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Abstract
Traditional graph-based semi-supervised classification algorithms are usually composed of two independent parts: graph
construction and label propagation. However, the predefined graph may not be optimal for label propagation, and these
methods usually use the raw data containing noise directly, which may reduce the accuracy of the algorithm. In this paper,
we propose a robust label prediction model called the robust and sparse label propagation (RSLP) algorithm. First, our RSLP
algorithm decomposes the raw data into a low-rank clean part and a sparse noise part, and performs graph construction and
label propagation in the clean data space. Second, RSLP seamlessly combines the processes of graph construction and label
propagation. By jointly minimizing the sample reconstruction error and the label reconstruction error, the resulting graph
structure is globally optimal. Third, the proposed RSLP performs l2,1-norm regularization on the predicted label matrix,
thereby enhancing the sparsity and discrimination of soft labels. We also analyze the connection between RSLP and other
related algorithms, including label propagation algorithms, the robust graph construction method, and principal component
analysis. A series of experiments on several benchmark datasets show that our RSLP algorithm achieves comparable and
even higher accuracy than other state-of-the-art algorithms.

Keywords Semi-supervised learning · Graph construction · Label propagation · Denoising · l2,1-norm regularization

1 Introduction

As it takes time and effort to label samples, we often
encounter a situation where the number of labeled samples
is far less than that of unlabeled samples in practical
applications. Therefore, how to make full and efficient use
of a small number of labeled samples has become a hot issue
[6, 24]. The purpose of semi-supervised learning (SSL) is
to use a small number of labeled samples to predict the
labels of unlabeled samples. SSL can be roughly divided
into four categories according to the principles employed
by its algorithms: self-training [34, 36], co-training [1,
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48], generation model [14, 18], and graph-based semi-
supervised learning (GSSL) [11, 50]. The current deep
learning methods have difficulty solving the problem of
scarce labeled data, and thus researchers have proposed
deep semi-supervised learning [4, 37] and few-shot learning
[7, 38]. Here we focus on GSSL, which has been widely
used in data mining and pattern recognition [19, 21] due to
its high efficiency and effectiveness.

GSSL is comprised of two steps: graph construction
[10, 12, 51] and label propagation [16, 22, 31, 44, 45,
47, 49]. Graph construction methods treat all labeled
and unlabeled samples as nodes in the graph, construct
edges between pairs of nodes and assign corresponding
weights to represent the similarity between the samples.
The label propagation algorithm propagates the label
information from the labeled samples to the unlabeled
samples according to the structure of the graph, thereby
obtaining the labels of all samples. GSSL has two basic
assumptions: the clustering assumption and the manifold
assumption. The former assumes that samples in the same
cluster are more likely to have the same label; the latter
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assumes that the samples in a small local neighborhood have
similar properties, that is, their labels should also be similar.

Since the quality of the graph affects the performance
of subsequent algorithms, how to build a real and reliable
graph is the core of GSSL. The most common graph
construction methods are the k nearest neighbor(kNN) and
ε-neighborhoods methods, but both rely heavily on the
neighbor parameters k and ε, and on parameter σ of the
Gaussian kernel function [27, 40]. How to choose the
appropriate parameter values is still a problem to be solved.
Recently, self-expressiveness based graph-learning methods
have received much attention. Such methods include local
linear representation [28, 32], low-rank representation [13,
52] and l1 graph [9, 35]. In these methods, each sample is
represented by a linear combination of other samples, and
the coefficients are used as edge weights.

Label propagation aims to predict the labels of unlabeled
samples. Depending on whether the algorithm can process
out-of-samples, the existing label propagation algorithms
can be divided into two types: transductive and inductive
model. The transductive model predicts the existing
unlabeled samples, while the inductive model can process
new samples directly and efficiently. Typical transductive
models include the local and global consistency (LGC)
algorithm [47], Gaussian fields and harmonic function
(GFHF) [49], linear neighborhood propagation (LNP) [31],
special label propagation (SLP) [22], sparse neighborhood
propagation (SparseNP) [43], adaptive label propagation
by double matrix decomposition (ALP-MD) [42], classic
inductive models include flexible manifold embedding
(FME) [23], discriminative sparse FME (SparseFME) [44],
and joint sparse graph and flexible embedding (JSGFE) [8].
FME, SparseFME and JSGFE learn a linear projection to
predict the labels of new samples.

Although the abovementioned label propagation methods
have achieved good results, they usually have at least one
of the following shortcomings. (1) Most of these methods
separate graph construction and label propagation into two
independent steps, that is, they pre-construct the graph
and then perform label propagation. This cannot ensure
an overall optimal performance, and does not make full
use of the correlation between graph structure and label
propagation. (2) Real-world data always contains noise, and
most of these methods operate directly on the raw data
without considering removing noise. (3) The resulting soft
label usually contains mixed symbols that do not ensure
sufficient sparsity and discrimination.

This paper proposes a new label propagation method
named robust and sparse label propagation (RSLP). The
RSLP algorithm has the following three characteristics:

1) RSLP decomposes the raw data into a low-rank clean
part and a sparse error part.

2) RSLP jointly performs label propagation and graph
construction in the clean data space, and ensures that
the learned similarity matrix is globally optimal by
minimizing both the label reconstruction error and the
sample reconstruction error.

3) RSLP enhances the discrimination of soft labels by
introducing l2,1-norm regularization to the predicted
label matrix.

The rest of this paper is organized as follows. Section 2
introduces related work, including some notations, graph
construction methods, and label propagation algorithms.
Section 3 proposes our RSLP model and its optimization
steps. In Section 4, we discuss the connection between
RSLP and other algorithms. Section 5 describes our
experimental setup and presents the results. Finally,
Section 6 summarizes the paper.

