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Abstract
In this work, an Incremental Learning Algorithm via DynamicallyWeighting Ensemble Learning (DWE-IL) is proposed to solve
the problem of Non-Stationary Time Series Prediction (NS-TSP). The basic principle of DWE-IL is to track real-time data
changes by dynamically establishing and maintaining a knowledge base composed of multiple basic models. It trains the base
model for each non-stationary time series subset, and finally combine each base model with dynamically weighting rules. The
emphasis of the DWE-IL algorithm lies in the update of data weights and base model weights and the training of the base model.
Finally, the experimental results of the DWE-IL algorithm on six non-stationary time series datasets are presented and compared
with those of several other excellent algorithms. It can be concluded from the experimental results that the DWE-IL algorithm
provides a good solution to the challenges of the NS-TSP tasks and has significantly superior performance over other compar-
ative algorithms.

Keywords Non-stationary time series prediction (NS-TSP) . Incremental learning (IL) . Dynamic ensemble learning (DEL) .

Incremental learning algorithm via dynamically weighting ensemble learning (DWE-IL)

1 Introduction

A time series is a series of observations collected in a fixed
sampling interval. Many dynamic processes in the real world
can be modeled as time series, such as stock price changes,
weather prediction, number of sunspots, and disease inci-
dence, etc. If we want to predict these processes to help pro-
duction and life, we need to understand the knowledge of time
series prediction (TSP). TSP refers to the process of predicting
future trends based on historical time series generation
models. Time series can be divided into stationary time series
and non-stationary time series (NS-TS). In the narrow sense,
stationary means that the probability distribution of a se-
quence does not change with time, while in the broad sense,
stationary means that there are primary and secondary mo-
ments in a sequence, the mean value is constant, and the co-
variance is a function related to the sampling interval. On the
contrary, non-stationary means that the mean and covariance
of a sequence change over time. The change is affected by

many factors, some of which play a long-term and decisive
role, making the change of a sequence shows a certain trend
and regularity. Others play a short-term and inconclusive role.

Many traditional machine learning methods usually use
batch learning or off-line learning paradigms to solve prob-
lems. With the explosion of real-time data, it has become
increasingly difficult for off-line machine learning algorithms
to play a role. In order to deal with the situation that data arrive
continuously rather than once, on-line learning paradigm has
been proposed. Generally speaking, there are two main appli-
cation scenarios of on-line learning. One is to improve the
existing off-line learning methods to enhance their efficiency
and scalability. The second is using on-line learning directly to
deal with the arrival of new samples. As a classic on-line
forecasting process, the non-stationary time series prediction
(NS-TSP) inevitably needs that the algorithm proposed for it
has the on-line forecasting ability, which is a basic premise.

Regarding NS-TSP, there are the following challenges: 1)
NS-TS is considered a deterministic chaotic time series. It is
sensitive to initial conditions, so it is unrealistic to use histor-
ical data to make long-term predictions; 2) NS-TS has non-
linear and non-stationary characteristics, which leads to the
“stability -plasticity” dilemma. How to balance the two is a
difficult problem.; 3) NS-TS has high-noise characteristics,
which means that no matter what model is built, the complete
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information of the sequence cannot be obtained, so we need to
eliminate the influence of noise; 4) Some NS-TS have period-
ic characteristics. How to respond accurately and quickly
when the historical environment reappears is a question wor-
thy of our consideration.

The early researchers mainly focus on the investigation of
linear and stationary TSP problems. However, with the devel-
opment of theory and technology, more and more evidences
show that the time series in real life are mostly NS-TS.
Therefore, some prediction methods for NS-TS are proposed.
The existing NS-TSP methods can be roughly divided into
three categories:

1) Traditional statistical methods. The traditional statistical
methods are the earliest methods applied to NS-TSP,
among which the representative methods are Auto-
Regressive Integrated Moving Average (ARIMA) model
[1] and Generalized Auto-Regressive Conditional
Heteroscedasticity (GARCH) model [2]. The ARIMA
model has been widely used in the NS-TSP task.
However, it needs to smooth the NS-TS through a differ-
ence process, which inevitably affects its prediction accu-
racy and efficiency. The GARCH model is a method that
uses past changes and variance to predict future changes.
It can fit sequences with fluctuation characteristics well.
But like ARIMA, it also needs to smooth NS-TS.

2) Computational intelligence methods. The representative
methods of computational intelligence methods include
Artificial Neural Networks (ANNs) [3], Fuzzy Logic
(FL) [4], and Support Vector Machine (SVM) [5], etc.
As a nonlinear prediction model, ANNs have good self-
learning and function approximation abilities, being
widely used in the field of NS-TSP. However, ANNs
often require a lot of training data, their structures and
parameters are difficult to determine, their convergence
speed is slow, and they are easy to fall into the local
optima. FL generates uncertain knowledge by generating
fuzzy NS-TS, simulating human thinking, and then
transforming it into accurate prediction values to com-
plete the prediction task. But how to generate suitable
fuzzy rules is a challenging issue to be addressed. SVM
has a simple structure and strong generalization ability. It
has been well applied in the field of NS-TSP, but it is only
suitable for small sample learning.

3) Combination prediction methods. Experiments show that
it is difficult for a single model and method to fully reflect
the overall change law of the prediction object, especially
for tasks with highly uncertain features such as NS-TSP,
and therefore, combination prediction methods have
emerged and become the most popular methods at the
moment. The combination prediction methods obtain
comprehensive information by combining multiple
methods, including the traditional statistical methods

and computational intelligence methods mentioned
above, to improve their prediction performance and sta-
bility. There are three ways to implement combination
forecasting methods: 1) through incremental learning
(IL) [6] and ensemble learning (EL) [7], such as the re-
search work carried out in [8, 9]; 2) through the staged
idea, such as the research work carried out in [10]. The
basic idea is to decompose NS-TS, using several models
to predict them separately, and then combining their pre-
diction results; 3) through the monitoring mechanism,
such as the research work carried out in [11]. The basic
idea is to track changes by monitoring the performance of
models and trigger different model update mechanisms
based on the degree of changes.

The mainstream IL and EL methods in non-stationary
environment include sliding window technique, concept
drift detection technique and data block one. Sliding win-
dow technology is a widely used method to deal with
non-stationary forecasting tasks. It uses a simple forget-
ting mechanism to maintain a series of newest data to
capture data changes in the current environment. The de-
termination of an appropriate window size is a very im-
portant problem in sliding window technology. Large
windows contain enough information to make the model
maintain good generalization performance under the con-
dition of stable data distribution. However, with large
windows, the model cannot be updated timely to adapt
to data changes. Conversely, a small window can respond
to changes in a non-stationary environment in a timely
manner, but it may also result in poor performance due
to less available information available. Therefore, the
adaptive sliding window technology, whose window size
can be adapted autonomously according to relevant rules,
can better adapt to non-stationary environment. Different
from sliding window technique, concept drift detection
technique is an explicit method to deal with non-
stationary environment. It can select the appropriate mod-
el update method by measuring the change degree of data
in non-stationary environment. While in the data block
technology, each base model is trained based upon a data
block, so each base model contains the historical data
distribution information of its training data block, which
increases the diversity and stability of the ensemble
model.

IL refers to the process in which the model continuously
learns new knowledge from new data and saves most of the
previously learned knowledge, which is very similar to the
human learning model. The idea of IL is when the new data
arrives, it is not necessary to re-learn all the data, but to update
the original knowledge with the new data. IL paradigm has
been extensively employed in various research areas, such as
image recognition [12], document classification [13] and
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intrusion detection [14, 15], etc. The IL algorithms used in
NS-TSP need to meet the following conditions [16, 17]:

a) Any training dataset is only learned once and will not be
used for subsequent training. The knowledge learned are
stored incrementally in the model parameters.

b) Because the latest dataset can best represent the current
environment, knowledge should be classified according
to the relationship between knowledge and the current
environment, and knowledge should be dynamically
updated.

c) The model should have a strategy to coordinate the con-
flict between old knowledge and new knowledge, that is,
there should be a mechanism to monitor the performance
of the model on new data and old data.

d) The model should forget or discard knowledge that is no
longer relevant but can recall it when the environment
reappears.

