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Abstract
Deep neural networks (DNNs) have improved expressive performance in many artificial intelligence (AI) fields in recent
years. However, they can easily induce incorrect behavior due to adversarial examples. The state-of-the-art strategies for
generating adversarial examples were established as generative adversarial nets (GAN). Due to a large amount of data
and the high computational resources required, previous GAN-based work has only generated adversarial examples for
small datasets, resulting in a less favorable visualization of the generated images. To address this problem, we propose a
feasible approach, which improves on the AdvGAN framework through data augmentation, combined with PCA and
KPCA to map the input instance’s main features onto the latent variables. Experimental results indicate that our
approach can generate more natural perturbations on high-resolution images while maintaining 96% + of the features
of the original input instance. Moreover, we measured 90.30% attack success rates on CIFAR-10 against the target
model ResNet152, a small improvement compared to 88.69% for AdvGAN. We applied the same idea to ImageNet and
LSUN, and the results showed that it not only achieves a high attack success rate,but can generate strongly semantically
adversarial examples with better transferability on prevailing DNNs classification models. We also show that our
approach yields competitive results compared to sensitivity analysis-based or optimization-based attacks notable in the
literature.
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1 Introduction

Recent tremendous achievements in deep neural networks
(DNNs) have led to significant breakthroughs in computer
vision [1, 2], speech recognition [3], natural language process-
ing [4], and web mining [5]. However, Szegedy et al. [6]
proposed that by adding minor perturbations that are difficult
for humans to perceive on the pixels of the original benign
instances, deep learning models can be induced to misclassify
the input instance into other categories, resulting in a remark-
able reduction in performance. These adversarial examples [6]
can also be understood simply as a class of synthetic samples

that make the deep learning models erroneous. Nguyen et al.
[7] proposed that deep learning models can classify with high
confidence some instances that are not recognizable to
humans, which implies that deep learning models are incred-
ibly vulnerable. There is a theoretical possibility of passing the
classification system by generating garbage or malicious ex-
amples. An adversary can interfere with an AI service’s rea-
soning process to accomplish an attack effect, such as evading
detection by constructing adversarial examples. By studying
adversarial examples, we hope to discover blind spots in the
deep learning model and improve the overall model’s
robustness.

With the introduction of adversarial examples, algorithms
around generating adversarial examples began to proliferate,
and various schools of thought emerged. This phenomenon
has significant practical implications for both attack and de-
fense aspects of deep learning. The attack strategies can be
classified into sensitivity analysis-based algorithms,
optimization-based algorithms, and generative-based algo-
rithms [8].

Sensitivity analysis Adversarial attacks use sensitivity
analysis—a class of algorithms used to determine the
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contribution of each input feature to the output—to find
sensitive features and perturb them. There are more rep-
resentative algorithms in this category, such as FGSM [9],
JSMA [10], and PGD [11]. These attacks are, in general,
faster than optimization-based attacks. Therefore, they are
better suited to be incorporated into the training process
of deep learning models and improve their robustness.
They are also more straightforward than optimization-
based attacks.

Optimization Adversaries use optimization algorithms to
search for solutions, alternative forms, or constraints. Some
of the more representative algorithms are L-BFGS [6], Deep
Fool [12], C&W [13], etc. Although sensitivity analysis-based
attacks are more common, these require full knowledge of the
system under attack. In contrast to sensitivity analysis-based
methods, optimization-based attacks are used more in black-
box scenarios.

GenerativeHere the probability distribution of adversarial
perturbations is learned using generative models and
used to sample new adversarial examples. A representa-
tive generative model is the generative adversarial net-
work (GAN) [14], which differs from the optimization-
based and the sensitivity analysis-based methods above.
Once the trained generator learns the input instances’
distribution, it can generate large numbers of adversarial
perturbations in a short period. The more typical algo-
rithms here are AdvGAN [15], Natural GAN [16], Rob-
GAN [17], etc.

Notably, the GAN-based algorithms are trained with
small and simple datasets, such as MNIST, CIFAR-10,
and Tiny-ImageNet (64 px). They suffer from poor visu-
alization of the generated adversarial examples.
Furthermore, by increasing the number of iterations or
adjusting the relevant hyperparameters, the training model
may be overfitted on such a small dataset. It resulted in

better performance under a white-box attack but worse
when the generated adversarial examples are transferred
to other models for testing. In this paper, we make im-
provements to the AdvGAN [15] structure. First, we per-
form data augmentation [18] to eliminate overfitting of
the training process. Then we train on CIFAR-10 to verify
the feasibility of our proposed approach. Finally, the high-
resolution adversarial examples generated on ImageNet
and LSUN as shown in Fig. 1.

Our approach does not require any access to the tar-
get model during the test stage, as we only query the
target model during training. Hence, our method is a
semiwhite-box attack and is more potent than previous
white-box attacks.

