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Abstract
To have the sparsity of deep neural networks is crucial, which can improve the learning ability of them, especially for
application to high-dimensional data with small sample size. Commonly used regularization terms for keeping the sparsity
of deep neural networks are based on L1-norm or L2-norm; however, they are not the most reasonable substitutes of L0-
norm. In this paper, based on the fact that the minimization of a log-sum function is one effective approximation to that
of L0-norm, the sparse penalty term on the connection weights with the log-sum function is introduced. By embedding the
corresponding iterative re-weighted-L1 minimization algorithm with k-step contrastive divergence, the connections of deep
belief networks can be updated in a way of sparse self-adaption. Experiments on two kinds of biomedical datasets which are
two typical small sample size datasets with a large number of variables, i.e., brain functional magnetic resonance imaging
data and single nucleotide polymorphism data, show that the proposed deep belief networks with self-adaptive sparsity can
learn the layer-wise sparse features effectively. And results demonstrate better performances including the identification
accuracy and sparsity capability than several typical learning machines.

Keywords Deep belief networks · Iterative re-weighted-L1 minimization algorithm · Self-adaptive sparsity · Contrastive
divergence algorithm · Biomedical data

1 Introduction

Restricted Boltzmann machine (RBM) which is a stochastic
artificial neural network with two layers: one is a visible
input layer, and the other is a hidden layer, can learn
the probability distribution over the raw features [1–3].
According to the distribution of visible units, two different
RBMs have been proposed, i.e., Bernoulli-Bernoulli RBM
(BBRBM) [4] and Gaussian-Bernoulli RBM (GBRBM) [5,
6]. BBRBM assumes that the visible unit is of binary data,
and GBRBM assumes that the visible unit is Gaussian
distribution. In practice, the appropriate RBM type can be
selected based on the dataset. Deep-belief network (DBN)
is a probability generation model, which can be viewed as
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a composition of simple, unsupervised networks such as
RBMs [1, 4, 7]. DBN which is widely regarded as one of
the effective deep learning models, can obtain the multi-
layer nonlinear representation of the data by greedy layer-
wise training [8–10]. DBN possesses inherent power for
unsupervised feature learning [11], and it has been widely
used in many fields, e.g., image classification, document
processing, object segmentation, social network, automatic
control [12, 13].

For DBN models, it consists of one layer of visible units
and multiple layers of hidden units, and neurons between
neighboring layers can have a widely interconnected
structure [1]. However, studies from the brain’s nervous
system have shown that such a system employs a
highly sparse mechanism. In brain organization and
processing information, there exist two kinds of sparse
properties: one is connection sparseness and the other
is response sparseness [14]. The connection sparseness
is also known as the sparse structure of the network or
sparse topology. And the response sparseness is the sparse
representation or sparse coding of neurons. These two
kinds of sparseness guarantee the high promotion ability
of human neural systems. Compared with the distributed
information representation, sparsity can provide a higher
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quality of storage and better generalization capabilities
[14]. By a combination of experimental, computational,
and theoretical studies, it has been verified the existence
of an underlying principle involved in sensory information
processing. Namely, the information is represented by a
relatively small number of simultaneously active neurons
out of a large population, commonly referred to as sparse
coding [15]. In [14], it confirmed the existence of sparse
connectivity within the basal ganglia. DeepMind generated
a function of grid cells to achieve automatic tracking just
like humans recently, where the use of regularization to
obtain sparsity is critical to grid-like representations [16].

At present, there are many approaches to get the topology
sparseness as well as representation sparseness of DBNs,
and introducing regularization terms into the parameters
updating procedure are most commonly used to get the
sparsity. For regularization algorithm, the purpose is to solve
a constrained optimization issue and to remove unnecessary
connections in the training process. In this way, it can
both reduce the complexity of the model and improve
the generalization ability of the network. The methods of
weighting constraints include Gaussian regularizer [17],
Laplace regularizer [18], weight elimination [19] and
soft weight sharing [20]. Among them, the most widely
used methods are the Gaussian regularizer and Laplace
regularizer. And they use L2-norm or L1-norm on the
connections as their penalty functions. Moreover, some
other techniques, such as Dropout, DropConnect, pruning,
low-rank matrix decomposition, knowledge distillation,
have also been used to achieve the topology sparseness or
reduce the complexity of neural networks [17–24].

In addition to adding regularization on the connections to
achieve the sparse topology, simulating the sparse response
of the hidden neurons is another important way to improve
the generalization ability. Hinton et al. [25] showed that
networks with low response frequency neurons have a
better explanation and generalization ability. Lee and Ng
penalized the mean of the hidden neuron’s response to
get the response sparsity of the hidden layer by using
Kullback-Leibler (KL) divergence [26, 27]. Ranzato et al.
[28] used the energy-based method to add a coding pattern
with sparse representation. By adding the L1/L2 penalty to
the response probability of the hidden neurons, a network
was proposed to obtain the local correlation of the hidden
neurons [29]. The L1-norm constraint was applied directly
to the response of the hidden neurons in the fine-tuning
process [30]. Srivastava and Hinton et al. used Dropout
to prevent neural networks from over-fitting [31]. Almost
all of the above methods to obtain the sparseness of DBN
are based on penalization with L1-norm, L2-norm or KL
divergence.