The EL paradigm is a process of generating and merging
multiple models according to a certain strategy to solve a
specific computational intelligence problem [18]. It has three
elements: data sampling, training base models, and combining
base models. EL algorithms have been widely utilized in a
variety of research areas, such as face recognition [19, 20],
text classification [21] basic expression analysis [22], and sev-
eral other important investigation fields. The ELmethods used
in NS-TSP can be divided into three categories:

a) Changing the combination rule to adapt the non-
stationary environment for the previously trained base
models, such as weighted majority voting and Winnow
based algorithms [23].

b) Updating the online model and all ensemble members
with the new dataset, such as the online promotion algo-
rithm [24].

c) Adding new ensemble members [25] or replacing the
minimum contributor or youngest member in the ensem-
ble with the base model generated by utilizing the new
dataset [26].

In EL paradigm, many mature machine learning algorithms
can be used as the basic learning algorithm, such as SVM and
ANNs. Compared with SVM and traditional ANNs, Extreme
LearningMachine (ELM) [27] has high scalability and low com-
putational complexity, which can greatly accelerate the general-
ization speed while ensuring the generalization performance.
Extreme Learning Machine with Kernels (ELMK) [28] is a fur-
ther improvement of ELM, which overcomes the randomness of
ELM and is a good choice for the basic learning algorithm.

Based on the above, we can know that the traditional sta-
tistical methods assume that there is a linear structure among
data variables, but ignore the correlation and multi-level of

information, which makes them difficult to obtain excellent
prediction results in practical applications. Computational in-
telligence methods are a type of nonlinear prediction methods,
including some classical machine learning models. However,
it is difficult for a single model and method to fully reflect the
overall change rule of the predicted objects, especially for
tasks with high uncertainty. Combination prediction methods
combine multiple methods, including traditional statistical
methods and computational intelligence ones, to obtain com-
prehensive information, so as to improve their prediction per-
formance and stability. However, many combination predic-
tion methods propose solutions based on specific NS-TSP
tasks, or on specific influencing factors in NS-TS.

Aiming at the challenges of NS-TSP and the disadvantages
of the above methods, we hope to develop a unified on-line
forecasting framework, which does not need to specify the
internal changes of NS-TS. This will greatly reduce the com-
putational complexity and, simultaneously, increase the prac-
ticability of the proposed algorithm. Besides, for the base al-
gorithms without on-line forecasting ability, IL and EL are
important technologies for them to realize on-line forecasting.
Therefore, this paper proposes an Incremental Learning
Algorithm via Dynamically Weighting Ensemble Learning,
abbreviated as the DWE-IL algorithm.

The basic principle of DWE-IL is to track real-time data
changes by building and maintaining a knowledge base com-
posed of multiple base learners, dynamically. DWE-IL be-
lieves that, because the distribution of data will change over
time, the latest data commonly best reflects the latest state of
the current environment. In response to new data, DWE-IL
reorganizes and integrates the existing knowledge, while
updating the existing knowledge base, so as to accurately
reflect the current environment and predict the next environ-
ment. The reasonwhy the proposedmethod can solve the non-
stationary prediction better than the other ones is that DWE-IL
provides a unified and efficient on-line forecasting framework
for NS-TSP through a double IL mechanism and a double
dynamically weightingmechanism according to the character-
istics of NS-TS. In the learning process, there is no need to
consider specific influencing factors in NS-TS. In addition,
DWE-IL not only has higher prediction accuracy, but
also has lower computational complexity and time cost.
Therefore, compared with many traditional statistical
methods, computational intelligence methods and com-
bination prediction ones, DWE-IL possesses excellent
generalization performance and wide applicability.

The performance of “dynamical” of DWE-IL is main-
ly reflected in the weight update, which is divided into
the following two points: 1) The update of data
weights. We initialize the data weights of each newly
arrived dataset to be uniform distribution, and then dy-
namically update the weights according to the perfor-
mance of the current ensemble model on this dataset.
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This reflects the adaptability of the old knowledge to
the new data, and also makes the samples with higher
prediction difficulty in the new data get more attention;
2) The update of the weights of the base models. We
use a double dynamically weighting mechanism to ob-
tain the final weights of the base models. From the
point of view of a single base model, the performance
of each base model in each environment since its gen-
eration is dynamically time-weighted, because the per-
formance of each base model in the newer environment
should get higher weight. From the perspective of the
ensemble model, we dynamically update the weights of
the base models mainly based on their performance. In
particular, some basic models are temporarily forgotten
when they no longer fit into the current environment,
but they can be remembered again when the historical
training environment returns. Intuitively, the DWE-IL
algorithm retains all the acquired knowledge, but only
selectively activates and uses the part that is effective at
the moment, according to the real-time state of the
environment.

It can be seen from the above descriptions that the advan-
tages of “dynamical” of DWE-IL are as follows: 1) The up-
date of data weights and the weights of the base models is
conducive to coordinating the old and new knowledge and
coping with the “stability -plasticity” problem in NS-TSP,
which improves the generalization performance and efficien-
cy of DWE-IL, while ensuring its robustness; 2) The update of
the weights of the base models is conducive to dealing with
the high noise and periodicity problems in NS-TSP.

Overall, the DWE-IL algorithm can be divided into three
parts:

1) Data pretreatment. In this part, we first need to normalize
the original NS-TS, and then convert it into the dataset
required for the prediction task according to the time
window.

2) Models training. This part is the most important one,
mainly related to the update of data weights and base
model weights and the training of the base models. The
update of data weights depends on the performance of the
current ensemble model on the latest dataset. The update
of the weight of a specific base model depends on its
comprehensive performance over a period of time in the
past, while the performance at a newer moment contrib-
utes more to its weight. In addition, unlike other ensemble
learning algorithms, DWE-IL can temporarily forget ir-
relevant knowledge, but when the historical environment
reappears, it can recall this knowledge again. The whole
training process is similar to the process of human gradual
learning and fully reflects the idea of IL.

3) Models combination. In this part, DWE-IL uses the
Weighted Median [17] method for the combination of

models. The basic idea is to sort the outputs of all basic
models and select the predictive value with a cumulative
weight of 50% as the ensemble result, according to their
respective ensemble weights.

In view of the challenges of NS-TSP, we put forward sev-
eral novel strategies in the models training part of the DWE-IL
algorithm. The main innovations and contributions of DWE-
IL are summarized as follows:

a) DWE-IL can basically ignore the internal changes of NS-
TS and provides a general on-line forecasting framework
for NS-TSP tasks. Besides, it provides an effective pro-
cessing mechanism for the periodicity of NS-TS.

b) DWE-IL updates the data weights according to the perfor-
mance of the current ensemble model on the latest dataset.
The updated data weights are used for building the new base
model, which helps to improve the generalization perfor-
mance and robustness of the final ensemble model.

c) DWE-IL uses a double IL mechanism to train the base
model, that is, it trains the base model based on old
knowledge and new data blocks at the same time, which
strengthens the connection between old and new knowl-
edge. While increasing the diversity of base models, it
further improves the prediction performance of the final
ensemble model.

d) DWE-IL uses a double dynamically weighting mecha-
nism to obtain the comprehensive performance of each
base model and updates the weight of the base model
according to the comprehensive performance dynamical-
ly. In this process, the performance of the base model in a
newer moment receives more attention. This move elim-
inates the influence of noise in NS-TS, maintains the sta-
bility of DWE-IL, and improves its plasticity.

The rest of this paper is organized as follows. In Section 2,
the theoretical knowledge of ELM and ELMK is described in
detail. In Section 3, the details of the proposed DWE-IL algo-
rithm are described. The experimental results of the DWE-IL
algorithm on six non-stationary time series datasets are report-
ed in Section 4. Finally, in Section 5, the conclusions and
future works are given.

