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Abstract

Stochastic multi-armed bandit (MAB) mechanisms are widely used in sponsored search auctions, crowdsourcing, online
procurement, etc. Existing stochastic MAB mechanisms with a deterministic payment rule, proposed in the literature,
necessarily suffer a regret of £2(7%/3), where T is the number of time steps. This happens because the existing mechanisms
consider the worst case scenario where the means of the agents’ stochastic rewards are separated by a very small amount
that depends on 7. We make, and, exploit the crucial observation that in most scenarios, the separation between the agents’
rewards is rarely a function of 7. Moreover, in the case that the rewards of the arms are arbitrarily close, the regret contributed
by such sub-optimal arms is minimal. Our idea is to allow the center to indicate the resolution, A, with which the agents
must be distinguished. This immediately leads us to introduce the notion of A-Regret. Using sponsored search auctions as a
concrete example (the same idea applies for other applications as well), we propose a dominant strategy incentive compatible
(DSIC) and individually rational (IR), deterministic MAB mechanism, based on ideas from the Upper Confidence Bound
(UCB) family of MAB algorithms. Remarkably, the proposed mechanism A-UCB achieves a A-regret of O(logT) for
the case of sponsored search auctions. We first establish the results for single slot sponsored search auctions and then

non-trivially extend the results to the case where multiple slots are to be allocated.

Keywords Multi-armed bandit mechanism - DSIC - Deterministic

1 Introduction

Multi-armed bandit (MAB) algorithms [7] are now widely
used to model and solve problems where decisions are
required to be made sequentially at every time step and there
is an exploration - exploitation dilemma. This dilemma
is the tradeoff that the planner faces in deciding whether
to explore arms that may yield higher rewards in the
future or exploit the arms that have already yielded high
rewards in the past. If the rewards are generated from fixed
distributions with unknown parameters, the setting goes by
the name stochastic MAB [7]. Popular algorithms in the
stochastic MAB setting include Upper Confidence Bound
(UCB) based algorithms [2] and Thompson Sampling [1]
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based algorithms. These algorithms incur O (log T') regret
where T is the total number of time steps. MAB algorithms
are well studied with several variants [8, 9, 22, 23] and
applications [11, 29-31].

When the arms are controlled by strategic agents, we
need to tackle additional challenges. Mechanism design
[26-28] has been applied in this context, leading to
stochastic MAB mechanisms [24]. The design of such
mechanisms requires ideas from online learning as well
as mechanism design, both of which are increasingly
gaining importance in the field of artificial intelligence.
An immediate application of stochastic MAB mechanisms
is in sponsored search auctions (SSA). In SSA, there are
several advertisers who wish to display their ads along
with the search results generated in response to a query
from an internet user. In the standard model, an advertiser
has only one ad to display. We use the terms agent, ad,
and advertiser interchangeably. There are two components
that are of interest to the planner or the search engine,
(1) stochastic component: click through rate (CTR) of the
ads or the probability that a displayed ad receives a click
(2) strategic component: valuation of the agent for every
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click that the agent’s ad receives. The search engine would
seek to allocate a slot to an ad which has the maximum
social welfare (product of click through rate and valuation).
However neither the CTRs nor the valuations of the agents
are known. This calls for a learning algorithm to learn
the stochastic component (CTR) as well as a mechanism
to elicit the strategic component (valuation). This problem
could become much harder as the agents may manipulate
the learning process [4, 19] to gain higher utilities.

For single slot SSA, it is known that any deterministic
MAB mechanism (that is, a MAB mechanism with
a deterministic allocation and payment rule) suffers a
regret [7, 12] of .Q(Tz/ 3) [4]. Furthermore, there exists
a deterministic MAB mechanism with regret matching
the theoretical lower bound [4] and also satisfies ex-
post truthfulness, the strongest notion of truthfulness (a
posteriori to the clicks). When a more relaxed notion of
truthfulness is targeted (truthfulness in expectation of the
clicks), the regret guarantee improves to O(Tl/z) [3].
Truthfulness in expectation has also been achieved in [16,
17]. The regret can be further improved when randomized
mechanisms are used and in fact the regret in this space
is O(logT) [3, 21]. However, the high variance that is
inevitable to the payments in randomized mechanisms is
a serious deterrent to the use of randomized mechanisms.
Towards reducing the variance, [15] propose a MAB
mechanism using Thompson sampling [1]. However the

notion of truthfulness achieved is ‘within period DSIC’ and
with high probability. Thus again, only a weaker notion of
truthfulness is achieved compared to ex-post truthfulness.

In this work, we observe that the characterization
provided by Babaioff et al. [4] targets the worst case
scenario. In particular, in the lower bound proof of regret
of £2(T?/3), they consider an example scenario where the
actual separation, A, between the expected rewards of the
arms is a function of 7. We note that when a similar example
(A = T~ is used with the popular UCB algorithm [2],
the number of pulls of sub-optimal arms could be linear,
even in the non-strategic case. Hence, a dependence of A on
T is severely restrictive for the case when the rewards are
stochastic, even when the arms are non-strategic. We make
the observation that A is in most situations independent
of T. This motivates our main idea in this paper, which
is to provide the planner an option to specify a parameter
A, which is the tolerance or distinguishing level for sub-
optimal arms. The understanding is that any arm that is
within A from the best arm will not cause any additional
regret to the planner. For example, the best arm may
yield expected reward of 6.000 while a sub-optimal arm
may yield a very close expected reward of 5.999. The
planner is typically indifferent to such small differences.
Traditional exploration-separated schemes end up spending
a huge number of exploration rounds in order to distinguish
between these two closely separated arms.

Setting the value of A: An Example

The value of A is set by the central planner depending on how well
he would like to distinguish between the arms. For example, consider
the case where there are two agents. Agent 1 has a CTR p; = 0.8 and
valuation for every click 6; = 5 units. Agent 2 has a CTR py = 0.3999
and a valuation for every click #; = 10. Agent 1 is the more preferred
agent as his expected social welfare is p; 67 = 4 while the expected social
welfare for agent 2 is pofy = 3.999. Then the actual separation between
the agents, A = 4 — 3.999 = 0.001. But the planner may be indifferent
to such a small difference of 0.001 in expected social welfare. Therefore
he would be satisfied with selecting either of the agents. Hence, he
should set the parameter A to any value greater than 0.001.

J

Another scenario that the planner might be interested
in is to ensure that over 7 rounds, the cumulative loss
from choosing sub-optimal arms stays within an overall
factor of 7. To achieve this, the tolerance level A could
be set to a value A = t/T. The notion of A tolerance
will require an appropriate definition of regret, which
we call A-regret. Focussing on A-regret instead of the
usual notion of regret helps us to reduce the number of
exploration rounds significantly from O (72/3) to O (log T).
We propose an exploration separated mechanism based
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on UCB, which achieves a A-regret of O(logT). This
mechanism can be readily applied in several settings such as
SSA, crowdsourcing, and online procurement. For the rest
of the paper, however, we use SSA as a running example.

Contributions:
(1) We make the crucial observation that in most MAB

scenarios, the separation between the agents’ rewards
is rarely a function of T (the number of time steps).
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Moreover, in the case that the rewards of the arms are
arbitrarily close, the regret contributed by such sub-
optimal arms is negligible. We exploit this observation
to allow the center to specify the resolution, A, with
which the agents must be distinguished. We introduce
the notion of A-Regret to formalize this regret. The
notion of regret used in state of the art does not permit
a reduction in the number of exploratory rounds of
sub-optimal arms whereas the more flexible notion of
A-regret that we introduce supports a reduction in the
number of mandatory pulls of the sub-optimal arms.

