = μ̂i,t θi + εi,t θi = μ̂i,t θi +

√

2
θ2i log T

Ni,t

(3)

̂W−
i,t = μ̂i,t θi − εi,t θi = μ̂i,t θi −

√

2
θ2i log T

Ni,t

(4)

Then, ∀t P
({

ω : Wi /∈ [̂W−
i,t (ω), ̂W+

i,t (ω)])
})

≤ 2T −4.

Proof Let μ̂+
i,t and μ̂−

i,t denote the UCB and LCB indices

for the estimate μ̂i . Then the events {ω : μi /∈ [μ̂−
i,t (ω),

μ̂+
i,t (ω)]} and {ω : Wi /∈ [̂W−

i,t (ω), ̂W+
i,t (ω)]} are identical.

So, P(Wi /∈ [̂W−
i,t ,
̂W+

i,t ]) = P(μi /∈ [μ̂−
i,t , μ̂

+
i,t ]).

An application of Hoeffding bound [18] gives P(μi /∈
[μ̂−

i,t , μ̂
+
i,t ]) ≤ 2 exp(−2Ni,t ε

2
i,t ). As per the mechanism

εi,t = √

2 log T/Ni,t . So, P(μi /∈ [μ̂−
i,t , μ̂

+
i,t ]) ≤

2 exp(−2Ni,t × 2 log T/Ni,t ) = 2T −4.

Lemma 2 Suppose at time step t , Ni,t >
8θ2max log T

Δ2 ∀i ∈
[K]. Then ∀i ∈ [K], 2εi,t θi < Δ.

Proof Given that Ni,t >
8θ2max log T

Δ2 . Therefore,

Δ2 >
8θ2max log T

Ni,t

≥ 8θ2i log T

Ni,t

≥ 4

[

2θ2i log T

Ni,t

]

Taking square roots on both sides of the above equation
yields Δ > 2εi,t θi thereby proving the lemma.

Lemma 3 Suppose K 
 T . For an agent i and time step t ,
let Bi,t be the event Bi,t = {ω : Wi /∈ [̂W−

i,t ,
̂W+

i,t ]}. Define
the event G =⋂

t

⋂

i∈[K]
Bc

i,t , where Bc
i,t is the complement of

Bi,t . Then P(G) ≥ 1 − 2
T 2 .

Proof From Lemma 1, the probability of the ‘bad’ event,
P(Bi,t ) ≤ 2T −4.

P(G) = P

(

⋂

t

⋂

i

Bc
i,t

)

= 1 − P

((

⋂

t

⋂

i

Bc
i,t

)c)

= 1 − P

(

⋃

t

⋃

i

Bi,t

)

= 1 −
∑

t

∑

i∈[K]
P(Bi,t )

≥ 1 −
∑

t

∑

i∈[K]
2T −4 ≥ 1 − 2

T 2

The last statement follows by summing over all rounds and
using the fact that K 
 T .

Theorem 2 Suppose at time step t , Nj,t >
8θ2max log T

Δ2 ∀j ∈
[K]. Then ∀i ∈ [K]\SΔ, ̂W

+
i∗,t > ̂W+

i,t with high probability

(= 1 − 2/T 4).

Proof In Theorem 1, we have shown that Δ-UCB is DSIC.
Therefore, all the agents bid their valuations truthfully, bi =
θi ∀i ∈ [K]. Suppose in exploitation round t , a sub-optimal
arm i is pulled. Therefore, ̂W+

i,t ≥ ̂W+
i∗,t . Then one of the

following three conditions must have happened.

Condition 1: Wi < ̂W−
i,t . This condition implies a drastic

overestimate of the sub-optimal arm i so
that the true social welfare Wi is even below
the LCB index ̂W−

i,t . Figure 1 shows this
case.

Condition 2: W∗ > ̂W+
i∗,t . This implies an underestimate

of the optimal arm so that the true social
welfare W∗ lies above even the UCB index
̂W+

i∗,t . This situation is shown in Fig 2.
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Fig. 1 Condition 1, proof of Theorem 2

Fig. 2 Condition 2, proof of Theorem 2

Fig. 3 Condition 3, proof of Theorem 2

Condition 3: W∗ − Wi < 2εi,t θi . This implies an
overlap in the confidence intervals of the
optimal and sub-optimal arm. Even though
Conditions 1 and 2 are false, still the UCB
of sub-optimal arm i is greater than the UCB
of the optimal arm i∗.

From Fig. 3, W∗ − Wi ≤ ̂W+
i,t − ̂W−

i,t ≤ 2εi,t θi

If all the three conditions above were false, then,

̂W+
i∗,t > W∗ > Wi + 2εi,t θi > ̂W−

i,t + 2εi,t θi = ̂W+
i,t

This implies that ̂W+
i∗,t > ̂W+

i,t , leading to a contradiction.