2 Theoretical basis

2.1 Extreme learning machine (ELM)

Extreme LearningMachine (ELM) is a specific Single-hidden
Layer Feedforward Neural Network [29] (SLFN) model pro-
posed by Guang-Bin Huang in 2004. Its innovations: (1) the
connection weights between the input layer and the hidden
layer, and the bias of the hidden layer can be generated

177



H. Yu and Q. Dai

randomly or set manually; (2) the connection weights between
the hidden layer and the output layer do not need to be adjust-
ed repeatedly through iteration, but are directly determined by
solving the equations by least square method. Its contribu-
tions: compared with SLFNs and SVM, it greatly improves
the learning speed and reduces the computational complexity,
on the premise of guaranteeing the generalization perfor-
mance. The block diagram of the ELM algorithm is presented
in Fig. 1.

Assume that there are N training samples(xi, ti), i = 1, 2,…
N, where xi = [xi1, xi2,⋯, xin]

T ∈ Rn and ti = [ti1, ti2,⋯, tim]
T ∈

Rm. If any training sample is represented as (x, t), then ELM
can be represented as follows:

y ¼ f L xð Þ ¼ ∑L
i¼1βihi xð Þ ¼ h xð Þβ ð1Þ

where β = [β1
T,β2

T,⋯,βL
T]T ∈ RL ×m and βi ∈ Rm is the con-

nection weight vector between the ith node in the hidden layer
and each node in the output layer, h(x) = [h1(x), h2(x),⋯,
hL(x)] is the output vector of the hidden layer for specific
samples.

h(x) can be expressed as follows:

h xð Þ ¼ ∑L
i¼1g wi � xþ bið Þ ¼ g W � xþ bð Þ ð2Þ

where W = [w1,w2,⋯,wL] ∈ Rn × L is the weight vector be-
tween the input layer and the hidden layer, b = [b1, b2,⋯,
bL] ∈ RL is the bias vector of the nodes in the hidden layer.

The target function of ELM is as follows:

∑N
i¼1 yi−t

T
i

�� �� ¼ 0 ð3Þ

We can convert this to solving for Y = Hβ = T, where:

Y ¼
y1
y2
⋮
yN

2664
3775
N�m

and T ¼
t1T

t2T

⋮
tNT

2664
3775
N�m

ð4Þ

The ultimate goal of ELM is to find the least square solu-
tion with the minimum norm for Hβ = T. The solution that
satisfies this condition is β =H+T, where H+ represents the
Moore-Penrose generalized inverse of H.

2.2 Extreme learning machine with kernels (ELMK)

ELM can effectively overcome the inherent defects of tradi-
tional neural networks [30, 31]. ELM has a parameter that is
very important to the generalization performance of the mod-
el, namely, the number of nodes in the hidden layer. For each
task, it usually needs a certain time and method to determine
[32]. ELMK does not need to determine the number of nodes
in the hidden layer, only requiring to select the appropriate
kernel function and regularization factor. Because of this
property, ELMK avoids the randomness of ELM effectively.

ELMK is defined as follows:

KELM ¼ HHT : KELM i; jð Þ ¼ φ xið Þ � φ x j
� � ¼ K xi; x j

� � ð5Þ

where KELM represents ELMK and φ(·) represents an un-
known feature map.

Then the output function can be defined as follows:

f xð Þ ¼ φ xð ÞHT HHT þ 1

C

� �−1

t

¼
K x; x1ð Þ
⋮
K x; xNð Þ

24 35 KELM þ 1

C

� �−1

t ð6Þ

If the training dataset is represented as (xi, ti), i = 1, …, N,
where xi∈RP and ti∈R, then the initial optimization problem
of ELMK can be written as:

Min LP ¼ 1

2
wk k2 þ C

2
∑N

i¼1ξi
2

s:t:φ xið ÞTw ¼ ti−ξi
ð7Þ

where w is the connection weight vector between the hidden
layer and the output layer, C is the regularization parameter,
and ξi is the error of (xi, ti).

Convert the above equation into Lagrange duality problem:

LD ¼ 1

2
wk k2 þ C

2
∑N

i¼1ξi
2−∑N

i¼1θi φ xið ÞTw−ti þ ξi
� �

ð8Þ

where θi, i = 1, …, N are the Lagrange multipliers. The KKT
conditions corresponding to the above equation are as follows:Fig. 1 Block diagram of the ELM algorithm
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∂LD
∂w

¼ w−∑N
i¼1θi

�
φ xið Þ ¼ 0→w ¼ ∑N

i¼1θi
�
φ xið Þ ð9Þ

∂LD
∂ξi

¼ Cξi−θi ¼ 0→θi ¼ Cξi; i ¼ 1;…;N ð10Þ

∂LD
∂θi

¼ φ xið ÞTw−ti þ ξi ¼ 0; i ¼ 1;…;N ð11Þ

3 The proposed incremental learning
algorithm via dynamically weighting
ensemble learning (DWE-IL)

As an IL algorithm based on dynamically weighting
ensemble scheme, the DWE-IL algorithm proposed in
this paper can effectively NS-TSP problems. When it
comes to EL, we have to consider the choice of base
model. For the reasons analyzed above, ELMK is se-
lected as the base model for the DWE-IL algorithm.
In the experiments conducted in Section 4, we also se-
lect ELM as the base model and compare the result of
two models to reveal the characteristics of the DWE-IL
algorithm.

The basic idea of the DWE-IL algorithm is described
as follows. Each data subset generates a base model,
and build the base model set in a double incremental
manner. Then, the performance of all existing base
models on the latest dataset is measured. If the weight-
ed sum of the relative errors of the new base model is
greater than 1/2, it proves that it cannot correctly reflect
the current environment, so it must be discarded, and a
new base model must be regenerated. If the weighted
sum of the relative errors of the old base model is
greater than 1/2, it proves that the knowledge it has
learned is not suitable for the current environment, and
it should be temporarily discarded. DWE-IL sets the
weighted sum of the relative errors of such old base
models to 1/2, so that the weight in the final ensemble
is equal to 0, so as to achieve the purpose of temporary
discarding. However, it is worth noting that when the
historical environment where the old base model is
trained reappears, its weight is updated, and it is re-
membered again. Next, evaluate the overall performance
of all base models in the past period of time, so that each
base model has a greater weight in the newer environ-
ment. Finally, a new ensemble model is obtained by the
weighted median method, and the data distribution is up-
dated for the next training according to the performance
of the ensemble model on the next dataset.

In Algorithm 1, the specific pseudo-code of the DWE-IL
algorithm is presented.

To better demonstrate the process of the DWE-IL algo-
rithm, we present the block diagram of the DWE-IL algorithm
in Fig. 2.

The following is a detailed description of the DWE-IL
algorithm:

A) Input:

a) The original time series DATA = {d1, d2,…, dN}.
b) Time window size tw, which is an important super-

parameter in TSP and determines the dimension of sam-
ple eigenspace. A too large or too small value of tw di-
rectly affects the generalization performance of the
algorithm.

c) The number of data subsets T. Divide training dataset
Train into Traint, t = 1, 2, …, T, is for better implemen-
tation of IL and EL. A too large value of T makes IL no
sense, while a too small value of T results in poor EL
performance.

d) The base model τ, which can have many choices, such as
SVR, ELM, and decision tree, etc. Considering that
ELMK performs better than ELM in generalization, and
possesses, simultaneously, lower computation complexi-
ty than SVM and decision tree, we choose ELMK as the
base model in this work.
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B) Pretreatment:

First, in order to improve the accuracy and convergence
speed of the model, we normalize original time series DATA
toDATA′. This paper usesMin-max normalization to normal-
ize the data into the interval [0, 1]. The normalization formula
is as follows:

di
0 ¼ di−dmin

dmax−dmin
ð12Þ

where di
′ is the normalized value, di is the initial value, dmin

and dmax are the minimum and maximum values of the orig-
inal data.