(2) Using sponsored search auctions as a concrete example,
we propose a dominant strategy incentive compatible
(DSIC) and individually rational (IR) MAB mecha-
nism with a deterministic allocation and payment rule,
based on ideas from the UCB family of MAB algo-
rithms. The proposed mechanism A-UCB achieves a
A-regret of O(log T') for the case of single slot spon-
sored search auctions. The truthfulness achieved by
A-UCB is a posteriori to the click realizations and
is the strongest form of truthfulness. This loss of
O(log T') would not have been possible otherwise if
the traditional notions of regret were used. In partic-
ular the number of exploration rounds in A-UCB is
O(logT) as opposed to the O(T?/3) rounds which
were mandatory so far for ensuring a truthful, deter-
ministic mechanism. Thus we now enable the planner
to be relieved from this huge number of exploration
rounds. We also show that a lower bound on the
A-regret suffered by any mechanism is $2(log T').

(3) We non-trivially extend the above results to the
case where multiple slots are to be allocated. Here
again, our mechanism is DSIC, IR, and requires sub-
optimal arms to be explored for only O (log T') rounds.
Therefore a A-regret of O(logT) is achieved for the
multiple slot scenario as well.

Our results are generic to stochastic MAB mechanisms
and can be applied to other popular applications such as
crowdsourcing and online procurement.

2 Relevant work

In the area of MAB mechanisms, a lot of work has been
done in sponsored search auctions. Babaioff et al. [4]
provide a characterization of truthful MAB mechanisms,
wherein the objective is to maximize social welfare. They
introduce the notion of influential rounds. The influential
rounds are the rounds where the parameters of reward
distributions (CTRs) are learnt. One of the characterizations
of truthful deterministic mechanisms is that the allocation
must be exploration separated, that is, in such influential
rounds, the allocation must not depend on the bids of the

agents. The allocation is also required to be point wise
monotone. One of the main results of their paper is that any
truthful, deterministic MAB mechanism incurs a regret of
Q(T?3). In particular, their analysis holds an adversarial
nature, as the sub-optimality between the best and second
best arm is chosen as if by an adversary, to be proportional to
T~1/3. Such a choice ensures a huge regret for any truthful,
deterministic mechanism. They also provide a mechanism
which incurs a matching upper bound regret of O(T?%/3).
Devanur et al. [10] concurrently provide similar bounds on
the regret when the objective is revenue maximization rather
than social welfare maximization.

All the above results pertain to the setting of single
slot auctions where there is a single slot for which the
agents compete. In the generalization of this setting multiple
slots are reserved for ads. This setting is more challenging
as every slot is not identical and some slots are more
prominent than the others. MAB mechanisms have also
been extended to the multiple slot setting [14] in line
with the characterization in [4]. Hence, a similar regret of
O(T?/3) on the social welfare has been attained here as
well. Similar results are also stated in the characterisation
provided in [32].

MAB mechanisms have also been proposed in the con-
text of crowdsourcing [6]. Some of these mechanisms incur a
regret of O (logT). This is rendered possible due to the spe-
cific nature of the problem in hand. In particular, Bhat et al.
[5] look at divisible tasks. Jain et al. [20] look at determinis-
tic mechanisms where a block of tasks is allocated to each
agent and provide a weaker notion of truthfulness.

The lower bound of both of social welfare regret as well as
regret in the revenue of §2(7'>/3) have influenced subsequent
research to follow similar assumptions and thereby obtain
a similar regret. However, we show in this work that it is
indeed possible to design a deterministic mechanism which
attains logarithmic regret and is also truthful in the dominant
strategy incentive compatible (DSIC) sense [25]. DSIC, of
course, is the most preferred form of truthfulness [26]. This
work opens up the possibility for a planner to move away
from the worst case scenario to a more realistic scenario.
We enable the planner to specify a resolution parameter for
distinguishing the arms, introduce the notion of A-regret
and thereafter propose a mechanism that ensures that the
number of exploration rounds and hence the regret suffered
is only O (log T') instead of the expensive 2 (T'%/3) available
currently in state of the art. We summarize the contrast
between our work and the state of the art in Table 1.

3 The model: Single slot SSA

We now describe our SSA setting. For ease of reference, our
notations are provided in Table 2. Let K be the number of
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Table 1 Comparison of our
results with state of the art

Babaioff et al. [4] Our work
Loss studied Regret A-regret
Additional parameters None A: tolerance specified by the planner

Mechanism properties DSIC, deterministic, exploration

separated, O(T?/3) exploration

rounds
Upper bound on loss o(T?/3)
Lower bound on loss £2(T?3)

DSIC, deterministic, exploration
separated, O(logT) exploration
rounds

O(logT)

2(ogT)

agents or arms. We denote the set of arms by [K]. Each of
the K arms, when pulled, gives rewards from distributions
with unknown parameters. We assume here, that the form

Table 2 Notations for the single slot SSA setting

Symbol Description

K, [K] No. of agents and agent set

Wi CTR of agent i

0; Valuation of agent i for each click

Wi Social welfare when agent i
is allocated

pi (1) Click realization of agent i at
time ¢

Omax Maximum valuation over all
agents = max; 0;

b; Bid of agent i
Bid profile of all agents

b_; Bid profile of all agents except agent i

Ni No. of times agent i has been
selected till time ¢

A, p, 1) Allocation at time ¢ for bid
profile b and click realization p

ix Agent with maximum social welfare.
Ideally i, must be allocated at every
time step

Wi Social welfare when agent i, is
allocated

A Input parameter by center to indicate
the level at which the agents must be
distinguished

Sa Set of agents whose social wel-
fare is less than A away from i,.
These agents do not contribute to
A-regret.

ﬁjt UCB index corresponding to u;
at time ¢

[T LCB index corresponding to p;
at time ¢

it Empirical CTR of agent i estimated
from samples up to time ¢

P! Payment charged to agent i if he

is allocated a slot at time ¢ and he
gets a click
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of the distributions are known but the parameters of the
distributions are unknown. In SSA, the rewards of the arms
correspond to clicks. The clicks for the advertisements
are assumed to be generated from Bernoulli distributions
with parameters i, u2,..., ug where w; is the CTR
or probability that advertisement i receives a click once
observed. The means u1, ..., g are unknown.

A click realization p represents the click information of
every agent at all rounds, that is, p;(#) = 1 if agent i
received a click in round ¢. In a round ¢, only the click
information of the allocated agent is revealed after the
completion of the round. Click information of all other
unallocated agents is never known to the planner.

The agents also have their valuations for each click they
receive. We work in the ‘pay per click’ setting where the
agent pays the search engine for each click received. Let
the true valuation of agent i be 6; for a click. 6; is a private
type of agent i and is never known to the learner. However
the agent is asked to bid his valuation. Let the bid of agent
i be b;. We denote by a vector b = (b1, ..., bg) the bid
profile of all the agents. The central planner wants to ensure
that the agents bid their true valuations, that is b; must
be equal to ;. Assume that there is a single slot which
must be allocated to one of the K agents. We denote by
W; the social welfare when agent i is allocated a slot, that
is, W; = u;0;. The social welfare represents the expected
valuation of agent i per click. If the CTRs of the agents as
well as their valuations were known, the planner would have
selected the arm with the maximum social welfare, that is,
wi0;. However neither p; nor 6; is known to the planner.
Assume 6,,,, is the maximum valuation that any agent can
have and is common knowledge. The central agent wants to
allocate a single slot to one of the ads in such a way that the
net social welfare of the allocation is maximized.