As per the statement of the theorem, Ni,t >
8θ2max log T

Δ2 .
Therefore by Lemma 2, 2εi,t θi < Δ. For i ∈ [K] \ SΔ,
W∗ − Wi > Δ > 2εi,t θi . So Condition 3 above does not
hold true. So if the sub-optimal arm i must have been pulled,
only possibilities are for Condition 1 or 2.

P(̂W+
i,t > ̂W+

i∗,t ) ≤ P(Condition 1) + P(Condition 2)

≤ 1

2
P(Bi,t ) + 1

2
P(Bi∗,t ) ≤ 2/T −4

P(̂W+
i∗,t > ̂W+

i,t ) = 1 − P(̂W+
i,t > ̂W+

i∗,t ) ≥ 1 − 2
T 4

thereby completing the proof.
We are now ready to state our main result on the incurred

regret.

Theorem 3 If theΔ-UCB mechanism is executed for a total
time horizon of T rounds, it achieves an expected Δ-regret
of O(log T ).

Proof The main idea in the proof is to compute the Δ-regret
conditional on two events - G and Gc and then to find a
bound for these two conditional expectations.

The last step comes from the fact that Conditions 1 and 2
in the proof of Theorem 2 are eliminated as we are given
that the event G has occurred. After exploration rounds,
Ni,t ≥ 8Kθ2max log T/Δ2. From Theorem 2, no Δ-regret
occurs during exploitation since G is true. Therefore the
regret is only incurred during the exploration rounds.

We now compute E
[

Δ-regret|Gc
]

.

E
[

Δ-regret|Gc
] ≤ T θmax (5)

But P(Gc) = 1 − P(G) < 2
T 2 from Lemma 3.

Putting all the steps together,

E
[

Δ-regret
] = E

[

Δ-regret|G]P(G) + E
[

Δ-regret|Gc
]

P(Gc)

≤ 8Kθ3max log T

Δ2
∗ 1 + T θmax ∗ 2

T 2

≤ 8Kθ3max log T

Δ2
+ 2 (6)

The second term is less than 2 as θmax 
 T . This completes
the proof.

A consequence of the above theorem is that even if an
adversary chooses an arbitrary small gap between the best
and second best arm, there is nothing to worry for the
planner - if the gap is less than his tolerance Δ, no loss is
incurred as opposed to the otherwise Ω(T 2/3) loss in [4].

4.2 A lower bound forΔ-regret

Wewill now discuss a lower bound for theΔ-regret incurred
by our approach. In particular, we will provide the lower
bound for the case where θi = 1 for all i and is known. The
proof will follow along the lines of the lower bound proof
in [7]. The same lower bound will also naturally apply to
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the case of the general strategic version as well, since we
our proposed mechanism Δ-UCB is truthful and achieves a
matching upper bound.

Let kl(p, q) denote the KL divergence between the dis-
tributions Bernoulli(p) and Bernoulli(q). Then kl(p, q) =
p logp/q + (1 − p) log(1 − p)/(1 − q).

Theorem 4 Consider the setting where θi = 1∀i ∈ [K].
Suppose an algorithm satisfies E[Ni,t ] = o(ta) for any
set of Bernoulli reward distributions and for all arms i /∈
SΔ and a > 0. Then for any set of Bernoulli reward
distributions we have,

lim inf
T →∞

E[Δ-regret]
log T

≥
∑

i /∈SΔ

Δi

kl(μi, μ∗ + Δ)
(7)

where μ∗ = argmax
j∈[K]

μj , Δi = μ∗ − μi for all j ∈ [K].

Proof We will provide the proof for the case of two agents.
The proof for the case K > 2 follows analogously. Assume
that μ2 ≤ μ1 ≤ 1 and μ1 − μ2 > Δ. Therefore agent
1 is optimal and agent 2 does not belong to SΔ. For any
ε > 0, due to the continuity of kl(μ2, x), we can find
μ′
2 ∈ (μ1 + Δ, 1) such that

kl(μ2, μ
′
2) ≤ (1 + ε)kl(μ2, μ1 + Δ) (8)

This configuration then corresponds to an alternate setting
where the mean of agent 2 is μ′

2. In this alternate setting,
μ′
2 − μ1 > Δ and agent 2 is the unique optimal. For

s ∈ {1, . . . , T }, let,

k̃ls =
s
∑

t=1

μ2ρ
t
2 + (1 − μ2)(1 − ρt

2)

μ′
2ρ

t
2 + (1 − μ′

2)(1 − ρt
2)

(9)

It can be verified that limt→∞ E[k̃lt ]/t = kl(μ2, μ
′
2)

(where the expectation is taken over ρt
2) and therefore k̃lt

serves as an un-normalized estimate for kl(μ2, μ
′
2).