Next, tw is used to convert DATA′ into the training dataset
Train and testing dataset Test required by the prediction task,
as shown in Fig. 3.

Finally, divide Train into T subsets Traint ¼ ðx1; y1f Þ;
x2ð ; y2Þ;…; xmtð ; ymtÞ; t ¼ 1; 2;…; T , randomly, where

∑T
t¼1 m

t ¼ N .

C) Procedure:

a) Initializing Dt, t = 1, 2,…, T to a uniform distribution. In
the next step, different from AdaBoost, which updates the
samples weights based on the base model, this work up-
dates the samples weights based on the error of the

Fig. 2 Block diagram of the
DWE-IL algorithm

180



DWE-IL: a new incremental learning algorithm for non-stationary time series prediction via dynamically...

existing ensemble model Ht − 1 on the new dataset
Traint. Ht − 1 is obtained by dynamically integrating each
base model generated by Traink, k = 1, 2, …, t − 1.

b) Step 1: Calculating the error Et of Ht − 1 on Traint. Et, t =
1, 2, …, T is obtained by summing the product of the
relative error of samples in Traint and the initial weights
of samples. The initial weights of samples 1

mt ; t ¼ 1;
2;…; T can ensure 0 ≤ Et ≤ 1.

c) Step 2: Updating the sample weights wt based on Et, t =
1, 2,…, T. The formula for updating the samples weights
is as follows:

wt ið Þ ¼ 1

mt � Et 1− abs Ht−1 xið Þ−yitð Þ=errormaxf gf g2

; i

¼ 1; 2;…;mt ð13Þ

Then, normalizing wt to ensure that Dt is a distribution. It
can be seen from Step 4 and Step 5 that, the updated samples
distribution Dt affects the weight of hk, k = 1, 2, …, t in the
ensemble model Ht by affecting the error of hk on the latest
dataset.
d) Step 3: Training a base model hk as a new ensemble

member with Hk − 1 and Traint. Note that, when the first
data subset comes, the algorithm execution process will
skip step 1 and step 2, and jump directly to step 3, because
there is no existing ensemble model to update the sample
distribution. When the second data subset Train2 arrives,
h1 is the ensemble model H1 at this time.

e) Step 4: Evaluating the performance of all base models hk,
k = 1, 2,…, t on Traint. Since the base models are gener-
ated at different times, the number of evaluations received
by each base model is different. That is, when the latest
dataset is Traint, hk = t obtains the first error, and hk, k = 1,
2, …, t − 1 obtains the (t − k + 1)th error. We use εtk to
represent the error of the kth base model on Traint. εtk
can be expressed as follows:

εtk ¼ ∑mt

i¼1D
t ið Þ � abs hk xið Þ−yitð Þ=errormaxf g2; k

¼ 1; 2;…; t ð14Þ

If εtk¼t is greater than 1/2, then we discard the base model
ht, and generate a new base model ht, instead of directly
interrupting the training process. If εtk< t is greater than
1/2, εtk< t is set to 1/2, instead of discarding the base
model directly. This is because, if the environment
changes dramatically, it is reasonable that the base mod-
el does not perform well, and this does not mean that
the base model will never be useful again in the future.
If the environment reappears, the base model error will be-
come smaller, and the model will again contribute to the cur-
rent overall decision.

As mentioned in Section 1, it is a several conditions need to
be met by IL algorithms for non-stationary environment pre-
diction, one of which is that there should be a mechanism to
coordinate the contradiction between old and new knowledge.
The above formula embodies this idea that, allow the ensem-
ble model to strengthen the original knowledge while learn
new knowledge.
f) Step 5: Calculating the weights of all base models hk, k =

1, 2,…, t on Traint. First, calculate the average weighted
error of each base model, so that the performance of the
base model in the latest environment gets more attention.
The process is as follows:

ω1
1 ⋯ ωt

1
⋮ ⋱ ⋮
0 ⋯ ωt

t

24 35 ¼

1

1þ e0
⋯

1

1þ e− t−1ð Þ
⋮ ⋱ ⋮
0 ⋯

1

1þ e0

26664
37775 ð15Þ

where ωt
k is the weight of ε

t
k .

Fig. 3 The translation of time series to training dataset and testing dataset
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Row k, 1 < k < t satisfies the following conditions:

ωk
k ¼

1

1þ e0
< ωkþ1

k ¼ 1

1þ e−1
< ⋯ < ωt

k

¼ 1

1þ e− t−kð Þ ð16Þ

then normalize ωt
k ; k ¼ 1; 2;…t.

The average weighted error of the base model hk, k = 1,
2, …, t on Traint can be computed as:

βt
k ¼ ∑t−k

j¼0ω
t− j
k εt− jk = 1−εt− jk

� �� �
¼ ωt

k
εtk

1−εtk
þ⋯þ ωt−q

k
εt−qk

1−εt−qk

þ…þ ωk
k

εkk
1−εkk
ð17Þ

The weight of hk is obtained by normalizing the logarithm
of the reciprocal of the average weighted error, i.e.,

Wt
k ¼ log 1=βt

k

� �
, Wt

k ¼ Wt
k=∑

t
k¼1W

t
k . If the knowledge of

the base model hk does not match the current environ-
ment, Wt

k will be very small or even zero, thereby
achieving the purpose of temporarily “discarding”. If its
knowledge becomes relevant again, εtk will be smaller, so
that hk will get a higher weight in the current environ-
ment and will be remembered again. This feature is es-
pecially useful in periodic environments.

g) Step 6: All base models are weighted dynamically to get
the latest ensemble model as follows:

Ht ið Þ ¼ arg minhk xið Þ∑h j xið Þ<hk xið ÞW
t
k ≥

1

2
∑t

j¼1W
t
j ð18Þ

Note that each new data subset generates a new base
model and a new ensemble model. At this time, the gen-
erated ensemble model influences the weight of the new
base model by influencing the next samples update in
step 1.

From the perspective of the whole algorithm descrip-
tion, the DWE-IL algorithm uses IL and EL technologies
to realize the on-line forecasting process of NS-TS.
Ideally, as long as the data input is uninterrupted,
DWE-IL will continue to iteratively update the on-line
forecasting model to adapt to the changing non-stationary
environment.

4 Experiments

In this paper, six time series datasets are used to evaluate the
performance of DWE-IL, including three financial datasets,

Sunspot dataset, Mackey-Glass dataset and Lorenz dataset.
The reasons why we consider these datasets are explained as
follows: (1) These datasets involve finance, astronomy and
other fields, and they are classic datasets in the corresponding
fields. These fields are closely related to human life and are
worthy of our study; (2) These datasets include both real
datasets and artificial datasets, which can more comprehen-
sively demonstrate the performance of the proposed DWE-IL
algorithm; (3) These datasets are verified to be non-stationary,
which is consistent with the topic of our paper. Accordingly,
the three financial datasets and another three datasets are se-
lected for the reasons mentioned above, and they are indeed
representative.

4.1 Datasets

4.1.1 Three financial time series datasets

Since its birth, stock has been widely valued by people and
has a significant impact on the financial market of a country or
even the whole world. Therefore, this paper studies three clas-
sic stock index datasets, namely Dow Jones Industrial
Average Index (DJI), Nikkei 225 Index (N225) and
Shanghai Stock Exchange Composite Index (SSE) datasets,
all of them are obtained from Yahoo Finance [33].

DJI dataset is composed of monthly samples of Dow Jones
Industrial Average Index from February 1985 to March 2015,
having a total of 352 data points. N225 dataset is composed of
samples of the monthly Nikkei Index from April 1988 to
March 2015, containing 324 data points. SSE dataset is com-
posed of monthly samples of Shanghai Stock Exchange Index
from December 1990 to January 2015, having a total of 290
data points.