2 Related work

In this section, we introduce the notations used in this
paper and some closely related work. Given a dataset X =
{XL ∪ XU } ∈ Rd×n with n samples and d features, where
XL = [x1, x2, ..., xl] ∈ Rd×l is a labeled dataset with
l samples, XU = [

xl+1, xl+2, ..., xl+u

] ∈ Rd×u is an
unlabeled dataset with u samples, and each column vector
xi ∈ Rd×1 is a sample. Let Y = [y1, y2, ..., yn] ∈ Rc×n be
the initial label matrix with yij = 1 if xj is labeled as i, and
yij = 0 otherwise, where c is the number of classes.

The graph construction methods regard all samples in
the dataset X as nodes in the graph, and construct edges
according to the similarity between samples. In this way,
one can obtain a weighted neighborhood graph G = {X, S}
with node set X and similarity matrix S ∈ Rn×n, where
Sij represents the similarity between sample xi and xj .
Based on the structure of the graph, the label propagation
algorithm propagates the known label information and
obtains the predicted label matrix F = [f1, f2, ..., fn] ∈
Rc×n. In addition, e is a vector with all elements as 1, (s)+
represents max(s, 0), and tr(·) and T denote the trace and
transpose of a matrix, respectively.

For a matrix A, let Ai., A.j , and Aij denote the i-th row
vector, j -th column vector, and the element in the i-th row
and j -th column of A, respectively. The l1-norm, nuclear
norm, Frobenius norm, and l2,1-norm of A are defined as
follows [17, 44]:

‖A‖1 =
∑

i

∑

j

∣∣Aij

∣∣ (1)

‖A‖∗ =
∑

i

σi (2)
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where σi is the i-th singular value of A.

‖A‖2F =
∑

i

∑

j

A2
ij =

∑

i

‖Ai.‖22 =
∑

j

∥∥A.j
∥∥2
2

= tr(AT A) = tr(AAT ) (3)

‖A‖2,1 =
∑

i

⎡

⎣
∑

j

A2
ij

⎤

⎦

1/2

=
∑

i

‖Ai.‖2 = 2tr
(
AT HA

)

(4)

where H is a diagonal matrix with Hii = 1/2‖Ai.‖2.

2.1 Graph construction

The graph construction method is the core of GSSL. The
most common graph construction methods are the k nearest
neighbor(kNN) and ε-neighborhoods methods. These two
methods control the number of edges in the graph through
the neighbor parameters k and ε. For the kNN graph, if
node xi is a member of xj ’s k-nearest neighbor or vice
versa, an edge is created between xi and xj . For the ε-
neighborhoods graph, if the distance between two nodes is
less than the threshold ε, the nodes are connected by an
edge. The corresponding edge weights are given through the
Gaussian kernel function:

Sij =
{
exp

(
− ∥∥xi − xj

∥∥2 /2σ 2
)

, if xi and xj are connected,

0, otherwise.

(5)

Based on the theory of local linear reconstruction [28],
some graph construction methods have been proposed to
avoid the influence of parameter on the graph structure.
The main idea of these methods is that each sample can be
represented by a linear combination of other samples, and
the coefficients are used as the edge weights. Wang et al.
[31] developed a non-negative local linear reconstruction
model to ensure that the obtained edge weights are all
non-negative.

In order to ensure the sparseness of the graph, the l1
graph [5] learns the weights by solving the l1 regularization
problem, that is, by calculating the sparsest reconstruction
coefficients of each sample separately. Qiao et al. [26]
proposed the sparsity preserving projections (SPP) method
based on the sparse representation theory for learning the
weight matrix and low-dimensional embedding of data.
Yan et al. [39] used sparse coding to construct a graph
structure that is more robust to noise, and introduced a semi-
supervised learning method based on the l1 graph. Weng
et al. [35] proposed a graph construction method based

on data self-representation and Laplacian smoothness, and
combined with an adaptive coding scheme to improve the
method to obtain sparse graphs. Dornaika et al. [9] proposed
a novel sparse graph construction method using Laplacian
smoothness, and applied it to semi-supervised classification.

Unlike the l1 graph, the goal of the low-rank graph is to
obtain the jointly lowest-rank representation of all samples.
Therefore, the low-rank graph construction methods can
better obtain global data structures [27]. Zheng et al. [46]
proposed the low-rank representation with local constraint
method to capture both the global and local structure of
the data. Peng et al. [25] proposed an enhanced low-
rank representation via sparse manifold adaption, which
can explicitly consider the local manifold structure of the
data. Based on the idea that edges between adjacent points
in a graph should have large weights, Fei et al. [13]
introduced a novel low rank representation model with
adaptive distance penalty. Zhuang et al. [52] incorporated
the label information of the observed samples into the low-
rank representation model to construct a more efficient
graph structure for the semi-supervised learning problem.
The objective functions of the l1 graph and low-rank graph
can be unified into the following model [27]:

min
S

‖X − XS‖a + λ‖S‖b. (6)

For the l1 graph, ‖ · ‖a and ‖ · ‖b represent ‖ · ‖2F and ‖ · ‖1,
respectively; and for the low-rank graph, they represent
‖ · ‖2,1 and ‖ · ‖∗.

However, most methods construct a graph structure from
raw data, which are often corrupted in practice. In order
to learn reliable graph from noisy data, Kang et al. [17]
proposed a robust graph construction(RGC) method. The
main idea of RGC is that the clean data matrix is low-rank
and the noisy data matrix is sparse. RGC decomposes the
raw data into a clean part C and an error partE to adaptively
remove the noise, and then learns the similarity matrix S on
the clean data, thereby improving the quality of the graph.
Moreover, RGC optimizes C and S in the same objective
function, and enhances each other by alternate optimization.
The model is represented as follows:

min
C,E,S

‖C‖∗ + α‖E‖1 + βtr(CLCT ) + γ ‖S‖2F
s.t .X = C + E, eT S = eT , 0 � S � 1,

(7)

where α, β and γ are trade-off parameters; and L = D −
(S + ST )/2 is the graph Laplacian matrix, where D is a
diagonal matrix with dii = ∑

j [(sij + sji)/2].