For controlling the sparsity, the best way is straightfor-
ward to use L0-norm since it directly measures the number

of non-zero elements. However, since it is a NP-hard prob-
lem to solve the optimization problem based on L0-norm,
many methods for obtaining the spareness are based on
L1-norm, L2-norm or KL divergence instead. Although L1-
norm is generally used as a substitution of L0-norm, there
still exists a key difference between L1-norm and L0-norm,
namely, the dependence on magnitude [24]. For L0-norm,
the penalization on the components is democratic, while for
L1-norm, the penalization on larger components is penal-
ized more heavily than the small components. For L2-norm,
it is not possible to give a sparse solution. The KL diver-
gence is used for measuring how different two distributions
are, and it is usually applied to control the average acti-
vation values of hidden neurons. Finding a better way to
address the issue of sparsity in DBN is still a challenging
topic. In this paper, by introducing a log-sum minimiza-
tion problem and its corresponding iterative re-weighted-L1

minimization algorithm, we dedicate to seek the approxi-
mative solution of the optimum problem with L0-norm and
further, sparse connections of DBNs.

On the other hand, for DBNs, sampling method based
on Markov Chain Monte Carlo (MCMC) strategy is
often used. In such a sampling process, each variable is
sampled from a posterior distribution given the current
state of other variables. Then the unbiased estimate
of the position parameter is obtained by using the
logistic likelihood method with multiple alternating Gibbs
sampling. However, this procedure is time-consuming and
requires a large number of samples for an accurate estimate.
Hinton proposed a fast learning algorithm, i.e., the k-step
contrastive divergence (CD), to overcome the complication
of Gibbs sampling [32]. It is known that maximizing the
log likelihood of the data is equivalent to minimizing the
KL divergence (denoted by KL(P 0‖P ∞

θ )) between the
initial data distribution P 0 and the equilibrium distribution
of the visible variables, P ∞

θ , where θ refers to the
coefficients of the learning machine, and P ∞

θ is generated
by the sustained Gibbs sampling from the generation
model. For CD algorithm with k steps, it minimizes
the difference between KL(P 0‖P ∞

θ ) and KL(P k
θ ‖P ∞

θ )

instead of minimizing KL(P 0‖P ∞
θ ), where P k

θ denotes
the reconstruction distribution of the data generated by k

steps Gibbs sampling. The CD algorithm with k steps is
an effective alternative to maximum likelihood learning,
which can relieve high computational demands for samples
acquired from the equilibrium distribution. As Hinton
pointed out, the intuitive motivation for using the k-step CD
algorithm is to leave the initial distribution over the visible
variables unaltered when implementing Gibbs sampling in
Markov chain. Rather than running the Markov chain to
the equilibrium state and comparing the difference between
the initial state and the final state, one can simply run the
Markov chain with k steps and update the parameters of the
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model to reduce the tendency of the chain to deviate from
the initial distribution.

In this paper, we aim to obtain a DBN with sparsity
learning capability by embedding the k-step CD algorithm
with the iterative re-weighted-L1 minimization algorithm,
and further apply it to biomedical data, such as brain
magnetic resonance imaging (MRI) data and single
nucleotide polymorphism (SNP) data. For the MRI data, it
contains the concentration of grey matter in different brain
regions and the correlation values of different regions of
interest (ROI), which do not have any spatial topological
structure. Similarly, the SNP data contains the DNA
polymorphism data caused by single nucleotide variation,
and it doesn’t possess spatial topological structure either.
Thus, other deep learning models, such as the convolution
operation of convolutional neural networks which considers
domain relationships of the data are no longer applicable.
Additionally, it should be noticed that for biomedical
datasets, they are usually of small sample size but a large
number of features. Although nowadays deep networks have
been constantly shown to be one of the most powerful
tools in big data analysis, its application to biomedical data
is still limited. That is because deep learning models are
very easy to fall into overfitting for data with n � p,
where n is the sample size and p is the number of features
[33, 34]. Seeking a deep network with strong sparse self-
learning ability is just an effective solution to this issue. It
will be shown in Section 2 that the re-weighted-L1 function
keeps more approximation ability ofL0-norm thanL1-norm
or L2-norm. Thus by combining a iterative re-weighted-
L1 algorithm, the connections of a DBN can be updated
adaptively in a sparse way by the k-step CD algorithm,
and such a network is called a self-adaptive sparse DBN.
In this way, the deviation of the Markov chain from the
initial distribution can be reduced, and it thus efficaciously
minimize the probability that the model distorts the data.
Experiments on the biomedical data show that the proposed
self-adaptive sparse DBN is valid to avoid over-fitting, and it
can achieve good identification ability by learning the sparse
structure of the feature space.

2 Iterative algorithm for re-weighted L1
minimization

In this section, the iterative re-weighted-L1 minimization
algorithm will be presented; it is a good approximation to
the sparse optimum solution of minimization problem with
L0-norm.

In [35], it was proved that minimization of
∑n

i=1 log |xi |
is consistent with minimization of

∑n
i=1|xi |p when p → 0.

Further, because

min
x

‖x‖0 = min
x

lim
p→0

n∑

i=1

|xi |p (1)

where x is a n-dimensional vector with xi being the i-th
element, [24, 35, 36] put forward that the minimization of∑n

i=1 log |xi | is an effective approximation to that of ‖x‖0.
Furthermore, in order to ensure the existence of log |xi |
when |xi | → 0, a small ε is usually added to make the
minimization problem meaningful, and the solution of

min
x

n∑

i=1

log(|xi | + ε) (2)

is proposed as an alternative to get better approximate
solution of minimization problem with L0-norm than the
often used L1-norm [24, 36]. The objective function of (2)
is called as the log-sum function.

