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Abstract
Mining of colossal patterns is used to mine patterns in databases with many attributes and values, but the number of instances in
each database is small. Although many efficient approaches for extracting colossal patterns have been proposed, they cannot be
applied to colossal pattern mining with constraints. In this paper, we solve the challenge of extracting colossal patterns with
length constraints. Firstly, we describe the problems of min-length constraint and max-length constraint and combine them with
length constraints. After that, we evolve a proposal for efficiently truncating candidates in the mining process and another one for
fast checking of candidates. Based on these properties, we offer the mining algorithm of Length Constraints for Colossal Pattern
(LCCP) to extract colossal patterns with length constraints. Experiments are also conducted to show the effectiveness of the
proposed LCCP algorithm with a comparison to some other ones.
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1 Introduction

Frequent pattern mining (FPM) is an essential step in associ-
ation rule mining [1], correlation mining [2], sequential pat-
tern mining [3, 4], episode mining [5], classification [6], and
clustering [7]. FPM has been widely applied in many sectors,
such as market analysis [8], weblog analysis [9], and predic-
tion [10]. It is not only limited to market basket analysis but
also applied in other fields, especially in bioinformatics, such
as DNA sequence analysis [11], gene expression [12], and
protein relations complexes [13].

In recent years, many effective algorithms have been devel-
oped to resolve the challenge of pattern mining, and interest in
this problem remains [14, 15], specifically in today’s era of vast
automatic data gathering when a new kind of database has been
recognized, called high-dimensional data, which is classified by
a relatively smaller number of rows compared to columns [16].

The main reason for the high level of attention paid to FPM
algorithms is the high computational cost. The search area of
FPM is exponential to the dimensionality of the transactions in
the database. This presents challenges for itemset production
when the support levels are small.
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In addition, some mining tasks in bioinformatics have gen-
erated many small frequent patterns. Regrettably, the patterns
in larger sizes are more meaningful than those in shorter ones.
These large patterns with lots of various items are called co-
lossal patterns [17]. As such, it is ineffective to execute a
mining algorithm that will find all sizes of frequent patterns
when the ones needed are only the colossal ones. The terms
mining and extracting in the paper are used interchangeably.

Some efficient algorithms to extract colossal patterns have
been proposed, such as the Pattern-Fusion [17], the CPM
(Colossal Pattern Miner) [18], BVBUC [16], Doubleton
Pattern Mining (DPM) [19], DPMine [20], CP-Miner and
PCP-Miner [21] approaches.

In many problems, users need to enter constraints to mine
the patterns of interest, which accelerates the mining process,
limits the number of results, and reduces the computing cost.
Hence, mining with length constraints has attracted many re-
searchers in recent years. Many methods exist for mining fre-
quent patterns with pattern constraints [22, 23], class associa-
tion rules with itemset constraints [24, 25] and class con-
straints [26], erasable itemsets with subset and superset con-
straints [27], and colossal patterns with itemset constraints
[28]. The top-down strategy is suitable for pruning non-
colossal patterns; however, it cannot be applied to colossal
pattern mining with pattern constraints.

Since colossal pattern mining is extremely intensive, some
pruning strategies based on constraints are applied to reduce
computing cost. For example, PCP-Miner-Post1 and PCP-
Miner-Post2 can eliminate colossal patterns that do not satisfy
the length constraints in the mining processing, but their effi-
ciency is not good enough.

The colossal pattern mining with length constraints is use-
ful to accelerate the mining process and eliminate the number
of redundant patterns. However, it is difficult to remove co-
lossal patterns that do not satisfy the length constraints be-
cause it is hard to determine the right length.

This paper proposes an efficient technique for extracting
colossal patterns with length con-straints (min-length and
max-length). Firstly, we state the problem of extracting colos-
sal patterns with length constraints. Next, theorems based on
min-length and max-length are developed for the early prun-
ing of candidates. Based on this, a length constraint-based
technique for quickly extracting colossal patterns is devel-
oped. Finally, the proposed method is evaluated compared
to the PCP-Miner-Post1 and PCP-Miner-Post2 methods in
mining time and memory usage on various real-life databases.