1.1 Contributions and organization

We summarize our main contributions as follows:

(1) We first apply PCA and KPCA to the training of GAN-
based attacks for generating high-resolution adversarial
perturbations. Experimental results show that these two
methods can improve the attack success rate by nearly
3.3% on ImageNet and 2.4% on LSUN over AdvGAN
[15]. And the proposed approach can reduce the time
consumption of generating adversarial examples.

(2) Our approach fills the gap of using GAN to generate
high-resolution adversarial examples on large-scale
datasets with powerful computational power. And the
generated adversarial examples have a strong semantic
correlation with the original input by some image evalu-
ation metrics.

(3) We report the results (of our approach and other attack
algorithms) in an untargeted attack. Our approach per-
forms well in attack success rate, time-consumed to

Fig. 1 Adversarial examples
generated by our approach
(targeted model: ResNet152) (a).
Original image on ImageNet with
the ground truth ‘Ice cream.’ (b).
Adversarial image generated by
our approach with the predict
label ‘Plate.’ (c). Crad-CAM of
original image. (d) Crad-CAM of
the adversarial image. (e) Top 5
predict classification confidence
of adversarial image (The figure-
colored yellow is ground truth)
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generate an adversarial example, image visualization, se-
mantic correlation, and transferability.

The rest of this paper is organized as follows.
Section 2 gives the related concept, such as data augmen-
tation, generative adversarial nets, etc. In section 3, we
illustrate our proposed approach in data processing, net-
work structure, objective function, and models. Section 4
experimentally evaluates the proposed method. Finally,
the conclusion and future work directions were given in
section 5.

2 Related work

2.1 Data augmentation

Deep learning algorithms are more dependent on massive
data compared to traditional machine learning algorithms.
Extensive work and studies have shown that the training
set’s size and quality directly affect the performance of
deep learning algorithms [19]. When the number and
quality of images are higher, the further and deeper image
features that the deep learning model can learn, the better
the network model’s classification and recognition capa-
bility will be. A series of picture-enhancing processes,
such as expansion and transformation of the amount of
data used, are collectively named data augmentation
[18]. Therefore, we should perform data augmentation
on some datasets with relatively small sample sizes and
poor quality. For example, the ImageNet has a small num-
ber of images in each subclass. When a certain class sam-
ples available are very limited, it is inevitable to be data
unbalanced [41]. Some studies have given solutions to
this problem [40, 41]. In this paper data augmentation is
needed to reduce the GAN overfitting in the learning data
distribution.

What makes data augmentation so crucial for training
neural networks is that overfitting is easily caused when
the dataset’s size does not match the deep network. An
efficient way to mitigate the overfitting phenomenon is to
adjust the dataset’s size and quality through data augmen-
tation. Image data augmentation is divided into offline aug-
mentation and online augmentation. Offline augmentation
means that when the dataset size is small, the dataset is
directly augmented before training, and the number of data
points can be increased by the artificial augmentation fac-
tor or multiplied. Online augmentation refers to the way in
which the network model, after accessing the dataset, im-
plements data augmentation for each object in the dataset
using predefined augmentation module [20–22], such as
rotation, translation, mirror flip, resize and padding trans-
formation, noise transformation, etc.

2.2 Generative adversarial nets

Generative Adversarial Nets [14] (GAN) consists of a
generator G, and a discriminator D. The generator G bears
an adversarial relationship with the discriminator D. The
GAN simultaneously trains both G and D: G obtains the
true data distribution, and D evaluates the probability that
the instance is derived from the training data rather than
from G. The training process of G is designed to maxi-
mize the probability that D evaluates the error. GAN is
also referred to as a maximal, minimal game. The optimi-
zation to be solved becomes:

minGmaxDV D;Gð Þ ¼ Ex logD xð Þ½ � þ Ez log 1−D G zð Þð Þð Þ½ � ð1Þ

In Eq. (1), z is the prior distribution, such as Gaussian
distribution and Uniform distribution; E is the computed
expectation. The objective of GAN is to learn the distri-
bution pg of the training data, to learn this distribution,
the input noise variable pz(z) is defined, which is mapped
to the data space G(z; θg), where G is a generative model
consisting of a multilayer perceptual network with θg as
a parameter. In addition, the discriminator D(x; θd ) is
defined to determine whether the input data are from
the generator or the training data, and the output of
D(x) is the probability that x is from the training data
rather than G. Training D aims to maximize the assign-
ment of the correct label to either the training data or the
G-generated data.