4.1.2 Sunspot dataset

Sunspot is one of the most basic and obvious activities on the
solar photosphere, which can reflect the solar activity level in
this period, and it is an important index to study the solar
cycle. Sunspot data is of great significance for studying space
physics, space environment, earth climate and satellite opera-
tion. Predicting sunspots is not only significant but also
challenging.

4.1.3 Mackey-glass dataset

Mackey-Glass time series, as one of the classical non-
stationary chaotic time series, originates from the physiologi-
cal control system and represents the typical feedback system
[34]. It is generated by the following nonlinear differential
equation:
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dx
dt

¼ αx t−δð Þ
1þ xc t−δð Þ −bx tð Þ ð19Þ

If δ > 16.8, then the time series generated by Eq. (17) is
chaotic. We set the parameters to:α = 0.2, b = 0.1, c = 10,
δ = 10, and x(0) = 1.2.

4.1.4 Lorenz dataset

Lorenz time series is widely used as a classical three-
dimensional dynamic system for studying chaotic time series.
It is generated by the famous Lorenz equation:

dx tð Þ
dt

¼ α y tð Þ−x tð Þ½ � ð20Þ

dy tð Þ
dt

¼ x tð Þ β−z tð Þ½ �−y tð Þ ð21Þ

dz tð Þ
dt

¼ x tð Þy tð Þ−γz tð Þ ð22Þ

We set the parameters to: α = 10, β = 28, and γ = 8/3.
Since not all time series is non-stationary, for rigorous con-

siderations, before the experiment, we use Autocorrelation
Function [35] (ACF) test and Augmented Dickey-Fuller [36]
(ADF) test to verify the non-stationarity of the six experimen-
tal datasets.

The ACF test judges the stationarity of the time series
through the attenuation of the autocorrelation coefficient.
The autocorrelation coefficient γk is calculated as follows:

γk ¼
∑n−k

t¼1 X t−X
� �

X tþk−X
� �

∑n
t¼1X t−X

2 ð23Þ

where n is the size of the time series, k is the lag period, and X
is the mean of the time series.

According to Eq. (23), the autocorrelation coefficient γk is
a decreasing function of the lag period k, which means that
with the increase of k, γk decreases and gradually tends to 0.
Stationary time series have the short-term correlation, that is,
usually only the recent value has a significant effect on the
current value, while the farther value has a smaller effect on
the current value. Therefore, the value of γk of stationary time
series drops much faster than that of NS-TS.

Figure 4 shows the ACF test result of each experimental
dataset. The ACF image shows the value of γk corresponding
to each k, and the approximate upper and lower autocorrela-
tion confidence bounds with γk = 0 represented by two hori-
zontal lines. As mentioned above, if γk rapidly drops to 0,
fluctuates around 0, and gradually converges to 0, it is con-
sidered that the time series is very likely to be stationary. As
can be seen from Fig. 4, the autocorrelation coefficient γk for
each one of the six time series does not conform to the above

characteristics. Therefore, we have sufficient reasons to be-
lieve that all six experimental datasets are non-stationary.

Unlike the subjectivity of the ACF test, ADF test judges the
stationarity of the time series by the existence of the unit root.
If the unit root exists, then the time series is non-stationary.
We rigorously prove the non-stationarity of each time series
using ADF test and give the corresponding results in Table 1.
The ADF test has four basic indicators, the test value pValue,
the critical value cValue, the significance level α, and the test
result h. The null hypothesis H0 of ADF test is that the time
series has a unit root, that is, it is non-stationary. The test result
h = 1 indicates that hypothesis H0 is rejected at the 5% signif-
icance level. As can be seen from Table 1 that each time series
dataset satisfies h = 0 and pValue >α, so it can be concluded
that the above six experimental datasets are non-stationary.

4.2 Experimental setup

4.2.1 Parameters setup

The DWE-IL algorithm mainly involves three parameters,
namely the time window size tw, the size of the data subsets
K, the option of the kernel functionKernel in the base learning
algorithm ELMK.

a) The timewindow size tw is a very important parameter for
addressing TSP issues. A time series is a string of num-
bers that we need to refactor to convert it into data which
is similar to that required for supervised learning, i.e.,
input variables and output variables, to be predicted using
machine learning algorithms. While the time window size
tw is the basis for this transformation operation. The value
of tw corresponds to the feature size of samples in super-
vised learning. Too large or small values of tw has a neg-
ative impact on the generalization performance of the
algorithm.

b) Data subset size K is also a key parameter in TSP. If K is
too large, the meaning of incremental learning will be
lost. In contrast, ifK is too small, underlearning can occur,
and the generalization performance of the basic model
trained based upon each data subset will be poor.
Therefore, it is necessary to choose an appropriate K val-
ue. For better representation and analysis of K, as de-
scribed in Algorithm 1, we use the number of data subsets
T to laterally reflect the importance of K. And T ¼ n

K
should balance these two situations, where n represents
the size of the non-stationary dataset.

c) We have four choices for the Kernel function Kernel in
the base learning algorithm ELMK, namely, RBF Kernel,
Linear Kernel, Polynomial Kernel, and Wavelet Kernel.
Each kernel function has its own parameters. Besides, a
regularization coefficient C is employed to balance the
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model complexity and predictive error. In this work,
Cross-Validation method [37] is utilized to select the op-
timal values for the parameters.

4.2.2 Comparative algorithms setup

In order to evaluate the performance of DWE-IL, we compare
it with some excellent classic algorithms in recent years and
the comparison of experimental results is reported in

(a) (b)

(c)                   (d) 

(e) (f) 

Fig. 4 ACF image of six
experimental datasets. (a) DJI, (b)
N225, (c) SSE, (d) Sunspot, (e)
Mackey-Glass, (f) Lorenz

Table 1 The results of ADF test on six datasets

Datasets pValue cValue α h

DJI 0.9418 −1.9415 5% 0

N225 0.2455 −1.9416 5% 0

SSE 0.6048 −1.9418 5% 0

Sunspot 0.3968 −1.9416 5% 0

Mackey-Glass 0.3994 −1.9416 5% 0

Lorenz 0.0583 −1.9416 5% 0

Remark: h = 1 indicates that hypothesis H0 (non-stationary) is rejected at
the 5% significance level.
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Section 4.3. The comparative algorithms include: 1) Online
Sequential Improved Error Minimized ELM (OSIEM-ELM)
[38]; 2) Double Incremental Learning (DIL) [39]; 3) ELMK;
4) DWE-IL (ELM); 5) Temporal Convolutional Network
(TCN) [40]; 6) New Online Sequential Learning Algorithm
for KELM (NOS-KELM) [41]; 7) NeuronModel based on the
Dendritic Mechanism(NBDM) [42]; 8) a new hybrid TSP
algorithm, which integrates dynamic ensemble pruning
(DEP), IL and kernel densi ty est imat ion (KDE)
(EnsPKDE&IncLKDE) [43]; 9) Competitive Two-Island CC
(CICC-two-island) [44]; 10) Adaptive Neuro-Fuzzy
Inference System (ANFIS) [45]; 11) Evaluation of co-
evolutionary neural network architectures (CCRNN-NL) [46].

OSIEM-ELM is an online learning extreme learning ma-
chine that can learn data piece by piece or block by block. The
DIL algorithm is similar to the DWE-IL algorithm proposed in
this paper. They are all IL and EL algorithms. The base model
of DIL algorithm is Incremental Support Vector Machine (I-
SVM) [47]. Compared with DIL algorithm, it can be verified
that, whether the way of using average weighted error of each
base model to calculate its weight in the DWE-IL algorithm
has a significant effect. The DWE-IL (ELM) algorithm em-
ploys ELM as its base model instead of ELMK. Compared
with the DWE-IL (ELM) algorithm and ELMK algorithm, it
can be verified that, whether the IL framework based on dy-
namically weighting ensemble scheme proposed in DWE-IL
has a significant effect.