Let CT denote the following random variable,

One may verify that Pμ′
2
(CT =1) = Eμ2[CT exp(−k̃lN2,T )]

by applying a change of measure. We will now show that
Pμ2(CT = 1) → 0 as T → ∞. This is due to the following:

Pμ′
2
(CT = 1) = Eμ2[CT exp(−k̃lN2,T )]

≥ exp(−(1 − ε/2) log T ) × Pμ2(CT =1)

Therefore, setting fT = (1−ε) log T

kl(μ2,μ
′
2)

, and applying Markov

inequality we get,

Pμ2 (CT = 1) ≤ T 1−ε/2
Pμ′

2
(CT = 1) ≤ T 1−ε/2

Pμ′
2
(N2,t ≤ fT )

≤ T 1−ε/2
Eμ′

2
[T − N2,T ]
T − fT

→ 0

The last step arises as a consequence of T − N2,T = N1,T

and agent 1 is sub-optimal for the setting where agent 2 has
the mean reward of μ′

2.
We will finally show that Pμ2(N2,T < fT ) → 0.

Pμ2 (CT = 1) ≥ Pμ2 (N2,T < fT and max
s≤fT

k̃ls ≤ (1 − ε/2) log T )

= Pμ2 (N2,T < fT and
kl(μ2, μ

′
2)

(1 − ε) log T
max
s≤fT

k̃ls

≤ kl(μ2, μ
′
2)

(1 − ε)
(1 − ε/2))

Note that kl(μ2, μ
′
2) > 0 and 1−ε/2

1−ε
≥ 1. Therefore by an

application of the strong law of large numbers, we have

lim
T →∞Pμ2(

kl(μ2, μ
′
2)

(1 − ε) log T
max
s≤fT

k̃ls ≤ kl(μ2, μ
′
2)

(1 − ε)
(1 − ε/2)) = 1

Since Pμ2(CT = 1) → 0, we must have Pμ2(N2,T <

fT ) → 0 as well. Applying Markov inequality again, we
get,

Eμ2[N2,T ] ≥ Pμ2(N2,T ≥ fT )fT = 1 − ε

kl(μ2, μ
′
2)

≥ 1 − ε

1 + ε

log T

kl(μ2, μ1 + Δ)

The last step is obtained by applying Eq. 8. This completes
the proof. Note the key difference between our proof and [7]
lies in Eq. 8. Our RHS in Eq. 8 is necessary to ensure that
in the alternate scenario agent 1 is sub-optimal.

Remark 1 The lower bound for the expected Δ-regret
Theorem 4 is quite similar to the lower bound for the
regret of the UCB algorithm in [7]. The difference is that
the KL divergence term in the bound is also a function of
the parameter Δ. Intuitively instead of considering the KL
divergence between KL(μi, μ

∗), we give an allowance of
Δ for the optimal agent.

5 Extension tomulti-slot SSA

In the previous sections, we assumed that there was a single
slot for which the advertisers were competing. We now look
at a more general setting where there are M slots to be
allocated to the K agents. As before, each advertiser has
exactly one ad for display and the CTR for advertisement
i is denoted by μi . Recall that in the case of single slot
auctions, the CTR exactly denoted the probability with
which an ad received a click. However in the generalized
setting of multi-slot auctions, an additional parameter comes
into play while computing the click probability due to which
the problem becomes much harder [13].

Each position or slot m is associated with a parameter
λm called ‘prominence’. λm denotes the probability with
which a user observes an ad at slot m + 1 given he has
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observed the ad at slot m. In order to understand the need
for this parameter, a useful scenario to imagine is the listing
of web-pages in Google for a query. There are two phases
that one can think of once the listing of pages or results have
appeared.

Phase 1: This is the phase where a user scans through
the pages listed. A page listed higher up in the
ranking (say second from the top) has more
chances of being observed by a user rather than
a page that is far below in the ranking (say
fifth from the top). λ4, for instance, denotes the
probability that a user observes the fifth page,
given he has observed the fourth page. Coming
back to sponsored ads, we assume that λ0 = 1,
that is, the ad listed in the first slot is surely
observed. We denote by Γm the probability that
an ad at slot m is observed. Γm is computed as,

Γm =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if m = 1
m−1
∏

s=1
λs if 2 ≤ m ≤ M

0 if m > M

(10)

This modeling assumption for Γm is known as
position dependent cascade model.

Phase 2: After having scanned through the list, the user
decides to click one or more of the shown ads.
In the multi-slot setting [14], it is assumed that
multiple ads in a listing may receive clicks. The
probability that ad i receives a click when shown
at slot m = Γmμi .

We assume that λm, m = 1, . . . , M are known to the
planner a-priori. The problem of learning these parameters
along with the CTR μ is much harder in the presence of
strategic agents. Therefore, in this section, we work with
the assumption that the λs and hence Γ s are known. In
Section 6.2, we give pointers for design of mechanisms
where the Γ s are unknown.