The primary problem that hindered the original GAN is the
non-convergence problem, where the purpose of the GAN is
to reach a Nash equilibrium. The behaviors of G and D may
counterbalance each other, as an optimizing algorithm that
descends along a gradient on one side may lead to an increase
in error on the other side. In practice, GAN typically suffer
from oscillations, which means that the network vacillates
between samples of various generative modes, thus failing to
reach some sort of equilibrium. A common phenomenon is
that GAN map multiple different inputs to the same output,
which is a nonconvergent situation known as mode collapse
[14, 23]. Next, the original GAN can only generate continuous
data rather than discrete data (e.g., natural language). Because
after each update of the generator, the output is a gradient
between the previous output and the discriminator’s return,
and its output must be continuously differentiable.
Theoretically, due to the original GAN that uses the Jensen-
Shannon (JS) divergence as a metric for generating examples.
Generated discrete data cannot be achieved even using a con-
tinuous approach such as word distribution or embedding.
Finally, GAN’s evaluation issue is more complicated than
with other generative models; i.e., there is no uniform
measure.
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Faced with the deficiencies of the original GAN, the
researcher improved the GAN’s generative mechanisms
by utilizing deep learning achievements on supervised
learning tasks. The improvements mainly include the
following.

(1) New network structures, such as LGGAN [24] con-
sider learning the scene generation in a local context,
and correspondingly design a local class-specific
generative network with semantic maps as a guide
to provide more scene details. CycleGAN [25] pres-
ent an approach for learning to translate an image
from a source domain X to a target domain Y in the
absence of paired examples. Which goal is to learn a
mapping G : X→ Y such that the distribution of im-
ages from G(X) is indistinguishable from the distri-
bution Y using an adversarial losses.

(2) Adding regularization constrains, such as SN-GAN
[26], performs corresponding operations on each layer
of D, which can significantly improve the generation of
GAN and is one of the few GAN structures that can
generate all 1000 classes of ImageNet objects using a
single network. WGAN-GP [27] further improves the
stability of the network by adding gradient penalties, etc.

(3) Integrating multiple models, such as the AdaGAN
[28], T generator models are trained in sequence by an
algorithm similar to AdaBoost. During the t-step training
step, the models that failed the previous time are given
increased weights. The generators in Stack GAN [29]
consist of multiple submodels in series.

(4) Changing optimization algorithms, such as Seq GAN
[30], treat the sequence generation problem as a sequen-
tial decision problem and use RNN as the generation
network, Mask GAN [31] uses seq2seq [32] as the gen-
eration network to make GAN capable of filling in
words, among other improvements.

3 Methodology

For a given classifier f, which can classify x ∈ X into
ground truth ytrue=fθ(x). The purpose of the adversarial

attacks is to train the model to generate adversarial exam-
ples x∗=x+δx that will be identified by f as some other
label ypred, where δx is a tiny and human imperceptible
perturbation added to the original image. In this
paper, δx =G(z| x), where G is the generator. The objec-
tives to be optimized are as follows:

f θ xþ δxð Þ ¼ ypred≠ytrue ð2Þ

s:t: Lp ¼ x−x*
�� ��

p ¼ ∑n
i¼1 xi−x*i

�� ��p� �1
p ≤ϵ ð3Þ

In Eq. (3), we wish adversarial example x∗ to be as similar
to x as possible, and ϵ is the maximum magnitude ‖∙‖p pertur-
bation allowed. We consider the most commonly used L0, L2
and L∞ distances, each of which has a significant physical
interpretation.

We will then discuss our proposed methodology in four
aspects: dataset preprocessing, network structure, objective
function, and models.

3.1 Data preprocessing

We work with the datasets ImageNet,LSUN andCIFAR-
10, where ImageNet contains 1,386,167 images of 1000
classes. The dataset is partitioned into 1,281,167 training
images, 50,000 validation images and 100,000 test images.
Faced with such a large scale of data, we are unable to use
the entire dataset. In this experiment, we selected 140 clas-
ses of data in the training set. From total 182,000 images
(with each class in the dataset consisting of 1300 images),
7000 images for the validation set, and 14,000 images for
the test set. LSUN contains around one million labeled
images for each of 10 scene categories and 20 object cat-
egories. In this experiment, we selected ‘bus’, ‘cow’, and
‘sheep’ from the 20 object categories. Totally 210,000 im-
ages (70,000 images for each category) are used as the
training set, 15,000 images for the validation set, and
30,000 images for the test set. For CIFAR-10, in the train-
ing phase, our training set was 50,000 images. We further
split the test set (10,000 images) into 5000 validation data
and 5000 test data.

Fig. 2 Image data augmentation. aOriginal image, bHue Shift, c Saturation Shift, d Brightness Shift, eMirror Flip [35], f Rotation, g Random Padding
[36]
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In our experiment, an effective way to prevent overfitting
of the model is data augmentation, as shown in Fig. 2. The
specific steps of the transformation are illustrated in
Algorithm 1. It is worth noting that all the techniques we refer
to in this paper for processing images after Algorithm 1 are
called data augmentation. During the training process, the
images in the training set above are transformed by
Algorithm 1 so that the images’ number in each original sub-
class is expanded by seven times. By such image data aug-
mentation, a more sophisticated data distribution will be ob-
tained. Since our experiments are GAN-based to generate ad-
versarial examples, the merit of more complex data distribu-
tions enables a more robust trained model with good general-
ization performance.