The paper is structured as follows. Section 2 elaborates on
some related problems, including FPM, FPMwith constraints,
colossal-pattern mining, and colossal-pattern mining with
itemset constraints. The foundational concepts and problem
statements are introduced in Section 3. In Section 4, new the-
orems are suggested to quickly eliminate candidates based on
length constraints. An effective algorithm for mining colossal

patterns with length constraints is also developed in this sec-
tion. This proposed algorithm is compared to some other re-
lated methods in the following content, Section 5. The con-
clusions and future development trends in this area are pre-
sented in the last section.

2 Related works

Colossal patterns are useful in many applications, especially
in bioinformatics fields. They were first proposed in Pattern-
Fusion [17] by combining the core-patterns with a heuristic to
estimate the colossal patterns by only extracting the top-K
frequent patterns. From that, some methods were developed,
such as the Colossal Pattern Miner (CPM) [18], which
chooses the seed patterns in a smart way by separating sub-
patterns of overlapping colossal patterns based on their fre-
quencies. Doubleton Pattern Mining (DPM) [19] uses the vec-
tor intersection operator and a data structure named D-struct to
find all colossal patterns in a biological database, with better
performance than the CPM. Besides, an improved version of
DPM called DPMine [20] was proposed based on a DPT+ tree
to find Doubleton patterns. This algorithm's weakness is that a
large number of mined itemsets is obtained when the minSup
is small. Next, BVBUC [16], applying a bottom-up scheme
for extracting all colossal patterns, was proposed. Although
BVBUC solves some disadvantages of the previous methods,
it still has a few limitations, so the next two methods, named
CP-Miner and PCP-Miner [21], were proposed. CP-Miner
applied early pruning methods by relying on CP-Tree to mine
colossal patterns, including pruning the transactions and re-
moving non-colossal pattern nodes, while PCP-Miner, an im-
proved version of CP-Miner, has a sorting strategy to effi-
ciently eliminate candidate non-colossal patterns.

Because colossal pattern mining has generated lots of re-
dundant patterns, mining the Frequent Colossal Closed
Itemsets (FCCI) has been the focus of attention recently.
Some approaches for mining colossal closed patterns have
thus been proposed, such as DisClose [29], based on a
Compact Row-Tree (CRTree) structure with a bottom-up
strategy to mine colossal closed patterns. The DSFCCIM
[30] uses the Effective Improvised Pre-processing (EIP) tech-
nique and integrates a novel Rowset Cardinality Table, an
Itemset Support Table, to mine FCCI, pruning the complete
set of unrelated features and unrelated rows. The RARE [31]
is based on the breadth-first bottom-up strategy to mine colos-
sal closed patterns. Moreover, the DREFCCIM [32] is the first
distributed method to find FCCI.

Although FCCI mining can eliminate redundant patterns
for many applications in the real world, the users are only
interested in a small set of FPs that satisfy certain conditions.
For example, when analyzing the DNA sequences, there are
many patterns in the data, but the analysts are only concerned

8630 Le et al.



with patterns containing a number of specific items, so mining
patterns with constraints is a good choice.

Many strategies for mining FPs with constraints have been
developed. The first strategy is called post-processing and
relies on Apriori, Eclat or FP-Growth to mine all the FPs that
satisfy the constraint; however, this strategy requires a lot of
time to produce and check candidates. The next strategy is
called pre-processing, and first removes all the entries that
do not satisfy the constraint and then mines all the FPs from
the rest of the database. This last approach is known as con-
straint FPs, where the constraints are integrated into the
extracting procedure.