TCN is a novel temporal convolutional network, which has
received widespread attention since it was proposed.
Researchers have done some studies on time series prediction
and classification tasks using TCN, such as [48]. These studies
show that TCN has excellent performance. NOS-KELM is an
NS-TSP method that combines the sparsification rule and the
adaptive regularization scheme based on KB-IELM, which
has excellent performance in artificial and real-world NS-TS.

NBDM is a neuron model based on dendritic mechanism
and phase space reconstruction (PSR). It has excellent perfor-
mance on Non-Stationary Financial Time Series (NS-FTS)
datasets. EnsPKDE&IncLKDE benefits from the advantages of
integrated DEP scheme, IL paradigm andKDE. It has superior
prediction performance in TSP tasks. CICC-two-island is a
competitive method used to train recurrent neural networks
for chaotic time series prediction. ANFIS is designed based
on FL and has good performance on non-stationary artificial
and real-world datasets.

4.2.3 Performance measures setup

In order to evaluate the generalization performance of the
DWE-IL algorithm and better compare it with the comparative
algorithms mentioned in 4.2.2, we need some performance
measures to evaluate each algorithm. In this paper, we use
four performance measures, i.e., Root Mean Square Error

(RMSE), Mean Absolute Error (MAE), Absolute Error
(Error), and Standard deviation (Std). They are calculated as
follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1 xi−bxi� �2
r

ð24Þ

MAE ¼ ∑n
i¼1jxi−bxij

n
ð25Þ

Error ¼ xi−bxi ð26Þ

Std ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Q−1
∑Q

i¼1 RMSEi−RMSE
� �2

s
ð27Þ

where xi, i = 1, 2, …, n is the real value of ith sample,bxi; i ¼ 1; 2;…; n is the predictive value of ith sample,
n is the size of the dataset, RMSEi, i = 1, 2, …, Q is
the RMSE value of ith independent repeated experiment,
RMSE is the mean of RMSEs of all the independent
repeated experiments and Q is the number of indepen-
dent repeated experiments.

In addition, in order to reduce the influence of error caused
by accidental factors in the experiments on the algorithm per-
formance evaluation, twenty independent repeated experi-
ments are performed for each algorithm on each dataset, and
the average result of twenty experimental results is taken as
the final result.

4.3 Experimental results

This section presents the experimental parameters and the cor-
responding experimental results of the DWE-IL algorithm ob-
tained with these parameters on the six datasets given in
Section 4.1, and the comparison results of the DWE-IL algo-
rithm and other excellent algorithms on each dataset. In order
to make the experimental comparison of algorithm perfor-
mances fair and reasonable, experimental settings and condi-
tions of the DWE-IL algorithm and the comparative algo-
rithms are the same.

An algorithm that is verified based on the optimal
hyperparameters may result in overfitting to out-of-sample
data. In our work, we tackle this problem from two aspects:
1) From the theoretical aspect, the whole principle of DWE-IL
helps to solve the problem of overfitting to out-of-sample data.
DWE-IL introduces the ideas of EL and IL, which combines
multiple base models to obtain more stable and better predic-
tion performance. The risk of overfitting to out-of-sample data
of the final ensemble model is much smaller than that of a
single base model; 2) From the experimental aspect, we use
the Cross-Validation method to determine the optimal
hyperparameters. In the experiment, the original dataset is
randomly divided into the training dataset and test dataset.
The training dataset is used to train the model, and the test
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dataset is used to determine the optimal hyperparameters and
evaluate the generalization performance.

There are many parameters in the DWE-IL algorithm,
among which the time window size tw, the data subset size
K, and the kernel function Kernel in ELMK are the three most
important parameters. In our experiments, we set Kernel =
RBF Kernel. As mentioned in Section 4.2.1, we use the num-
ber of data subsets T to analyze K laterally.

Table 2 shows the detailed parameters of DWE-IL and the
other three competitors on the six experimental datasets. The
NOS-KELM algorithm has four main parameters, which are
the regularization factor vector γ, the learning rate η, the ker-
nel width σ and algorithm termination threshold δ. The DIL
algorithm has three main parameters, which are the time win-
dow size tw, the number of subsets K, and the number of
iterations Tk. The DWE-IL (ELM) algorithm and DWE-IL’s
main parameters and value range are similar, which are the
time window size tw, data subset size T, and the number of
iterations ActivationFunction. In our experiments, we set
ActivationFunction = Sigmode.

As described in Section 4.2.1, a too large or too small value
of tw affects the generalization performance of the DWE-IL
algorithm, as shown in Tables 3, 4 and 5 in the form of data.
Of course, tw is judged too big or too small depending on the
particular dataset. Due to the large span of tw, the six datasets
are divided into two groups for the convenience of expression
to present the influence of tw’s different values on the gener-
alization performance of DWE-IL. The generalization perfor-
mance measure utilized here is RMSE.

Table 6 shows the influence of the number of data
subsets T on the generalization performance of the algo-
rithm. It can be seen from Table 6 that T satisfies 2 ≤ T ≤
6, and different T obtains different experimental results.
Therefore, we can verify the conclusion mentioned in
Section 4.2.1 from the side, that is, too large or small K
affects the performance of the algorithm, so we need to
choose an appropriate K value.

Table 7 shows the maximum,minimum and average values
of RMSEs and MAEs obtained by DWE-IL under optimal
parameter combination in twenty independent repeated

experiments on each dataset and the average running time
(TIME) of each independent repeated experiment. It can be
seen from Table 7 that DWE-IL algorithm can train and pre-
dict samples better for each dataset in a short time. In addition,
it can be seen from Table 7 that, except Sunspot and Lorenz
datasets, the generalization performance of the DWE-IL algo-
rithm on the other four datasets is stable but fluctuates within a
small range. Due to the interference of some noise data and the
complex characteristics of data itself, the generalization per-
formance of the DWE-IL algorithm on Sunspot and Lorenz
datasets fluctuates greatly, but it is also within the acceptable
range.

Tables 8, 9 show the comparison results of RMSEs and
MAEs of six algorithms including DWE-IL on each dataset.
It can be seen from Tables 8, 9 that, the generalization perfor-
mance of the DWE-IL algorithm on each dataset is better than
other algorithms. This reflects that DWE-IL has good plastic-
ity on NS-TSP. DIL and DWE-IL are both IL and EL algo-
rithms. Unlike DWE-IL, DIL updates the weights only based
on the performance of each base model. Therefore, we could
infer that the double dynamically weighting mechanism of
DWE-IL is more suitable to deal with NS-TSP. OSIEM-
ELM and TCN are classic and novel examples, respectively,
of computational intelligence methods. The reason why their
predictive performance and stability are inferior to those of
DWE-IL might be that the combination prediction model usu-
ally has better performance than a single model. This has been
demonstrated by many researchers in their state-of-the-art re-
search works. Although it may cost additional space, howev-
er, it is worth it.

Also, worth noting in Tables 8 and 9 is the comparison of
the three algorithms DWE-IL, DWE-IL (ELM) and ELMK. It
can be seen from the experimental results that, the RMSEs of
the DWE-IL algorithm and the DWE-IL (ELM) algorithm are
closer to each other and significantly smaller than those of the
ELMK. It can be concluded that, the IL framework based on
dynamically weighting ensemble scheme proposed in DWE-
IL has a significant effect and is more conducive to the per-
formance improvement of the algorithm than the contribution
of the base model.

Table 2 Experimental parameters
of DWE-IL and other three
competitors

Datasets NOS-KELM DIL DWE-IL(ELM) DWE-IL

γ η σ δ tw K Tk tw T tw T

DJI / / / / 7 2 30 10 2 7 2

N225 / / / / 7 4 30 8 3 6 5

SSE / / / / 4 2 30 12 3 16 2

Sunspot 2e+4 0.8 1e+6 18 7 4 20 6 4 4 3

Mackey-Glass 2e+4 0.8 10 0.01 4 4 20 20 5 22 4

Lorenz 5e+4 0.8 1e+6 0.2 7 4 20 7 4 10 3
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Table 10 shows the standard deviations (Stds) of RMSEs of
six algorithms including DWE-IL on each dataset. It is known
that the lower value of Std means the lower degree of disper-
sion and the higher stability. As can be seen from Table 10
that, on five out of six datasets, DWE-IL has the smallest Stds,
compared to the other algorithms. This is because the double
dynamically weighting mechanism improves the robustness
of DWE-IL. And the selected base model ELMK has high
learning efficiency and low randomness, compared with some
computational algorithms. Therefore, we can conclude that
DWE-IL has good stability while having good plasticity.