The above modeling assumptions are as per standard
conventions [13]. In the multi-slot setting, the allocation is
given to multiple agents at every time step. We denote by
A(b, ρ, t) ⊂ {1, . . . , K}, the allocation at time t for bids b

and click realization ρ. The cardinality of the allocated set
|A(b, ρ, t)| = M . We also use the notationAi (b, ρ, t) = m

to denote the allocation to agent i at time t is slot m, for the
bid profile b, click realization ρ. If an agent i is not allocated
any of the M slots at time t , we say Ai (b, ρ, t) = 0.

We denote by Wi,m the social welfare of agent i, when he
is given slot m. Wi,m is the expected valuation that agent i

receives when he is given slot m and is computed as,

Wi,m = Γmμiθi (11)

For ease of reference, the additional relevant parameters for
the multi-slot setting are provided in Table 3.

Having described the multi-slot setting, we now analyze
the scenario from the view point of the search engine or
central planner. In the ideal scenario, the planner would
like to allot the ads exactly to the top M agents with the
largest social welfare. This use case has been studied in the
literature [14] and exploration separated mechanisms with
regret of O(T 2/3) have been proposed. Various possible
allocations are explored for O(T 2/3) time steps for every
agent after which the allocation algorithm is guaranteed
to converge to the ideal allocation with high probability.
As in the single slot case, O(T 2/3) exploration rounds are
required to distinguish all the agents perfectly from each
other, when there are agents whose social welfare values are
arbitrarily close.

However, a much more practical problem of interest is
to study and design mechanisms when the search engine
is indifferent to a gap in Δ in social welfare for every
slot. We observe that in cases where the agents are well-
separated, O(T 2/3) exploration rounds are not required. In
fact, O(log T ) exploration rounds are sufficient to converge
to an allocation that is well within the requirements of the
search engine.

Having explained the problem, we now formalize the
notions of separatedness in this setting. Let K(1), . . . , K(M)

∈ [K] be the best M agents in terms of their single slot
social welfare values, that is, μK(1)θK(1) > μK(2)θK(2) >

. . . > μK(M)θK(M) . Let W∗,m = WK(m),m. The ideal solution
would be to allocate agent K(m) the slot m. This allocation

Table 3 Additional notations for multi-slot SSA

Symbol Description

M No. of slots

[M] Set of M slots = {1, . . . , M}
λm Prominence (Probability with which a

user observes an ad at slotm+1 given
he has observed the ad at slot m)

Γm Probability that an ad at slot m is
observed

Wi,m Social welfare when agent i is
allocated slot m

M
(m)
i,t No. of times agent i has been alloted

slot m till time t

Ni,t No. of times agent i has been selected
till time t over all slots

K(m) Optimal agent for slot m

W∗,m Social welfare when agent K(m) is
allocated slot m

SΔ,m Set of agents whose social welfare is
less than Δ away from K(m). These
agents do not contribute to Δ-regret
when allocated slot m.
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would yield the largest social welfare but in the worst case,
when the agents’ social welfares are separated by a function
of T , converging to this optimal allocation would require
O(T 2/3) exploration rounds [14]. Instead, for a prescribed
value of Δ fixed by the search engine, define the set,

SΔ,m = {i ∈ [K] : WK(m),m − Wi,m < Δ
}

. (12)

SΔ,m is the set of all agents whose social welfare is at
most Δ away from the agentK(m) ( who should have ideally

been given slot m). The planner is indifferent to the regret
contributed by the agents in SΔ,m, if any of them are allotted
slot m. Hence we define the multi-slot Δ-regret metric as,

Δ-regret=
T
∑

t=1

M
∑

m=1

(W∗,m−WIt,m,m)1
[

IIt ,m ∈ [K] \ SΔ,m

]

The Δ-UCB mechanism for the multi-slot SSA is given in
Algorithm 2.

We analyze the regret and truthfulness of Algorithm
2. The lemmas and theorems for establishing the results
for the multi-slot setting are similar to the single slot

setting, however there are subtle differences in proving
many of the results. We will highlight them as and when
necessary.
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Theorem 5 In the multi-slot setting Δ-UCB is Dominant
Strategy Incentive Compatible (DSIC) and Individually
Rational (IR).

Proof The mechanism is an implementation of the weighted
VCG scheme (with the weights for each agent wi =
μ+

i /μi) and is hence DSIC and IR.

Lemma 4 For an agent i and slot m, the click through rate
UCB indices for agent i,

μ̂+
i,t = μ̂i,t + εi,t = μ̂i,t +

√

√

√

√

(

M
∑

m′=1

M
(m′)
i,t

Γ 2
m′

)

2 log T

N2
i,t

(13)

μ̂−
i,t = μ̂i,t − εi,t = μ̂i,t −

√

√

√

√

(

M
∑

m′=1

M
(m′)
i,t

Γ 2
m′

)

2 log T

N2
i,t

(14)

satisfy P(μi /∈ [μ̂−
i,t , μ̂

+
i,t ])) ≤ 2T −4 ∀t

Proof At every time step, we observe samples ρIt,m(t), m =
1, . . . , M corresponding to the clicks of the allocated ads.
These samples also encompass slot specific information
which must be accounted for in the computation of
empirical mean as well as UCB index for μi . For an agent
i, let the random variable Ci,m denote whether ad i receives
a click at slot m. Therefore Ci,m is a Bernoulli random
variable with bias Γmμi .