3.2 Network structure

The overall structure of our proposed approach for generating
adversarial examples is shown in Fig. 3. It consists of a feature
extraction function Fx, a generator G, a discriminator D, and a
target function Ft. For a given original input set X, our goal is
to generate an adversarial perturbation δx′ through G, which is
limited to a certain order of magnitude. This perturbation is
spliced with x′ to generate an adversarial image x∗. This image
can spoof discriminator D and be misclassified by the target
function Ft in an untargeted attack.

During the training phase, to make the generated adversar-
ial example meet the above requirements, we perform data
augmentation on the original input set X to obtain X′As
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described in Algorithm 1. Then we use VGG19 as the feature
extraction function to perform image feature extraction on the
input x′, which eliminates the need to follow the encoder-
decoder infrastructure, thereby reducing the training and in-
ference overhead. Before generating the adversarial perturba-
tions, x′ is mapped to the corresponding noise vector zwith the
linear dimensionality reduction method of PCA and the non-
linear dimensionality reduction method of KPCA, which can
generate a more natural image with strong semantic correla-
tions to the original input. Finally, G receives feature Fx(x

′) of
image x′ and a noise vector z (as a concatenated vector) and
generates δx0 . The corresponding adversarial example is
x∗=x′+δx0 .

3.3 Objective function

Data augmentation loss, the distribution of images obtain-
ed after data augmented by Algorithm 1 is somewhat dif-

ferent from the original images. In this experiment, we use
the Cross Entropy of the model on the distribution of trans-
formed and original images as the data augmentation loss.
The Cross Entropy loss describes the distance between two
probability distributions, and when the Cross Entropy is
smaller it means that the two are closer to each other.
When the Cross Entropy between the original image dis-
tribution and the transformed image distribution, i.e., the
data augmentation loss, reaches convergence in the train-
ing process, then we can use the transformed images for
generating adversarial perturbations. This process can be
demonstrated in Algorithm 2, where the whole process is
divided into two main steps: (1) calculating the Cross
Entropy loss of the two distributions on the feature extrac-
tion model; (2) calculating the loss on the target model.
Moreover, when the whole training process reaches con-
vergence, we can also determine the relevant parameters
(in Table 2) of the training process by the variation of the
loss function (in Fig. 4) on different data sets.

1294 X. Fang et al.



GAN loss, our work proposes using Mean Square Error
(MSE) loss to detect deviations between predicted and
ground-truth labels. We divide GAN training into two pro-
cesses, training discriminator D and training generator G, as
shown in Algorithm 3. For the discriminator, we expect D to
maximize the probability to distinguish whether the input in-
stance is from the original image or the generated image, so
the training process should minimize the loss from clean im-
ages and maximize the loss from generated images. In opti-
mizing the loss function, we set the false sample label to ‘0’
and the true sample label to ‘1’. Mathematically, we train the
discriminator D to maximize:

LD fake ¼ Ez D G zjFx x
0

� �� �
þ x

0
� �

−0
� �2

� 	
ð4Þ

And minimize:

LD real ¼ Ex0 D x
0

� �
−1

� �2
� 	

ð5Þ

For the generator, we expect the generated samples to
spoof the discriminator to the extent possible, so during the
training of G, we minimize its loss function:

LG ¼ Ez D G zjFx x
0

� �� �
þ x

0
� �

−1
� �2

� 	
ð6Þ

The total GAN loss is as follows:

LGAN ¼ LD real−LD fake þ LG ð7Þ

Fig. 3 The overall structure of our proposed approach

Fig. 4 Some losses during training
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Adversarial loss, the loss for spoof the target model Ft in
an untargeted attack is:

Ladv ¼ Ex0 ;z Ft G zjFx x
0

� �� �
þ x

0
; l

0
� �h i

ð8Þ

where l’ is any class that is different from the ground-truth
label l of x′.