In order to get the iterative solution of (2) for self-
adaptive sparse CD algorithm with k steps, we introduce the
absolute value optimization problem

min
x

n∑

i=1

ci |xi | (3)

where ci ≥ 0. Noting that |xi | is the minimum of zi with
conditions |xi | ≤ zi , (3) has the following equivalent form
⎧
⎨

⎩

min
z

n∑

i=1
cizi

s.t . |xi | ≤ zi, i = 1, · · · , n

(4)

By (4), the optimization problem (2) can be rewritten in its
equivalent form
⎧
⎨

⎩

min
u

n∑

i=1
log(ui + ε)

s.t . |xi | ≤ ui, i = 1, · · · , n

(5)

That is, if x∗ is the optimum solution of (2), then u∗ is the
optimum solution of (5) when u∗ = |x∗|. Alternatively, if
u∗ is the optimum solution of (5), then x∗ is the optimum
solution of (2).

A general form of (5) is

min
v

g(v) s.t . v ∈ C (6)

where g is a concave function with C being a convex set.
The solution to the problem (6) can be improved step by
step by minimizing a linearized g:

v(l+1) = argmin
v

g(v(l)) + ∇g(v(l)) · (v − v(l)) s.t . v ∈ C (7)

The solution obtained by the iteration algorithm is the
approximation of convex optimization. In particular, for the
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problem (5), one can get that

u(l+1) = argmin
ui

n∑

i=1

ui

u
(l)
i + ε

s.t . |xi | ≤ ui, i = 1, · · · , n

Thus, by the equivalent relationship between the optimum
solutions of (2) and (5), we have

x(l+1) = argmin
xi

n∑

i=1

|xi |
|x(l)

i | + ε
(8)

Let

η
(l)
i = 1

|x(l)
i | + ε

(9)

then (8) can be rewritten as

x(l+1) = argmin
xi

n∑

i=1

η
(l)
i |xi | (10)

Thus, the solution of (2) can be approximated by the
iterative solutions of (10).

The following iterative re-weighted-L1 minimization
algorithm, i.e., Algorithm 1, gives the iterative process
of solving minimization problem (2). Based on it, the
solution of (2) can be dynamically updated, and it is a
good approximation to the sparse optimum solution of
minimization problem with L0-norm.

Furthermore, in order to show the advantage of the re-
weighted-L1 function (i.e., fR,ε � η · |x| = 1

|x|+ε
· |x|) in

achieving sparsity, we compare it with the following penalty
functions: f0(x) = 1{x �=0} and f1(x) = |x|. From Fig. 1, it
shows that fR,ε can well approximate to f0 as ε → 0.

As can be shown, by combining the iterative re-weighted-
L1 minimization algorithm with the k-step CD algorithm,
one can obtain more sparse solution of the connective
weights than using the L1-norm or the CD algorithm with
just one step. In this way, we can avoid over-fitting problem
and improve the generalization of DBNs.
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Fig. 1 For different ε, e.g., ε = 1, 0.1, 0.01, we can see that fR,ε has
better approximation to f0 than f1, and when ε gradually tends to 0,
fR,ε approaches to f0

3 Self-adaptive sparse DBNs (SAS-DBNs)

In this section, by embedding the iterative re-weighted-L1

minimization algorithm, i.e., Algorithm 1, we will present
the sparse self-adaptively learning for k-step CD, and get
the sparse architecture for each component of DBN, namely,
RBM. As a result, the unsupervised sparse learning solution
of the whole DBN can be achieved.

A DBN is stacked and trained by multi-layer RBMs, and
each RBM can find a compressed feature representation of
the current input data. In an RBM, there are two layers:
one is the visible input layer, and the other is a hidden
layer. There are connections between the layers but no
connections between units within each layer. Assume v is
the Nv-dim visible units, h is the Nh-dim hidden units, α is
the Nv-dim bias of the visible units, β is the Nh-dim bias
of the hidden units, and W = {Wij }Nv×Nh

with each Wij

is the connection weight between vi and hj . The likelihood
function Pθ(v) is defined as the distribution of the observed
data vθ , where θ = {W, α, β} is the set of all parameters.
Maximizing Pθ(v) is the main task of training an RBM, and
that is equal to determining the parameters to fit the given
training samples, i.e., to find a θ∗, such that

θ∗ = argmax
Θ

L(θ)

where L(θ) = logPθ(v). L(θ) is just the objective function
to be optimized for training RBM. By performing stochastic
steepest ascent in the log probability on the training data,
the weights can be updated based on

ΔWij = ζ · ∂L
∂Wij

= ζ · (〈vihj 〉data − 〈vihj 〉model)
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in which, ζ is the learning rate, and 〈·〉 is the operator of
expectation with the corresponding distribution denoted by
the subscript.

Due to the difficulty of calculating Zθ , it is a quite
hard task to obtain an unbiased sample of 〈vihj 〉model . A
much faster learning method is the k-step CD algorithm.
The k-step CD algorithm is a fast learning algorithm of
RBM which was proposed by Hinton [32]. Different from
the Gibbs sampling method, k-step CD algorithm initializes
the system states, i.e., neurons in the visible layer, with
the training data. In this way, as Hinton pointed out,
only a few state transitions are needed to obtain a good
approximation of the model distribution. In the k-step CD
algorithm, firstly, the initial states of the visible layer units,
i.e., v(0), are assigned as the values of the training data,
and based on the conditional probability p(h = 1|v(0)),
the initial states of the hidden units h(0) can be sampled.
Then, the conditional probability p(v = vr |h(0)) is utilized
to obtain v(1), where vr is 1 and real-value for BBRBM and
GBRBM respectively. The above processes are executed
alternately until both v(k) and h(k) are obtained, which are
used to approximately estimate 〈vihj 〉model . Specially, for
BBRBM,

p(hj = 1|v) = f

(

βj +
∑

i

viWij

)

p(vi = 1|h) = f

⎛

⎝αi +
∑

j

hjWij

⎞

⎠

For GBRBM,

p(hj = 1|v) = f

(

βj +
∑

i

Wij

vi

σ 2
i

)

p(vi = vr |h) = N

⎛

⎝vr |αi +
∑

j

hjWij , σ
2
i

⎞

⎠

in which, f (·) is the sigmoid activation function, σi is the
standard deviation associated with Guassian visible units vi ,
and N (·|μ, σ 2) denotes the Guassion probability density
function with mean μ and standard deviation σ .