Table 11 and Table 12 show the RMSE and MAE t-test
results between the DWE-IL algorithm and other algorithms,

Table 3 The average values of RMSEs obtained by DWE-IL with different values of parameter tw on DJI, N225 and Sunspot datasets

tw 3 4 5 6 7 8 9

DJI 8.43E-3 8.35E-3 8.17E-3 8.06E-3 8.00E-3 8.12E-3 8.19E-3

N225 2.02E-2 1.98E-2 1.97E-2 1.93E-2 2.07E-2 2.05E-2 2.20E-2

Sunspot 6.60E-3 5.90E-3 6.00E-3 6.00E-3 6.00E-3 6.10E-3 6.40E-3

Remark: The expression of 5.41E-2 is scientific notation, which stands for 5.41 × 10−2 . And the minimum average values of RMSEs are indicated in
bold. The same expressions in the following tables have the same meaning.

Table 4 The average values of RMSEs obtained by DWE-IL with different values of parameter tw on SSE and Lorenz datasets

tw 8 10 12 14 16 18 20

SSE 2.79E-2 2.69E-2 2.71E-2 2.62E-2 2.55E-2 2.64E-2 2.65E-2

Lorenz 3.10E-3 2.90E-3 3.10E-3 3.60E-3 3.80E-3 4.20E-3 4.30E-3

Table 5 The average values of RMSEs obtained by DWE-IL with different values of parameter tw on Mackey-Glass datasets

tw 14 16 18 20 22 24 26

Mackey-Glass 9.26E-5 5.47E-5 3.46E-5 3.07E-5 2.87E-5 2.99E-5 3.21E-5

Table 6 The average values of RMSEs obtained by DWE-IL with
different values of parameter T on six datasets

T 2 3 4 5 6

DJI 8.00E-3 8.15E-3 8.24E-3 8.30E-3 8.41E-3

N225 2.23E-2 2.13E-2 1.95E-2 1.93E-2 1.99E-2

SSE 2.55E-2 2.62E-2 2.68E-2 2.72E-2 2.98E-2

Sunspot 6.10E-2 5.90E-2 6.10E-2 6.30E-2 6.30E-2

Mackey-Glass 4.26E-5 4.14E-5 2.87E-5 8.03E-5 1.06E-4

Lorenz 3.10E-3 2.90E-3 4.50E-3 5.60E-3 6.30E-3

Table 7 The maximum, minimum and average values of RMSEs, MAEs and TIMEs obtained by DWE-IL on six datasets

Datasets RMSE MAE TIME(s)

Max Min Mean Max Min Mean Mean

DJI 8.25E-3 7.89E-3 8.00E-3 6.03E-3 5.22E-3 5.61E-3 8.90E-2

N225 1.99E-2 1.88E-2 1.93E-2 1.60E-2 1.44E-2 1.49E-2 1.61E-2

SSE 2.64E-2 2.49E-2 2.55E-2 1.96E-2 1.85E-2 1.90E-2 9.71E-3

Sunspot 6.60E-3 5.70E-3 5.90E-3 4.90E-3 4.30E-3 4.50E-3 3.88E-2

Mackey-Glass 3.24E-5 2.75E-5 2.87E-5 2.26E-5 2.06E-5 2.13E-5 4.35E-2

Lorenz 3.50E-3 2.80E-3 2.90E-3 2.10E-3 1.80E-3 1.90E-3 1.00E-1
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respectively. From the last column of Table 11 and Table 12,
we can see that DWE-IL has no significant improvement over
DWE-IL (ELM) on some datasets. This problem can be ex-
plained by the previous conclusion that, compared with the

Table 9 The average values of
MAEs obtained by different
algorithms on six datasets

MAE ELMK DIL OSIEM-
ELM

TCN DWE-IL (ELM) DWE-
IL

DJI 1.46E-2 9.10E-3 1.34E-2 1.31E-2 6.52E-3 5.61E-3

N225 1.62E-2 1.58E-2 1.57E-2 1.57E-2 1.51E-2 1.49E-2

SSE 2.11E-2 2.13E-2 2.40E-2 2.18E-2 2.09E-2 1.90E-2

Sunspot 5.10E-3 4.90E-3 4.60E-3 4.54E-3 4.52E-3 4.50E-3

Mackey-Glass 3.74E-5 2.34E-4 4.33E-4 9.21E-5 2.59E-5 2.13E-5

Lorenz 2.10E-3 3.20E-3 2.60E-3 2.40E-3 2.00E-3 1.90E-3

Table 10 The standard deviations
of RMSE obtained by different
algorithms on six datasets

Std ELMK DIL OSIEM-
ELM

TCN DWE-IL (ELM) DWE-
IL

DJI 1.10E-3 1.80E-3 1.20E-3 1.02E-3 9.45E-4 3.49E-4

N225 1.70E-3 7.07E-4 1.00E-3 8.23E-4 6.06E-4 5.14E-4

SSE 2.00E-3 1.30E-3 4.00E-3 1.28E-3 1.20E-3 3.17E-4

Sunspot 1.00E-3 1.50E-4 8.55E-4 9.86E-4 4.56E-4 1.16E-4

Mackey-Glass 8.60E-6 8.43E-5 9.07E-5 8.45E-5 2.85E-6 1.96E-6

Lorenz 4.85E-4 4.59E-5 7.23E-4 5.34E-4 9.64E-5 4.83E-4

Table 11 RMSE t-test results between DWE-IL and other comparative
algorithms

H ELMK DIL OSIEM-
ELM

TCN DWE-IL (ELM)

DJI 1 1 1 1 0

N225 1 1 1 1 0

SSE 1 1 1 1 1

Sunspot 1 1 1 1 1

Mackey-Glass 1 1 1 1 1

Lorenz 1 1 1 1 0

Remark: H = 1 indicates that H0 is rejected, that is, if RMSE is used as the
criterion, the DWE-IL algorithm has a significant improvement in gener-
alization performance at the 5% significance level compared with other
algorithms. H = 0 means that H0 cannot be rejected, that is, if RMSE is
used as the criterion, the DWE-IL algorithm has no significant improve-
ment in generalization performance at the 5% significance level com-
pared with other algorithms.

Table 12 MAE t-test results between DWE-IL and other comparative
algorithms

H ELMK DIL OSIEM-
ELM

TCN DWE-IL (ELM)

DJI 1 0 1 1 0

N225 1 1 1 1 0

SSE 1 1 1 1 1

Sunspot 1 1 1 1 0

Mackey-Glass 1 1 1 1 1

Lorenz 1 1 1 1 0

Table 8 The average values of
RMSEs obtained by different
algorithms on six datasets

RMSE ELMK DIL OSIEM-
ELM

TCN DWE-IL (ELM) DWE-
IL

DJI 2.23E-2 1.08E-2 2.22E-2 2.12E-2 8.90E-3 8.00E-3

N225 2.06E-2 1.99E-2 2.04E-2 2.01E-2 1.95E-2 1.93E-2

SSE 2.78E-2 2.84E-2 3.15E-2 2.86E-2 2.72E-2 2.55E-2

Sunspot 6.80E-3 6.30E-3 6.30E-2 6.33E-3 6.10E-3 5.90E-3

Mackey-Glass 5.63E-5 3.21E-4 5.25E-4 2.84E-4 3.48E-5 2.87E-5

Lorenz 3.30E-3 3.43E-3 3.80E-3 3.50E-3 3.10E-3 2.90E-3
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choice of the base model, the IL framework based on dynam-
ically weighting ensemble scheme proposed in DWE-IL is
more conducive to the improvement of the performance of
the algorithm. The choice of the base model is relatively less
important.