Perturbation loss, the magnitudes of perturbations are
essential for making the output similar to the original
images. In Eq. (3), Lp is used to measure the distance
(or similarity) between x′ and x∗, and the usual choices
of p are [0, 2,∞]. L0 represents the number of the differ-
ent pixels between the benign image and adversarial ex-
ample. L2 measures the standard Euclidean distance be-
tween the benign image and adversarial example. L∞

represents the maximum value of the imperceptible per-
turbation in the adversarial example. Our approach refers
to [33], which combines L2 and L∞, the result will lead
to better perceptual quality. The perturbation loss is the
following:

Lpert ¼ λ1*Ex0 ∥x*−x
0
∥2

h i
þ λ2*Ex0 ∥x*−x

0
∥∞

h i
ð9Þ

s:t: λ1 þ λ2 ¼ 1 ð10Þ

In summary, the goal of our approach is to minimize the
following objective function:

L ¼ LGAN þ α*Ladv þ β*Lpert ð11Þ

where α and β are the relative importance of each objective.
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3.4 Models

In our work, we refer to the training manner of pix2pix. We
utilize the network architecture in [15]. The difference is that
we alter the corresponding parameters for the training process
to ensure that the network architecture can fit the input im-
ages’ size. More details about the generator and discriminator
architecture can refer to [15].

For the feature extraction model, we use the pretrained
VGG19, and for the target model, we use ResNet152. It can
be noticed that the model we have chosen here has two char-
acteristics: deeper model depth and a pretraining. The deeper
model can extract more input features and improve the whole
network’s generalization performance. A pretrained model re-
duces the training overhead by verifying the transferability of
the adversarial examples across different models, as described
in section 4.

4 Experimental results

All our experiments are run in a CPU: Xeon Gold 6139,
RAM: 96G, GPU: Tesla V100 16G environment. In this sec-
tion, the whole experimental results are presented concerning
the following aspects: First, we use Inception-v3 to test the
classification accuracy of the original and augmented data
from CIFAR-10, ImageNet and LSUN. Second, by optimiz-
ing Eq. (11), we ascertain the relevant weights and some
hyperparameters in our experiment, such as the learning rate,
epochs, optimizer, etc. Next, we demonstrate the visualization
effect of our approach on high-resolution images, the semantic
correlation between the generated images and the original im-
ages, and the similarity between images by some evaluation
metrics. Then, we compare our approach with AdvGAN with
respect to attack success rate, and further compare it with
some sensitivity-based and optimization-based attack strate-
gies with respect to attack success rate and time consumption
for generating a single adversarial example. Finally, we mea-
sure the attack performance of adversarial examples generated
using our approach to test their transferability.

4.1 Dataset accuracy

At the beginning of the experiment, we used Inception-v3 to
perform the accuracy test on the original and augmented data
from CIFAR-10,ImageNet and LSUN, as shown in Table 1.
We calculated top-1 accuracy and top-5 accuracy on
ImageNet. Only top-1 accuracy is computed on CIFAR-10
and LSUN due to the relatively small number of classes in-
cluded in these two datasets (10 classes on CIFAR-10 and 20
object categories on LSUN). It also prevents the correspond-
ing values in Eq. (13) are considerable when the values in Eq.
(12) are small. For example, suppose there is a dataset that is
only 1% in Eq. (12), which means that even if nothing is
manipulated in the experiment, its attack success rate in Eq.
(13) is close to 99%, thereby defeating the meaning of gener-
ating adversarial examples. Although it is a simple step in the
experiment, it is missing in quite a few previous papers on the
subject, and they all put too much faith in the performance of
the dataset itself and the trained model.

We have defined an accuracy rate in our experiment as
follows:

Accuracy rate ¼
∑N

i¼1I f θ xið Þ ¼ ytruei

� ��
N

ð12Þ

where N is the number of test images, IðÞ is one if condition is
true, otherwise zero.

4.2 Corresponding parameters

Our approach identifies some parameters in Table 2 by the
loss variation (Fig. 4.) of the dataset in the target model during
training. For example, after identifying the optimizer as
Adam, we run the CIFAR-10 train set through Algorithm 1
and divide the transformed image into eight subfiles (includ-
ing a mixed set of images transformed by Algorithm 1, called
‘Data augmentation’) to determine the epoch. These subfiles
as shown in Fig. 4a are used to train the target model. The
curve decreases smoothly in the early stages of training, indi-
cating that the model will accelerate learning in the early

Table 1 Accuracy rate on CIFAR-10, ImageNet and LSUN

Dataset Original Hue Saturation Brightness Mirror Rotation Padding

CIFAR-10 Training set 99.59% 99.54% 99.57% 99.55% 99.48% 99.58% 99.49%

Test set 98.15% 95.28% 97.16% 97.68% 82.83% 88.38% 88.76%

ImageNet Top-1 83.59% 82.69% 84.15% 83.31% 86.46% 81.23% 82.92%

Top-5 96.05% 94.86% 94.85% 96.00% 97.31% 94.85% 96.07%

LSUN Training set 73.91% 67.22% 71.91% 73.24% 79.93% 71.81% 73.06%

Test set 72.24% 66.89% 69.90% 70.91% 75.92% 70.47% 71.81%
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stages, making the model already very close to the local or
global optimal solution. However, there is a large oscillation
before epoch = 30, when the value of the loss function hovers
around the minimum value, and it is always difficult to reach
the optimum. Therefore, as shown in Table 2, we perform
learning rate decay during the training of the CIFAR-10 when
epoch = 30, changing from the previous 0.001 to 0.0001. A
similar training process can be seen in Fig. 4b and Fig. 4c.