For each RBM, if there is no restriction on the responses
of hidden neurons and connections between layers, an
unstructured network will be generated, which leads to
the poor interpretability, high computational complexity
and large space resource consumption of the network
[37]. Adding sparse regularization terms on the objective
function of training RBM is more likely to learn the

structural characteristics of the data [38]. In Section 2, it
has already been shown that the re-weighted-L1 function
is an effective approximation to the sparse solution of
minimization problem with L0-norm, thus, by introducing
the sparse penalty term on the connection weights with the
re-weighted-L1 function, and embedding its corresponding
iterative re-weighted-L1 minimization algorithm with k-
step CD, the sparse connection architecture of the RBM
will be obtained. At the same time, since L2-norm penalty
term can reduce the noise or variation in the data, we
also introduce L2-norm term in the connection weights.
Additionally, the KL divergence on the average responses
of hidden neurons is also utilized to achieve the sparse
responses of the hidden layer neurons. The improved
objective function to be optimized for training RBM is

Lnew(Θ) = L(Θ) − 1

2
λ1‖W‖22 − λ2

∑

i,j

ln(|Wij | + ε)

−λ3

Nh∑

j=1

KL(ρ ‖ pj ) (11)

where λ1, λ2 and λ3 are penalty parameters, ε is a given
constant. The KL divergence, KL(ρ ‖ pj ) = ρ log ρ

pj
+

(1 − ρ) log 1−ρ
1−pj

is the relative entropy between the two
random variables with the mean ρ and the mean pj . It
is used to measure the difference between two different
distributions. The purpose of introducing the KL divergence
is to force the average response value of the hidden neurons
to be approximately equal to the default initial value ρ. Here
we take pj = 1

Ns

∑Ns

q=1
1

1+e
−∑Nv

i=1 v
(q)
i

Wij −βj

as the average

activation degree of the j -neuron in the hidden layer with
Ns samples, and Nv is the number of nodes in the current
visual layer. The deviations of the KL divergence for the
parameters are

∂

∂Wij

Nh∑

j=1

KL(ρ ‖ pj )

= 1

Ns

(

− ρ

pj

+ 1 − ρ

1 − pj

) Ns∑

q=1

σ
(q)
j

(
1 − σ

(q)
j

)
v

(q)
i (12)

∂

∂βj

Nh∑

j=1

KL(ρ ‖ pj )

= 1

Ns

(

− ρ

pj

+ 1 − ρ

1 − pj

) Ns∑

q=1

σ
(q)
j

(
1 − σ

(q)
j

)
(13)

where σ
(q)
j = σ

(∑Nv

i=1v
(q)
i Wij + βj

)
=

1

1+e
−∑Nv

i=1 v
(q)
i

Wij −βj

. Thus, by combining the iterative re-

weighted-L1 minimization algorithm with the k-step CD
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sampling process, the parameters of an unsupervised
RBM can be updated in a sparse self-adaptive way by
Algorithm 2.

Based on Algorithm 2, each RBM can be trained to
have sparse connections adaptively, and this process is
called as an RBM reconstructed with SAS-k-CD. Thus, the
unsupervised process of a DBN with self-adaptive sparsity
(SAS-DBN) can be obtained by those stacking sparse
RBMs. The following Fig. 2 presents the whole learning
process of SAS-DBN with stacked sparse RBMs.

Furthermore, the learned sparse DBN can be further
fine-tuned with some fine-tuning methods, e.g., the back
propagation (BP) algorithm. On noting that the fine-
tuning process will redistribute the weights as well as
the representations of the entire network, i.e., the learned
sparsity of SAS-DBN will be destroyed. To ensure that
the sparse structure of the learned SAS-DBN is still held
during fine-tuning, two methods are generally utilized. One

is that we can retain the sparse structure of SAS-DBN,
and then carry out fine-tuning. Another one is bringing
sparse learning into fine-tuning. In our experiments, we
have compared both methods, namely, fine-tuning based
on the retained sparse structure learned by SAS-DBN, and
fine-tuning adding sparsity regularization terms, such as KL
divergence, L1-norm and log-sum function. It indicates that
there exists no significant difference between them. Thus,
we only considered the first method here.

4 Experiments

One of the main purpose of implementing sparseness
on deep learning is to avoid over-fitting and improve
the identification ability, especially for high-dimensional
data with small sample size. In this section, we will use
both the brain functional magnetic resonance imaging data
and single nucleotide polymorphism data to demonstrate
the validation of the proposed DBN with self-adaptive
sparsity. For the MRI data, adding the fine-tuning process
does improve its accuracy rate, but there exists nearly no
improvement on the accuracy rate of the SNP data with
or without fine-tuning. Considering the time complexity
caused by the fine-tuning process, we only utilized fine-
tuning for the MRI data and didn’t use it for the SNP data.
Moreover, the experiments show that although these datas
are with a large number of features but low samples, SAS-
DBN can better represent data in a sparse architecture, and it
has the best classification accuracy among many classifiers
we have tested.