A mechanism M = (A, P) is a tuple containing
an allocation rule A and a payment rule P. At every
time step or round ¢, the allocation rule acts on a bid
profile b of the agents as well as click realization p and
allocates the slot to one of the K agents, say i. Then
A(b, p,t) = 1i. Alternatively we denote the indicator
variable Ai (b, p, 1) = L[ A(b, p, 1) = i]. The payment rule
P' = (P{, P}, ..., P}), where P! (b, p) is the payment to
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be made by agent i at time ¢ upon receiving a click, when the
bids are b and for click realization p. As stated earlier p; ()
of the allocated agent alone is observed. Also note that the
allocation as well as payments in each round ¢ only depends
on the click histories till that round.

Let i, be the arm with the largest social welfare, that
is, iy, = argmaxW;. We denote the corresponding social

ie[K

welfare as Wi ]= max;e[x] W;. We denote by I; the agent
chosen at time ¢ as a shorthand for A(b, p, t). For any given
A > 0, define the set Sy = {i € [K]: W, — W; < A}. Sx
denotes the set of all agents separated from the best arm i,
with a social welfare less than A. These arms are therefore
indistinguishable for the center and they contribute zero to
the regret. Note that A is a parameter that the center fixes
based on the amount in dollars he is willing to tradeoff for
choosing sub-optimal arms, given he has only a fixed time
horizon T to his disposal. To capture this revised and more
practical notion of regret, we introduce the metric A-regret.
Formally,

A-regret =

Z(W*

Wi) 1 € [K]\ Sal

Il
Mﬂ

(Wi = W)L [W, — Wy, = A

1 ey

-
I

The center may not want to invest a huge number of
exploration rounds (.Q(TZ/ 3) in state of the art) to perfectly
distinguish the arms that are arbitrarily close. Many a time,
the planner may instead be willing to allocate arms that are
at most A away from the best arm. The center therefore
suffers a regret only when an agent with a social welfare
greater than A away from W, is chosen. A-regret captures
this loss.

The goal of our mechanism is to select agents at every
round ¢ to minimize the A-regret.

4 Our mechanism: A-UCB

We are now ready to describe our mechanism A-UCB.
The idea in A-UCB is to explore all the arms in a round-
robin fashion for a fixed number of rounds. The number
of exploration rounds is fixed based on the desired A,
specified by the planner. At the end of exploration, with
high probability, we are guaranteed that the arms not in S
are well separated from the best arm i, with respect to their
social welfare estimates. In the exploration rounds, agents
need not pay and these rounds are free.

Further on, for all the remaining rounds, the best arm as
per the UCB estimate of social welfare is chosen. However
in the exploitation rounds, the chosen agent pays an amount
for each click he receives. The amount to be paid by the

agent is fixed based on variant of the well known Vickrey
Clark Grove (VCG) scheme [33] known as weighted VCG
[28]. Note that no learning takes place in these rounds and
the UCB, LCB indices do not change thereafter. We present
our mechanism in Algorithm 1.

Algorithm 1 A-UCB mechanism for single slot SSA.

Input:
T: Time horizon, K: number of agents
A : parameter fixed by the center
Omax : Maximum valuation of the agents

Elicit bids b = (b1, b2, ..., bg) from all the agents

Initialize ﬁl 0=0,Nio=0Vi € [K]

y = [8K6?2,, log T/A?

fortr=1,...,y do > Exploration rounds
I; = ((t—1) mod K)+ 1> Round-robin exploration
Ny:=Np—1+1

A, p,t) =1, > Allocate slot to agent /; and
observe py, (1)
Wi = (11N =1+ p1, (1) /N,

€1, =+/2logT /Ny, ,

A+ o~
Mll»t = /’th,l‘ + 61[,1‘
l’l’[_r‘[ = MI[ - EI/,I

Al =1,y Yi e [KI\ {1}

ﬁ;; = /’Ll’;fl V K] \ {II}

Pl(b, p) =0Vi € [K] > Free rounds
end for
1* = arg maxul ybl

i€lK]

J = argmax ul b;

i€[K] \{l*}

+
P = //Lj,ybj//il?*,y

fort=y+1,...,T do > Exploitation rounds

A, p, 1) =i
PA’ (b,p)=P x 0, () > Agent pays only for a click
P (b p) =0Vi € [K]\ {is)
ult uly,ult /,LZVVIE[K] > No more
learning
end for

4.1 Properties of A-UCB

Next we discuss the properties satisfied by A-UCB
regarding truthfulness and regret. Before that, we state a
few useful definitions which will help in understanding the
notion of truthfulness.

At any time step, every agent obtains some utility by
participating in the mechanism. This utility is a function
of his bid, valuation, bids of other agents and his click
realization. Let &; denote the space of bids of agenti. b_; =
b1, ...,bi—1,biy1,...,bk) is the bid profile containing

@ Springer



3214

D. Padmanabhan et al.

bids of all agents except agent i. Let ®_; denote the space
of bids of all agents other than agent i. Therefore ®_; =
O1 X ..., x0O;_1 X Oj41 X ... X Og. We denote by
ui(bj,b_;, p, t; 6;) the utility to agent i at time ¢ when his
bid is b;, his valuation is 6;, the bid profile of the remaining
agents is b_; and the click realization is p. All agents are
assumed to be rational and are interested in maximizing
their own utilities.
In our setting the utility to an agent i is computed as,

ui(bi,b_i, p,t;6;) = 6; — PI (b, p))Ai(bi, b_i, p, Dpi (1) (2)

The idea behind the computation of the utility is as
follows. If an agent i does not receive an allocation (that is,
Ai(bi, b_;, p, t) = 0), his utility is also zero. He gets a non-
zero utility only if he receives an allocation. If he receives
an allocation and also a click (p;(t) = 1), then his utility
is the difference between his valuation for the click and the
amount he has to pay to the search engine (6; — Pit (b, p)).
If he does not receive a click (p; (f) = 0), his utility is zero.

Definition 1 Dominant Strategy Incentive Compatible (DSIC)
[4]: A mechanism M = (A, P) is said to be dominant
strategy incentive compatible if Vi € [K], Vb; € ©;,Vb_; €
O_i, Vo, Vt,u;(0;,b_;, p,t;0;) > u;(b;,b_;, p,1;6;).

Note that in the above definition, the truthfulness is
demanded a posteriori to even the click realization [14].
Hence it is the strongest notion of truthfulness. Examples
for weaker forms of truthfulness include those which take
expectation over click realizations.

Definition 2 Individually Rational (IR): A mechanism
M = (A, P) is said to be individually rational if Vi € [K],
Vb_i € ®_;,Yp,Vt,u;(0;,b_;, p,t;6;) > 0.

Theorem 1 A-UCB mechanism is dominant strategy
incentive compatible (DSIC) and individually rational (IR).