Figure 4d, Fig. 4e and Fig. 4f show the losses of the objec-
tive function Eq. (6), (7), (8), (9), and (11) on CIFAR-
10,ImageNet and LSUN, respectively, and it can be found that

GAN reaches convergence at the later stages of training. The
other parameters in Table 2 can also be determined through
similar experiments.

4.3 Visualization of the generated adversarial images

In visualizing the adversarial examples, our experiments
are carried out by (i) mapping random Gaussian noise z
into the data space and using AdvGAN to generate adver-
sarial perturbations(Z-perturbations); (ii) using PCA to re-
duce the dimensionality of the input and mapping it to
latent variables to generate adversarial perturbations
(PCA-perturbations); and (iii) using KPCA to reduce the
dimensionality of the input and mapping it to latent vari-
ables to generate adversarial perturbations (KPCA-pertur-
bations). Figure 5 shows the visualization results on
CIFAR-10. In Fig. 5a are the randomly selected original
images. In Fig. 5b, the first row corresponds to the adver-
sarial images generated using random Gaussian noise z
mapped to the data space, i.e., AdvGAN; the second row
shows the pixel difference between them. In Fig. 5c, the
first row presents the adversarial images generated by map-
ping the input through PCA to latent variables; the second
row shows the pixel difference. In Fig. 5d, the first presents
the adversarial images generated by mapping the input

Fig. 5 Visualizations on CIFAR-
10. a Original images on CIFAR-
10, b Z-perturbations adversarial
images, c PCA-perturbations ad-
versarial images, d KPCA-
perturbations adversarial images

Table 2 Some relevant parameters on CIFAR-10,ImageNet and LSUN
during the training process

CIFAR-
10

ImageNet LSUN

Optimizer Adam Adam Adam

Learning rate 0.001 0.001 0.001

Batch size 300 128 64

Epoch 60 50 40

Learning rate decay schedule 30 35 30

Weight α 0.1 0.1 0.25

Weight β 0.05 0.02 0.05
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Fig. 7 Visualizations on LSUN. a Original images on LSUN, b Z-
perturbations adversarial images, c PCA-perturbations adversarial im-
ages, d KPCA-perturbations adversarial images

Fig. 6 Visualizations on ImageNet. aOriginal images on ImageNet, b Z-
perturbations adversarial images, c PCA-perturbations adversarial im-
ages, (d) KPCA-perturbations adversarial images
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through KPCA to latent variables; the second shows the
pixel difference.

The adversarial images in Fig. 5b have visible perturba-
tions that can be detected by the naked eye and are less sharp
than the images in Fig. 5c and Fig. 5d. Furthermore, the pixel
difference between the generated adversarial images and the
original images in Fig. 5b is more severe and complex than
those in Fig. 5c and Fig. 5d, which indicates that our approach
is superior to AdvGAN in terms of visualization effect. It is

also suggested that our approach is more restrictive on the
perturbation magnitude through Eq. (9) and (10).

Next, we would like to concentrate more on the visualiza-
tion on high-resolution datasets, as shown in Fig. 6. Due to the
large size of the images on ImageNet, the adversarial exam-
ples generated in Fig. 6b, Fig. 6c, and Fig. 6d are difficult to
distinguish by visual inspection. However, by looking at the
pixel differences in Fig. 6b, they look like randomly added
noise and appear cluttered. The pixel differences in Fig. 6b

Fig. 8 The adversarial perturbations generated by the different methods were processed and visualized by TSNE

Fig. 9 The similarity of the adversarial image generated by different
methods is compared with the original image, where the closer to the
original images (blue dots) represents a higher degree of similarity. The
AdvGAN generated images (green triangles) are farther away from the

original image than our proposed approach, and this phenomenon is more
obvious as the image size increases. a Image size:32*32*3, b Image
size:64*64*3, c Image size:128*128*3, d Image size:224*224*3
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and Fig. 6c, in contrast, are semantically more like input in-
stances, which makes the generated adversarial examples look
natural. In turn, it argues for the validity of mapping input
instances to latent variables via PCA and KPCA, thereby gen-
erating strongly semantically related adversarial examples.
Likewise, similar visualization effects as described above are
also available on LSUN (in Fig. 7).