2.2 Label propagation

The purpose of label propagation is to predict the labels
of unlabeled samples based on the graph structure and
known label information, that is, to obtain the predicted
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label matrix F . Note that F should satisfy two conditions:
(1) for labeled samples, the predicted label should be as
close to the true label as possible; and (2) for all samples, the
predicted label should be smooth on the graph. Many label
propagation algorithms can be summarized by the following
framework:

min
F

f it (F, Y ) + smooth (F ) . (8)

The first term is a fitting term that measures the difference
between the true labels and the predicted labels. The second
term is a smoothing term that smooths the predicted label
matrix so that the labels of adjacent samples are similar.
The difference between most label propagation algorithms
is the definitions of the fitting term and the smoothing
term. A brief introduction of some classic label propagation
algorithms is as follows.

Zhu et al. [49] proposed a label propagation algorithm
based on the Gaussian random field model, and analyzed
the connections with random walks, electric networks, and
spectral graph theory. Zhou et al. [47] used the symmetric
normalized weight matrix to iteratively propagate label
information, and allowed the initial label information to be
changed, which enhances the robustness of the algorithm.
Wang et al. [31] introduced the linear neighborhood
propagation (LNP) method which assumes that each sample
can be reconstructed by the weighted linear combination
of its nearest neighbors. The core of the algorithm is
the calculation of weights between samples. The objective
functions of these three algorithms can be written as
follows:

min
F

tr
(
(F − Y )U(F − Y )T

)
+ tr

(
FLFT

)
, (9)

where L is the graph Laplacian matrix L = D − S or
the normalized Laplacian matrix L = I − D−1/2SD−1/2.
U is a diagonal matrix with the first l and the remaining
n − l elements being λl and λu, respectively, and is used to
balance the fitting and smoothing terms.

Zhang et al. [41] improved LNP algorithm by fully
considering the label information of samples when calculat-
ing the weights. If two samples belong to the same class,
they will be closer to each other in the feature space. Nie
et al. [22] proposed a special label propagation algorithm,
which can discover the potential novel classes and output
the probability that the sample belongs to the labeled classes
or the novel class. Nie et al. [23] incorporated the loss
function used to measure the degree of mismatch between
embedded features and soft labels into the existing label
propagation framework. By minimizing the objective func-
tion, a linear projection classifier for predicting the label
of new sample can be obtained. Gong et al. [15] used
the teaching and learning framework to handling ambigu-
ous but critical samples to prevent inaccurate propagation.

Based on embedded representation, Zhang et al. [45] pro-
posed a inductive embedded label propagation model, which
enhances robustness by considering the unfavorable features
contained in the samples. Du et al. [11] imposed the exist-
ing supervised information on the regularizer to enhance the
constraint on the labels, and introduced the maximum cor-
relation criterion to restrain labeling noise. Zhang et al. [42]
introduced the idea of double matrix decomposition into the
label propagation framework to remove the noise in the data
and labels. Dornaika et al. [8] introduced a flexible graph-
based semi-supervised learning framework by integrating
manifold smoothness, sparse regression and large margin
concept. Zoidi et al. [53] proposed positive and negative
label propagation framework by considering the additional
information that the sample should not be assigned to a
label. Wang et al. [33] improved the conventional anchor
graph regularization method [20] to process large-scale data
problems quickly and accurately.

In order to make the predicted label matrix sufficiently
sparse and discriminative, Zhang et al. [43] proposed
nonnegative sparse neighborhood propagation (SparseNP).
SparseNP adds the l2,1-norm regular term on the label
matrix F , so that the obtained soft labels are more
discriminative. The specific model is as follows:

min
F

tr
(
(F − Y )UD(F − Y )T

) + tr
(
FL̄FT

) + γ
∥∥FT

∥∥
2,1

s.t .F � 0, eT F = eT ,

(10)

where L̄ = (I − S)T (I − S), and U and D are diagonal
matrices. SparseNP introduces nonnegative and sum-to-one
constraints to the label matrix F ; hence, the resulting soft
labels are probability values.

Zhang et al. [44] proposed an improved FME method
called discriminative sparse flexible manifold embedding
(SparseFME). Compared to FME, SparseFME uses the
l2,1-norm instead of the noise-sensitive Frobenius norm
to measure regression residuals, which represents the
difference between embedded features and soft labels. Its
model is as follows:

min
F,P,b

tr
(
FLFT

) +tr
(
(F−Y )UD(F−Y )T

) +α
∥∥FT

∥∥
2,1

+β
(
‖P ‖2,1 + γ

∥∥XT P + ebT − FT
∥∥
2,1

)

s.t .F � 0, eT F = eT ,

(11)

where L = I − D−1/2SD−1/2 is the normalized Laplacian
matrix, U and D are diagonal matrices, P is a projection
matrix, and b is a bias vector.

In this paper, we refer to those methods that regularize
the l2,1-norm on the label matrix as sparse label propagation
algorithms. There are two main advantages of using the
l2,1-norm: (1) l2,1-norm is robust to noise; and (2)

∥∥FT
∥∥
2,1
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makes many elements in each column of F tend to 0, and
thus the resulting soft labels are more discriminative.