Proof We analyze the scenarios where an agent i bids his
true valuation and receives an allocation and also when he
does not. We show that in both these scenarios, bidding
his true valuation 6; is indeed a best response strategy. We
only need to consider the exploitation rounds because in the
exploration rounds, every agent is allocated a fixed number
of rounds independent of his bids and these rounds are also
free for agents.

Ai @i, b, p, 1) =1

This implies that when the agent bids his
true valuation, he gets an allocation. Therefore
ﬁ:’t@i > ﬁ;’)‘,bl for all the other agents
[. In particular, let agent j be such that

j = arg maxﬁ;rtbl. The amount to be paid by
lelKI\i}

Case 1:

@ Springer

Case 2:

agent i is P/(6;,b_;,p) = ﬁ;(,bj/ﬁ;;. If he
receives a click then u; (6;,b_;, p,t;6;) = 0; —
ifbi/at, > 0.

Overbid: If agent i bids a value b; > 6;, he con-
tinues to receive an allocation and his payment
is still the same, P! (b;, b_;, p) = ﬁ;f,b IR
Therefore his utility continues to be
ui(bi,b—i,p,1;6,) = 6; — &} bi/if,
u;(6;,b_i, p,t;0;). Therefore he does not
benefit from an overbid.

Underbid:  Suppose agent i bids a value b; < 6;.

Case a: If b; is such that [ b; < ﬁj,b,-,
the he fails to get an allocation as
Ab;,b_;, p,t) = j # i.Then the util-
ity to agent i is u;(b;, b—_;, p,t;0;) =
0 < u;(6;,b_;, p,t;0;). Therefore he
clearly loses his utility by such an
underbid.

Case b:  Suppose b; is such that ﬁ;@i >
ﬁ;rtbi > ﬁ;ftbj. That is agent i
bids in such a way that he wins
the allocation even with an under-
bid. Then, if he gets a click, the
amount he must pay to the center is
Pl (bi,b_i, p) = ﬁ;,bj/ﬁ;. There-
fore his utility u;(b;, b_;, p,t;6;) =
0; —ﬁ;f,bj/ﬁ:r, =u;i(6;,b_;,p,1;6).
He obtains the same utility as a truthful
bid and there is no benefit from such an
underbid.

Ai6i,b_i, p,t) =0

This implies that when the agent bids his true
valuation, he does not get an allocation. Suppose
agent j wins the allocation. A(6;, b_;, p,t) = j
and ﬁ;@i < ﬁjr,tbj'

Truthful bid: Since agent i does not win an
allocation with a truthful bid, his utility
ui(0;,b—i,p,1;6;) =0

Overbid: Suppose agent i bids in such a way
that b; > 0;. We have two sub-cases here.

Casea: If b; is such that IILG,- <
ﬁ;ftbj < ﬁ;ftbi, then agent
i wins the allocation. So,
Ai(bi,b_;i, p,t) = 1. If he gets a
click, he now has to make a payment
P{(bi.b-i.p) = &},b;/It;,- Now
his utility u;(b;, b_i, p,t;6;) =
0; — ﬁ;tbj/ﬁ; < 0. And in
particular u;(b;j,b_i, p,t;60;) <
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u;(6;,b_i, p,t;0;) = 0. Therefore,
such an overbid is clearly disadvanta-
geous compared to a truthful bid.
Suppose i}, T < I’thb < /LJ tb
The overbld by agent i is not suf-
ficient to make him win the alloca-
tion and agent j wins the allocation,
A, b_;, p,t) = j. The utility of
agent i, u;(b;,b_j,p,t;6;) = 0 =
u;(6;,b_;, p,t; 6;). Therefore there
is no advantage for agent i by this
case of overbid.

Case b:

Underbid: If agent i bids in such a way that
b; < 6;, he continues to lose the allocation
and therefore his utility,u; (b;, b_;, p, t; 6;) =
0 = u;(6;,b_;, p,t; 6;). Since, the utility by
an underbid remains the same as a truthful bid,
there is clearly no advantage in underbidding.

All the above cases show that our mechanism is DSIC a
posteriori to the click realizations. Also, in each of the above
cases, note that the utility of an agent i, u; (6;, b—;, p, t) >
0. Therefore, by truthful bidding he never gets a negative
utility. This proves that our mechanism is individually
rational. O

We next discuss the regret incurred by A-UCB. We note
that the regret analysis we provide differs in spirit from
the worst case analysis in [4]. The number of exploration
rounds in [4] is required to be £2(7T2/3) since the separation
between the best and second best arm is fixed in an
adversarial manner in their analysis. Our analysis does not
resort to any adversarial arguments.

In order to prove our A-regret results, we will first need
to prove several other lemmas.

Lemma 1 Social Welfare UCB index: For an agent i, we
define the social welfare UCB indices for agent i as,

~i — 0; Zlog T
Wi = Wit + €0 = Wii0i + [ 2——— 3
it
~ R 01.2 logT
Wi, =i 0 — €40 = Wi 0 — (€]
’ Ni,

Then, ¥t P <|a) LW ¢ (W (0), W;;(w)])}) <274,

Proof Let ﬁ;ft and ﬁ;t denote the UCB and LCB indices
for the estimate f;. Then the events {® : u; ¢ [ﬁ;t (w),

ﬁﬁt(w)]} and {w : W; ¢ [Af(a)), Wiﬁ(a))]} are identical.
So. P(W; ¢ (W, Wi = PG ¢ (@A)
An application of Hoeffdmg bound [18] gives P(u; ¢

[’/Igt,ﬁft]) < Zexp(—ZNi,,ei%t). As per the mechanism

¢ = 210gT/Nis. So, P(wi ¢ [f;,. 14, <
2exp(—2N;, x 2log T/N; ;) = 2T 4. O

. 862, logT .
Lemma 2 Suppose at time step t, N;; > —mu 80 v ¢

[K]. ThenVi € [K], 2¢; :6; < A.

Proof Given that N; ; >

862, log T
'""Z—zog . Therefore,

2 2
2 - 8nalogT _ 86710 T - [2@. logTi|

Ni 1 Ni s Ni s

Taking square roots on both sides of the above equation
yields A > 2¢; ;6; thereby proving the lemma. O

Lemma 3 Suppose K < T. For an agent i and time step t,
let Bj be the event B;; = {w : W; & [W, Wit]}. Define

the event G = (1) (| Bf,, where Bf, is the complement of
tie[K] ’

Bi,. Then P(G) = 1 — .

it

Proof From Lemma 1, the probability of the ‘bad’ event,
P(Bi,) < 2T~

o) -+ {(00)
- (UUB, ,) =1- ZX{Kj P(Bi,)
> 1 Zt:l;JzT—%l—i

The last statement follows by summing over all rounds and
using the fact that K <« T. O

862

mat

Theorem 2 Suppose at time step t, Nj,; > log v j €

[K]. ThenVi € [K]\ Sa, V’[}: > W+ with hlghprobabzlzty
(=1-2/T*).

t

Proof In Theorem 1, we have shown that A-UCB is DSIC.
Therefore, all the agents bid their valuations truthfully, b; =
0; Vi € [K]. Suppose in exp101tat10n round ¢, a sub-optimal
arm i is pulled. Therefore, W+ > W+ Then one of the
following three conditions must have happened

Condition 1: W; < Wi;. This condition implies a drastic
overestimate of the sub-optimal arm i so
that the true social welfare W; is even below
the LCB index Wi;. Figure 1 shows this
case. ’

W, > Wit,z‘ This implies an underestimate
of the optimal arm so that the true social
welfare W, lies above even the UCB index

Wi': ;- This situation is shown in Fig 2.