To further explore the better semantics of the adver-
sarial examples generated by our approach, we randomly
select 500 original images from ImageNet; corresponding
to the perturbations generated by random Gaussian noise
as input; the perturbations generated by mapping PCA to
latent variables as input; and the perturbations generated
by mapping KPCA to latent variables as input; each with
500 images. We reduced these images into two dimen-
sions and visualized them by TSNE [34], as shown in
Fig. 8b. The PCA perturbations and KPCA perturbations
are closer after TSNE processing, which explains the
pixel differences in Fig. 6c and Fig. 6d that are highly
semantically correlated with the original images. Equally,
Fig. 8a and Fig. 8c show similar conclusions on CIFAR-
10 and LSUN, respectively.

4.4 Similarity between images

In this subsection, we demonstrate that the adversarial exam-
ples generated by our two methods are closer to the original
images than AdvGAN. We randomly select 250 images from
ImageNet and use three methods to generate the correspond-
ing adversarial images total 1000 images. To mitigate the
effect of different sizes on the similarity between images, we
set the image size to 32*32*3,64*64*3128*128*3224*224*3
in turn. These images are also reduced to two dimensions by
TSNE [34] and visualized. In Fig. 9, the larger the size, the
greater difference in similarity. Even though the images are at
different sizes, the similarity to the original images is more
pronounced in our approach than in AdvGAN. Specifically,
the similarity between the adversarial images generated by
PCA and KPCA mapping (represented by red triangles and
pink pentagons) and the original image (blue dots) is much
closer. The AdvGAN-generated adversarial images (green tri-
angles), on the other hand, is more distant from the original
image as the size of the image increases. This indicates that the
adversarial images generated by AdvGAN do not perform as
well as our proposed approach in similarity.

Fig. 10 Some image quality evaluation metrics on ImageNet, (a) is used
to measure the mean square value of pixels between images, smaller
value is better. (b) is used to measure the distortion or noise level

between images, in dB. Larger value is better. (c) is used to measure the
structural similarity between images, closer the value to 1 the more
similar

Table 3 Attack success rate on CIFAR-10

CIFAR-10 Epoch_20 Epoch_40 Epoch_60

Z-advimages 89.95% 88.93% 88.69%

PCA-advimages 90.08% 90.15% 90.30%

KPCA-advimages 90.05% 90.32% 90.24%

Table 4 Attack success rate on ImageNet

ImageNet Epoch_20 Epoch_40 Epoch_50

Z-advimages 76.89% 79.27% 78.94%

PCA-advimages 80.19% 80.28% 80.18%

KPCA-advimages 79.89% 80.02% 79.97%
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Then, we refer to some image quality evaluation metrics to
verify that the images generated by the proposed approach are
more similar to the original images [37]. In this paper, in order
to evaluate the image quality and avoid the interference of
single metrics on the image quality, we use Mean Square
Error (MSE) [38], Peak Signal to Noise Ratio (PSNR) [39],
and Structural Similarity (SSIM) [39] in Fig. 10 to compare
similarity rigorously and objectively. We select 2000 adver-
sarial images generated by each of the three methods from
ImageNet, divide them into 20 batches, and calculate the av-
erage value of each metric for each batch. In Fig. 10a, MSE
first calculates the mean square value of the pixel difference
between the generated images and the original images, and
then determines the generated distortion by the magnitude of
the mean square value. In Fig. 10b, PSNR is the ratio of the
maximum pixel value of the image to the noise intensity,
which is an objective measure of the distortion or noise level
of the image. It is expressed as the greater the value between
images, the more similar they are. In Fig. 10c, we use the
SSIM to measure the image similarity in terms of brightness,
contrast, and structure, which takes values in the range of
[0,1]. The value closer to 1 means the similarity between im-
ages is stronger. Therefore, it is clear from Fig. 10 that the
images generated by the proposed approach perform better in
distortion, similarity, and correlation. It also indicates that our
method generates images with better visualization than
AdvGAN.

4.5 Attack success rate

In this part, we will discuss two aspects: (i) the comparison
between the adversarial examples generated by our approach
and AdvGAN in terms of attack success rate; and (ii) the
comparison of our approach with sensitivity analysis-based,

optimization-based attack method in terms of attack success
rate and time consumed for single image generation.

First, we have defined the attack success rate in our exper-
iment as follows:

Attack success rate ¼
∑N

i¼1I f θ xið Þ ¼ ypredi ≠ytruei

� ��
N

ð13Þ

It is an essential measure of the performance of adversarial
examples. In the experiment, we use generator G trained from
different epochs to generate the corresponding perturbations.
The perturbations are spliced with the original images to form
adversarial examples. Table 3 presents the attack success rate
for the adversarial examples on the CIFAR-10 test set. Our
approach improves the attack success rate by approximately
1.5% compared to AdvGAN; Table 4 shows that attack suc-
cess rate on ImageNet improves by approximately 3.3%.
Table 5 shows that attack success rate on LSUN increases
by about 2.4%.