4.1 Experiments onMRI database

This dataset is the MLSP 2014 Schizophrenia Classification
Challenge data, which can be downloaded from https://
www.kaggle.com/c/mlsp-2014-mri. The data are collected
on a 3T MRI scanner at the Mind Research Network.
Image preprocessing was performed using Statistical
Parametric Mapping software, and further feature extraction
was performed using independent component analysis,
yielding features from different imaging modalities, i.e.,
source-based morphometric (SBM) loadings and functional
network connectivity (FNC) features for structural magnetic
resonance images (sMRI) and resting state functional MRI
(rs-fMRI), respectively. The data consist of 40 patients
with schizophrenia and schizoaffective disorders (both
are denoted by SZs) and 46 healthy controls (HCs). A
diagnosis of SZs was made by using the Structured Clinical
Interview for DSM-IV (DSM: Diagnostic and Statistical
Manual of Mental Disorders) [39]. 410 features (32 for
SBM and 378 for FNC) are extracted for each sample.
SBM loadings are weights of brain maps obtained from
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Fig. 2 The unsupervised
SAS-DBN with stacked sparse
RBMs updated by Algorithm 2

the application of ICA, which indicate the concentration
of grey matter in different regions of the subject’s brain.
The concentration of gray-matter is indicative of the
computational power in a particular region of the brain [40].
FNC features are the pair-wise correlation values between
the time courses of 28 ICA brain maps, which can be
seen as features describing the subject’s overall level of
synchronicity between brain areas [41]. We denote the data
as D = {(xi, yi)}ni=1, where n = 86 (40 SZs and 46 HCs);

(32 from the SBM and 378 from the FNC); yi ∈
{0, 1} (0 = ’Healthy Control’, 1 = ’Schizophrenic Patient’).
86 subjects were randomly divided into two subsets: 70%
subjects for training and the rest 30% ones for testing. For
the sake of obtaining a stable classification, we performed
random sampling from 86 subjects repeatedly for 30 times.

The deep architecture of SAS-DBN we used here
contains 5 hidden layers with 200, 100, 50, 50, and 50
units respectively. In such a stacked DBN, we adopt a
GBRBM as the first RBM and BBRBM as others. Because
the grid search method can simply make a complete search
over a given parameters space, easily be parallelized and
find the optimal parameter for deep learning with a much
more stable solution, it was used to find the optimal
parameters in this paper. Specifically, one of the parameters
is selected by the grid search method when other parameters
are fixed. And all parameters are optimized by repeating
the above process. Based on the grid search method, the
optimal parameters corresponding to GBRBM and BBRBM
can be obtained. Corresponding to GBRBM and BBRBM
respectively, the learning rate ζ are 0.001 and 0.1, the
penalty parameter λ1 are 0.03 and 0.0002, the re-weight
L1-norm penalty parameter λ2 are 0.001 and 0.001, ε are
0.1 and 0.1, the KL divergence penalty parameter λ3 are
0.1 and 0.1, and the sparse parameter ρ are 0.01 and 0.01,
respectively. For simplifying, the steps of CD for each RBM
is selected as the same k.

4.1.1 Model selection for the steps of CD

We first discuss how to select the steps of CD, and perform
SAS-DBNs with different k which are chosen from 1 to 7.
Other parameters of SAS-DBNs are chosen as mentioned
above. Figure 3 shows the classification accuracy rates (AR)
and the non-zero ratio of the network connections with
different k, where AR is defined as

AR = Corrp + Corrc

Corrp + Corrc + InCorrc + InCorrp

in which, Corrp, Corrc, InCorrc and InCorrp denote
the number of correctly predicted schizophrenic patients,
correctly predicted healthy subjects, healthy subjects
incorrectly classified as schizophrenic patients, and
schizophrenic patients incorrectly classified as healthy sub-
jects, respectively.

Figure 3 shows the RBM has its best AR with k = 5.
Meanwhile, the non-zero ratio of the network connections
keeps down with the increasing of k, and the decline tends
to be gentle after k = 5. Thus, we choose 5 as the steps of
CD.

4.1.2 Weight sparsity

Weight sparsity is an important index to demonstrate the
validation of a deep learning machine in overcoming the
over-fitting problem. In order to show the sparse learning
ability of the proposed SAS-DBN, we compare SAS-DBN
with six different deep learning models, namely, stacked
RBM adding a SVM classifier (denoted by SR-SVM), DBN
with L2-norm penalty on the connection weights (denoted
by DBN), DBN with L1-norm penalty on the connection
weights and KL divergence penalty on the hidden neurons
(denoted by sDBN), DBN with Dropout (denoted by DP-
DBN), DBN with DropConnect (denoted by DPC-DBN),
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Fig. 3 a shows AR of SAS-DBNs with different k steps CD and the
numbers 1 to 7 refer to the different selections of k. b displays that
with different k, the combinatorial graph with a bar graph for the
average non-zero ratio of connections in the first RBM and a line
chart for AR. The horizontal axis denotes the different selections of

k. For the vertical axis, the primary axis on the left is denoted as the
average non-zero ratio of connections and the secondary axis on the
right is denoted as the AR. Here shows the connection rate of the
first RBM, and the connections of other RBMs also have the same
tendencies

DBN with singular value decomposition (denoted by SVD-
DBN), and DBN with pruning method (denoted by Pr-
DBN). Each network is well trained and especially, for
DP-DBNs, when the dropout ratio is selected as 0.1, 0.2,
0.3, 0.4 and 0.5, the average accuracy of 30 times is 0.709,
0.6833, 0.6795, 0.6795 and 0.6859, respectively. Thus, we
choose the DP-DBNmodel with the dropout ratio being 0.1.
Similarly, for DPC-DBNs, the average accuracy of 30 times
is 0.7358, 0.7385, 0.7321, 0.7346 and 0.7410, respectively,
with the drop connect ratio being 0.1, 0.2, 0.3, 0.4 and 0.5.
So we choose the DPC-DBN with the drop connect ratio
being 0.5. Similarly, for Pr-DBNs, we select the Pr-DBN
with the pruning ratio of weights being 0.001. For each
network, we perform the learning process for 30 times. For
each time, the training data are sampled randomly 70% from
the original data, and the rest data are the testing data.