Condition 2:
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Wi
| [ ]
‘ L ]
e Wt
Wi,t Wi,t
Fig. 1 Condition 1, proof of Theorem 2
W
[ ] |
L ] ‘
T Tt
st Wi, Jt
Fig.2 Condition 2, proof of Theorem 2
W e Wt ot
Wie Wi Wi*,t Wi,t
. T
L™ L t] ]
Ww; W

Fig.3 Condition 3, proof of Theorem 2

Condition3: W, — W; < 2¢,6;. This implies an
overlap in the confidence intervals of the
optimal and sub-optimal arm. Even though
Conditions 1 and 2 are false, still the UCB
of sub-optimal arm i is greater than the UCB

of the optimal arm i,. O

From Fig. 3, W, — W; < Wl"’t — Wl_t < 2¢; 6
If all the three conditions above were false, then,
W

iy t

> Wy > W; 4 2¢;:6; > Wl; + 2¢€;:6; = W[th

> W

; ;'.» leading to a contradiction.

2
As per the statement of the theorem, N;; > 89’"“2#.

Therefore by Lemma 2, 2¢; ;0; < A. Fori € [K]\ Sa,
Wi, — W; > A > 2¢;,6;. So Condition 3 above does not
hold true. So if the sub-optimal arm i must have been pulled,
only possibilities are for Condition 1 or 2.

This implies that W;"

P(Wiﬁ > Wiit) < P(Condition 1) + P(Condition 2)

1 1
< SPBi)+5P(Biy) < 2/T7*

PWS, >Wh=1-PW,>W)=1-2%

thereby completing the proof.
We are now ready to state our main result on the incurred
regret.

Theorem 3 [fthe A-UCB mechanism is executed for a total

time horizon of T rounds, it achieves an expected A-regret

of O(logT).

@ Springer

Proof The main idea in the proof is to compute the A-regret
conditional on two events - G and G¢ and then to find a
bound for these two conditional expectations.

E [A-regret|G] = E [A—regretl\v’l, Vi W e (W), VT/:;]}

T
E [Z (Wa=W1,) LI, € [K1\ SalIV2, Vi W; € [W;,, vT/if;]}

t=1

~ ol

=E [Z (We = Wp,) LI € [K1\ SalIW), €W, . W,t,]}
t=1

_ 8K6) . logT

=S — a0

The last step comes from the fact that Conditions 1 and 2
in the proof of Theorem 2 are eliminated as we are given
that the event G has occurred. After exploration rounds,
Ni; > 8[(0”21” log T/A?. From Theorem 2, no A-regret
occurs during exploitation since G is true. Therefore the
regret is only incurred during the exploration rounds.

We now compute [ [ A-regret|G*].

E [A—regret|Gc] < TOnax (5)

But P(G°) =1—- P(G) < % from Lemma 3.
Putting all the steps together,

E [A-regret] =F [A-regret|G] P(G)+E [A-regret|G“] P(G°)
_ 8K logT

max
= "
- 8K63 . logT

=T A7

2
*I—I—Temax*ﬁ

6

The second term is less than 2 as 6,,,c << T. This completes
the proof. O

A consequence of the above theorem is that even if an
adversary chooses an arbitrary small gap between the best
and second best arm, there is nothing to worry for the
planner - if the gap is less than his tolerance A, no loss is
incurred as opposed to the otherwise .Q(Tz/ 3) loss in [4].

4.2 A lower bound for A-regret

We will now discuss a lower bound for the A-regret incurred
by our approach. In particular, we will provide the lower
bound for the case where 6§; = 1 for all i and is known. The
proof will follow along the lines of the lower bound proof
in [7]. The same lower bound will also naturally apply to
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the case of the general strategic version as well, since we
our proposed mechanism A-UCB is truthful and achieves a
matching upper bound.

Let kI(p, q) denote the KL divergence between the dis-
tributions Bernoulli(p) and Bernoulli(g). Then kl(p, qg) =

plogp/q + (1 — p)log(l — p)/(1 — g).

Theorem 4 Consider the setting where 6; = 1Vi € [K].
Suppose an algorithm satisfies E[N; ;] = o(t%) for any
set of Bernoulli reward distributions and for all arms i ¢
Sa and a > 0. Then for any set of Bernoulli reward
distributions we have,

El[A- t A;
hmmfw > Z e (7
T—o0 logT ; kl(ui, u* 4+ A)
i¢Sa
where u* = argmaxpj, A; = pu* — p; forall j € [K].
JElK]

Proof We will provide the proof for the case of two agents.
The proof for the case K > 2 follows analogously. Assume
that up < w1 < 1 and pu; — o > A. Therefore agent
1 is optimal and agent 2 does not belong to Sa. For any
€ > 0, due to the continuity of k/(u2, x), we can find
wh € (1 + A, 1) such that

kl(pa, 1) < (1 + )kl (o, i1 + A) ®)

This configuration then corresponds to an alternate setting
where the mean of agent 2 is . In this alternate setting,
Wy — 1 > A and agent 2 is the unique optimal. For
sefl,..., T} let,

N

a,=3 paps + (1 — u2)(1 — pjh)
* mhph + (1 — ph)(1 — pb)

)]
t=1
It can be verified that lim,_, E[lgl,]/t = ki(ua, ,u/z)
(where the expectation is taken over pé) and therefore kI,
serves as an un-normalized estimate for kI (w2, u5).
Let Ct denote the following random variable,
(1—e)logT

Cr=1{Ny1 <
' kl(pa, 1)

and kly, , <(1—¢€/2)log T)}

(10)

One may verify that Pﬂ'z (Cr=1)=E,lCr exp(—lglNz_T)]
by applying a change of measure. We will now show that
P,,(Ct =1) — 0as T — oo. This is due to the following:

Py, (Cr = 1) = By, [Cr exp(—kin, ;)]
>exp(—(1 —€/2)logT) x P, (Cr=1)

(1—€)log T

Therefore, setting fr = AR

and applying Markov
inequality we get,
Pu,(Cr=1) < TP (Cr = 1) < TP (N2 < fr)

[T — Narl

Tl—e/zEMz R
B T - fr

The last step arises as a consequence of T — N> 7 = Ny 1
and agent 1 is sub-optimal for the setting where agent 2 has
the mean reward of 1.

We will finally show that P, (N2, 7 < fr) — 0.