Approaches for extracting patterns with constraints
have been suggested for many different types of
constraints regarding event occurrence, timing, data, and com-
binations of these, as used in real-world monitoring systems.
In that, the MPP [33] uses a multi-valued decision diagram
(MDD) within a prefix projection method for mining con-
straint sequence patterns. Next, a query-constraint-based
ARM (QARM) [34] uses a Top-k Non-Redundant (TNR)
technique to produce association rules for the examination of
multiple, different clinical datasets. Recently, a constraint-

programming model [35] can easily be expanded to mine
different types of rules. It can be applied to any kind of user
constraints. After that, two algorithms named MWAPC and
EMWAPC [36] apply the dynamic bit vector structure based
on the PreWAP tree to mine web access patterns. Recently, a
coding method has been used to transform binary sequences
into DNA-based sequences [37] that satisfy the maximum
run-length and the GC-content for each sequence. The EHIL
(Efficient High utility Itemsets with Length constraints) [38]
methods to mine HUIs by incorporating length constraints
reduce the number of candidates. The NetDAP [39] technique
for pattern matching with gap constraints is based on a struc-
ture named an approximate single-leaf Nettree.

In addition, a first method named CPCP-Miner [28] based
on the CPCP-Tree structure for mining colossal patterns with
itemset constraints was developed. This algorithm rapidly
eliminates non-colossal pattern candidates with constraints.

3 Background

Consider the set of items X = {e1, e2, e3,…, em}, where ei is an
item (1 ≤ i ≤m). A transaction T = 〈x1, x2, x3, …, xn〉 is the set
of itemsets, where xj ⊆ X (1 ≤ j ≤ n) is an itemset. A transaction
database D = {t1, t2, t3, …, t|D|}, where |D| is the number of

Table 1 A transaction
database TID Items

1 A J K L

2 B C D E G H J

3 B C E F G H J

4 B C D E F G H J

5 B E F G H J

6 B H K

7 B D F G H

8 E F G H J

9 F G H

10 B C D E G H

11 C F K

12 A G K L

Table 2 Colossal
patterns with length
constraints

# Colossal patterns satisfying
length constraints

1 B E G H J

2 B G H

3 E G H J

4 B C E G H

5 B D G H

6 B F G H

7 E F G H J

8 F G H

Fig. 1 Flowchart of the LCCP algorithm

Table 3 Items and their support

Item A B C D E F G H J K L

Support 2 7 5 4 6 7 9 9 6 4 2
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transactions in the database D and ti (1 ≤ i ≤ |D|) is a tuple in
form 〈tid, t〉, where tid is the identifier of transaction ti. Table 1
shows an example transaction database D.

Given a patternQ, an itemset P ⊆Q is a σ-core pattern ofQ
if and only if supp(Q)/ supp(P) ≥ σ, σ ∈ (0,1] is called the core
ratio [17], where supp(Q) is denoted the support of pattern Q.
A pattern P is called a colossal pattern in a set of frequent
patterns if and only if there does not appear an itemset Q such
that P ⊂Q and P is a σ-core pattern of Q.

Given a transaction databaseD, a core ratio σ, amin-length
threshold ξ, and a max-length threshold Ω, the problem of
extracting colossal patterns with length constraints is stated
in Definitions 1–3.

Definition 1 (Colossal pattern with min-length constraint)
Extracting colossal patterns with min-length constraint in da-
tabase D is to extract all samples of colossal pattern P in D
with |P| ≥ ξ.

Definition 2 (Colossal pattern with max-length constraint)
Mining colossal patterns with max-length constraint in

databaseD extracts all samples of colossal pattern P inDwith
|Q| ≤Ω.

Based on Definitions 1 and 2, the problem of extracting
colossal patterns with length constraints is as given in
Definition 3.

Definition 3 (Colossal pattern with length constraints)
Extracting colossal patterns with length constraints means
finding all the patterns in D that satisfy the max-length con-
straint and min-length constraint.

Example 1: For Table 1 with σ = 0.25, ξ = 3 and Ω = 5, we
have colossal patterns with length constraints as shown in
Table 2.

Table 2 is created from Table 1 by removing the items
that do not satisfy the support threshold φ and deleting
the transactions smaller than the min-length constraint ξ.
The support threshold φ = ⌈σ×|D| ⌉ = 3 (⌈0.25 × 12⌉). In
Table 1, the support threshold of two items A and L is 2
less than φ = 3, so they are removed, and the number of
items in transactions 1 and 12 is 2, less than ξ = 3, so
these two transactions are removed. Similarly, item K is
deleted because its support is 2. After K is deleted, trans-
actions 6 and 11 are also removed, and we have the
outcomes shown in Table 2.