In what follows, we will show the weight sparsity of
SAS-DBN in comparison with other DBNs. The learning
capability of weight sparsity can then strongly indicate why
the SAS-DBN is valid for such kind of high-dimensional
small sample size data.

For a quantifiable comparison, we list the weights
sparsity of SAS-DBN and other six deep learning methods
with two different indicators. The first indicator is the
non-zero ratio of connections, and the results are shown
in Table 1. Additionally, in Fig. 4a, we further compare
SAS-DBN with two models, i.e., DPC-DBN and Pr-DBN,
which have the highest average classification accuracy
among the other six deep networks. In this figure, the
different 5 colors, i.e., red, yellow, green, pink and blue
refer to the non-zero ratio of each w(i) (i = 1, · · · , 5)
respectively.

There is another normalized indicator to measure the
sparsity of connections within the network, i.e., the Hoyer
sparseness measure (HSM). It is based on the relationship
between the L1-norm and the L2-norm of the weights [42,
43]. The HSM of the weight matrix Wm×n is defined as
follows:

HSM(W) =
√

m × n − (
∑m

i=1
∑n

j=1|Wij |)/
√∑m

i=1
∑n

j=1 W 2
ij√

m × n − 1
(14)

Table 1 The non-zero ratio of connections for different deep networks

Classifier w(1) w(2) w(3) w(4) w(5)

DBN 0.9856 0.992 0.995 0.996 0.9932
sDBN 0.9837 0.9266 0.9998 0.998 0.9996
DP-DBN 0.9826 0.9968 0.9996 0.9996 0.9992
DPC-DBN 0.9371 0.88065 0.8838 0.9772 0.9548
Pr-DBN 0.9825 0.9972 0.9984 0.9976 0.9968
SVD-DBN 0.9607 0.9924 0.9972 0.9968 0.998
SAS-DBN 0.1320 0.6282 0.6010 0.6321 0.6179

Bold entries emphasize our results
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Fig. 4 a shows the non-zero ratios of connections for three deep networks with most sparse connections. Red, yellow, green, pink and blue refer
to non-zero ratio of w(1), w(2), w(3), w(4) and w(5) for all three deep networks. b shows the average HSM of these three networks

The value of HSM is in [0, 1]. When HSM closes to 1,
the connection of the network becomes much sparser, i.e.,
most of the values in connections are zeros and only a few
have significant values. The average HSM with random 30
learning times for three deep networks are shown in Table 2
and Fig. 4b.

Further, Fig. 5 shows that the learning ability for weight
sparseness of SAS-DBN, DPC-DBN and Pr-DBN. It shows
that SAS-DBN has more sparse connections than DPC-
DBN and Pr-DBN, which is an important reason that SAS-
DBN owns better identification and extraction abilities of
sparse features than the other two deep learning models.

From Tables 1 and 2, Figs. 4 and 5, one can draw the
conclusion that the proposed SAS-DBN has the sparsest
connections than the others deep networks, and especially
has the sparse learning ability of w(1). It should be noticed
that the learning of w(1) is quite crucial, since it is the
first and basic step to extract essential features and remove
redundancy and noise from the original data.

4.1.3 Classification accuracy rates of fifteenmethods

In order to show the classification results, we compare SAS-
DBN with other several typical classifiers, i.e., linear SVM
(denoted by SVM-I), SVM with RBF kernel (denoted by
SVM-II), KNN, Naive Bayes (NB), Random Forest (RF),
Sparse Representation Based Classifier (SRC), discriminant
analysis classifier (DAC), and other six different deep
learning models [44–46]. For each classifier, we perform
classifications for 30 times. For each time, the training data
are sampled randomly 70% from the original data, and the
rest data are testing data.

The convergence performances of the proposed method
here in the training and testing data are shown in Fig. 6.
In which, there is a sharp fall between epochs 20 and 40.
That is because the first 30 epochs were the training of
SAS-DBN, and then was the fine-tuning. Moreover, the
average results are shown in Table 3 and Fig. 7. Among
these fifteen methods, the proposed method here has the best

Table 2 The average HSM of connections for different deep networks

Classifier w(1) w(2) w(3) w(4) w(5)

DBN 0.2303 0.2162 0.2127 0.2130 0.2115

sDBN 0.2344 0.2430 0.2292 0.2224 0.2219

DP-DBN 0.2309 0.2162 0.2133 0.2192 0.2069

DPC-DBN 0.4097 0.4387 0.4399 0.4352 0.4468

Pr-DBN 0.2429 0.2221 0.2137 0.2120 0.2031

SVD-DBN 0.3276 0.2591 0.2354 0.3262 0.3116

SAS-DBN 0.7652 0.7813 0.7899 0.7270 0.7463

Bold entries emphasize our results
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Fig. 5 The learning ability for weight sparseness of SAS-DBN, DPC-
DBN and Pr-DBN. In which, the horizontal axis is the connections
between different layers and the vertical axis represents the values

of those connections. w(i) (i = 1, · · · , 5) refers to the connections
between layer i and i + 1
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Fig. 6 The convergence performance for the fMRI data. In which, the red line is the average error, and the shadow area is the standard deviation
of error
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performance. Especially in comparing with other methods,
the AR has been increased as 11.92%, 13.22%, 9.55%,
15.23%, 11.93%, 23.83%, 13.70%, 6.93%, 2.55%, 1.56%,
5.97%, 1.39%, 3.36%, 0.68%, respectively. From the above
two subsections, we know SAS-DBN do have the best
sparse learning ability and discrimination capability of the
fMRI data.