P,(Cr=1) = Py, (N2 < fr and m;}x kNZJ <(1—¢€/2)logT)
S=fr

kl(ua, 1) -
=P, (N d — 2 kl
1wy (N2, < fr an d—e)loaT srrﬁleyl( s

- kl(ua, 1)

- (-9
Note that kI (u>, ,1/2) > 0 and =22 > 1. Therefore by an

1—€
application of the strong law of large numbers, we have

(I —€/2))

kl(ua, puh)

(I—e)
Since P, (Cr = 1) — 0, we must have P,,(N2 7 <
fr) — 0 as well. Applying Markov inequality again, we
get,

Kl (s, 1 i
lim By (; (2. 1) ax i, < (1—e/2) =1

———<—m
T—o0 1—e€)logT s<fr

—€
Eu,[N2 1] = Puy(Nor = f1) fr = m

- 1—e€ log T

T I+ ekl(uz, u1 + A4)
The last step is obtained by applying Eq. 8. This completes
the proof. Note the key difference between our proof and [7]
lies in Eq. 8. Our RHS in Eq. 8 is necessary to ensure that
in the alternate scenario agent 1 is sub-optimal. O

Remark 1 The lower bound for the expected A-regret
Theorem 4 is quite similar to the lower bound for the
regret of the UCB algorithm in [7]. The difference is that
the KL divergence term in the bound is also a function of
the parameter A. Intuitively instead of considering the KL
divergence between K L(u;, u*), we give an allowance of
A for the optimal agent.

5 Extension to multi-slot SSA

In the previous sections, we assumed that there was a single
slot for which the advertisers were competing. We now look
at a more general setting where there are M slots to be
allocated to the K agents. As before, each advertiser has
exactly one ad for display and the CTR for advertisement
i is denoted by u;. Recall that in the case of single slot
auctions, the CTR exactly denoted the probability with
which an ad received a click. However in the generalized
setting of multi-slot auctions, an additional parameter comes
into play while computing the click probability due to which
the problem becomes much harder [13].

Each position or slot m is associated with a parameter
Am called ‘prominence’. A, denotes the probability with
which a user observes an ad at slot m + 1 given he has
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observed the ad at slot m. In order to understand the need
for this parameter, a useful scenario to imagine is the listing
of web-pages in Google for a query. There are two phases
that one can think of once the listing of pages or results have
appeared.

Phase 1: This is the phase where a user scans through
the pages listed. A page listed higher up in the
ranking (say second from the top) has more
chances of being observed by a user rather than
a page that is far below in the ranking (say
fifth from the top). A4, for instance, denotes the
probability that a user observes the fifth page,
given he has observed the fourth page. Coming
back to sponsored ads, we assume that 19 = 1,
that is, the ad listed in the first slot is surely
observed. We denote by I, the probability that
an ad at slot m is observed. I3, is computed as,

ifm=1

if2<m<M (10)

—_

s=
0 ifm>M

This modeling assumption for I3, is known as
position dependent cascade model.

After having scanned through the list, the user
decides to click one or more of the shown ads.
In the multi-slot setting [14], it is assumed that
multiple ads in a listing may receive clicks. The
probability that ad i receives a click when shown
atslot m = Iy, ;.

Phase 2:

We assume that A,,, m = 1,..., M are known to the
planner a-priori. The problem of learning these parameters
along with the CTR p is much harder in the presence of
strategic agents. Therefore, in this section, we work with
the assumption that the As and hence I's are known. In
Section 6.2, we give pointers for design of mechanisms
where the I's are unknown.

The above modeling assumptions are as per standard
conventions [13]. In the multi-slot setting, the allocation is
given to multiple agents at every time step. We denote by
A, p,t) C {1,..., K}, the allocation at time ¢ for bids b
and click realization p. The cardinality of the allocated set
|A(b, p,t)| = M. We also use the notation A; (b, p,t) = m
to denote the allocation to agent i at time ¢ is slot m, for the
bid profile b, click realization p. If an agent i is not allocated
any of the M slots at time ¢, we say A; (b, p, 1) = 0.

We denote by W; ,,, the social welfare of agent i, when he
is given slot m. W; ,, is the expected valuation that agent i
receives when he is given slot m and is computed as,

Wi,m = Iy ui0; (11

@ Springer

For ease of reference, the additional relevant parameters for
the multi-slot setting are provided in Table 3.

Having described the multi-slot setting, we now analyze
the scenario from the view point of the search engine or
central planner. In the ideal scenario, the planner would
like to allot the ads exactly to the top M agents with the
largest social welfare. This use case has been studied in the
literature [14] and exploration separated mechanisms with
regret of O(T%/3) have been proposed. Various possible
allocations are explored for O (T%/3) time steps for every
agent after which the allocation algorithm is guaranteed
to converge to the ideal allocation with high probability.
As in the single slot case, O(T?/3) exploration rounds are
required to distinguish all the agents perfectly from each
other, when there are agents whose social welfare values are
arbitrarily close.

However, a much more practical problem of interest is
to study and design mechanisms when the search engine
is indifferent to a gap in A in social welfare for every
slot. We observe that in cases where the agents are well-
separated, O (T*/3) exploration rounds are not required. In
fact, O (log T') exploration rounds are sufficient to converge
to an allocation that is well within the requirements of the
search engine.

Having explained the problem, we now formalize the
notions of separatedness in this setting. Let KO .. KM
€ [K] be the best M agents in terms of their single slot
social welfare values, that is, uxm 01y > pg@bre >
oo > pgonBgan. Let Wy iy = W ,,,. The ideal solution
would be to allocate agent K ™ the slot m. This allocation

Table 3 Additional notations for multi-slot SSA

Symbol Description

M No. of slots

[M] Setof M slots={1, ..., M}

Am Prominence (Probability with which a
user observes an ad at slot m+1 given
he has observed the ad at slot m)

I, Probability that an ad at slot m is
observed

Wim Social welfare when agent i is
allocated slot m

ML.(,'[") No. of times agent i has been alloted
slot m till time ¢

Ni. No. of times agent i has been selected
till time ¢ over all slots

K™ Optimal agent for slot m

Wim Social welfare when agent K m) g
allocated slot m

SAm Set of agents whose social welfare is

less than A away from K. These
agents do not contribute to A-regret
when allocated slot m.
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would yield the largest social welfare but in the worst case,
when the agents’ social welfares are separated by a function
of T, converging to this optimal allocation would require
O(T?*/3) exploration rounds [14]. Instead, for a prescribed
value of A fixed by the search engine, define the set,

Sam ={i € [K]: Wgn , — Wi < A}.

Sa.m is the set of all agents whose social welfare is at
most A away from the agent K ™ ( who should have ideally

12)

been given slot m). The planner is indifferent to the regret

contributed by the agents in S ,,, if any of them are allotted

slot m. Hence we define the multi-slot A-regret metric as,
T M

A-regret= Z Z W =Wy, )1 [Il,,m € [KT\ SA,m]

t=1 m=1

The A-UCB mechanism for the multi-slot SSA is given in
Algorithm 2.

Algorithm 2 A-UCB mechanism for multiple slot SSA.

Input:
M : No. of slots, K: No. of agents, 7: Time horizon
A : parameter fixed by the center, ', .. .,

Omax : Maximum valuation of the agents

I"ps: Slot specific parameters

Elicit bids b = (b1, b2, . .., bk) from all the agents
Initialize ﬁ, 0=0,N;o=0Vi € [K],
y = [8K02, logT/A?]
forr=1,...,y do
Ab, p, 1) = ¢
form=1,...,Mdo
Ly =t —1) mod K)+m—1) mod K + 1
Ni it = Nip -1+ 1
o =M(’”)t 1

1[ mst

A, p, 1) = Ab, p. 1) U L1
H“It.m»f=</141,mt lNI,mt 1+

(m”)
_ M M/,,m,z 2log T
€l mt = > r N2
m

m'=1 It,m.t

Plt.m (t)> /N]Lm,t

ﬁ;m,t = ﬁlt,m,[ + elr,m,t
ﬁl_t,l = ﬁlt,m,l‘ -
end for
ﬁjrt = ﬁ:,rzfpﬁi_,, = ﬁi_,zq Vi e [K1\ A, p,1)
P/(b, p) =0Vi € [K]

eltm»t

end for
KO K@ KM
fort=y+1,...,T do
Ab,p, 1) =¢
form=1,..., Mdo
Iym = K™
Ab, p. 1) = Ab, p,1) U K™
Pt (b, p) =
end for

P(b p) =0Vie[K]\ Ab, p,1)

i, =0, i, =M, Vi€ lK]
end for

> Exploration rounds

> Allocate I; », slot m and observe py, ,, ().