4 LCCP: A fast algorithm for mining colossal
patterns with length constraints

In this section, two theorems are given to ensure the theoret-
ical foundation of the proposed algorithm, which is cost-
effective in mining colossal patterns with length constraints.
Theorem 2 is used to quickly omit candidate patterns that

Table 4 A transaction database
after filtering items TID Items

1 J K

2 B C D E G H J

3 B C E F G H J

4 B C D E F G H J

5 B E F G H J

6 B H K

7 B D F G H

8 E F G H J

9 F G H

10 B C D E G H

11 C F K

12 G K

Table 5 New database
after removing the
transactions

TID Items

2 B C D E G H J

3 B C E F G H J

4 B C D E F G H J

5 B E F G H J

6 B H K

7 B D F G H

8 E F G H J

9 F G H

10 B C D E G H

11 C F K

Table 6 Items and their support after removing transactions

Item B C D E F G H J K

Support 7 5 4 6 7 8 9 5 2

Table 7 A transaction
database after removing
transactions and items
and rearranging the TIDs

TID Items

1 B C D E G H J

2 B C E F G H J

3 B C D E F G H J

4 B E F G H J

5 B D F G H

6 E F G H J

7 F G H

8 B C D E G H
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cannot be guaranteed to satisfy the min-length constraint.
Theorem 3 is evaluated to be effective in quickly checking
candidates with the max-length constraint.

According to [21], a CP-Tree includes two kinds of elements
(vertex and arc), which can be briefly described as follows:

– Each vertex includes three attributes: a set of transaction
IDs, the pattern included in the set of transaction IDs, and
the support of a pattern.

For example, the nodes {BCDEGHJ} and {BCEFGHJ} is
represented by 1 × 0111101101, 2 × 0110111101, and its sup-
port is 2.

– An arc connects a node P at level k to a node Q at level
(k + 1) if the TID of P is the prefix of that of Q.

For example, the node 1 × 0111101101 connects to the
node 2 × 0110111101, creating a node 12 × 0110101101 be-
cause TID 011 is the prefix of TID 2.

Definition 4 (Subsuming of a pattern) Given two patterns Px
and Py in the CP-tree, if Px ⊆ Py, then Px is subsumed by Py.

Theorem 1 [27] If a pattern P of a node is subsumed by any
colossal pattern, then all the patterns generated from this node
cannot be colossal patterns.

Fig. 2 LCCP algorithm for
mining colossal patterns with
length constraints
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Theorem 2 (min-length constraint-based for pruning candi-
dates) If a node n in the CP-tree does not satisfy the min-
length constraint, then all its child nodes cannot satisfy the
min-length constraint.

Proof According to Definition 1, n does not satisfy the min-
length constraint, i.e. |n.pattern| < ξ. Besides, n1 is a child node

of n then |n1.pattern| ≤ |n.pattern|. Therefore, |n1.pattern| < ξ or
n1 cannot satisfy the min-length constraint.

Based on Theorem 2, we need not expand a node if it does
not satisfy the min-length constraint. Therefore, we can prune
the exploration area in the mining process.

Theorem 3 (max-length constraint-based for checking candi-
dates) If a node n in the CP-tree satisfies the max-length con-
straint, then all its child nodes satisfy the max-length con-
straint.

Proof According to Definition 2, n satisfies the max-length
constraint, i.e. |n.pattern| ≤Ω. Besides, n1 is a child node of n
then |n1.pattern| ≤ |n.pattern|. Therefore, |n1.pattern| ≤Ω or n1
satisfies the max-length constraint.

Based on Theorem 3, we need not check all the child nodes
of a node n if it satisfies the max-length constraint, and this
saves time as we do not need to checkmany nodes in CP-Tree.