We obtain a sample ρi(.) of Ci,m when ad i is allocated
slot m. However it is the samples from Ci,m/Γm that gives
us an unbiased estimator for μi . Therefore, the random
variable of interest is the Bernoulli random variable,

Di,m =
{

0 w.p 1 − Γmμi

1/Γm w.p Γmμi

(15)

Di,m is bounded in [0, 1/Γm] and E[Di,m] is μi . Also,

logE
[

exp(λ(Di,m−μi)
] ≤ λ2

8Γ 2
m

(by Hoeffding’s Lemma)

Consider the scenario where, for an ad i, a single sample
click is available from each slot. Let Xi,m denote this
sample of Ci,m. Assume Xi,m are all independent and μ̂i =
1/M

∑M
m=1 Xi,m/Γm. E[μ̂i] = μi . Now,

P (̂μi − μi > ε) = P

(

M
∑

m=1

Xi,m/Γm − Mμi > εM

)

= P

(

exp(λ(

M
∑

m=1

Xi,m/Γm − Mμi)) > exp(λεM)

)

≤ E

[

exp(λ(

M
∑

m=1

Xi,m/Γm − Mμi))

]

/ exp(λεM) (by Markov inequality)

=
M
∏

m=1

E
[

exp(λ(Xi,m/Γm − μi))
]

/ exp(λεM) (by independence of Xi,m)

= exp

(

M
∑

m=1

λ2

8Γ 2
m

− λMε

)

(16)

In order to tighten the above bound on the right
hand side, one must find appropriate λ which minimizes

exp(
∑M

m=1
λ2

8Γ 2
m

− λMε). Setting λ = λ∗ = 4Mε/η where

η =∑M
m=1 1/Γ

2
m achieves the minimum value. Therefore,

P( μ̂i − μi > ε) ≤ exp(−2M2ε2/η) (17)

In order to obtain a δ confidence on P(μ̂i − μi > ε), ε

must be set so that exp(−2M2ε2/η) = δ = T −4. Therefore,

ε =
√

M
∑

m=1

(

1
Γ 2

m

)

2 log T

M2 . In the above analysis we assumed

that from each slot, one sample was available. When we
have a total of Ni,t independent samples for ad i, with Mt

i,m

samples for slot m at any time t , η = ∑M
m=1 Mm

i,t /Γ
2
m

and therefore εi,t =
√

√

√

√

(

M
∑

m′=1

M
(m′)
i,t

Γ 2
m′

)

2 log T

N2
i,t

, completing the

proof.

A noteworthy feature of our estimates is the following.
An allocation of an ad i in a slot m yields a sample for
the computation of not only ̂Wi,m,t , but also for ̂Wi,m′,t for
all slots m′ ∈ {1, . . . , M}. This is because Γm is known
to the planner a-priori. Therefore note that, the number of
allocations that ad i receives till time t , Ni,t is the sum of
the number of allocations that agent i receives irrespective
of the slot or inclusive of all the slots.

Lemma 5 For an agent i and slot m, the social welfare
UCB indices for agent i,

̂W+
i,m,t = Γmμ̂i,t θi + εi,m,t = Γmμ̂i,t θi

+
√

√

√

√

(

M
∑

m′=1

M
(m′)
i,t

Γ 2
m′

)

2θ2i Γ 2
m log T

N2
i,t

(18)

̂W−
i,m,t = Γmμ̂i,t θi − εi,m,t = Γmμ̂i,t θi

−
√

√

√

√

(

M
∑

m′=1

M
(m′)
i,t

Γ 2
m′

)

2θ2i Γ 2
m log T

N2
i,t

(19)

satisfy P(Wi,m /∈ [̂W−
i,m,t ,

̂W+
i,m,t ])) ≤ 2T −4 ∀t

Proof The proof idea is similar to Lemma 1.
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Fig. 4 Condition 1, Proof of Theorem 6

Fig. 5 Condition 2, Proof of Theorem 6

Fig. 6 Condition 3, Proof of Theorem 6

Lemma 6 Suppose at time step t , Nj,t >
8θ2max log T

Δ2 ∀j ∈
[K]. Then ∀i ∈ [K] and ∀m ∈ [M], 2εi,m,t < Δ.

Proof The proof is similar to Lemma 2.

Lemma 7 For an agent i, slot m and time t , let Bi,m,t be the
event Bi,m,t = {ω : Wi,m /∈ [̂W−

i,m,t (ω), ̂W+
i,m,t (ω)]}. Define

the event G =⋂
t

⋂

i

⋂

m

Bc
i,m,t . Then P(G) ≥ 1 − 2

T 2 .