3 The proposedmethod

3.1 Robust and sparse label propagation

Based on the existing graph construction methods and
label propagation algorithms, we propose a novel robust
and sparse label propagation (RSLP) model. It has three
core improvements compared to previous methods. First,
real-world data often contain noise, which may reduce the
accuracy of the algorithm. Unlike most previous algorithms
that execute on the raw data directly, the RSLP algorithm
decomposes the raw data into a clean part and a noise part,
and uses the clean data to perform graph construction and
label propagation. Second, most existing GSSL algorithms
learn the structure of the graph in advance, and then perform
label propagation on the graph. This two-step strategy does
not guarantee that the predefined graph is optimal for label
propagation. Conversely, our RSLP algorithm seamlessly
combines graph learning and label propagation by jointly
estimating the similarity matrix and the predicted label
matrix so that the obtained graph is globally optimal. Third,
in order to enhance the discrimination of soft labels, we
perform l2,1-norm regularization on the predicted label
matrix to make the soft labels of each sample sufficiently
sparse.

The proposed RSLP jointly learns the clean data C, the
similarity matrix S and the predicted label matrix F . The
objective function of RSLP is defined as follows:

min
F,S,C,E

tr
(
(F − Y )U(F − Y )T

) + α (‖C‖∗ + ‖E‖1)
+ (‖F − FS‖2F + ‖C − CS‖2F + β‖S‖2F

) + γ
∥∥FT

∥∥
2,1

s.t .X = C + E, S � 0, Sii = 0, eT S = eT , F � 0, eT F = eT .

(12)

where Y is the initial label matrix, U is a diagonal matrix,
and X and E represent the raw data matrix and the
noise data matrix, respectively. α, β and γ are balancing
parameters.

The term tr
(
(F − Y )U(F − Y )T

)
is used to make the

predicted labels and the real labels as consistent as possible.
The term (‖C‖∗ + ‖E‖1) regularizes the nuclear norm on
C and l1-norm on E, so that the obtained clean data
are low-rank and the noise data are sparse. ‖F − FS‖2F
and ‖C − CS‖2F represent the label reconstruction error
and the sample reconstruction error, respectively. RSLP
ensures that the obtained weights are optimal for both data

representation and label propagation by minimizing them
jointly. Note that we are using clean data here so that
the learned similarity matrix is more accurate. The term∥∥FT

∥∥
2,1 guarantees that F is sparse in columns, that is,

many elements in the predicted soft label of each sample
tend to zero, so the discrimination of soft labels is enhanced.

In the constraints of the objective function of (12), X =
C + E decomposes the raw data into the clean part C

and the noise part E, Sii = 0 is used to avoid trivial
solution S = I , and the remainder of the constraints of the
objective function in (12) are used to keep the probability
interpretation of the obtained similarity matrix and label
matrix.

It is worth noting that the proposed RSLP algorithm can
be optimized by alternately performing the following three
steps.

(1) Removing noise from the raw data by matrix
decomposition: Given the similarity matrix S, we aim
to learn the clean data C from raw data. The objective
function for this step is as follows:

min
C,E

‖C − CS‖2F + α (‖C‖∗ + ‖E‖1)
s.t .X = C + E.

(13)

(2) Learning the robust similarity matrix: Given the clean
data C and the label matrix F , this step focus on
learning the similarity matrix S by the following
objective function:

min
S

‖F − FS‖2F + ‖C − CS‖2F + β‖S‖2F
s.t .S ≥ 0, Sii = 0, eT S = eT .

(14)

(3) Conducting robust and sparse label propagation: with
the similarity matrix S known, we can propagate label
information to unlabeled samples. The label matrix F

can be obtained by minimizing the following problem:

min
F

tr
(
(F − Y )U(F − Y )T

) + ‖F − FS‖2F + γ
∥∥FT

∥∥
2,1

s.t .F ≥ 0, eT F = eT .

(15)

3.2 Optimization

In this section, the optimization process of RSLP is
described. By introducing the auxiliary variable Z to (12),
we can obtain the following equivalent formula:

min
F,S,C,E,Z

tr
(
(F − Y )U(F − Y )T

) + α (‖C‖∗ + ‖E‖1)
+ (‖F − FS‖2F + ‖Z − ZS‖2F + β‖S‖2F

) + γ
∥∥FT

∥∥
2,1

s.t .X = C + E, S � 0, Sii = 0, eT S = eT , F � 0, eT F = eT , Z = C.

(16)
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Note that problem (16) can be solved by the altering
direction method of multipliers (ADMM) [2]. The aug-
mented Lagrangian function can be obtained by removing
the equality constraints on X and Z:

L(C,E, S, F,Z,M1,M2) = tr
(
(F − Y )U(F − Y )T

)

+α (‖C‖∗ + ‖E‖1)
+ (‖F − FS‖2F + ‖Z − ZS‖2F + β‖S‖2F

) + γ
∥
∥FT

∥
∥
2,1

+μ
2

(∥
∥
∥C + E − X + M1

μ

∥
∥
∥
2

F
+

∥
∥
∥C − Z + M2

μ

∥
∥
∥
2

F

)

s.t .S ≥ 0, Sii = 0, eT S = eT , F ≥ 0, eT F = eT .

(17)

where μ is a penalty parameter, and M1 and M2 are the
matrices of Lagrangian multipliers.

Solving this involves the following alternating and
iterative steps. In each step, one variable is updated while
other variables are fixed.

Step 1: Update C. When other variables are fixed, (17)
becomes the following problem:

min
C

α‖C‖∗ + μ ‖C − G‖2F , (18)

where G = [Z + X − E − (M1 + M2) /μ] /2.
According to singular value shrinkage,
problem (18) has a closed solution C =
Ūdiag

((
σ − α

2μ

)

+

)
V̄ T , where Ūdiag(σ )V̄ T

is the singular value decomposition of G.
Step 2: UpdateE. When other variables are fixed, we have

min
E

α‖E‖1 + μ

2

∥∥∥∥E −
(

X − C − M1

μ

)∥∥∥∥

2

F

, (19)

which has a closed solution, i.e., eij =(|qij | − α/μ
)
+ · sign(qij ), where Q = X − C −

M1
μ
.