4.1 Proposed algorithm

In this section, we develop an efficient method, named LCCP,
for quickly extracting colossal patterns with length constraints

Fig. 3 CP-tree after expanding node {BCDEGHJ}

Fig. 4 CP-tree after expanding node {BCDEGHJ}

Fig. 5 Final CP-tree for mining colossal patterns with length constraints

Table 8 Characteristics of the experimental databases

Database # of items # of transactions

Accidents 468 340,183

Connect 130 67,557

Chess 75 3196

Mushroom 120 8124
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(min-length and max-length). LCCP relies on PCP-Miner [21]
to efficiently generate and prune colossal pattern candidates. It
is also based on Theorem 2 to prune candidates that cannot
meet the min-length constraint, and based on Theorem 3 to
eliminate candidates that do not need to have the max-length
constraint checked.

Figure 1 shows the LCCP approach for extracting colossal
patterns with length constraints. It is expanded from PCP-
Miner [21] to efficiently generate candidates. Theorem 2 is
used to prune candidates (Line 2, Lines 20–21 and 40–41).
In Line 2, LCCP uses Theorem 2 to remove all transactions
with a length less than ξ. Lines 20 and 40 check the condition
of Theorem 2. If the condition is true, then it prunes all the
child nodes of T (Lines 21 and 41). Line 22 checks the con-
dition of Theorem 3; if it is true, LCCP is called (Line 23) to
mine colossal patterns with the min-length constraint (this
means we need not check the max-length constraint). The rest
of the LCCP and LengCCP algorithms are the same as PCP-
Miner [21].

4.2 An example

Example 2: We illustrate the LCCP algorithm based on the
information given in Example 1. Firstly, the support of each
item in Table 1 is calculated, and the results are as shown in
Table 3.

Withφ = 3 (=⌈0.25 × 12⌉), we can see that A and L do not
satisfy φ, so they are filtered. The database in Table 1 after
filtering items that do not satisfy φ is shown in Table 4.

The number of items in transactions 1 and 12 is 2, which is
smaller than ξ (according to Example 1, ξ = 3), so these two
transactions are removed. The results are shown in Table 5.

Table 6 presents the support of items after removing
transactions.

K is deleted because its support is 2. After that, transactions
6 and 11 are removed, and we have the outcomes shown in
Table 7.

LCCP uses the database in Table 7 to build the CP-Tree, as
shown in Figs. 2, 3 and 4.
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Firstly, level 1 of the CP-tree will be created from the
transactions in Table 7, as shown in Fig. 3. Considering node
{BCDEGHJ}, it will join with the node following it to create
new nodes in the tree as follows.

– With node {BCEFGHJ}: create node {BCEGHJ} at level
2 (support = 2)⇒ [T1] = {{BCEGHJ}}.

– With node {BCDEFGHJ}: create node {BCDEGHJ} at
l e v e l 2 ( s u ppo r t = 2 ) ⇒ [T1 ] = {{BCEGHJ} ,
{BCDEGHJ}}.

– With node {BEFGHJ}: create node {BEGHJ} at level 2
(support = 2) ⇒ [T1] = {{BCEGHJ}, {BCDEGHJ},
{BEGHJ}}.

– With node {BDFGH}: create node {BDGH} at level 2
(support = 2) ⇒ [T1] = {{BCEGHJ}, {BCDEGHJ},
{BEGHJ}, {BDGH}}.

– With node {EFGHJ}: create node {EGHJ} at level 2
(support = 2) ⇒ [T1] = {{BCEGHJ}, {BCDEGHJ},
{BEGHJ}, {BDGH}, {EGHJ}}.

– With node {FGH}: create node {GH} at level 2 (sup-
port = 2), because |GH| = 2 < ξ = 3⇒GH} does not add
to [T1] (by Theorem 2).

– With node {BCDEGH}: create node {BCDEGH} at level
2 (support = 2) ⇒ [T1] = {{BCEGHJ}, {BCDEGHJ},
{BEGHJ}, {BDGH}, {EGHJ}, {BCDEGH}}. Because
the pattern of the new node is the same as {BCDEGH}⇒
Remove {BCDEGH} from the Level 1 (by Theorem 1).