Proof The proof has some subtle differences from Lemma
3 because in the multi-slot extension, the events Bi,m,t are
not independent across the slots.

Observation: If an element ω from the set of outcomes is
such that ω ∈ Bi,m,t , then ω ∈ Bi,m′,t ∀m′ ∈ [M]. This is
because, for any two slots m and m′,

Wi,m /∈ [̂W−
i,m,t ,

̂W+
i,m,t ] ⇐⇒ μi /∈ [μ̂−

i,t , μ̂
+
i,t ]

⇐⇒ Wi,m′ /∈ [̂W−
i,m′,t ,

̂W+
i,m′,t ]

Therefore P(
⋃

m Bi,m,t ) = P(Bi,1,t ). From Lemma 5,
P(
⋃

m Bi,m,t ) = P(Bi,1,t ) ≤ 2T −4. Hence,

P(G) = 1 − P

(

⋃

t

⋃

i

⋃

m

Bi,m,t

)

= 1−P

(

⋃

t

⋃

i

Bi,1,t

)

≥ 1 − 2

T 2
(as in Lemma 3).

Theorem 6 Suppose at time t , Nj,t > 8θ2max log T/Δ2

∀j ∈ [K]. Then ∀m ∈ [M], ∀i ∈ [K] \ SΔ,m, ̂W
+
K(m),m,t

>

̂W+
i,m,t with high probability (= 1 − 2/T 4).

Proof Suppose at time t where Nj,t > 8θ2max log T/Δ2

∀j ∈ [K], there exists somem ∈ [M] such that ̂W+
K(m),m,t

<

̂W+
i,m,t . (Note that this statement does not arise from any

assumptions on the allocation, for instance, that agent i is
given slot m. This is the major difference from Theorem
2). But the relation between the true social welfare values
of these agents is WK(m),m > Wi,m. Then one of the
following three conditions must have occurred, like in proof
of Theorem 2.

Condition 1: Wi,m < ̂W−
i,m,t . This condition implies

a drastic overestimate of the sub-optimal
arm i so that the true mean social welfare
Wi,m is even below the LCB index ̂W−

i,m,t .
Figure 4 captures this condition.

Condition 2: WK(m),m > ̂W+
K(m),m,t

. This implies an
underestimate of the optimal arm so that the
true mean social welfare WK(m),m lies above
even the UCB index ̂W+

K(m),m,t
. See Fig. 5.

Condition 3: WK(m),m − Wi,m < 2εi,m,t . This implies
an overlap in the confidence intervals of
the optimal and sub-optimal arm. Even if,
Conditions 1 and 2 are false, still the UCB
of sub-optimal arm i is greater than the UCB
of the optimal arm i∗. See Fig. 6 for an
illustration of this condition.

From the figure, WK(m),m − Wi,m ≤ ̂W+
i,m,t − ̂W−

i,m,t ≤
2εi,m,t . If all the three conditions above were false, then,

̂W+
K(m),m,t

> WK(m),m > Wi,m + 2εi,t > ̂W−
i,m,t + 2εi,t

= ̂W+
i,m,t ( A contradiction!)

As per the statement of the theorem, Ni,t > 8θ2max log
T/Δ2. Therefore by Lemma 6, 2εi,m,t < Δ. For agent
i ∈ [K] \ SΔ,m, WK(m),m − Wi,m > Δ > 2εi,m,t . Therefore,
Condition 3 above does not hold true. So,

P(̂W+
i,m,t > ̂W+

K(m),m,t
) ≤ P(Condition 1) + P(Condition 2)

≤ 0.5P(Bi,m,t ) + 0.5P(BK(m),m,t ) ≤ 2/T −4

P(̂W+
K(m),m,t

> ̂W+
i,m,t ) = 1 − P(̂W+

i,m,t > ̂W+
K(m),m,t

) ≥ 1 − 2
T 4

Theorem 7 If the Δ-UCB mechanism is executed in the
multiple slot scenario for a total time horizon of T rounds,
it achieves an expected Δ-regret of O(log T ).

Proof The proof idea has some subtle differences from
the proof of Theorem 3. As before, we first compute
the expected Δ-regret conditional on G. For the explo-
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ration rounds, the mechanism obtains a regret of ξ =
8MKθ3max log T

Δ2 .

E
[

Δ-regret|G]

≤ ξ+
T
∑

t=γ+1

M
∑

m=1

(WK(m),m −W(It,m),m)1
[

It,m ∈K\SΔ,m|G]

We will now show that the second term above evaluates to
zero. For any m, the cardinality of SΔ,m is at least m. This is
because for all K(j) above m in the ranking of agents (j <

m), WK(m),m − WK(j),m < 0 < Δ as WK(j),m > WK(m),m.
Therefore there are at least m − 1 agents in SΔ,m. Also
K(m) ∈ SΔ,m as WK(m),m − WK(m),m = 0 < Δ. Therefore
∀j ∈ {1, . . . , m}, K(j) ∈ SΔ,m. While allocating slot m, at
least one of the agents in SΔ,m must be free. This is by the
pigeonhole principle. Now if the allocated agent for slot m,
It,m ∈ [K] \ SΔ,m, one of the following two cases occur.