Step 3: Update S. With other variables fixed, (17) is
reduced to

min
S

‖F − FS‖2F + ‖Z − ZS‖2F + β‖S‖2F
s.t .S ≥ 0, Sii = 0, eT S = eT .

(20)

Using the same method as in [42], we can get the
following equivalent problem by writing eT S =
eT into (20):

min
S

∥∥∥∥∥∥

⎛

⎝
F

Z

eT

⎞

⎠ −
⎛

⎝
F

Z

eT

⎞

⎠ S

∥∥∥∥∥∥

2

F

+ β ‖S‖2F
s.t .S ≥ 0, Sii = 0.

(21)

Let M = [
F ; Z; eT

]
, and by taking the derivative

with respect to S, we have

∂

∂S
= −2MT M + 2MT MS + 2βS. (22)

By setting ∂
∂S

= 0, we can obtain

S =
((

MT M + βI
)−1

MT M

)

+
, Sii = 0. (23)

Step 4: Update F . With other variables fixed, the formula
for solving F is as follows:

min
F

tr
(
(F − Y )U(F − Y )T

) + ‖F − FS‖2F + γ
∥∥FT

∥∥
2,1

s.t .F ≥ 0, eT F = eT .

(24)

According to the definition of l2,1-norm in (4),
we have

∥∥FT
∥∥
2,1 = 2tr(FBFT ), where Bi,i =

1
2‖F.i‖2 . Problem (24) then turns into

min
F

tr
(
(F−Y )U(F−Y )T

) +‖F−FS‖2F + 2γ tr(FBFT )

s.t .F ≥ 0, eT F = eT .

(25)

By taking the derivative with respect to F , we have

∂

∂F
= 2FU − 2YU + 2FA + 4γFB. (26)

where A = (I − S)(I − S)T . By setting ∂
∂F

= 0,
we can obtain

F = YU(U + A + 2γB)−1. (27)

As discussed in [43–45], the solution of F under
the nonnegative constraint and the sum-to-one
constraint can be obtained by

F =
(
YU(U + A + 2γB)−1

)

+ , Fij = Fij /(e
T F.j ).

(28)

Step 5: Update Z. When the other variables are fixed, (17)
is reduced to

min
Z

‖Z − ZS‖2F + μ

2

∥∥∥∥C − Z + M2

μ

∥∥∥∥

2

F

. (29)

By taking the derivative with respect to Z and
setting ∂

∂Z
= 0, we can obtain

Z = (μC + M2) (2A + μI)−1 . (30)

where A = (I − S)(I − S)T .

Based on the alternating optimization process described
above, we summarize the details of the proposed RSLP
method in Algorithm 1. If the norm of the difference of
the label matrix between two adjacent iterations is less than
0.01, we consider that RSLP has achieved convergence and
stop iterating.
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4 Connection with other related algorithms

In this section, we analyze the connection between RSLP
and other related algorithms.

4.1 Connection with label propagation algorithms

We discuss the connection between RSLP and several
label propagation algorithms, i.e., GFHF, LGC, LNP, and
SparseNP.

If we assume that:
(1) the raw data are absolutely clean, and thus there is no

need to decompose X, and (2) the structure of the graph is
predefined, that is, the similarity matrix S is known, then
the objective function of RSLP can be transformed into the
following form:

min
F

tr
(
(F − Y )U(F − Y )T

) + tr
(
FL̄FT

) + γ
∥∥FT

∥∥
2,1

s.t .F � 0, eT F = eT .

(31)

where L̄ = (I −S)(I − S)T . Comparing the above formula
with the objective function of SparseNP in (10), we can find
that they are very similar. Note that U and D in (10) and U

in (31) are diagonal matrices, and by makingU in (31) equal
toUD in (10), the objective functions in these two equations
are equivalent. Therefore SparseNP can be considered as a
special case of RSLP.

Furthermore, if the parameter γ is set to 0 and the
constraint conditions in the objective function are removed,
formula (31) is converted into the following problem:

min
F

tr(F − Y )U(F − Y )T + tr
(
FL̄FT

)
(32)

which is similar to the general model of GFHF, LGC, and
LNP expressed in formula (9), except that L in (9) uses
the graph Laplacian matrix while (32) uses L̄ = (I −
S)(I − S)T .

4.2 Connection with RGC and principle component
analysis

We also analyze the connection between the proposed RSLP
algorithm and RGC, and principle component analysis
(PCA).

We suppose that all samples are labeled, that is, F is
known and is equal to Y ; thus, there is no need to calculate
F . The model of RSLP in (12) changes to

min
C,E,S

α (‖C‖∗ + ‖E‖1) + tr(CL̄CT ) + β‖S‖2F
s.t .X = C + E, S � 0, Sii = 0, eT S = eT .

(33)

where L̄ = (I − S)(I − S)T . Compared with the RGC
model in (7), formula (33) sets the trade-off parameter of
tr(CL̄CT ) as 1 and makes the coefficients of ‖C‖∗ and
‖E‖1 the same. In the constraint condition, there is an extra
term Sii = 0 in (33).

The core idea of removing noise in RSLP and RGC is
that the clean data are low-rank and the noise is sparse,
and it derives from robust principle component analysis
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(RPCA) [3]. Manifold RPCA (MRPCA) [29] assumes that
the clean data are located on a smooth manifold, and adds
a manifold smoothing regularization to the RPCA model.
If the similarity matrix S is precalculated from raw data X,
formula (33) can be reduced to

min
C,E

tr(CL̄CT ) + α (‖C‖∗ + ‖E‖1)
s.t .X = C + E.

(34)

which is the same as the MRPCA model except that ‖C‖∗
and ‖E‖1 have the same parameters.

5 Experiments

In this paper, we propose a new robust and sparse label
propagation algorithm for semi-supervised classification. In
order to verify the effectiveness of the proposed method,
we perform experiments on some real datasets and compare
our algorithm with other label propagation algorithms in
terms of classification performance. The algorithms used for
comparison are GFHF [49], LGC [47], SLP [22], SparseNP
[43], ALP-MD [42], and SparseFME [45].