4.2 Experiments on SNP database

In this section, subject recruitment and data collection
were conducted by the Mind Clinical Imaging Consortium
(MCIC). The SNPs data were collected from 208 subjects
including 92 schizophrenia patients (age: 34 ± 11, 22
females) and 116 healthy controls (age: 32±11, 44 females).
All of them were provided written informed consent.
Healthy participants were free of any medical, neurological
or psychiatric illnesses and had no history of substance
abuse. By the clinical interview of patients for DSM IV-
TR disorders [47] or the comprehensive assessment of
symptoms and history, patients met criteria for DSM-IV-TR
schizophrenia [48, 49]. Antipsychotic history was collected
as part of the psychiatric assessment.

A blood sample was obtained for each participant
and DNA was extracted. Genotyping for all participants
was performed at the Mind Research Network using
the Illumina Infinium HumanOmni1-Quad assay covering
1,140,419 SNP loci. Bead Studio was used to make the
final genotype calls. The PLINK software package http :
//pngu.mgh.harvard .edu/ purcell/plink) was used to
perform a series of standard quality control procedures,
resulting in the final data set spanning 777,635 SNP loci.

Table 3 AR of fifteen classifiers

Classifier Test Accuracy

SVM-I 0.6713
SVM-II 0.6636
KNN 0.6858
NB 0.6400
RF 0.6712
SRC 0.6008
DAC 0.6608
SR-SVM 0.7026
DBN 0.7326

sDBN 0.7398

DP-DBN 0.7090

DPC-DBN 0.7410

SVD-DBN 0.7269

Pr-DBN 0.7462

SAS-DBN 0.7513

Bold entries emphasize our results

Each SNP was categorized into three clusters based on
their genotype and was represented with discrete numbers:
0 for ′BB ′ (no minor allele), 1 for ′AB ′ (one minor allele)
and 2 for ′AA′ (two minor alleles). Further, SNP with
> 20% missing data was deleted, and missing data were
further imputed. SNPs with minor allele frequency < 1%
were removed. For genetic diseases, because pathways
organize genes into biologically functional groups and
model their interactions that capture correlation between
genes, the genes involving in the same pathway process have
similar effects and act together in regulating a biological
system [50]. Therefore, using the pathway information
can improve not only the predictive performance but also
the interpretability of the selected features. In this paper,
we select the SNPs falling into the schizophrenia genes’
pathway for analysis. After the selection, the dimension for
each sample is 12513.

The deep architecture of SAS-DNN used here contains
three hidden layers with 2000, 1000, and 500 units
respectively. We use three BBRBM modules as the stacked
SAS-DNN. Based on the grid search method, the learning
rate ζ is 0.1, the penalty parameter λ1 is 0.0002, the re-
weight L1-norm penalty coefficients λ2 is 0.0002, ε is 0.1,
the KL divergence penalty coefficients λ3 is 0.05, the sparse
parameters ρ is 0.05, and the steps of CD is 5. 208 subjects
were randomly divided into two subsets: 148 subjects for
training and the rest 60 ones for testing. We perform the
SAS-DNN 30 times to obtain the average accuracy rate. The
convergence performances of the proposed method here in
the training and testing data are shown in Fig. 8. It indicated
that the proposed method here can converge quickly in few
iterations.

Fig. 7 AR results of fifteen classifiers
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Fig. 8 The convergence performance for the SNP data. In which, the red line is the average error, and the shadow area is the standard deviation of
error

4.2.1 Weight sparsity

We compare the weights sparsity of SAS-DBN with the
other six deep networks mentioned in Section 4.1.2. In the
experiments, each network is well trained separately, and
especially, for DP-DNNs, when the dropout ratio is selected
as 0.1, 0.2, 0.3, 0.4 and 0.5, the average accuracy of 30 times
is 0.8483, 0.8517, 0.765, 0.825 and 0.8717, respectively.
Thus, we choose the DP-DNN model with the dropout ratio
being 0.5. Similarly, for DPC-DNNs, the average accuracy
of 30 times is 0.8717, 0.8633, 0.8783, 0.82 and 0.8717,
respectively, with the drop connect ratio being 0.1, 0.2, 0.3,
0.4 and 0.5. So we choose the DPC-DNN with the drop
connect ratio being 0.3. Similarly, for Pr-DNNs, we select
the Pr-DNN with the pruning ratio of weights being 0.001.
we perform the learning process 30 times. At each time,

the training data are sampled from 70% of the original
data.

The ratio of connection weights with non-zeros values
between different layers on SNP data is shown in Table 4a.
The HSM is presented in Table 4b. From them, we can
see that SAS-DBN has the lowest non-zeros connection
ratio and the highest HSM among the deep networks.
Additionally, in Fig. 9a and b, we further compare SAS-
DBN with two models, i.e., sDBN and SVD-DBN, which
have the highest average classification accuracy among the
other six deep networks.