Case 1: The ideal agents K(1), . . . , K(m−1) for all the
previous slots 1, . . . , m − 1 have already been
allocated before the allocation of slot m. This
means that K(m) has not been allocated yet. Also,
̂W+

(It,m),m,γ > ̂W+
K(m),m,γ

. Since G is true and
t > γ , the above event cannot occur (by Theorem
6).

Case 2: The agent K(m) has already been allocated to
some other slot before the allocation of slot m has
begun. Therefore there is some agent K(j), j <

m with a larger social welfare value, who has
still not been allocated. That is, WK(j),m >

WK(m),m > W(It,m),m. Given that It,m /∈ SΔ,m.
Therefore we can deduce that It,m /∈ SΔ,j . This is
because,

WK(m),m − W(It,m),m ≥ Δ

=⇒ WK(j),m − W(It,m),m ≥ Δ

=⇒ μK(j)θK(j) − μIt,mθIt,m ≥ Δ/Γm

=⇒ Γj (μK(j)θK(j) − μIt,mθIt,m) ≥ ΓjΔ/Γm

=⇒ WK(j),j − W(It,m),j ≥ Δ (20)

The last line in the above implications is true as Γj >

Γm. But ̂W+
K(j),m,γ

< ̂W+
(It,m),m,γ . Then the inequality

̂W+
K(j),j,γ

< ̂W+
(It,m),j,γ is also true due to the way the slot

specific UCB indices are computed. From Theorem 6 for
slot j , we find that ̂W+

K(j),j,γ
> ̂W+

(It,m),j,γ . Again this
cannot happen as G is true and t > γ . Therefore we get that
E
[

Δ-regret|G] ≤ ξ .
Also, P(Gc) = 1 − P(G) < 2

T 2 from Lemma 7.

Putting all the steps together,

E
[

Δ-regret
] = E

[

Δ-regret|G]P(G) + E
[

Δ-regret|Gc
]

P(Gc)

≤ 8KMθ3max log T

Δ2
∗ 1 + T Mθmax ∗ 2

T 2

≤ 8KMθ3max log T

Δ2
+ 2θmax (21)

The simplification in the second line is because
E
[

Δ-regret|Gc
] ≤ T Mθmax . In the last line we use the fact

that M 
 T . This completes the proof.

6 Extensions to other variants of multi-slot
SSA

In this section, we look at other variants in the multi-slot
SSA setting and discuss how our mechanism can be adapted
to such settings.

6.1 Position and Ad dependent cascademodel

We have explained our algorithm and performed the
analysis for the position dependent cascade model for SSA
where the Γm function is characterized by Eq. 10 and is
known to the planner a-priori. A more general model would
be one where the function Γm may also depend on the ad
displayed at position m. Our model can also be used in such
scenarios and the same analysis will hold.

6.2 Handling the case of unknown Γm

We have assumed that the functions Γms are known to the
planner a-priori. Now suppose that the Γms are required
to be learnt. The same allocation scheme as in Algorithm
2 may be used. However the computation of the proposed
payment scheme in algorithm 2 is not feasible as the
payments use Γms, which are unknown.

In order to handle such a scenario, we must obtain esti-
mates for Γ first. It is known that, the parameter for the
first slot, Γ1 = 1. Only Γ2, . . . , ΓM need to be estimated.
We will first describe a mechanism which relies on an arbi-
trary learning algorithm to provide estimates ̂Γ2, . . . , ̂ΓM .
Thereafter we will remark on the possible learning schemes.

Proposition 1 Suppose we have a learning scheme that
gives us estimates ̂Γ2, . . . , ̂ΓM such that, ̂Γ2 ≥ ̂Γ3 ≥ . . . ≥
̂ΓM and 0 ≤ ̂Γm ≤ 1 for m = 2, . . . , M . Let ̂Γ1 = 1.

We propose a weighted VCG mechanism [28] which is
known to be DSIC truthful and is also IR. Suppose the
private valuation of agent i for a click is θi . Let x ∈
{0, 1}K×M be an outcome of the allocation. xim = 1 if ad i
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is alloted slot m and zero otherwise. The valuation function
of agent i in this case is,

vi(x, θi) =
M
∑

m=1

Γmμiθixim (22)

Define a weight vector wi ∈ RM for every agent i. wi

has weights corresponding to agent i and slot m such that,

wi,m = μ̂+
i
̂Γm

μiΓm
. μ̂+

i is the UCB index corresponding to the
CTR of ad i, computed after the fixed number of exploration
rounds as in Algorithm 2. However, in this scenario, the
UCB index is constructed using samples of the clicks from
allocation in the first slot alone.