From Table 13 we can see that, the time spent by DWE-IL
are relatively short. This is because the computational com-
plexity of DWE-IL is relatively low, and the selected base
model ELMKhas a simpler structure and faster training speed.
Due to these reasons, DWE-IL responds to data changes in
NS-TS in a timely manner.

In order to show and analyze the prediction performances
of DWE-IL and those of all the comparative algorithms more
clearly and intuitively, the predictive results and predictive
errors obtained by DIL, DWE-IL (ELM) and DWE-IL on
the six experimental datasets are shown in Figs. 5, 6, 7, 8, 9,
10, respectively. Among the comparative algorithms, DWE-
IL (ELM) and DIL have the first-best and second-best predic-
tion performance, respectively, on the six experimental
datasets. Therefore, we think that DWE-IL (ELM) and DIL
can represent all the comparative algorithms well. Besides, if
the experimental results of all the algorithms are presented, the
predicted results and predictive errors shown in the figures
will be difficult to be clearly observed.

Figure 5(a) - Fig. 10(a) show the predictive results of DIL,
DWE-IL (ELM), and DWE-IL on six NS-TS datasets, respec-
tively, and all the predictive results are compared to the real
values. It can be seen from the six figures that the predictive
trends of the six algorithms are basically consistent with the
real trend, and the predictive trend of the DWE-IL algorithm is
the closest to the real trend.

Figure 5(b) - Fig. 10(b) show the predictive errors of DIL,
DWE-IL (ELM), and DWE-IL on six NS-TS datasets, respec-
tively. Compared to other algorithms, predictive error curve of
the DWE-IL algorithm is the smoothest one on each dataset.
However, if only the predictive errors of the DWE-IL algo-
rithm are considered, the stability of the DWE-IL algorithm is
not very satisfactory. This also proves the conclusion drawn in
Table 7 that, due to the interference of some noise data and the
complex nature of the data itself, the generalization perfor-
mance of the DWE-IL algorithm on some datasets fluctuates

greatly, but it is also within the acceptable range. In addition,
in order to more clearly observe the results of each algorithm,
we use the logarithmic scale to represent the predictive error.

Table 14 shows the comparison results of RMSEs of
NBDM, EnsPKDE&IncLKDE, ANFIS, and DWE-IL on three
NS-FTS datasets. It can be perceived from Table 14 that,
DWE-IL provides a good solution to the prediction of the
NS-FTS and has significantly superior performance over other
comparative algorithms.

Table 15 shows the comparison results of RMSEs of NOS-
KELM, CICC-two-island, CCRNN-NL, and DWE-IL on
three NS-TS datasets. It can be concluded that, DWE-IL pro-
vides a general prediction framework for NS-TSP tasks and
has excellent generalization performance.

From Section 3, we can know that the computational com-
plexity of DWE-IL isO(TkCh), where T represents the number
of data subsets, k represents the number of current base
models, and Ch represents the number of base models that
are discarded in this iteration. We choose four algorithms
mentioned in Section 4.2.2, analyze their computational com-
plexities, and compare their computational complexities with
that of DWE-IL.

The first chosen comparative algorithm is DIL, and its
computational complexity is O(KTk(Ch +CH)), where K rep-
resents the number of divided data subsets, Tk represents the
number of iterations, Ch and CH represent the number of base
models and ensemble models that are discarded in the process
of an iteration, respectively. The second chosen comparative
algorithm is CICC-two-island, and its computational com-
plexity is O(T1T2D(S +N)), where T1 represents the global
evolution time, T2 represents the island evolution time, D rep-
resents the depth of generations, S and N represent the number
of subgroups of the synaptic level and the neuron level,
respectively.

The third chosen comparative algorithm is CCRNN-NL,
and its computational complexity is O(ckm), where c repre-
sents the number of cycles, k represents the total number of
neurons in the hidden layer and output layer, andm represents
the number of offspring. The fourth chosen comparative algo-
rithm is NOS-KELM, and its computational complexity con-
sists of three parts: 1) the sparse dictionary selection part, and

Table 13 The average values of
TIME spent by different
algorithms on six datasets

TIME(s) ELMK DIL OSIEM-
ELM

TCN DWE-IL (ELM) DWE-
IL

DJI 3.60E-3 3.09E-1 7.49E-2 4.02E-2 1.07E-1 8.90E-2

N225 3.20E-3 9.85E-2 2.78E-2 9.80E-2 2.66E-2 1.61E-2

SSE 4.30E-3 9.00E-2 2.74E-2 6.72E-2 4.97E-2 9.70E-3

Sunspot 1.02E-2 5.64 7.40E-2 2.23E-1 6.99E-2 3.88E-2

Mackey-Glass 9.50E-3 23.55 7.67E-2 1.65E-1 1.11E-1 4.35E-2

Lorenz 9.50E-3 3.77 1.11E-1 2.38E-1 1.07E-1 1.00E-1
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the computational complexity of this part is O(m + 1); 2) the
adaptive regularization scheme part, and the computational
complexity of this part is O(m2) or O(lm) (when l >m); 3)
the kernel weight coefficient update part, and the computa-
tional complexity of this part is O(m2). In the above three
parts, m represents the number of samples, and l represents
the number of iterations of the optimization process.

It can be seen that the computational complexity of DWE-
IL is similar to that of CCRNN-NL, and lower than that of
DIL and CICC-two-island. According to [41], although each
part of NOS-KELM has the lowest computational complexity,
its overall running time is no less than that of DWE-IL. In
addition, according to the previous experimental results, the
prediction performance of DWE-IL is the best among these

(a) (b) 

Fig. 5 Predictive results and
Predictive errors of different
algorithms on DJI dataset. (a)
Predictive results, (b) Predictive
errors

(a) (b)

Fig. 6 Predictive results and
Predictive errors of different
algorithms on N225 dataset. (a)
Predictive results, (b) Predictive
errors

(a) (b)

Fig. 7 Predictive results and
Predictive errors of different
algorithms on SSE dataset. (a)
Predictive results, (b) Predictive
errors
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(a) (b)

Fig. 8 Predictive results and
Predictive errors of different
algorithms on Sunspot dataset. (a)
Predictive results, (b) Predictive
errors

(a) (b)

Fig. 9 Predictive results and
Predictive errors of different
algorithms on Mackey-Glass
dataset. (a) Predictive results, (b)
Predictive errors

(a) (b)

Fig. 10 Predictive results and
Predictive errors of different
algorithms on Lorenz dataset. (a)
Predictive results, (b) Predictive
errors
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five algorithms. Therefore, we can conclude that DWE-IL has
superior generalization efficiency and generalization perfor-
mance on the NS-TSP tasks.

5 Conclusions and future works

This paper proposes a novel Incremental Learning Algorithm
via Dynamically Weighting Ensemble Learning (DWE-IL),
which provides a general framework for solving NS-TSP
tasks. The basic principle of DWE-IL is to track real-time data
changes by dynamically establishing and maintaining a
knowledge base composed of multiple basic models. It trains
basic models for each subset of NS-TS, and finally combines
each basic model with dynamic weighting rules. In the DWE-
IL algorithm, the most critical components are the update of
data weights and base model weights and the training of the
base model. According to the characteristics of NS-TS, this
paper proposes corresponding weight update methods and
base model training methods. Experiments prove that the
DWE-IL algorithm provides a good solution to the NS-TSP
problem and has significantly better performance than other
comparative algorithms.

Although the DWE-IL algorithm has shown good results
for NS-TSP, there are still some problems to be studied. For
example, DWE-IL can only achieve single-step prediction and
univariate prediction for NS-TS. In future work, we will try to
further expand the DWE-IL algorithm to solve multi-step ad-
vance NS-TSP and multivariate NS-TSP problem.
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