5.1 Parameter setting

To ensure fairness of comparison, we construct the same
kNN graph for the GFHF, LGC, SLP, SparseNP, and
SparseFME. The neighbor parameter k is fixed at 8, and the
bandwidth parameter σ of the Gaussian kernel function is
automatically determined by the distance of neighbors [30].
The calculation of σ is as follows:

σ = 1

3n

n∑

i=1

d
(
xi, xik

)
, (35)

where n is the number of samples, and d
(
xi, xik

)
represents

the distances between sample xi and its kth nearest
neighborhood xik . Since ALP-MD and our RSLP algorithm
combine the processes of graph construction and label
propagation, there is no need to define the graph structure
in advance.

SparseNP has one parameter γ , while SparseFME, ALP-
MD, and our RSLP have three parameters, i.e., α, β, and γ .
For fair comparison, parameters α, β, and γ are all selected
from {10−6, 10−3, 100, 103, 106}, as in [45] and [23]. The
parameters α of LGC and α of SLP are both fixed at 0.99
throughout this paper, as suggested in [47]. The elements λl

and λu in the diagonal matrix U of RSLP are set to 105 and

0, respectively. We use MATLAB to run all the experiments
on a computer with Inter(R) Core(TM) i5-2450M CPU
@2.5GHz 8G.

We use the accuracy (ACC) of classifying unlabeled
samples to evaluate the performance of each algorithm. The
ACC can be calculated as follows:

ACC = 1

u

u∑

i=1

I (yi, fi), (36)

where u is the number of unlabeled samples, and yi and
fi are the truth label and predicted label of sample xi ,
respectively. I (yi, fi) is an indicator function: I (yi, fi) =
1 if yi = fi ; and I (yi, fi) = 0, otherwise. In all our
experiments, we run the label propagation algorithm 10
times to obtain the averaged ACC for different numbers of
labeled samples.

5.2 Experiments on simple datasets

In this subsection, we compare our RSLP with GFHF, LGC,
SLP, SparseNP, ALP-MD and SparseFME on seven simple
datasets: Appendicitis, Wine, Sonar, Heart, Seeds, Led7digit
and Vehicle. As described in Table 1, these datasets have
different number of samples, features and classes. For each
dataset, we randomly select some samples from each class
as labeled data, and use the rest as unlabeled data. Then
we run the label propagation algorithm 10 times to get the
averaged ACC as the evaluation standard.

Table 1 Summary of data sets

Name # Data # Feature # Classes

Appendicitis 106 7 2

Wine 178 13 3

Sonar 208 60 2

Heart 270 13 2

Seeds 210 7 3

Led7digit 500 7 10

Vehicle 846 18 4

Pendigits 1000 16 10

OPtdigits 1000 64 10

USPS 1000 256 10

AR 1680 1024 120

UMIST 574 10304 20

ExtendYaleB 2414 1024 38

COIL20 1440 1024 20
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The experimental results are shown in Table 2. The
number in parentheses after the dataset name indicates the
number of labeled samples of each class, and the best result
of each experiment is highlighted in bold. As can be seen
from Table 2, the proposed RSLP algorithm achieves the

best results in most cases. GFHF, SparseNP, ALP-MD,
and SparseFME achieve the best classification results in
one, two, four, and one cases, respectively. In general, the
classification accuracy increases with the number of labeled
samples. Our RSLP method achieves good classification