After creating [T1] = {{BCEGHJ}, {BCDEGHJ},
{BEGHJ}, {BDGH}, {EGHJ}, {BCDEGH}} for node
{BCDEGHJ}, the algorithm will be called recursively to ex-
pand the child nodes of the nodes in [T1]. Consider node
{BCEGHJ} with all the nodes following it in [T1] (Fig. 4):

– With node {BCDEGHJ}: create node {BCEGHJ} at lev-
el 3 (support = 3)⇒ [T1] = {{BCEGHJ}}.

– With node {BEGHJ}: create node {BEGHJ} at level 3
(support = 3) ⇒ [T1] = {{BCEGHJ}, {BEGHJ}}.
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Fig. 7 Various thresholdφ and transactions, fixed ξ = 26 andΩ = 35 on Chess dataset. aRun with 300 transactions, b Run with 400 transactions, c Run
with 500 transactions, d Run with 500 transactions
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Because the pattern of the new node is the same as
{BEGHJ} ⇒ Remove {BEGHJ} from level 2 (by
Theorem 1).

– With node {BDGH}: create node {BGH} at level 3 (sup-
port = 3)⇒ [T1] = {{BCEGHJ}, {BEGHJ}, {BGH}}.

– With node {EGHJ}: create node {EGHJ} at level 3 (sup-
port = 3) ⇒ [T1] = {{BCEGHJ}, {BEGHJ}, {BGH},
{EGHJ}}. Because the pattern of the new node is the
same as {EGHJ}⇒Remove {EGHJ} from level 2 (by
Theorem 1).

– With node {BCDEGH}: create node {BCEGH} at level 3
(support = 3)⇒ [T1] = {{BCEGHJ}, {BEGHJ}, {BGH},
{EGHJ}, {BCEGH}}.

Figure 5 shows the final CP-tree after expanding all nodes
and using Theorems 1 and 2 to prune nodes. After creating
level 3, from the patterns in level 3, we get the result of
{{BEGHJ}, {BGH}, {EGHJ}, {BCEGH}, {BDGH},
{BFGH}, {EFGHJ}, {FGH}}.

5 Experimental study

5.1 Environment and databases

This section compares the runtime of PCP-Miner-Post1 and
LCCP to confirm the proposed method’s effectiveness. PCP-
Miner-Post1 uses PCP-Miner to mine colossal patterns and
chooses the patterns that satisfy the mined pattern’s length
constraints; PCP-Miner-Post2 uses PCP-Miner to mine colos-
sal patterns but removes the patterns that do not satisfy the
length constraints in the mining process. All the experiments
exhibited in this section were performed on a PC with an Intel
Core i5 3.2 GHz, and 4GB of RAM, running onWindows 10,
with the Visual C# 2017. We did experiments on four data-
bases, as shown in Table 8, which were downloaded from
http://fimi.cs.helsinki.fi/data/.

The Accident database contains anonymized traffic acci-
dent data. The three remaining databases are prepared based
on the UCI datasets. The detail of each database is shown in
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Fig. 8 Various threshold φ and transactions, fixed ξ = 26 and Ω = 35 on the Connect dataset. a Run on 300 transactions, b Run on 400 transactions, c
Run on 400 transactions, d Run on 400 transactions
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Table 8. We choose these datasets because they have been
normalized and widely applied in various experiments by
many famous researchers in the data mining field.

5.2 Comparison of the runtime

We compare the runtime of PCP-Miner-Post1, PCP-Miner-
Post2 and LCCP on the four databases in Table 8 with various
settings. In the PCP-Miner-Post1 algorithm, the set of colossal
patterns was mined first. After that, we selected the patterns
that satisfy the length constraints. The PCP-Miner-Post2 algo-
rithm is based on the PCP-Miner algorithm. It checked the
length constraints when putting a pattern into the result set.
The LCCP algorithm is a newly proposed method, and this
applied Theorems 2 and 3 to eliminate the patterns that do not
satisfy the constraints during the mining process. We changed
the number of transactions incrementally when executing the
algorithms for each database to evaluate the proposed
method’s effectiveness.