4.2.2 Classification results on the SNP database

The performance of each classifier is quantified by using
AR, Sensitivity (SS), Specificity (SC), positive predictive

Table 4 Two different sparse
indexes of connections in
SAS-DBN and other deep
networks

Classifier w(1) w(2) w(3)

(a) the Non-zero ratio of connections DBN 0.9940 0.9934 0.9927

sDBN 0.5890 0.5988 0.6026

DP-DBN 0.9941 0.9934 0.9926

SVD-DBN 0.9903 0.9917 0.9880

DPC-DBN 0.9939 0.9933 0.9925

Pr-DBN 0.9971 0.9787 0.9869
SAS-DBN 0.2149 0.0282 0.0787

(b) HSM of connections DBN 0.2722 0.2036 0.2174
sDBN 0.5100 0.4103 0.4343
DP-DBN 0.2778 0.2033 0.2190
SVD-DBN 0.3530 0.1778 0.2464
DPC-DBN 0.2992 0.2103 0.2323
Pr-DBN 0.3127 0.2886 0.2606
SAS-DBN 0.6999 0.8884 0.8720

Bold entries emphasize our results
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Fig. 9 a and b show the two different sparse indexes of connections in SAS-DBN, sDBN and SVD-DBN on SNP data. a: The Non-zero ratio of
connections with three classifiers. b: The HSM of connections with three classifiers

value (PPV) and negative predictive value (NPV). And the
last four are defined as follows

SS = Corrp

Corrp + InCorrc

SC = Corrc

Corrc + InCorrp

PPV = Corrp

Corrp + InCorrp

NPV = Corrc

Corrc + InCorrc

AR, SS, SC, PPV and NPV provide different assessments
of the classifier’s performance from five aspects, i.e., the
proportion of all samples that are correctly predicted,
the proportion of patients correctly predicted among all
the predicted patients, the proportion of healthy subjects
correctly predicted among all the predicted healthy subjects,
the proportion of correctly predicted patients among the true

patients, and the proportion of healthy subjects correctly
predicted among those true healthy subjects.

We compare the proposed method, i.e., SAS-DBN with
several classifiers that have fairly good performances.
The classification results on the testing data set for
different classifiers are summarized in Table 5. In Table 5,
CLASSIFIER I refers to linear SVM, II for SVM with
multi-layer perceptron kernel, III for sparse representations
based classifier, IV for DBN, V for sDBN, VI for DP-DBN,
VII for SVD-DBN, VIII for DPC-DBN, IX for Pr-DBN
and X for SAS-DBN. For each classifier, we perform the
classification process 30 times. At each time, the training
data are sampled from 70% of the original data, and the
rest data are testing data. The average results are shown in
Table 5. We can see that the SAS-DBN performs the best
among the classifiers. The AR has been increased as 7.59%,
22.93%, 5.90%, 11.29%, 6.91%, 11.80%, 6.40%, 11.13%
and 13.99% respectively. Figure 10 further shows the
classification results of all methods, where the horizontal

Table 5 Classification results
by different classifiers Measures of performance

AR SS SC PPV NPV

CLASSIFIER
I 0.9133 0.8899 0.9397 0.9433 0.8833
II 0.7617 0.7236 0.8153 0.8467 0.6767
III 0.9300 0.9243 0.9358 0.9367 0.9233
IV 0.8767 0.9182 0.8259 0.8691 0.8948
V 0.9200 0.9379 0.9141 0.9212 0.9185
VI 0.8717 0.8968 0.8557 0.8727 0.8704
VII 0.9250 0.9342 0.9168 0.9303 0.9185
VIII 0.8783 0.8806 0.8948 0.9061 0.8444
IX 0.8500 0.8327 0.9269 0.9273 0.7556
X 0.9883 0.9968 0.9806 0.9812 0.9963

Bold entries emphasize our results
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Fig. 10 The classification of using 10 classifiers on SNP data. In
which, the left y axis is the coordinates of the histogram, and the right
y axis is the coordinates of the line

axis represents different classifiers. The primary vertical
axis on the left is denoted as the AR and the secondary
axis on the right denotes other classification results, i.e., the
SS, SC, PPV and NPV. Through the comparison, we can
conclude that SAS-DBN has the best performance on the
classification accuracy.

Compared with [47, 51] (the data here are the same as
ours), we use 148 samples as the training and 60 samples
as the testing. In these papers, they use 90% subjects for
training and only the rest 10% are used for testing. The
average accuracy here is over 98%, while the accuracy of
classification in these papers are around 85%, and the best
accuracy of classification is 65%, and the average accuracy
is about 55% by Li et al. [52].

4.3 Remark

For two kinds of high-dimensional data with small sample
size, the above two experiments show that by the iterative
re-weighted-L1 minimization algorithm combining with k-
step CD, the proposed deep belief networks with adaptive
sparsity have the best classification performance than
other typical classifiers including several deep networks. A
crucial reason for the good classification results of SAS-
DBN lies in that the iterative re-weighted-L1 minimization
algorithm can effectively obtain the approximate solution of
L0 minimization problem, especially by combining it with
k-step CD algorithm, the parameters of the network can
be adjusted adaptively in a quite sparse way. Furthermore,
the learned sparse deep network can effectively remove the
noise and redundant features from the original data. By

the sparse structure, discriminative features of the data can
be extracted in a sparse layer-wise way, which is critical
for preventing overfitting and improving identification
accuracy.

5 Conclusion

This work is motivated by the sparsity mechanism of
brain neural networks. By exploring substitutions of the
approximating solution of minimization problem with L0-
norm, the k-step CD sampling process embedding the
re-weighted-L1 minimization algorithm, and further the
self-adaptive sparse DBNs are proposed. In this way, layer-
wise sparse features of data can be effectively extracted,
which are vital for learning the true distribution of the
data, thereby it can enhance the generalization capacity as
well as the discernment performance of the network. It
is promising that the self-adaptive sparse DBNs will be a
practical solution to the small number of samples but a
large number of features problem. Numerical experiments
of applying to brain imaging and genomics data give a
good demonstration of their effectiveness, and it shows
that the proposed methods can not only get a sparse deep
network architecture in a self-adaptive way, but also have
the potential to avoid over-fitting problem.
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