Table 2 Results of data sets from UCI

Datasets(l) GFHF LGC SLP SparseNP ALP-MD SparseFME RSLP

Wine(2) 65.99 65.58 65.93 65.76 80.87 65.81 84.94

Wine(4) 67.47 69.58 67.47 62.71 80.96 67.23 86.75

Wine(6) 70.00 68.94 70.38 66.38 85.31 70.25 91.25

Wine(8) 67.60 71.49 67.79 65.91 88.51 67.47 91.88

Wine(10) 67.57 71.69 67.50 66.15 89.05 67.50 92.23

Sonar(1) 49.66 50.92 51.26 51.94 51.75 51.07 57.14

Sonar(2) 55.78 56.23 56.57 53.73 54.56 56.72 66.91

Sonar(3) 55.40 55.35 58.02 59.21 57.62 57.08 54.55

Sonar(4) 57.65 55.35 57.95 56.60 56.95 57.90 62.70

Sonar(5) 57.17 56.67 59.70 61.21 59.04 63.13 70.46

Led7digit(2) 61.90 58.17 35.58 62.75 60.15 60.27 61.08

Led7digit(4) 69.78 62.63 48.91 63.98 63.94 68.17 69.94

Led7digit(6) 72.21 64.71 54.00 63.77 65.30 71.66 69.41

Led7digit(8) 71.07 65.19 56.33 63.88 70.26 70.26 73.88

Led7digit(10) 72.00 68.00 59.58 66.50 71.85 71.70 74.33

Heart(2) 58.31 57.14 57.37 52.26 67.44 60.08 66.39

Heart(4) 60.27 59.43 59.77 54.69 67.75 60.42 66.95

Heart(6) 59.26 59.30 59.03 55.74 68.45 59.19 69.96

Heart(8) 60.16 60.83 60.08 59.13 70.79 60.59 72.95

Heart(10) 63.12 63.84 62.88 60.52 72.88 61.00 75.52

Appendicitis(1) 50.67 53.85 46.06 54.04 56.06 61.73 57.31

Appendicitis(2) 64.71 69.90 63.73 62.15 57.65 63.92 79.71

Appendicitis(3) 75.90 71.30 68.10 65.70 82.10 67.04 87.00

Appendicitis(4) 75.00 71.53 73.78 63.67 82.86 67.25 87.35

Appendicitis(5) 81.67 79.06 72.60 71.15 77.50 76.67 88.02

Seeds(1) 65.85 80.68 78.31 81.50 85.07 79.13 84.88

Seeds(2) 83.97 88.24 86.23 86.91 90.59 86.72 91.42

Seeds(3) 89.06 89.55 88.36 87.21 91.39 89.10 91.94

Seeds(4) 88.23 88.99 87.73 85.76 91.31 87.98 92.93

Seeds(5) 88.62 89.59 88.05 86.97 88.51 87.33 92.15

Vehicle(2) 38.91 40.61 41.71 44.01 47.59 41.77 44.38

Vehicle(4) 45.84 49.57 49.88 47.78 42.61 50.11 50.84

Vehicle(6) 47.45 50.02 50.22 52.46 48.75 50.63 54.76

Vehicle(8) 50.81 51.63 55.46 53.69 45.85 53.89 57.99

Vehicle(10) 51.68 51.61 55.48 55.41 47.66 55.50 56.95

The bold type is used to highlight the best results for each experiment.
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(a) (b) (c)

Fig. 1 Examples of handwritten digit images from the datasets used in our experiments

results on all seven datasets. This is because RSLP jointly
performs graph construction and label propagation, and the
resulting soft labels are more discriminative.

5.3 Experiments on handwritten digit recognition

In this subsection, we mainly compare the performance
of our RSLP and other label propagation algorithms in
handwritten digit recognition tasks.

The handwriting image datasets used in the experiment
are Pen-Based Recognition of Handwritten Digits Data
Set (Pendigits), Optical Recognition of Handwritten Digits
(Optdigits) and USPS. Each datasets contains a total of 10
classes from 0 to 9, and their number of features are 16,

64, and 256, respectively. Figure 1a, b, and c show sample
images from Pendigits, Optdigits and USPS, respectively. In
order to test the robustness of each algorithm to noise, we
corrupt the raw data by randomly selecting a quarter of the
features to contaminate with random Gaussian noise. For
each dataset, we randomly select 100 images from each of
10 classes (1000 images in total) for the experiments.

The experimental results are shown in Table 3. As
can be seen from the table, the classification accuracies
of all algorithms increase as the number of labeled
samples increase, and RSLP achieves the best classification
results in most cases. On Pendigits and USPS datasets,
the RSLP algorithm performs significantly better than all
other algorithms. On the Optdigits dataset, although the

Table 3 Results of handwritten digit recognition data sets

Datasets(l) GFHF LGC SLP SparseNP ALP-MD SparseFME RSLP

Pendigits(2) 24.54 23.38 25.00 23.82 64.33 42.92 65.08

Pendigits(4) 30.74 27.41 30.17 31.28 70.70 50.11 74.28

Pendigits(6) 32.41 29.89 32.57 35.91 68.16 52.11 76.71

Pendigits(8) 35.76 31.74 35.00 37.22 67.07 51.69 73.95

Pendigits(10) 40.05 33.00 39.85 39.09 64.70 52.70 69.65

Optdigits(1) 18.99 27.47 25.11 58.49 53.85 29.39 63.18

Optdigits(2) 37.06 40.10 46.50 63.42 65.62 51.91 69.43

Optdigits(3) 45.80 42.25 56.99 67.85 73.75 59.55 74.23

Optdigits(4) 56.76 49.65 62.25 68.58 75.39 63.55 75.47

Optdigits(5) 62.40 53.35 65.82 71.07 77.34 67.07 76.70

USPS(2) 54.17 47.08 63.25 62.35 58.71 63.67 64.54

USPS(4) 65.89 55.24 71.44 69.11 66.85 70.63 71.91

USPS(6) 71.23 55.93 74.84 74.94 71.50 74.61 75.05

USPS(8) 74.26 59.43 76.57 76.69 74.26 76.33 77.14

USPS(10) 75.88 62.98 78.58 78.55 76.13 78.00 79.13

The bold type is used to highlight the best results for each experiment.
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(a) (b) (c) (d)

Fig. 2 Examples of images from the face and object recognition datasets used in our experiments

classification accuracy of RSLP is not as good as that of
ALP-MD when the number of labeled samples is five, the
RSLP algorithm is superior to the ALP-MD algorithm in
other cases. Note that although ALP-MD does not achieve
the optimal classification effect, overall it performs well on
the Pendigits and Optdigits datasets. From the results obtained
on all three datasets, we can see that our RSLP algorithm
is the most robust to noise, followed by the ALP-MD
algorithm. This is because both algorithms decompose the
raw data into a clean part and an error part, thereby reducing
the impact of noise on the performance of the algorithm.

5.4 Experiments on face and object recognition

In this section, we focus on evaluating the performance
of our method in face and object recognition tasks. Three
popular benchmark face recognition datasets and an object
recognition dataset are used, namely, AR, UMIST, Extend
YaleB and COIL20. AR, UMIST, and Extend YaleB
contain face image data of 120, 20, and 38 individuals,
respectively, and COIL20 contains image data of 20 target
objects. Figure 2 shows some samples from these datasets.
Following the experimental settings employed in [8] and