Figure 6a–d shows the results of the experiments for the
Accidents database. We fix min- and max-length con-
straints (ξ = 20, Ω = 35), change φ from 3 to 6, and easily
find that the runtime of LCCP is less than that of PCP-
Miner-Post1 and PCP-Miner-Post2. When increasing the
φ value, the LCCP increased very slightly, while both
PCP-Miner-Post1 and PCP-Miner-Post2 linearly increased
fast.

In Fig. 6d, we fixφ = 5,Ω = 35 and change the min-length
constraint ξ from 20 to 26. The runtime of LCCP is six times
and fourteen times faster than those of PCP-Miner-Post2 and
PCP-Miner-Post1, respectively. Also, the runtime of LCCP
decreased while those of PCP-Miner-Post1 and PCP-Miner-
Post2 showed almost no decrease.

Similarly, for the Chess database, we fix the min- and max-
length constraints in Fig. 7a–d with ξ = 26 and Ω = 35, and
change φ from 8 to 14, and the results show that LCCP is
always the best algorithm.

Next, in Fig. 7d, we fix φ = 14, Ω = 35, change the min-
length constraint ξ from 26 to 32, and the LCCP is still better
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Fig. 9 Various threshold φ, fixed ξ = 16 and Ω = 20 on the Mushroom database. a Run on 500 transactions, b Run on 500 transactions, c Run on 700
transactions, d Run on 700 transactions
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than the PCP-Miner-Post1 and PCP-Miner-Post2 algorithms.
In particular, when we increase the min-length constraint, the
runtime of LCCP decreases significantly, while the PCP-
Miner-Post1 and PCP-Miner-Post2 both only decrease slight-
ly. The results in Fig. 6d show the efficiency when using
Theorems 2 and 3 compared to without using them (i.e., when
using LCCP compared to PCP-Miner-Post2).

Figure 8a–d perform the same tests for the Connect data-
base. We find that the runtimes of PCP-Miner-Post1 and PCP-
Miner-Post2 are nearly the same, while the runtime of LCCP
is much better than that of both PCP-Miner-Post1 and PCP-
Miner-Post2.

When we fix φ = 14, Ω = 35, and change ξ from 30 to
36, the runtime of LCCP is significantly decreased while
those of PCP-Miner-Post1 and PCP-Miner-Post2 only fall
slightly. Thus, the experiments confirmed that the LCCP
is the best algorithm of all three methods for the Connect
database.

Figure 9a–d compares the runtimes of LCCP, PCP-Miner-
Post1 and PCP-Miner-Post2 for the Mushroom database with
various settings. We fix the min- and max-length constraints
as ξ = 16, Ω = 20, and LCCP is always the best algorithm for
mining colossal patterns with length constraints for the
Mushroom database. In particular, when we change φ, the
time gaps between the runtime of LCCP and those of PCP-
Miner-Post1 and PCP-Miner-Post2 are very large.

In Fig. 9d, we fix φ = 16 and Ω = 20 and change the min-
length constraint from 12 to 18, and the results show that the
runtime of LCCP is much less than those of PCP-Miner-Post1
and PCP-Miner-Post2. Therefore, LCCP outperforms PCP-
Miner-Post1 and PCP-Miner-Post2 for this dataset.

In short, through the above experiments, we can conclude
that LCCP outperforms PCP-Miner-Post1 and PCP-Miner-
Post2 for mining colossal patterns with length constraints.

6 Conclusions and future work

This paper proposed two new theorems and a method named
LCCP for mining colossal patterns with length constraints.
Firstly, the problem of mining colossal patterns with length
constraints was presented. Secondly, two theorems were in-
troduced and used for quickly determining whether a colossal
pattern satisfies the length constraints. Based on these, an
efficient algorithm for mining colossal patterns with length
constraints was proposed, with the theorems having eliminat-
ed those patterns that do not satisfy the length constraints to
improve the mining times. Finally, experiments were conduct-
ed to verify the proposed approaches. The experimental re-
sults show that the LCCP algorithm is better than the PCP-
Miner-Post1 and PCP-Miner-Post2 algorithms.

This paper focused on min-length and max-length con-
straints for mining colossal patterns. In the future, the

combination of many constraints will also be studied.
Colossal pattern mining with constraints will be researched
and implemented in a distributed or parallel environment.
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