Our weighted VCG mechanism is described in Fig. 7.
The mechanism uses the allocation,

A∗(bi, b−i ) = argmax
x

K
∑

i=1

M
∑

m=1

Γmμibiximwi,m

But note that this allocation rule boils down to the same
allocation used in Algorithm 2. This is due to the fact
that the estimates ̂Γm monotonically decrease with m. The
procedure for obtaining the allocation A∗(bi, b−i ) is the
following. We sort the agents based on μ̂+

i bi and allocate
the slots to the best M agents. Therefore, the allocation rule
is independent of the Γ s and is equivalent to,

A∗(bi, b−i ) = argmax
x

K
∑

i=1

M
∑

m=1

μ̂+
i bixim

The expected payment to be made by agent i when allocated
a slot m′ is,

E[P t
i (b, ρ)] = μiΓm′

μ̂+
i,t
̂Γm′

∑

j �=i

M+1
∑

m=m′+1

μ̂+
j,t bj xjm(̂Γm−1−̂Γm)

The above is the externality based payment prescribed by
weighted VCG. However since we adopt the pay per click
scheme,

P t
i (b, ρ)] = ρi(t)

μ̂+
i,t
̂Γm′

∑

j �=i

M+1
∑

m=m′+1

μ̂+
j,t bj xjm(̂Γm−1 − ̂Γm)

Therefore, the computation of the payments is also feasible
now. The above mentioned weighted VCG scheme is DSIC
truthful and IR. The proof follows from the standard
weighted VCG scheme where the weights are as defined as
above. We now remark on the Δ-regret of the mechanism.

6.2.1 Remarks on learning ̂Γm and computation ofΔ-regret

In the above mechanism we have assumed, that the
estimates ̂Γm satisfy Proposition 1. The allocation scheme
described above ultimately does not rely on these estimates,
although the weights wi,m use it. The mechanism therefore
uses the estimates only in the payment rule. We now make
an important observation here.

Observation: When any set of estimates {̂Γm}, m =
1, . . . , M satisfying Proposition 1 is used in the
mechanism above, the mechanism is DSIC truthful, IR
and suffers only logarithmic Δ-regret.

The reason is that the mechanism is an instance of weighted
VCG mechanism and therefore is DSIC truthful and IR,
with any estimate for the Γms. As far as the Δ-regret in
social welfare is concerned, the allocation rule determines
it. The allocation rule used turns out to be identical to the
allocation rule used where Γm is known and is independent
of the estimates. Note that it is now possible to minimise
regret in payments by choosing estimates ̂Γm that maximise
the payments and also satisfy the constraints in Proposi-
tion 1. This will lead to a constrained optimization problem
which can be solved. However the current work focuses

Fig. 7 Δ-UCB mechanism for
the position dependent cascade
model using estimates for Γms
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on minimizing Δ-regret in social welfare and therefore the
problem of minimising regret in payments is still open.

7 Conclusion

We have studied the more practical use case in MAB
mechanisms where a planner has the option to specify a
tolerance level Δ for sub-optimal arms. All the papers in
the literature on MAB mechanisms propose schemes to
target the worst case scenario where the arms are arbitrarily
close. Therefore they prescribe investing a huge number
of exploration rounds (Ω(T 2/3)) to perfectly distinguish
the arms. However, the planner may not want to perfectly
distinguish arms that are arbitrarily close. Many a time,
the planner may instead be willing to allocate arms that
are at most Δ away from the best arm. The state of the
art does not permit this flexibility to the planner. Towards
providing such a flexibility to the planner, we have, for the
first time, introduced a new notion of regret called Δ-regret.
When arms that are less than Δ away from the best arm are
selected, the Δ-regret incurred is zero. Only arms more than
Δ away from the best arm contribute to the Δ-regret.

From the above perspective, we have revisited the
application of MAB mechanisms in sponsored search
auctions. First we analysed the single slot SSA setting
and proposed a deterministic, exploration separated MAB
mechanism called Δ-UCB. We showed that Δ-UCB is
DSIC truthful, IR and achieves a Δ-regret of O(log T ).
Next we studied the more challenging setting of multi-
slot SSA. In particular, we adopted the cascade model and
adaptedΔ-UCB to this setting, first with the assumption that
the prominence parameters are known. Here too, we have
shown that the mechanism is DSIC truthful, IR and achieves
a Δ-regret of O(log T ). We finally adapt the mechanism to
the general multi-slot SSA setting where neither the CTRs
nor the prominences are known. Here too our deterministic,
exploration separated mechanism is DSIC truthful, IR and
suffers a Δ-regret of O(log T ). The other mechanisms in
literature for this setting are not able to obtain all these
desirable properties that our mechanism achieves. They
either compromise on the truthfulness, satisfying a weaker
notion (truthfulness in expectation) or are forced to resort to
randomness in the mechanism.

Our results are generic and apply equally well to several
other applications where MABmechanisms have been used.
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