Table 4 Results of face and object recognition data sets

Datasets(l) GFHF LGC SLP SparseNP ALP-MD SparseFME RSLP

AR(2) 75.79 65.97 85.69 86.19 91.17 83.80 93.04

AR(4) 88.64 73.53 94.12 94.31 97.26 93.35 97.73

AR(6) 92.49 79.51 96.46 96.57 98.63 95.99 98.87

AR(8) 94.44 84.38 97.35 97.35 99.19 97.19 99.22

AR(10) 95.23 86.65 97.67 97.63 99.17 97.54 99.33

UMIST(1) 21.93 21.84 28.21 32.49 20.81 31.77 42.08

UMIST(2) 29.18 35.64 34.38 41.07 34.72 55.75 57.87

UMIST(3) 34.46 46.26 43.85 49.09 59.14 66.07 68.00

UMIST(4) 40.69 57.69 53.40 56.36 67.53 73.83 75.32

UMIST(5) 43.04 58.00 58.76 60.84 71.84 76.92 80.57

ExtendYaleB(2) 70.23 76.83 84.98 84.00 78.86 81.31 85.05

ExtendYaleB(4) 81.45 84.25 88.51 86.63 90.16 86.45 89.75

ExtendYaleB(6) 83.89 86.28 89.73 87.69 91.73 88.00 90.86

ExtendYaleB(8) 84.96 87.43 90.32 88.57 92.32 88.93 92.05

ExtendYaleB(10) 86.58 88.68 91.00 89.44 93.05 89.91 93.63

COIL20(2) 39.68 34.50 42.81 43.59 65.28 71.63 68.93

COIL20(4) 48.06 36.08 53.69 53.79 74.75 79.42 77.82

COIL20(6) 52.75 44.33 59.75 59.89 77.58 80.38 81.48

COIL20(8) 58.14 50.41 61.32 62.54 81.16 81.95 84.26

COIL20(10) 61.58 50.52 66.42 67.53 82.44 83.22 85.78

The bold type is used to highlight the best results for each experiment.
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[45], we preprocess these four datasets using principal
component analysis (PCA), and set the PCA variability at
98%.

Table 4 shows the experimental results of all tested
algorithms on these datasets. We can see that the proposed
RSLP algorithm achieves the best classification results in
most cases, which further illustrates the advantages of our
algorithm. The classification accuracy of RSLP is higher
than that of ALP-MD, indicating that the decomposition
of the original data and the label propagation on the clean
data significantly improve the performance of the algorithm.
The superiority of the RSLP algorithm over the SparseNP
algorithm reflects the benefits of joint execution graph
construction and label propagation.

5.5 Convergence analysis

In this subsection, we demonstrate the convergence
behavior of RSLP. Six datasets mentioned earlier are
applied for this analysis (three handwritten digit recognition
datasets, two face recognition datasets, and one object
recognition dataset). For each of these datasets, we fix
the number of labeled samples per class at 4. Figure 3
shows the convergence curve of the experimental results.

The horizontal axis is the number of iterations, and the
vertical axis is the norm of the difference of label matrices
obtained by two adjacent iterations, i.e.,

∥∥F t+1 − F t
∥∥

F
.

We can see that the difference decreases rapidly with
the increase in the number of iterations, that is to say,
the optimization process of our algorithm converges very
quickly.

5.6 Parameter analysis

Analyzing parameter sensitivity is very important because
parameters may affect the performance of algorithm.We use
USPS, AR, and COIL20 datasets to analyze the influence
of RSLP parameters (i.e., α, β, and γ ) on classification
performance. The number of labeled samples per class is set
to 4. We fix one parameter to analyze the effects of the other
two, that is, we set α = 106 to change β and γ ; set β = 106

to change α and γ ; and set γ = 1 to change α and β.
The experimental results are shown in Fig. 4. When α

is fixed, and β and γ are small, our algorithm achieves
better classification results. When we fix β, it can be seen
that RSLP is insensitive to the other two parameters. When
γ is fixed, taking larger α and β helps to obtain higher
classification accuracy.

Fig. 3 Convergence behavior of RSLP on image datasets

3348 Z. Hua and Y. Yang



0

0.5

1e-6

ac
cu

ra
cy

1e-3

1

AR

1e61 1e31e3 1
1e6 1e-3

1e-6

0

0.5

1e-6

ac
cu

ra
cy

1e-3

1

AR

1e61 1e31e3 1
1e6 1e-3

1e-6

0

0.5

1e-6

ac
cu

ra
cy

1e-3

1

AR

1e61 1e31e3 1
1e6 1e-3

1e-6

0

0.2

1e-6

0.4

ac
cu

ra
cy

0.6

1e-3

USPS

1e61 1e31e3 1
1e6 1e-3

1e-6

0

0.2

1e-6

ac
cu

ra
cy 0.4

1e-3

0.6

USPS

1e61 1e31e3 1
1e6 1e-3

1e-6

0

0.2

1e-6

ac
cu

ra
cy 0.4

0.6

1e-3

USPS

1e61 1e31e3 1
1e6 1e-3

1e-6

0

0.2

0.4

1e-6

ac
cu

ra
cy

0.6

1e-3

COIL20

1e61 1e31e3 1
1e6 1e-3

1e-6

0

0.2

1e-6

ac
cu

ra
cy 0.4

1e-3

0.6

COIL20

1e61 1e31e3 1
1e6 1e-3

1e-6

0

0.2

1e-6

0.4

ac
cu

ra
cy

0.6

1e-3

COIL20

1e61 1e31e3 1
1e6 1e-3

1e-6

Fig. 4 Accuracy of RSLP under various parameters

6 Conclusion

In this paper, we propose a novel GSSL model termed
robust and sparse label propagation algorithm, it aims
at enhancing the robustness to noise and improving
classification performance of label propagation methods.
RSLP simultaneously removes noise, constructs a similarity
matrix, and predicts unknown labels. Specifically, RSLP
decomposes the raw data into a low-rank clean part and
a sparse error part. In order to ensure that the learned
similarity matrix is globally optimal for representation and
classification, RSLP jointly performs label propagation and
graph construction in the clean data space. Furthermore,
the proposed RSLP performs l2,1-norm regularization on

the predicted label matrix to enhance the discrimination
of soft labels. Experimental results on simple datasets and
image recognition datasets show that our RSLP algorithm
is superior to existing algorithms in terms of classification
accuracy. In our future work, we will study how to extend
RSLP into an inductive model to process out-of-samples
more effectively.
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