Table 5 Attack success rate on LSUN

LSUN Epoch_20 Epoch_30 Epoch_40

Z-advimages 64.03% 65.39% 66.01%

PCA-advimages 66.28% 66.55% 67.53%

KPCA-advimages 66.76% 66.74% 66.71%

Table 6 Performance of various attack algorithms

Sensitivity Analysis-based Optimization-based Generative-based

Attack algorithms FGSM PGD DeepFool C&W AdvGAN Ours (PCA) Ours (KPCA)

Attack success rate 61.51% 95.83% 66.89% 97.54% 78.94% 80.18% 79.97%

Time consumption 1.16 s 7.09 s 4.63 s 76.68 s 1.15 s 0.95 s 0.88 s

Fig. 11 Transferability of adversarial examples on other models
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Next, we compare our approach with some other attack
algorithms. The test images are taken from test set on
ImageNet, and the experimental results are all obtained by
running on a Tesla V100 GPU. In this compare experiment,
all perturbations are applied to the pixel values of images,
which normally take values in the range [0,255]. So the max-
imum perturbation ϵ with respect to the data’s dynamic range
would be λ/256, where λ is perturbation strengths. For the
sensitivity analysis-based methods, we choose FGSM [9]
and PGD [11], where the adversarial examples generated by
FGSM with ϵ = 8/255,and for PGD with the number of attack
iterations n=40 and attack step sizeα=1. For the optimization-
based methods, C&W [13] and DeepFool [12]. The adversar-
ial images by DeepFool with maximum epochs=50,and for
C&W: maximum iterations are 1000; learning rate lr=0.01
and initial constant c = 0.0001. The primary algorithm imple-
mentation is referenced to Advbox which is a toolkit for gen-
erating adversarial examples against the deep learning model.
In this experiment, the Alexnet model is pretrained under
PyTorch when generating adversarial examples to influence
the dropout and BN layer behavior. Each method is computed
the required time to generate a single adversarial image.

For being able to evaluate the effectiveness of different
attack strategies in a rigorous and fair way, the adversarial
images we use for testing satisfy four requirements: (1) the
structural similarity between the adversarial image and the
original image, i.e., SSIM [39], should be maintained above
95%; (2) the PSNR [39] between the adversarial image and
the original image should be over 35 dB (less image distor-
tion); (3) all these attack strategies were bounded attacks ac-
cording to a predefined maximum perturbation ϵ ≤ 8/255 with
respect to the L∞ norm; (4) all adversarial images were gener-
ated in a white-box setting and in an untargeted attack way.
And the attack success rate is calculated using ResNet50 in the
testing phase. As shown in Table 6, our approach has a higher
attack success rate than the sensitivity analysis-based algo-
rithm and a lower attack success rate than the optimization-
based algorithm. Nevertheless, our time overhead is much less
than that of the optimization-based method and better than that
of AdvGAN.

4.6 Transferability of adversarial examples

At the end of the experiment, the transferability of the
adversarial examples generated by our approach is tested,
and we calculate the attack success rate of a total of
14,000 adversarial examples on each of the main deep
learning models. Figure 11 shows the trend of transfer-
ability during testing. The adversarial examples achieve a
higher success rate on simpler models. These findings
also lay the foundation for our approach in future
black-box attacks.

5 Conclusion

In this paper, we propose an approach for generating high-
resolution and more naturalistic adversarial examples from
the perspective of exploring the blind spots that exist in
DNN. The technique incorporates generative adversarial nets,
where the data are augmented to avoid overfitting. We inno-
vatively combine the typical linear dimension reduction meth-
od of PCA and the nonlinear dimension reduction method of
KPCA for the first time to map the input instances to the latent
variables required for the generator training process.
Experimental results show that our approach generates adver-
sarial examples with an improved attack success rate and bet-
ter semantics compared to AdvGAN. We fill the gap of gen-
erating high-resolution adversarial examples via GAN on
large-scale datasets by demonstrating the feasibility of the
proposed approach on CIFAR-10 and by applying the above
approach to ImageNet and LSUN. Furthermore, the visualiza-
tion of the pixel differences between the original images and
the adversarial images; the scatter plots obtained by TSNE
processing; and some image quality evaluation metrics to fur-
ther illustrate that the adversarial examples generated by our
approach are more natural and have strong semantically
relevance.

Next, the comparison of our approach with the sensitivity
analysis-based and optimization-based methods in terms of
attack success rate and time consumption for generating a
single image is presented. Both demonstrate the good perfor-
mance of our approach and to provide options for future re-
searchers in choosing how to generate adversarial examples.

Finally, given that this work is based on semiwhite-box
attacks, we study the transferability of the generated adversar-
ial examples across some major deep learning models, and lay
the groundwork for applying the method of using GAN to
generate high-resolution adversarial examples on large-scale
datasets to black-box attacks in the future.
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