> Free rounds

, K®) = sorted list of agents in the decreasing order of ,L’Ify b;

> Exploitation rounds

M+1 -~
(1/ Fmﬂ;&m),,,l) YDt Tt =T By b oo (1)

> No more learning

We analyze the regret and truthfulness of Algorithm
2. The lemmas and theorems for establishing the results
for the multi-slot setting are similar to the single slot

setting, however there are subtle differences in proving
many of the results. We will highlight them as and when
necessary.
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Theorem 5 In the multi-slot setting A-UC B is Dominant
Strategy Incentive Compatible (DSIC) and Individually
Rational (IR).

Proof The mechanism is an implementation of the weighted
VCG scheme (with the weights for each agent w; =
;" /pi) and is hence DSIC and IR. O
Lemma 4 For an agent i and slot m, the click through rate
UCB indices for agent i,
M (m")
2 N2

m'=1 m’ it

M (m’
ZM‘T) 2logl 4
r? N?

m'=1 m' it

A+ o~ o~
Wiy = i+ € = Wiy +

~ o~ o~
Mip = Mip — €ir = Wit —

satisfy P(ui ¢ (B, ;) < 2T~* V1

Proof At every time step, we observe samples oy, , (¢), m =
1, ..., M corresponding to the clicks of the allocated ads.
These samples also encompass slot specific information
which must be accounted for in the computation of
empirical mean as well as UCB index for p;. For an agent
i, let the random variable C; ,,, denote whether ad i receives
a click at slot m. Therefore C;,, is a Bernoulli random
variable with bias I, ;.

We obtain a sample p;(.) of C; ,, when ad i is allocated
slot m. However it is the samples from C; ,, /I, that gives
us an unbiased estimator for w;. Therefore, the random
variable of interest is the Bernoulli random variable,

w.p 1l — i

0
D;,, = 15
o {1/Fm w.p I fhi ()

D; ,, is bounded in [0, 1/13,] and E[D; ] is p;. Also,

22
logE [exp()\(Di,m —ui)] < 32 (by Hoeffding’s Lemma)
m

Consider the scenario where, for an ad 7, a single sample
click is available from each slot. Let X;, denote this
sample of C; ;. Assume X; ,, are all independent and &; =
1/M M\ Xim/ T EIfTi] = ;. Now,

M
Pi; — i >€)=P (ZXi,m/Fm — Mp; >€M>
m=1
M
— P (expmz Xim /T — M) > exp(AeM>)
m=1

M
<E [exp(x(z Xim/ T

m=1

- Mlii))i|

/ exp(rLe M) (by Markov inequality)

@ Springer

M
= [TE [exp(Xim/Ton — 1))

m=1

/ exp(Ae M) (by independence of X; )

M52
A
m=1

In order to tighten the above bound on the right
hand side, one must find appropriate A which minimizes

exp(fozl % — AMe). Setting A = 1L* = 4Me/n where
M m

n= Zm:l

P( fIi — mi > €) < exp(=2M>¢*/n) an

In order to obtain a § confidence on P(f; — u; > €), €
must be set so that exp(—2M?e2/n) = § = T~*. Therefore,

1/T, n% achieves the minimum value. Therefore,

M

e= | (1}2) 21;15;2? In the above analysis we assumed
m=1 m

that from each slot, one sample was available. When we

have a total of N; ; independent samples for ad i, with M

samples for slot m at any time 7, n = Zm 1M /F2

2 2
m'=1 Fm’ N!'J

M )
M .
and therefore ¢; ; = < P ) 2loeT " completing the
proof. O

A noteworthy feature of our estimates is the following.
An allocation of an ad i in a slot m yields a sample for
the computatlon of not only W, m.t> but also for W, ' ¢ for
all slots m’ € {1,..., M}. This is because I}, is known
to the planner a-priori. Therefore note that, the number of
allocations that ad i receives till time ¢, N;; is the sum of
the number of allocations that agent i receives irrespective
of the slot or inclusive of all the slots.

Lemma 5 For an agent i and slot m, the social welfare
UCB indices for agent i,

+ o~ o~
Wilo = Tmltii6i + €im = Iinlti16;

M (m") 2
M;, 20°TI'2log T
+ (Z L ) i 08 (18)
re, N:
\ m'=1 m’ 1,1
A,»,_m,, = Dniti, 0 — €im,e = Dnitii0;
M ’
M7\ 20212 10g T
- Z 2 2 (19)
N:
N \w=1 "’ it
satisfy P(W; » ¢ [ it lmt])) <2T~* Vi
Proof The proof idea is similar to Lemma 1. O
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2
Lemma 6 Suppose at time step t, Nj; > 89’”“2;°gT Vj e
[K]. Then Vi € [K] andVm € [M], 2€; m.: < A.
Proof The proof is similar to Lemma 2. O

Lemma 7 Foranagenti, slot m and time t, let B; .1 be the
event By = {w: Wi & [W,,, (@), W t(w)]} Define

the event G = (\(\(\Bf,, ;- Then P(G) > 1 — T2
tim

Proof The proof has some subtle differences from Lemma
3 because in the multi-slot extension, the events B; ,, ; are
not independent across the slots.

Observation: If an element w from the set of outcomes is
such that w € B; py, then w € By, Vm' € [M]. This is
because, for any two slots m and m’,

W1m¢[ zmt] <:>l'l’l¢[l"l’l[7l'l’ll]

= Wiw ¢ W,

i,m,t’
~

+
m',t° Wi,m’,t]

Therefore P(|J,, Bim,:) = P(Bi 1,;). From Lemma 5,
P(U,, Bim:) = P(Bi1,) < 2T+ Hence,

() =ror (O

2
1-— T—(as in Lemma 3). 0

P(G)

log T/ A?
>

Theorem 6 Suppose at time t, N;j; > 89,%1%
Vj € [K]. ThenVm € [M],Vi € [K]\ Sam, W

+
K .t
Wt with high probability (= 1 — 2/ T*).

1,m,t

log T/A?
<

Proof Suppose at time ¢t where N;, > 89
Vj € [K], there exists some m € [M] such that W

K(m)
W:J:n ;- (Note that this statement does not arise from any

assumptions on the allocation, for instance, that agent i is
given slot m. This is the major difference from Theorem
2). But the relation between the true social welfare values
of these agents is Wgwm ,, > Wim. Then one of the
following three conditions must have occurred, like in proof
of Theorem 2.

Condition1: W;, < Wl e This condition implies
a drastic overestimate of the sub-optimal
arm i so that the true mean social welfare
Wi m is even below the LCB index Wi’_m! ;

Figure 4 captures this condition.

Condition 2: Wy , > W;<"l>,m,z' This implies an
underestimate of the optimal arm so that the
true mean social welfare Wy ,, lies above
even the UCB index W;(m),m’t. See Fig. 5.

Condition 3: Wi m — Wim < 2€im;:. This implies

an overlap in the confidence intervals of
the optimal and sub-optimal arm. Even if],
Conditions 1 and 2 are false, still the UCB
of sub-optimal arm i is greater than the UCB
of the optimal arm i,. See Fig. 6 for an
illustration of this condition. O

~

From the figure, WK(m)’m —Wim < Wt W

<
1,m,t ,m,t —
2€; ;. If all the three conditions above were false, then,

o+
WK<m> i > W > Wim + 2¢;; > Wl me T 2¢; ¢
= me ; (A contradiction!)

As per the statement of the theorem, N;; > 89max og
T/A2. Therefore by Lemma 6, 2¢;,; < A. For agent
i € [KI\ Sam: W) g — Wim > A > 2€; 1. Therefore,

Condition 3 above does not hold true. So,

P(W l it > WK(,”) ;) = P(Condition 1) 4+ P(Condition 2)
< 0.5P(Bims) +0.5P(Bygim ) <2/T*
PWioy > Wi =1=PW, > Wh, )=1-F%

Theorem 7 If the A-UCB mechanism is executed in the
multiple slot scenario for a total time horizon of T rounds,
it achieves an expected A-regret of O(logT).

Proof The proof idea has some subtle differences from
the proof of Theorem 3. As before, we first compute
the expected A-regret conditional on G. For the explo-
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ration rounds, the mechanism obtains a regret of § =
8MKO] . logT
A? )

E [A-regret|G]
T M

SEF Y (Wi =Wty m) L[ In € K\ Sam|G]
t=y+1m=1

We will now show that the second term above evaluates to
zero. For any m, the cardinality of Sx ;, is at least m. This is
because for all K/) above m in the ranking of agents (j <
m), Wy — Wgin gy <0 < Aas Wgip y > Wi -
Therefore there are at least m — 1 agents in Sa . Also
K™ ¢ Sp,, as Wi m — Wi ,, = 0 < A. Therefore
Viell,...,m}, KW ¢ Sa.m. While allocating slot m, at
least one of the agents in Sa , must be free. This is by the
pigeonhole principle. Now if the allocated agent for slot m,
It m € [K]\ Sa.m, one of the following two cases occur.

Case 1: The ideal agents KU ... K™=V for all the
previous slots 1,...,m — 1 have already been
allocated before the allocation of slot m. This
means that K ™ has not been allocated yet. Also,
VT/(';m)’m’y > W;(m) . Since G is true and
t > y, the above event cannot occur (by Theorem
6).

The agent K has already been allocated to
some other slot before the allocation of slot m has
begun. Therefore there is some agent K/, j <
m with a larger social welfare value, who has
still not been allocated. That is, Wxhm >
Wgm > W, ,).m- Given that I ,, & Sam.
Therefore we can deduce that Itm & Sa,j- Thisis
because,

Case 2:

Wgm) o — Wi ym = A

= Wgoirm = Wi, ym = A

= WUrhOgi) = L0l = A/

= j(ugiOx» — 1t,,0n,,) = 1A Ty

= Wgu,j =W, =4 (20)

The last line in the above implications is true as I} >

I;,,. But W;'w < W&'t Yoy Then the 1nequal1ty
W;(r( Dy W( o),y is also true due to the way the slot

specific UCB indices are computed. _From Theorem 6 for

slot j, we find that WK(J) > W(1, i Again this

cannot happen as G is true and t > y. Therefore we get that
E [A—regret|G] <é&.

Also, P(G) =1 — P(G) < % from Lemma 7.

@ Springer

Putting all the steps together,

E [A-regret] = E[A-regret|G] P(G) + E [ A-regret|G] P(G°)

8KM6> logT 2
% 1+ TM0Opyuy * 72

8KMO3 logT
%guem @1

The simplification in the second line is because
E [A-regret|G¢] < T M6yqx. In the last line we use the fact
that M < T. This completes the proof. O

6 Extensions to other variants of multi-slot
SSA

In this section, we look at other variants in the multi-slot
SSA setting and discuss how our mechanism can be adapted
to such settings.

6.1 Position and Ad dependent cascade model

We have explained our algorithm and performed the
analysis for the position dependent cascade model for SSA
where the I, function is characterized by Eq. 10 and is
known to the planner a-priori. A more general model would
be one where the function I3, may also depend on the ad
displayed at position m. Our model can also be used in such
scenarios and the same analysis will hold.

6.2 Handling the case of unknown I,

We have assumed that the functions I;,s are known to the
planner a-priori. Now suppose that the I;,s are required
to be learnt. The same allocation scheme as in Algorithm
2 may be used. However the computation of the proposed
payment scheme in algorithm 2 is not feasible as the
payments use [;,s, which are unknown.

In order to handle such a scenario, we must obtain esti-
mates for I first. It is known that, the parameter for the
first slot, I = 1. Only I, ..., ') need to be estimated.
We will first describe a mechanism which relies on an arbi-
trary learning algorithm to provide estimates D, ....Iy.
Thereafter we will remark on the possible learning schemes.

Proposition 1 Suppose we_ have a learnmg scheme that
gives us estimates Fz, .. FM such that, Fz > Fg . >
FMandO§Fm§1f0rm_2 MLetFl_l

We propose a weighted VCG mechanism [28] which is
known to be DSIC truthful and is also IR. Suppose the
private valuation of agent i for a click is 6;. Let x €
{0, 1}X*M be an outcome of the allocation. x;,, = 1 if ad i
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is alloted slot m and zero otherwise. The valuation function
of agent i in this case is,

M
vi(x, 0) = Duptibixim (22)

m=1

Define a weight vector w; € RM for every agent i. w;

has Welghts correspondmg to agent i and slot m such that,

+
Wim = /;‘ T, /L is the UCB index corresponding to the

CTR of ad 'l computed after the fixed number of exploration
rounds as in Algorithm 2. However, in this scenario, the
UCB index is constructed using samples of the clicks from
allocation in the first slot alone.

Our weighted VCG mechanism is described in Fig. 7.
The mechanism uses the allocation,

K M
A*(bi,b_i) = argmaxZ D DobtibiXimWim

i=1 m=1

But note that this allocation rule boils down to the same
allocation used in Algorithm 2. This is due to the fact
that the estimates fm monotonically decrease with m. The
procedure for obtaining the allocation A*(b;, b_;) is the
following. We sort the agents based on ﬁ;"bi and allocate
the slots to the best M agents. Therefore, the allocation rule
is independent of the I's and is equivalent to,

A*(b;, b_;) = argmaxz Z w; Tbixim

i=1 m=1

The expected payment to be made by agent i when allocated
a slot m’ is,

M+1
E[P] (b, p)] = A+F SN Al bixjm Tuo— )
m'’ J#E m=m’+1
Fig.7 A-UCB mechanism for (

The above is the externality based payment prescribed by
weighted VCG. However since we adopt the pay per click
scheme,

M+1

Pl(b, p)] = p’“) e SO DD DI PUSM Ry

f j;ézm m’+1

Therefore, the computation of the payments is also feasible
now. The above mentioned weighted VCG scheme is DSIC
truthful and IR. The proof follows from the standard
weighted VCG scheme where the weights are 